
HAL Id: hal-01839911
https://hal.umontpellier.fr/hal-01839911

Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity matching in side-by-side walking
Didier Delignieres, Zainy M.H. Almurad, Clément Roume, Didier Delignières

To cite this version:
Didier Delignieres, Zainy M.H. Almurad, Clément Roume, Didier Delignières. Complex-
ity matching in side-by-side walking. Human Movement Science, 2017, 54, pp.125 - 136.
�10.1016/j.humov.2017.04.008�. �hal-01839911�

https://hal.umontpellier.fr/hal-01839911
https://hal.archives-ouvertes.fr


	 1	

Almurad,	Z.M.H.,	Roume,	C.	&	Delignières,	D.	(2017).	Complexity	matching	in	side-by-side	walking.	Human	Movement	Science,	54,	125-136.		

	

Complexity	matching	in	side-by-side	walking		

Zainy	M.H.	Almurad1,2,	Clément	Roume1	&	Didier	Delignières1	

1.	Euromov,	Univ.	Montpellier,	France	
2.	Faculty	of	Physical	Education,	University	of	Mossul,	Irak	

	

Abstract:		

Interpersonal	 coordination	 represents	 a	 very	 common	 phenomenon	 in	 daily-life	 activities.	
Three	theoretical	frameworks	have	been	proposed	to	account	for	synchronization	processes	in	
such	situations:	the	information	processing	approach,	the	coordination	dynamics	perspective,	
and	the	complexity	matching	effect.	On	the	basis	of	a	theoretical	analysis	of	these	frameworks,	
we	 propose	 three	 statistical	 tests	 that	 could	 allow	 to	 distinguish	 between	 these	 theoretical	
hypotheses:	 the	 first	one	 is	based	on	multifractal	 analyses,	 the	 second	and	 the	 third	ones	on	
cross-correlation	analyses.	We	applied	these	tests	on	series	collected	in	an	experiment	where	
participants	 were	 instructed	 to	 walk	 in	 synchrony.	 We	 contrasted	 three	 conditions:	
independent	walking,	side-by-side	walking,	and	arm-in-arm	walking.	The	results	are	consistent	
with	the	complexity	matching	hypothesis.		

Key-words:		synchronized	walking,	complexity	matching,	multifractals,	cross-correlation.	
	

Introduction		

Interpersonal	 synchronization	 represents	 a	 very	 common	 phenomenon	 in	 daily	 life	
activities,	 for	 example	 when	 people	 walk	 together,	 dance,	 play	 music,	 etc.	 However,	 the	
processes	 that	 sustain	 this	 kind	 of	 coordination	 are	 still	 poorly	 understood,	 and	 several	
theoretical	 frameworks	 are	 in	 competition	 for	 explaining	 how	 interpersonal	 synchronization	
occurs.		

In	the	present	paper	we	focus	on	a	very	usual	activity,	side-by-side	walking.	The	final	goal	of	
this	line	of	research	is	concerned	by	rehabilitation	purposes,	and	this	point	will	be	developed	in	
the	concluding	section.	The	main	aim	of	the	current	paper	is	to	enrich	the	theoretical	approach	
of	the	alternative	frameworks	that	compete	in	this	domain,	and	to	propose	a	statistical	strategy	
for	disentangling	 these	different	points	of	view.	We	then	apply	 this	 theoretical	and	statistical	
background	in	an	experimental	study	on	side-by-side	walking.	In	a	first	step	it	seems	necessary	
to	 shortly	 introduce	 the	 theoretical	 paradigms	 that	 have	 been	 proposed	 in	 the	 study	 of	
interpersonal	synchronization.		
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The	information-processing	approach	

The	 first	 framework	 suggests	 that	 interpersonal	 synchronization	 is	 based	 on	 cognitive,	
representational	processes	of	anticipation.	This	information-processing	paradigm	originates	in	
the	analysis	of	sensorimotor	synchronization	(SMS),	focusing	at	the	experimental	 level	on	the	
synchronization	of	simple	movements	 (e.g.,	 finger	 tapping)	with	a	regular	metronome	(Repp,	
2005;	Repp	&	Su,	2013).	A	number	of	studies	suggested	that	 in	such	tasks	synchronization	 is	
achieved	by	 a	 systematic	 correction	of	 the	 current	 inter-tap	 interval,	 on	 the	basis	 of	 the	 last	
asynchronies	 (Pressing	 &	 Jolley-Rogers,	 1997;	 Torre	 &	 Delignières,	 2008;	 Vorberg	 &	 Wing,	
1996).	This	corrective	process	can	be	expressed	as	follows:		

 ITIn = ITIthn −αASYNn−1 + γεn   (1) 

where	 ITIn	 represents	 the	 inter-tap	 interval	 produced	 by	 the	 participant	 at	 the	 nth	 tap,	 and	
ASYNn	 the	 asynchrony	 between	 the	 nth	 tap	 and	 the	 nth	 onset	 of	 the	 metronome.	 ITIthn	
represents	 the	 inter-tap	 interval	 that	 should	 be	 intrinsically	 produced.	 ITIthn	 is	 supposedly	
produced	by	an	internal	timekeeper,	and	is	corrected	by	a	fraction	of	the	preceding	asynchrony.	
Finally	εn	is	a	white	noise	process.	

In	 order	 to	 account	 for	 synchronization	with	more	 realistic	 environments,	 this	 paradigm	
has	been	extended	to	the	study	of	synchronization	with	non-isochronous	metronomes.	The	first	
studies	 focused	on	metronomes	with	regularly	modulated	deviations	around	the	basic	 tempo	
(Madison	 &	 Merker,	 2005;	 Thaut,	 Tian,	 &	 Azimi-Sadjadi,	 1998).	 More	 recently	 a	 number	 of	
studies	analyzed	synchronization	with	metronomes	presenting	 fractal	variabilities,	which	are	
supposed	 to	 represent	 more	 closely	 the	 kind	 of	 fluctuations	 one	 encounters	 with	 natural	
situations,	and	especially	with	human	partners	(Delignières	&	Marmelat,	2014;	Hunt,	McGrath,	
&	 Stergiou,	 2014;	 Kaipust,	 McGrath,	 Mukherjee,	 &	 Stergiou,	 2013;	 Marmelat,	 Torre,	 Beek,	 &	
Daffertshofer,	 2014;	 Rankin	 &	 Limb,	 2014;	 Torre,	 Varlet,	 &	 Marmelat,	 2013).	 These	
experiments	generally	showed	that	individuals	tracked	the	timing	variations	of	the	sequence	at	
a	 lag	of	one	event	(Delignières	&	Marmelat,	2014;	Thaut	et	al.,	1998;	Torre	et	al.,	2013).	This	
tracking	behavior	is	essentially	similar	to	that	supposed	by	the	basic	model	proposed	in	Eq.	(1).		

This	 information	processing	approach	to	sensorimotor	synchronization	has	been	extended	to	
interpersonal	 synchronization,	 especially	 in	 the	 study	 of	 dyadic	 finger	 tapping	 tasks	
(Konvalinka,	Vuust,	Roepstorff,	&	Frith,	2010;	Nowicki,	Prinz,	Grosjean,	Repp,	&	Keller,	2013;	
Pecenka	&	Keller,	2011).	These	experiments	and	their	results	will	be	presented	and	discussed	
latter	in	this	paper.		

The	coordination	dynamics	perspective	

A	 second	 theoretical	 framework	 has	 been	 proposed	 by	 the	 coordination	 dynamics	
perspective	 (Schmidt,	 Carello,	&	Turvey,	 1990).	 This	 approach	was	 initially	 developed	 in	 the	
analysis	 of	 bimanual	 coordination,	 and	 promoted	 a	 phenomenological	 model	 based	 on	 a	
continuous	coupling	between	oscillators	(Haken,	Kelso,	&	Bunz,	1985;	Schöner,	Haken,	&	Kelso,	
1986):		

 
 

!!x1 +δ !x1 + λ !x1
3 + γ x1

2 !x1 +ω
2x1 = ( !x1 − !x2 )[a + b(x1 − x2 )

2 ]
!!x2 +δ !x2 + λ !x2

3 + γ x2
2 !x2 +ω

2x2 = ( !x2 − !x1)[a + b(x2 − x1)
2 ]

  (2) 

where	xi	is	the	position	of	oscillator	i,	and	the	dot	notation	represents	derivation	with	respect	
to	 time.	 The	 left	 side	 of	 the	 equations	 represents	 the	 limit	 cycle	 dynamics	 of	 each	 oscillator	
determined	by	a	linear	stiffness	parameter	(ω)	and	damping	parameters	(δ,	λ,	and	γ),	and	the	
right	side	represents	the	coupling	function	determined	by	parameters	a	and	b.	This	model	has	
been	proven	to	adequately	account	for	most	empirical	features	in	bimanual	coordination	tasks,	
such	 as	 the	 differential	 stability	 of	 in-phase	 and	 anti-phase	 coordination	 modes,	 and	 the	
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transition	from	anti-phase	to	 in-phase	coordination	with	the	 increase	of	oscillation	frequency	
(Haken	et	al.,	1985;	Schöner	et	al.,	1986).		

Schmidt	 et	 al.	 (1990),	 in	 a	 series	 of	 experiments	 in	 which	 two	 seated	 participants	 were	
asked	to	visually	coordinate	their	lower	legs,	showed	that	interpersonal	coordination	presents	
strong	similarities	with	bimanual	coordination:	anti-phase	and	in-phase	coordination	patterns	
also	emerged	as	intrinsically	stable	behaviors,	with	anti-phase	being	less	stable	than	in-phase	
coordination,	and	spontaneous	transitions	from	anti-phase	to	in-phase	coordination	were	also	
observed	 with	 increasing	 frequency.	 Similar	 results	 were	 obtained	 in	 diverse	 interpersonal	
tasks,	such	as	rocking	side-by-side	in	rocking	chairs	(Richardson,	Marsh,	Isenhower,	Goodman,	
&	Schmidt,	2007),	or	swinging	pendulums	together	(Schmidt,	Bienvenu,	Fitzpatrick,	&	Amazeen,	
1998).	 Some	 important	 predictions	 of	 the	 original	 model,	 such	 as	 the	 effect	 of	 a	 difference	
between	 the	 uncoupled	 eigenfrequencies	 of	 the	 two	 oscillators,	 were	 also	 evidenced	 in	
interpersonal	coordination	tasks	(Schmidt	et	al.,	1998).	

Complexity	matching	

Complexity	 matching	 represents	 a	 third,	 alternative	 framework	 that	 has	 been	 recently	
proposed	for	accounting	for	interpersonal	coordination	processes	(Abney,	Paxton,	Dale,	&	Kello,	
2014;	Delignières	&	Marmelat,	2014;	Marmelat	&	Delignières,	2012).	The	concept	of	complexity	
matching,	 introduced	by	West	 et	 al.	 (2008),	 states	 that	 the	exchange	of	 information	between	
two	 complex	 networks	 is	maximized	when	 their	 complexities	 are	 similar.	 The	 response	 of	 a	
complex	network	to	the	stimulation	of	another	network	is	a	 function	of	the	matching	of	their	
complexities.	 This	 property	 requires	 that	 both	 networks	 generate	 1/f	 fluctuations,	 and	 has	
been	interpreted	as	a	kind	of	“1/f	resonance”	(Aquino,	Bologna,	West,	&	Grigolini,	2011)	

An	 interesting	 conjecture	 exploiting	 the	 complexity	 matching	 effect	 supposes	 that	 two	
coupled	 complex	 systems	 tend	 to	 attune	 their	 complexities	 in	 order	 to	 optimize	 information	
exchange.	 This	 conjecture	 suggests	 a	 close	 matching	 between	 the	 scaling	 exponents	
characterizing	the	series	produced	by	the	coupled	systems.	Such	results	have	been	evidenced	
by	Marmelat	and	Delignières	(2012)	in	an	inter-personal	coordination	task	where	participants	
oscillated	 pendulums	 in	 synchrony,	 and	 by	 Abney,	 Paxton,	 Dale,	 and	 Kello	 (2014),	 in	 the	
analysis	of	speech	signals	during	dyadic	conversations.		

The	 processes	 that	 underlain	 this	 tailoring	 of	 fluctuations	 remain	 not	 fully	 understood.	
Stephen	and	Dixon	(2011)	propose	an	interesting	hypothesis,	which	explains	this	attunement	
as	 a	 case	 of	 multifractal	 cascade	 dynamics	 in	 which	 perceptual-motor	 fluctuations	 are	
coordinated	 across	multiple	 time	 scales.	 This	 coordination	 among	multiple	 time	 scales	 could	
support	the	apparently	predictive	aspects	of	behavior	without	requiring	an	internal	model.		

These	 three	 theoretical	 frameworks	 have	 been	 jointly	 considered	 in	 a	 series	 of	 papers	
dedicated	 to	 the	 analysis	 of	 anticipation	 processes,	 and	 distinguishing	 several	 forms	 of	
anticipation	 (Dubois,	 2003;	 Stephen	 &	 Dixon,	 2011;	 Stepp	 &	 Turvey,	 2010).	 Dubois	 (2003)	
considered	 that	 synchronization	 with	 fluctuating	 environments	 was	 based	 on	 a	 kind	 of	
“prediction”	of	its	upcoming	behavior	(Delignières	&	Marmelat,	2014;	Marmelat	&	Delignières,	
2012;	Stephen	&	Dixon,	2011;	Stephen,	Stepp,	Dixon,	&	Turvey,	2008).	Dubois	suggested	that	a	
first	 form	 of	 anticipation	 was	 based	 on	 representational	 processes,	 allowing	 to	 predict	 the	
future	 of	 the	 environment	 with	 which	 the	 systems	 has	 to	 coordinate.	 The	 information-
processing	 approach	we	 previously	 presented	 corresponds	 to	 this	 kind	 of	 processes.	 Dubois	
(2003)	proposed	to	refer	this	form	of	anticipation	to	as	‘‘weak’’	anticipation.		

The	author	proposed	a	 ‘‘strong’’	 alternative	 that	does	not	 rely	on	 internal	models.	 Strong	
anticipation	suggests	that	the	organism	is	embedded	within	its	environment.	This	embedding	
asserts	lawful	constraints	upon	both	the	actions	of	the	organism	and	the	environmental	effects	
on	those	actions,	and	anticipation	emerges	as	a	lawful	regularity	of	the	organism–environment	
system.	
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Stephen	 and	Dixon	 (2011)	 argued	 that	 two	 approaches	 to	 strong	 anticipation	 have	 to	 be	
distinguished.	 The	 first	 one	 suggests	 that	 strong	 anticipation	 results	 from	 an	 appropriate	
coupling	between	the	organism	and	its	environment.	An	interesting	example	was	presented	by	
Voss	 (2000),	 who	 showed	 that	 during	 the	 synchronization	 between	 a	 slave	 and	 a	 master	
systems,	 the	 presence	 of	 time	 delays	 in	 the	 master	 system	 yields	 the	 slave	 system	 to	
synchronize	with	future	states	of	the	master.	The	models	of	coupled	oscillators	proposed	by	the	
coordination	 dynamics	 perspective	 clearly	 refer	 to	 this	 kind	 of	 local	 strong	 anticipation	
processes.	 This	 conception	 supposes	 that	 anticipation	 is	 based	 on	 local	 time	 scales,	 and	 the	
quality	of	anticipation	is	supposed	to	be	closely	related	to	the	strength	of	coupling	between	the	
two	systems	(Stepp	&	Turvey,	2010).			

A	second	approach	supposes	that	strong	anticipation	is	based	on	a	more	global	coordination	
between	the	organism	and	its	environment.	Stephen	et	al.	(2008)	were	the	first	to	evidence	this	
kind	 of	 strong	 anticipation	 in	 an	 experiment	which	 analyzed	 synchronization	with	 a	 chaotic	
metronome.	 In	 such	a	 situation,	 local	predictions	 seem	difficultly	 conceivable,	 because	of	 the	
intrinsically	 unpredictable	 nature	 of	 the	 external	 pacing	 signal.	 Despite	 this	 unpredictability,	
the	 authors	 reported	 a	 quite	 acceptable	 synchronization	 with	 the	 metronome.	 They	 also	
observed	a	close	matching	between	the	fractal	exponents	of	the	chaotic	signals	and	those	of	the	
corresponding	 inter-tap	 interval	 series.	 Such	 global	 strong	 anticipation	 corresponds	 to	 the	
previously	presented	complexity	matching	effect.		

These	three	theoretical	frameworks	have	received	considerable	supports	in	their	respective	
fields	of	emergence,	including	interpersonal	coordination	tasks.	We	are	not	sure,	however,	that	
these	 frameworks	 represent	 alternative	 hypotheses	 for	 accounting	 for	 similar	 phenomena.	
Depending	 on	 the	 nature	 and	 the	 constraints	 of	 the	 situation,	 different	 synchronization	
processes	 could	 be	 at	 work,	 and	 each	 framework	 could	 offer	 satisfying	 accounts	 in	 specific	
tasks.	 The	 information	 processing	 approach	 seems	 particularly	 relevant	 for	 accounting	 for	
situations	 where	 one	 has	 to	 synchronize	 discrete	 movements	 (e.g.,	 tapping)	 with	 series	 of	
discrete	signals	(Konvalinka	et	al.,	2010;	Repp,	2005).	The	coordination	dynamics	perspective	
was	 essentially	 developed	 for	 accounting	 for	 the	 coordination	 of	 continuous,	 oscillatory	
movements	(Schmidt	et	al.,	1990).	The	scope	of	complexity	matching	remains	to	define,	but	it	
has	 been	 previously	 applied	 to	 very	 diverse	 situations,	 including	 non	 periodic	 interactions	
between	complex	systems	(e.g.,	Abney	et	al.,	2014).		

In	order	to	test	the	relevance	of	these	frameworks	in	specific	situations,	we	need	statistical	
signatures	that	could	be	able	to	unambiguously	identify	the	processes	at	work	in	interpersonal	
coordination.	 In	 the	 following	parts	we	present	 three	possible	 tests:	 the	 first	one	 is	based	on	
multifractal	analyses,	and	has	been	proposed	by	Delignières	et	al	 (2016),	 the	second	and	 the	
third	exploit	cross-correlation	analyses.		
Multifractal	signatures	

Most	experiments	seeking	to	evidence	a	complexity	matching	effect	tried	to	reveal	a	close	
attunement	of	the	(mono)fractal	properties	of	the	series	produced	by	the	coordinated	systems.	
Typically,	 the	 authors	 showed	 close	 correlations	 between	 scaling	 exponents	 (Delignières	 &	
Marmelat,	 2014;	 Marmelat	 &	 Delignières,	 2012;	 Marmelat,	 Delignières,	 Torre,	 Beek,	 &	
Daffertshofer,	2014;	Stephen	et	al.,	2008).		

However,	Delignières,	Almurad,	Roume	and	Marmelat	(2016)	claimed	that	the	matching	of	
scaling	exponents	could	not	be	considered	an	unambiguous	signature	of	complexity	matching.	
They	 proposed	 to	 distinguish	 between	 statistical	 matching	 (i.e.,	 the	 convergence	 of	 scaling	
exponents)	and	genuine	complexity	matching	effect	(i.e.,	the	attunement	of	complexities).	Some	
recent	 papers	 showed	 that	 the	matching	 of	 scaling	 exponents	 could	 result	 from	 local,	 short-
term	adjustments	or	corrections	(Delignières	&	Marmelat,	2014;	Fine	et	al.,	2015;	Torre	et	al	,	
2013).	 For	 example,	 Delignières	 and	 Marmelat	 (2014)	 analyzed	 series	 of	 stride	 durations	
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produced	 by	 participants	 attempting	 to	 walk	 in	 synchrony	 with	 a	 fractal	 metronome.	 They	
evidenced	a	close	correlation	between	 the	scaling	exponents	of	 the	series	of	 stride	durations	
produced	 by	 the	 participants	 and	 those	 of	 the	 series	 of	 inter-onset	 intervals	 of	 the	
corresponding	metronomes.	The	authors	tried	to	simulate	their	empirical	results	by	means	of	a	
model	 based	 on	 local	 corrections	 of	 asynchronies,	 and	 showed	 that	 this	 model	 was	 able	 to	
adequately	 reproduce	 the	 statistical	 matching	 observed	 in	 experimental	 series.	 The	 authors	
concluded	that	walking	in	synchrony	with	a	fractal	metronome	could	essentially	involve	short-
term	correction	processes,	and	that	the	close	correlation	observed	between	scaling	exponents	
could	in	such	a	case	just	represent	the	consequence	of	these	local	corrections.		

Delignières	 et	 al.	 (2016)	 proposed	 a	 more	 binding	 method	 for	 distinguishing	 genuine	
complexity	matching	from	local	corrective	processes.	They	first	suggested	to	base	the	analysis	
of	 statistical	 matching	 on	 a	 multifractal	 approach,	 rather	 than	 the	 monofractal	 analyses	
previously	employed.	This	choice	was	motivated	by	the	point	developed	by	Stephen	and	Dixon	
(2011),	 arguing	 the	 tailoring	 of	 fluctuations	 that	 is	 typical	 of	 complexity	 matching	 could	 be	
considered	as	the	product	of	multifractality,	and	also	by	the	fact	that	multifractals	allow	for	a	
more	detailed	picture	of	the	complexity	of	time	series.		

Multifractal	 processes	 present	 more	 complex	 fluctuations	 than	 monofractal	 series,	 and	
cannot	be	characterized	by	a	single	scaling	exponent.	In	multifractal	series	subsets	with	small	
and	 large	 fluctuations	 scale	 differently,	 and	 their	 description	 requires	 a	 hierarchy	 of	 scaling	
exponents	 (Podobnik	 &	 Stanley,	 2008).	 Delignières	 et	 al.	 (2016)	 proposed	 to	 assess	 the	
statistical	matching	through	the	point-by-point	correlation	function	between	the	sets	of	scaling	
exponents	that	characterize	the	coordinated	series.		

The	 authors	 used	 the	 Multifractal	 Detrended	 Fluctuation	 Analysis	 (MFDFA,	 see	 Method	
section),	which	is	based	in	its	first	steps	on	the	analysis	of	the	evolution	of	average	statistical	
moments	 with	 the	 length	 of	 the	 intervals	 over	 which	 these	 moments	 are	 computed.	 This	
method	allows	to	choose	the	range	of	 interval	 lengths	that	 is	taken	into	account.	The	authors	
proposed	to	estimate	the	set	of	multifractal	exponents	in	first	over	the	entire	range	of	available	
intervals	 (i.e.,	 from	 8	 to	N/2,	N	 representing	 the	 length	 of	 the	 series),	 and	 then	 over	 more	
restricted	ranges,	progressively	excluding	the	shortest	intervals	(i.e.,	from	16	to	N/2,	from	32	to	
N/2,	and	then	 from	64	to	N/2).	They	 then	computed	the	point-by-point	correlation	 functions	
characterizing	the	four	ranges	of	interval	lengths	considered.		

The	 authors	 supposed	 that	 if	 synchronization	 is	 just	 based	 on	 local	 corrections,	 the	
statistical	matching	 in	 long	 intervals	 is	 just	 the	consequence	of	 the	short-term,	 local	coupling	
between	 the	 two	 systems.	 As	 local	 corrections	 between	 unpredictable	 systems	 remains	
approximate,	 correlations	 should	 dramatically	 decrease	 when	 intervals	 of	 shorter	 durations	
are	 taken	 into	 consideration.	 In	 contrast,	 in	 the	 case	 of	 genuine	 complexity	 matching,	 the	
synchronization	 between	 systems	 is	 supposed	 to	 emerge	 from	 interactions	 across	 multiple	
scales.	The	authors	hypothesized	to	find	in	this	case	close	correlations,	even	when	considering	
the	entire	range	of	intervals,	from	the	shortest	to	the	longest.	

We	present	in	Figure	1	the	results	obtained	by	the	authors	in	three	experiments.	The	first	
one	analyzed	 the	series	of	periods	produced	by	 the	 two	hands	of	participants	performing	 in-
phase	 bimanual	 coordination.	 The	 correlation	 functions	 obtained	 remained	 close	 to	 one,	
whatever	 the	 range	 of	 intervals	 considered	 (Figure	 1,	 left	 panel).	 The	 second	 one	 was	 an	
interpersonal	coordination	task	in	which	participants	were	instructed	to	oscillate	pendulums	in	
phase	 (Figure	 1,	 central	 panel).	 In	 this	 experiment	 the	 correlation	 functions	 remained	
significant,	while	a	little	bit	lesser	than	in	the	first	example.	In	the	third	experiment	participants	
had	to	walk	in	synchrony	with	a	fractal	metronome	(Figure	1,	right	panel).	In	that	case	a	close-
to-one	correlation	function	was	only	obtained	when	the	longest	intervals	were	considered	(i.e.,	
from	64	to	N/2).	When	widest	ranges	of	 intervals	were	considered,	correlation	functions	lose	
statistical	significance.		
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Figure	1:	Correlation	functions,	for	the	four	ranges	of	intervals	considered	(8	to	N/2	,	16	to	N/2	,	
32	to	N/2	 ,	64	to	N/2),	 for	bimanual	coordination	(left),	 interpersonal	coordination	(middle),	
and	walking	in	synchrony	with	a	fractal	metronome	(right).	From	Delignières	et	al.	(2016).		

	
The	authors	concluded	that	in	bimanual	coordination	and	in	interpersonal	coordination,	the	

statistical	matching	resulted	from	a	genuine	complexity	matching	between	systems.	In	contrast	
during	walking	in	synchrony	with	a	fractal	metronome,	the	apparent	statistical	matching	was	
just	the	result	of	local	adjustments.		

This	 multifractal	 approach	 allows	 to	 clearly	 distinguishing	 between	 weak	 anticipation	
processes	(i.e.	 local	discrete	correction)	and	strong	anticipation	processes.	However,	 it	seems	
unable	to	distinguish	between	the	local	and	global	forms	of	strong	anticipation	(Delignières	et	
al.,	2016).	
Cross-correlation	peaks	

A	second	kind	of	signatures	can	be	obtained	from	cross-correlation	analyses.	As	previously	
evoked,	 a	 number	 of	 recent	 studies	 analyzed	 synchronization	 with	 non-isochronous	
metronomes,	and	especially	metronomes	presenting	fractal	fluctuations.	These	studies	showed	
that	 synchronization	 in	 such	 situations	 was	 sustained	 by	 local	 corrections	 of	 the	 recent	
asynchronies,	as	expected	from	Eq.	(1).	Such	behavior	is	typically	revealed	by	a	positive	peak	of	
cross-correlation	 at	 lag	 -1,	 between	 the	 series	 of	 asynchronies	 and	 the	 series	 of	 periods	
produced	by	the	participant,	or	between	the	series	of	periods	produced	by	the	participant	and	
that	 produced	 by	 the	 metronome.	 Note	 that	 some	 more	 complicated	 models	 have	 been	
proposed,	 involving	 corrective	 processes	 taking	 into	 account	 more	 previous	 asynchronies	
(Pressing	 &	 Jolley-Rogers,	 1997).	 For	 example	 Delignières	 and	 Marmelat	 (2014),	 in	 an	
experiment	where	participants	had	to	walk	in	synchrony	with	a	fractal	metronome,	evidenced	
positive	peaks	of	cross-correlations	at	lag	-2	and	lag	-1	between	the	series	of	asynchronies	and	
the	series	of	step	durations.		

The	 principle	 of	 phase	 correction	 can	 also	 be	 applied	 to	 interpersonal	 synchronization.	
When	 two	 individuals	perform	a	 rhythmic	 task	 in	 synchrony	 (e.g.,	 tapping),	phase	correction	
suggests	 that	 participant	A	 adapts	 his/her	 current	 inter-tap	 interval	 on	 the	 basis	 on	 the	 last	
asynchrony	 he/she	 perceived	 with	 his/her	 partner,	 and	 conversely	 for	 participant	 B.	 This	
mutual	phase	correction	process	could	be	modeled	as	follows:		
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ITIA,n = ITIthA,n −αASYNA−B,n−1 + γεA,n
ITIB,n = ITIthB,n −αASYNB−A,n−1 + γεB,n

  (3) 

where	ITIA,n	represents	the	inter-tap	interval	produced	by	participant	A	at	the	nth	tap,	ASYNA-B,	n	
the	 asynchrony	 between	 the	nth	 tap	 of	 participant	 A	 and	 the	nth	 tap	 of	 participant	 B	 (hence,	
ASYNA-B,	n	=	 -	ASYNB-A,	n).	As	 in	 the	previous	model	 (Eq.	 (1)),	 ITIthA,n	 is	a	 long-range	correlated	
series	with	 Hurst	 exponent	H,	 mean	M	 and	 variance	σ2,	 representing	 the	 series	 of	 taps	 that	
should	be	 intrinsically	produced	by	participant	A,	 and	εA,n	 is	 a	white	noise	process	with	zero	
mean	and	unit	variance.	We	generated	12	sets	of	coupled	series	with	this	simple	model,	with	
the	following	parameters:	H	=	0.9,	α	=	0.3,	M	=	1000,	σ2	=	400,	and	γ	=	300.	We	then	computed	
the	cross-correlation	function,	 from	lag	-10	to	 lag	+10,	between	the	obtained	ITI	series	(ITIA,n	
and	ITIB,n).	We	present	in	Figure	2	the	averaged	cross-correlation	function.	This	model	typically	
produces	positive	 lag	 -1	and	 lag	+1	cross-correlations,	and	a	negative	 lag	0	cross-correlation.	
The	positive	lag	-1	and	lag	+1	cross-correlations	reflect	the	correction	of	asynchronies,	and	the	
negative	 correlation	 at	 lag	 0	 results	 from	 this	mutual	 tendency	 of	 each	 participant	 to	 adapt	
towards	the	previous	ITI	of	the	other.	This	typical	pattern	of	cross-correlation	was	evidenced	
by	Konvalinka	et	al.	(2010),	in	an	experiment	where	participants	had	to	synchronize	their	taps,	
and	by	Delignières	 and	Marmelat	 (2014)	 in	 an	 experiment	where	 each	participant	 in	 a	dyad	
swung	a	hand-held	pendulum,	and	were	instructed	to	swing	in	synchrony.		

	
Figure	2:	Averaged	cross-correlation	function	obtained	from	series	simulated	with	Eq.	(3).	

	
In	contrast,	both	coupled	oscillators	models	and	complexity	matching	are	likely	to	result	in	

a	unique,	positive	peak	of	cross-correlation,	located	at	lag	0.	Indeed,	coupled	oscillators	models	
suggest	 a	 local,	 continuous	 coupling	 within	 the	 limit	 cycle,	 and	 the	 oscillators	 are	 clearly	
expected	 to	 synchronize	 their	 frequencies.	 Generally	 the	 authors	 working	 on	 coordination	
dynamics	 focus	on	the	stability	of	relative	phase,	and	 ignore	the	possible	serial	dependencies	
between	the	series	produced	by	the	two	oscillators.	However,	Delignières	and	Marmelat	(2014)	
and	Coey	et	al	 (2016)	clearly	evidenced	a	peak	of	cross-correlation	at	 lag	0	between	the	 two	
limbs	in	bimanual	coordination.	Complexity	matching	does	not	suggest	such	local	coupling,	but,	
rather,	 a	 global	 and	multiscale	 coordination	between	 systems	 (Stephen	&	Dixon,	 2011).	 This	
should	induce	a	close	tailoring	of	fluctuations,	which	should	also	be	expected	to	result	in	a	peak	
at	lag	0	in	the	cross-correlation	function.		

Then	 the	 location	of	 the	peak(s)	 of	 cross-correlation	between	 the	 series	produced	by	 the	
two	members	 of	 the	 dyad,	 could	 allow	 to	 distinguish	 between	weak	 and	 strong	 anticipation	
processes,	 but	 not	 between	 the	 local	 and	 global	 forms	 of	 strong	 anticipation.	 We	 suggest,	
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however,	that	the	magnitude	of	the	lag	0	cross-correlation	peak	could	represent	an	interesting	
test	for	the	respective	relevancy	of	the	two	last	competing	models.		
Lag	0	windowed	cross-correlation	

Cross-correlations	 are	 strongly	 affected	 by	 trends,	 which	 could	 spuriously	 increase	 the	
obtained	 values.	 In	 order	 to	 control	 these	 biases	 and	 to	 focus	 on	 local	 processes,	 one	 could	
compute	 the	 Windowed	 Detrended	 Cross-Correlation	 function	 (WDCC).	 In	 this	 method	 the	
series	 are	 divided	 into	 non-overlapping	 intervals	 of	 short	 length	 (e.g.,	 15	 data	 points),	 and	
detrended	within	 each	 interval.	The	 local	 cross-correlation	 function	 is	 then	 computed	within	
each	interval,	and	averaged	over	all	intervals	(Coey	et	al.,	2016;	Delignières	&	Marmelat,	2014;	
Konvalinka	et	al.,	2010).		

Fine	et	al.	(2015)	suggested	that	the	local	and	continuous	coupling	involved	in	coordination	
dynamics	 models	 could	 be	 at	 the	 origin	 of	 the	 strong	 statistical	 matching	 observed	 in	
interpersonal	 synchronization	 experiments.	 However,	 several	 recent	 studies	 showed	 that	 in	
such	 situations,	 statistical	 matching	 occurs	 despite	 a	 lack	 of	 substantial	 short-term	 cross-
correlation,	 considered	as	evidence	against	 the	 local	 coupling	hypothesis	 (Abney	et	al.,	2014;	
Marmelat	 &	 Delignières,	 2012;	 Rhea,	 Kiefer,	 D’Andrea,	 Warren,	 &	 Aaron,	 2014;	 Washburn,	
Kallen,	Coey,	Shockley,	&	Richardson,	2015).		

Delignières	et	al.	(2016)	performed	a	simulation	study	based	on	the	HKB	model	(Eq.	(2)).	In	
order	 to	 account	 for	 the	 presence	 of	 1/f	 fluctuations	 in	 limb	 oscillations,	 they	 provided	 the	
stiffness	parameters	(ω2)	of	both	equations	with	independent	fractal	properties.	They	showed	
that	this	model	required	very	high	coupling	parameters	(i.e.,	a	and	b	in	Eq.	(2))	for	maintaining	
the	stability	of	coordination	patterns.	As	a	consequence,	the	local	coupling	between	oscillators	
was	strong	and	the	mean	lag	0	WDCC,	computed	from	these	simulated	series,	was	of	about	0.84.	
In	contrast,	Coey	et	al	(2016)	and	Delignières	and	Marmelat	(2014)	obtained	 lag	0	WDCCs	of	
about	0.4	in	bimanual	coordination	tasks,	and	Coey	et	al	(2016)	observed	a	value	of	about	0.2	in	
an	interpersonal	synchronization	tapping	task.	On	the	basis	of	these	results,	one	can	consider	
that	the	lag	0	WDCC	value	could	allow	distinguishing	between	the	alternative	models	of	strong	
anticipation:	Coupled	oscillators	dynamics	should	be	revealed	by	a	significant	peak	of	WDCC	at	
lag	0,	but	in	the	case	of	complexity	matching	this	peak	should	remain	non-significant.		

The	 aim	 of	 the	 present	 work	 was	 to	 clarify	 the	 nature	 of	 synchronization	 in	 side-by-side	
walking.	We	applied	the	three	previously	presented	statistical	tests	to	empirical	series,	and	we	
hypothesized	to	evidence	the	typical	signatures	of	complexity	matching	in	this	situation.		

2.	Methods	
2.1.	Participants	

26	participants	(16	male	and	10	female,	mean	age:	28.07	yrs	±	8.88,	mean	weight:	68.65	kg	
±	 10.5,	mean	 height:	 172.92	 cm	±	 9.67)	were	 involved	 in	 the	 experiment.	 Participants	were	
paired	 into	 13	 dyads.	 The	 pairing	 procedure	 was	 performed	 in	 order	 to	 preserve	 the	
homogeneity	of	weights	and	heights	within	each	dyad.	Participants	signed	an	informed	consent	
approved	by	the	local	ethic	committee	and	were	not	paid	for	their	participation.	All	work	was	
conducted	in	accordance	with	the	1964	Declaration	of	Helsinki.	
2.2.	Experimental	procedure	

The	experiment	was	performed	around	an	indoor	running	track	(circumference	200m),	and	
comprised	three	experimental	conditions:		

-	Condition	1:	Independent	walking.	Each	participant	walked	individually	at	his/her	preferred	
velocity	
-	 Condition	2:	 Side-by-side	walking.	The	 two	members	of	 the	dyad	walked	 together,	 side-by-
side.	They	were	explicitly	instructed	to	synchronize	their	steps	during	the	whole	trial.		
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-	Condition	3:	Arm-in-arm	walking.	The	two	members	of	the	dyad	walked	together,	arm-in-arm.	
They	were	explicitly	instructed	to	synchronize	their	steps	during	the	whole	trial.	

Each	trial,	in	the	three	conditions,	lasted	16	minutes.	Participants	had	a	resting	period	of	at	
least	10	minutes	between	 two	successive	 trials.	 Independent	walking	was	performed	at	 first.	
The	order	of	the	two	last	conditions	was	counterbalanced	within	dyads.		

2.3.	Data	collection	

Data	were	 recorded	with	 two	Mobility	Lab	systems	 (APDM,	 Inc),	one	 for	each	member	of	
the	dyads.	 Two	body-worn	 inertial	 sensors	were	 attached	on	 the	 shanks	of	 each	participant.	
Data	 were	 then	 wirelessly	 streamed	 to	 a	 laptop.	 The	 device	 performed	 automated	 analyses	
providing	a	set	of	raw	series	(stride	duration,	stride	length,	etc.,	for	both	limbs).	In	the	present	
paper	we	focused	on	the	series	of	right	stride	durations.		

2.4.	Statistical	analyses	
Multifractal	Detrended	Fluctuation	analysis	(MF-DFA)	

We	 performed	 multifractal	 analyses	 with	 the	 MF-DFA	 method,	 initially	 introduced	 by	
Kantelhardt	 et	 al	 (2002).	 Consider	 the	 series	 x(i),	 i	 =	 1,	 2,	 …,	N.	 In	 a	 first	 step	 the	 series	 is	
centered	and	integrated:	

	 X k( ) = x i( )− 1
N

x i( )
i=1

N

∑⎡
⎣⎢

⎤
⎦⎥i=1

k

∑ 		 (4)	

Next,	the	integrated	series	X(k)	is	divided	into	Nn	non-overlapping	segments	of	length	n,	and	
in	 each	 segment	 s	 =	 1,	 ...,	 Nn.	 Within	 each	 segment	 the	 local	 trend	 Xn,s(k)	 is	 estimated	 and	
subtracted	from	X(k).	The	variance	is	calculated	for	each	detrended	segment:	

	 F2 n, s( ) = 1
n

X k( )− Xn,s k( )⎡⎣ ⎤⎦
k=(s−1)n+1
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and	then	averaged	over	all	segments	to	obtain	qth	order	fluctuation	function	

	 Fq (n) =
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where	q	can	take	any	real	value	except	zero.	In	the	present	work	we	used	integer	values	for	q,	
from	-15	to	+15.	Note	that	Eq.	(6)	cannot	hold	for	q	=	0.	A	logarithmic	averaging	procedure	is	
used	for	this	special	case:		

	 F0 (n) = exp
1
2Nn

ln F2 n, s( )⎡⎣ ⎤⎦
s=1

Nn

∑⎛
⎝⎜

⎞
⎠⎟
		 (7)	

This	calculation	is	repeated	for	all	lengths	n	(practically,	one	considers	intervals	from	8	or	
10	data	points,	in	order	to	allow	a	proper	assessment	of	statistical	moments,	up	to	N/4	or	N/2).	
If	long-term	correlations	are	present,	Fq(n)	should	increase	with	n	according	to	a	power	law:	

	 Fq n( )∝ nh(q) 		 (8)	

The	 scaling	 exponent	 h(q)	 is	 obtained	 as	 the	 slope	 of	 the	 linear	 regression	 of	 log	 Fq(n)	
versus	log	n.	h(q)	is	called	the	generalized	Hurst	exponent.	

These	results	are	 then	converted	 into	 the	more	classical	multifractal	 formalism	by	simple	
transformations	 (Kantelhardt	 et	 al.,	 2002):	 first,	 generalized	 Hurst	 exponents	 h(q)	 are	
converted	into	Renyi	exponents	τ(q)	by:	
	 τ (q) = qh(q)−1 		 (9)	
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The	singularity	spectrum	f(α)	is	then	derived	through	the	Legendre	transform:	

	 α (q) = dτ (q)
dq

		 (10)	

	 f (α ) = qα −τ (q) 		 (11)	

where	f(α)	is	the	fractal	dimension	of	the	support	of	singularities	in	the	measure	with	Lipschitz-
Hölder	exponent	α.		

Note	that	for	avoiding	to	obtain	“inversed”	spectra,	exhibiting	a	zig-zag	shapes	rather	than	
the	expected	parabolic	shape	in	the	singularity	spectrum,	we	applied	the	focus-based	approach	
introduced	 by	 Mukli	 et	 al.	 (2015).	 This	 approach	 considers	 that	 the	 moment-wise	 scaling	
functions,	 for	 all	q	 values,	 should	 theoretically	 converge	 toward	a	 common	 limit	 value	at	 the	
coarsest	scale.	Indeed,	substituting	signal	length	(N)	to	interval	length	(n)	in	Eq.	(6)	yields:		

	 Fq (N ) =
1
NN

F2 N , s( )⎡⎣ ⎤⎦
s=1

NN

∑
q/2⎧

⎨
⎪

⎩⎪
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1/q

= F2 N , s( )q/2{ }1/q = F N , s( ) 		 (12)	

F N , s( ) 	can	then	be	considered	the	theoretical	focus	of	the	scaling	functions,	and	this	focus	
is	used	as	a	guiding	reference	when	regressing	 for	h(q)	 (Delignières	et	al.,	2016;	Mukli	et	al.,	
2015).			

Correlation	functions	

Just	 as	 DFA,	 MF-DFA	 allows	 to	 select	 the	 range	 of	 intervals	 over	 which	 exponents	 are	
estimated.	As	previously	indicated,	usually	authors	consider	intervals	from	8	or	10	data	points,	
up	to	N/4	or	N/2.	Quite	often,	however,	series	present	different	scaling	regimes	over	the	short	
and	 the	 long	 term,	and	authors	perform	separate	estimates	over	different	ranges	of	 intervals	
(Delignières	&	Marmelat,	2014).	Here	we	propose	to	estimate	the	set	of	multifractal	exponents	
in	 first	 over	 the	 entire	 range	 of	 available	 intervals	 (i.e.,	 from	8	 to	N/2),	 and	 then	 over	more	
restricted	ranges,	progressively	excluding	the	shortest	intervals	(i.e.,	from	16	to	N/2,	from	32	to	
N/2,	and	then	from	64	to	N/2).	We	then	computed	for	each	q	value	the	correlation	between	the	
individual	Lipschitz-Hölder	exponents	 characterizing	 the	 two	coordinated	 systems,	α1(q)	 and	
α2(q),	respectively,	yielding	a	correlation	function	r(q).	As	previously	explained,	we	expected	to	
find	in	all	cases	a	correlation	function	close	to	1,	for	all	q	values,	when	only	the	largest	intervals	
were	 considered	 (i.e.	 64	 to	N/2).	 Increasing	 the	 range	 of	 considered	 intervals	 should	 have	 a	
negligible	 impact	 on	 r(q)	 when	 coordination	 is	 based	 on	 a	 complexity	 matching	 effect.	 In	
contrast,	if	coordination	is	based	on	local	corrections,	a	decrease	in	r(q)	should	be	observed,	as	
shorter	and	shorter	intervals	are	considered.		
Cross-correlation	analyses		

We	first	computed	the	cross-correlation	function	between	the	series	produced	by	the	two	
members	of	each	dyad	in	each	condition.	Cross-correlations	were	computed	for	each	dyad	from	
lag	-60	to	lag	+60,	and	the	cross-correlation	functions	were	point-by-point	averaged.		

In	 a	 second	 step	 we	 computed	 for	 each	 dyad	 WDCC	 functions,	 from	 lag-10	 to	 lag	 10,	
between	 the	 series	 produced	 by	 the	 two	 participants.	 WDCC	 were	 computed	 over	 non-
overlapping	windows	of	short	length	(15	data	points),	and	data	were	linearly	detrended	within	
each	window	before	the	computation	of	cross-correlations.	WDCC	functions	were	then	point-
by-point	averaged.		

3.	Results	

The	 length	of	 the	collected	stride	series	obviously	depended	of	 the	walking	speed	of	each	
dyad.	For	 the	 independent	walking	condition,	we	deleted	 for	each	dyad	 the	 last	points	of	 the	



	 11	

longest	series,	in	order	to	obtain	two	series	of	equal	lengths.	For	the	two	other	conditions,	we	
occasionally	deleted	 some	short	 segments,	which	presented	 synchronization	errors,	 either	 at	
the	beginning	of	 the	 trial	 (due	 to	difficulties	 to	enter	 in	synchronization)	or	at	 the	end	of	 the	
trial	 (due	 to	 fatigue	 or	 boredom).	 The	 resulting	 series	 lengths	 ranged	 from	801	 to	 990	 data	
points	 for	 independent	walking,	 from	716	 to	 1004	 data	 points	 for	 side-by-side	walking,	 and	
from	650	to	990	data	points	for	arm-in-arm	walking.		

We	 present	 in	 Figure	 3	 (upper	 panel)	 two	 example	 stride	 intervals	 series	 recorded	 in	 a	
representative	dyad	in	the	arm-in-arm	condition.	This	first	graph	shows	how	medium-	or	long-
term	fluctuations	are	synchronized	within	the	dyad.	The	bottom	panel	of	Figure	3	represents	a	
focus	of	the	previous	series	(one	hundred	strides).	This	graph	suggests	in	contrast	a	quite	poor	
synchronization	on	local	scales.	We	analyze	these	points	more	deeply	in	the	following	sections.		

	
Figure	3:	Upper	panel:	Two	example	stride	intervals	series	recorded	in	a	representative	dyad	in	
the	arm-in-arm	condition.	For	a	better	readability,	the	series	are	vertically	shifted	by	0.15	ms.	
Bottom	panel:	A	focus	on	the	previous	series,	between	strides	#550	and	#650.		
	

Multifractal	analysis	

We	present	in	Figure	4	the	correlation	functions	r(q)	between	the	multifractal	spectra,	for	
the	 three	 experimental	 conditions.	 Correlation	 coefficients	 are	 plotted	 against	 their	
corresponding	 q	 values.	 Four	 correlation	 functions	 are	 displayed,	 according	 to	 the	 shortest	
interval	length	considered	during	the	analysis	(8,	16,	32,	or	64).	For	the	independent	walking	
condition	 (left	 panel),	 the	 correlation	 functions	 remained	 non-significant,	 whatever	 the	
considered	range	of	intervals.	In	contrast,	the	correlation	functions	were	systematically	above	
the	 threshold	 of	 significance,	 whatever	 the	 range	 of	 interval	 considered,	 for	 side-by-side	
walking	 (middle	 panel)	 and	 for	 arm-in-arm	walking	 (right	 panel).	 The	 correlation	 functions	
were	 close	 to	 one	 in	 the	 arm-in-arm	 condition,	 when	 the	 shortest	 ranges	 of	 intervals	 were	
considered	(i.e.	32	to	N/2	and	64	to	N/2).	They	appeared	a	little	bit	 lower	in	the	side-by-side	
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condition,	 where	 the	 correlation	 functions	 for	 the	 same	 interval	 ranges	 were	 on	 average	
around	0.9	for	positive	q	values,	and	around	0.82	for	negative	q	values.		

	
Figure	4:	Correlation	functions	r(q),	for	the	four	ranges	of	intervals	considered	(8	to	N/2,	16	to	
N/2,	32	to	N/2,	and	64	to	N/2)	,	for	independent	walking	(left),	side-by-side	walking	(middle)	
and	 arm-in	 arm	 walking	 (right).	 q	 represents	 the	 set	 of	 orders	 over	 which	 the	 MF-DFA	
algorithm	was	applied.	
	

Cross-correlation	analyses	

We	present	 in	 Figure	 5	 (left	 panel)	 the	 averaged	 cross-correlation	 functions	 in	 the	 three	
conditions.	In	the	first	condition	(independent	walking),	no	correlation	was	observed	over	the	
investigated	 range	 of	 lags.	 In	 contrast,	 in	 the	 two	 conditions	 of	 synchronized	walking	 cross-
correlation	 functions	were	 organized	 around	 a	marked	 peak	 at	 lag	 0,	with	 an	 average	 lag	 0	
coefficient	 of	 about	 .45	 in	 condition	 2,	 and	 .57	 in	 condition	 3.	 Cross-correlations	 remained	
significant	 up	 to	 the	 negative	 and	 positive	 extrema	 of	 the	 investigated	 range.	 Finally,	 cross-
correlations	 were	 systematically	 higher	 in	 condition	 3,	 showing	 the	 effectiveness	 of	 the	
reinforcement	 of	 coupling	 in	 arm-in-arm	 walking,	 as	 compared	 with	 simple	 side-by-side	
walking.		

The	 averaged	 WDCC	 functions	 are	 reported	 in	 Figure	 5	 (right	 panel).	 These	 functions	
present	a	peak	at	lag	0	for	side-by-side	and	arm-in-arm	walking.	However	in	both	cases	these	
peaks	did	not	present	significant	values	(0.16	and	0.24,	respectively).	Note	that	in	contrast	with	
the	 previous	 analysis,	 the	 decay	 of	 cross-correlations	 was	 very	 fast,	 in	 both	 negative	 and	
positive	directions.		
4.	Discussion	

These	results	present	strong	evidence	 for	 the	presence	of	a	complexity	matching	effect	 in	
synchronized	walking.	The	first	analysis	focused	on	multifractal	correlation	functions,	and	the	
results	gave	strong	support	for	strong	anticipation	processes	in	both	side-by-side	and	arm-in-
arm	walking.	Whatever	the	range	of	intervals	considered,	correlation	functions	remained	above	
the	 threshold	 of	 significance	 in	 both	 conditions.	 Note	 that	 we	 expected	 to	 find	 stronger	
correlations	 in	 arm-in-arm	walking,	whatever	 the	 considered	 range	 on	 intervals	 considered.	
This	was	observed	for	the	shortest	ranges,	focusing	on	long-term	intervals	(i.e.	32	to	N/2	and	
64	to	N/2):	 the	correlation	 functions	were	 in	both	cases	consistently	close	 to	one,	while	 they	
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were	between	0.8	and	0.9	 for	 side-by	 side	walking	 (see	Figure	4).	When	 the	widest	 range	of	
intervals	 was	 considered	 (8	 to	 N/2),	 however,	 the	 correlation	 function	 presents	 somewhat	
lesser	values	in	arm-in-arm	walking,	especially	for	negative	q	values.	We	confess	that	we	have	
no	satisfying	explanation	for	this	result.	Obviously,	we	did	not	obtain	any	significant	correlation	
in	the	independent	walking	condition.		

	
Figure	 5:	 Left	 panel:	 Averaged	 cross-correlation	 functions,	 from	 lag	 -60	 to	 lag	 60,	 for	
independent	walking	 (light	 grey),	 side-by-side	walking	 (dark	 grey),	 and	 arm-in-arm	walking	
(black).	 The	 horizontal	 dashed	 line	 indicates	 the	 significance	 threshold	 (p=.05).	 Right	 panel:	
Averaged	 windowed	 detrended	 cross-correlation	 functions,	 from	 lag	 -10	 to	 lag	 10,	 for	
independent	walking	(light	grey	circles),	side-by-side	walking	(dark	grey	circles),	and	arm-in-
arm	walking	(black	circles).		
	

Cross-correlation	 analyses	 confirmed	 these	 first	 results.	 The	 averaged	 cross-correlation	
functions	 in	 the	 first	 condition	 presented	 non-significant	 values	 over	 the	 whole	 range	 of	
investigated	lags,	a	result	which	was	obviously	expected	from	independent	series.	In	contrast,	a	
unique	and	 sharp	peak	was	observed	at	 lag	0	 for	both	 side-by-side	and	arm-in-arm	walking,	
clearly	 showing	 the	 absence	 of	 local	 cycle-to-cycle	 adjustments.	 The	 second	 important	
observation	is	the	persistence	of	cross-correlations,	at	least	over	the	considered	range,	from	lag	
-60	to	lag	60.	This	kind	of	long-range	cross-correlations	could	be	interpreted	as	an	evidence	for	
complexity	matching.	Short-term	adjustments	are	likely	to	produce	a	quicker,	exponential-like	
decay	in	cross-correlations.	However,	this	persistence	of	cross-correlations	could	also	be	due	to	
the	 presence	 of	 common	 local	 trends	 in	 the	 synchronized	 series.	 Finally,	 we	 observed	
systematically	 higher	 cross-correlation	 coefficients	 in	 arm-in-arm	 walking,	 as	 compared	 to	
side-by-side.	 This	 shows	 that	 the	 experimental	 manipulation	 (side-by-side	 vs	 arm-in-arm)	
induced	an	effective	difference	in	coupling	strength	between	the	two	members	of	the	dyads.		

As	evoked	in	the	introduction	of	this	paper,	such	cross-correlation	analyses	have	also	been	
applied	 in	 studies	 about	 synchronization	 in	 music,	 and	 especially	 for	 synchronization	 with	
expressively	 interpreted	musical	 sequences	 (Dixon,	Goebl,	&	Cambouropoulos,	 2006;	Rankin,	
Fink,	&	Large,	2014;	Rankin,	Large,	&	Fink,	2009;	Repp,	1999,	2002,	2006).	Repp	(2002,	2006)	
showed	that	when	participants	were	required	to	tap	along	with	recordings	of	such	expressively	
performed	music,	one	observed	a	lag	0	peak	of	cross-correlation	between	the	series	of	inter-tap	
intervals	 and	 the	 inter-onset	 intervals	 of	 the	 corresponding	 tones	 in	 the	musical	 excerpt.	 In	
contrast,	 when	 participants	 were	 asked	 to	 tap	 along	 with	 a	 sequence	 of	 simple	 clicks	
reproducing	the	expressive	timing	pattern	of	a	complex	piece	of	music,	the	peak	in	the	cross-
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correlation	 function	 was	 shifted	 by	 one	 lag.	 Repp	 (2002)	 considered	 this	 latter	 result	 as	
evidence	that	participants	tracked	the	timing	variations	of	the	sequence,	at	a	lag	of	one	event.	
In	contrast,	the	author	considered	that	the	lag	0	peak	of	cross-correlation	in	the	first	condition	
showed	that	participants	adjusted	their	inter-tap	intervals	on	the	basis	of	upcoming	rather	than	
preceding	 inter-onset	 intervals	 in	 the	music.	 In	 other	words,	 they	 seem	able	 to	 anticipate	 or	
predict	ongoing	timing	fluctuations.	

Analyzing	 the	 perfect	 synchronization	 to	 musical	 sequences	 in	 terms	 of	 prediction	 is	
obviously	 consistent	 with	 the	 representational	 point	 of	 view	 of	 the	 author.	 However,	
considering	 that	 musical	 sequences,	 when	 expressively	 interpreted	 by	 expert	 musicians,	
present	fractal	fluctuations	(Rankin	et	al.,	2009),	one	could	consider	such	synchronization	as	a	
typical	 case	of	 strong,	non	 representational	 anticipation.	Note	also	 that	 these	 results	 confirm	
that	 artificial	 signals	mimicking	 natural	 variability	 do	 not	 allow	 strong	 anticipation	 to	 occur	
(Delignières	et	al.,	2016;	Delignières	&	Marmelat,	2014).			

The	two	first	analyses	clearly	discarded	the	hypothesis	of	local	error	corrections	(or	weak	
anticipation).	was	to	distinguish	between	the	two	remaining	theoretical	accounts:	coordination	
dynamics	 and	 complexity	 matching.	 The	 windowed	 detrended	 cross-correlation	 analysis	
confirmed	 the	presence	of	 a	 unique	peak	of	 cross-correlation	 at	 lag	0,	 but	 showed	 that	 local	
synchronization	remained	weak,	and	on	average	non	significant.	This	result	is	consistent	with	
the	graphical	 example	we	presented	 in	Figure	2.	This	 represents	 in	our	mind,	 in	 conjunction	
with	previous	results,	a	strong	argument	for	complexity	matching.	The	weakness	of	short-term	
cross-correlation	has	been	 considered	 in	 several	previous	 studies	 as	 evidence	discarding	 the	
local	 coordination	 account	 and	 favoring	 the	 complexity	 matching	 hypothesis	 (Abney	 et	 al.,	
2014;	Marmelat	&	Delignières,	2012;	Rhea	et	al.,	2014;	Washburn	et	al.,	2015).		
Conclusion	

The	 complexity	 matching	 effect	 could	 appear	 a	 quite	 strange	 phenomenon,	 and	 it	 could	
certainly	 hurts	 common	 conceptions	 and	models.	 However,	 this	 framework	 clearly	 proposes	
innovative	 and	 fruitful	 ways	 of	 thinking	 about	 coordination	 between	 living	 systems.	 The	
information-processing	and	the	coordination	dynamics	approaches	have	been	supported	by	a	
number	of	(strongly	controlled)	experimental	protocols,	but	their	relevancy	could	be	limited	to	
these	restricted	and	artificial	contexts.	The	analysis	of	more	complex,	daily-life	like	situations,	
suggests	 that	 coordination	 between	 living	 systems	 relies	 on	 other	 kinds	 of	 processes,	which	
could	be	accounted	for	by	the	complexity	matching	effect.	We	propose	in	the	present	paper	a	
set	of	statistical	tests	that	aim	to	distinguish	genuine	complexity	matching	from	other	kinds	of	
synchronization	processes	that	could	mimic	some	aspects	of	the	complexity	matching	effect.		

Evidencing	 the	 presence	 of	 a	 complexity	 matching	 effect	 in	 side-by-side	 or	 arm-in-arm	
synchronized	walking	could	have	important	implication,	especially	for	rehabilitation	purposes.	
The	presence	 of	 fractal	 fluctuations	 in	 stride	 duration	 series	 have	been	 evidenced	 for	 a	 long	
time,	 suggesting	 the	 complexity	 of	 the	 locomotor	 system	 (Hausdorff,	 Peng,	 Ladin,	 Wei,	 &	
Goldberger,	 1995).	 However,	 Haussdorf	 et	 al.	 (1997)	 evidenced	 a	 typical	 extinguishing	 of	
fractal	scaling	in	elderly	and	patients	suffering	from	neurodegenerative	diseases.	Additionally,	
they	 showed	 that	 the	 level	 of	 fractality	 in	 stride	 duration	 series	 was	 predictive	 of	 fall	
propension.	These	results	were	consistent	with	 the	hypothesis	of	 the	 loss	of	complexity	with	
age	and	disease	(Goldberger	et	al.,	2002).	This	raises	a	central	question,	 from	a	rehabilitation	
perspective:	could	it	be	possible	to	restore	complexity	in	a	deficient	system?		

The	complexity	matching	effect	could	offer	some	interesting	perspectives	in	this	regard.	If	a	
deficient	 (simplified)	 system	 is	 entrained	 by	 a	 healthy	 (complex)	 system,	 one	 could	 suppose	
that	the	complexity	matching	effect	should	result	 in	a	momentary	attunement	of	complexities	
among	systems,	and	especially	an	increase	of	the	complexity	of	the	former.	In	other	words,	if	an	
elderly	person	is	invited	to	walk	in	synchrony	with	a	young	and	healthy	companion,	one	could	
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expect	 to	observe	 (at	 least	 temporarily)	 a	 restoration	of	 complexity.	We	 currently	 try	 to	 test	
this	 hypothesis,	 and	 future	 work	 will	 aim	 to	 analyze	 the	 long-term	 effects	 of	 a	 prolonged	
training	in	such	situation.		
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