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A B S T R A C T

In this work, we present an integrated dynamic cross-flow electro-Fenton (DCF-EF) system for the treatment of
the pharmaceutical, acetaminophen (paracetamol), in aqueous medium. A carbonaceous electrocatalytic
membrane was used as cathode, allowing the continuous production of H2O2 during EF in dynamic filtration
mode. The transmembrane pressure (TMP) and current were the two driving forces of the system, whose in-
fluence strongly affected the global efficiency. It was found that H2O2 production from the electrochemical
reduction of dissolved O2 was favoured at higher TMP values as a consequence of an increase of the O2 partial
pressure, and higher H2O2 amounts entailed an increase in the efficiency of the process. Current also had a
positive effect on H2O2 production and acetaminophen degradation and mineralization efficiencies up to an
optimal value. Complete degradation of the drug and 44% mineralization were achieved under optimal con-
ditions (2.0 bar and 100mA). On the other hand, the results pointed out that the use of a Ti4O7 rod as counter
electrode (anode) had an important contribution to the mineralization of the acetaminophen’s solutions owing to
the formation of hydroxyl radicals (%OH) on its surface, which highlighted the oxidative power of this anode
material. The oxidation mechanisms involved during the process were assessed by electrochemical measure-
ments with both electrodes (carbon membrane and Ti4O7 rod), and a degradation pathway for paracetamol
oxidation was proposed based on the identification of the main aromatic and aliphatic degradation by-products.
This DCF-EF process is presented as a potential alternative for water treatment and reuse in which the in-
tegration of membrane and electrochemical technologies brings together separation science and advanced
oxidation.

1. Introduction

The critical worldwide water situation demands the development of
more efficient and sustainable technologies for wastewater treatment
[1]. In this scenario, the unambiguous presence of a variety of persis
tent organic pollutants (POPs) in the aquatic environment has boosted
research in the field of wastewater treatment during the last decades
[2,3]. POPs are substances refractory to conventional physicochemical
and biological degradative treatment methods, and physical processes
such as membrane filtration, adsorption and coagulation/flocculation
are separation technologies that do not involve structural changes.
POPs include pharmaceuticals, personal care products, industrial che
micals, pesticides and so on. Some organic pollutants of this kind are
categorized as contaminants of “emerging concern” because they have
only been recently detected in the environment.

Advanced oxidation processes (AOPs) are powerful technologies

that were developed for the degradation of refractory contaminants.
They are based on the production of highly reactive species, mainly
hydroxyl radicals (%OH), which are capable of mineralizing the organic
matter present in the wastewater [4,5]. When AOPs are performed by
means of electrochemistry (EAOPs), numerous advantages arise, such
as high efficiency, operability at mild conditions, economic feasibility,
ease of automation and environmental compatibility. These character
istics have positioned them as potential alternatives for large scale
applications [6,7]. However, some EAOPs intrinsic limitations still re
strain further industrial implementation; mainly the stability and ele
vated costs of the electrode materials, mass transport restrictions, re
actor design and other engineering issues [6 10].

EAOPs include direct electrochemical oxidation methods, com
monly referred as anodic oxidation (AO), and indirect electro oxidation
(IEO). AO is based on the electrochemical oxidation of organics at the
anode surface through two different mechanisms: (i) direct electron

⁎ Corresponding author.
E-mail address: coetsier@chimie.ups-tlse.fr (C. Coetsier).

https://doi.org/10.1016/j.seppur.2018.03.063



M + H2O → M(•OH) + H+ + e (1)

O2 + 2H+ + 2e → H2O2 (2)

H2O2 + Fe2+ → Fe3+ + OH + •OH (3)

Fe3+ + e → Fe2+ (4)

On the other hand, single water treatment methods encounter sev
eral difficulties, mostly related to technical unavailability and in
complete removal of target pollutants. Therefore, combined or in
tegrated technologies have been increasingly applied over the last
years, in which the main advantages of individual processes are en
hanced by the beneficial effects of their counterpart, while their
downsides are overcome [4,7,31]. In this way, a great variety of cou
pled systems have been proposed, in which AOPs (including electro
chemical methods) have been privileged for the partial or total de
struction of organic pollutants during pre or post treatment stages
[4,32,33].

In this scenario, Membrane technology (MT) AOPs systems have
been applied for the treatment of different organic pollutants with sa
tisfactory results, as recently reviewed by Ganiyu et al. [33]. AOPs as
pre treatment have been usually applied with the goal of removing
fouling agents, while highly charged concentrates can be efficiently
post treated by AOPs/EAOPs [34]. The utilization of anti fouling pho
tocatalytic membranes (TiO2 based) has become an attractive alter
native since physical separation and chemical oxidation can occur in a
single unit during “one step” treatments [33,35]. The use of electro
catalytic membranes in integrated MT EAOPs systems has been pro
posed in more recent works, where the membrane acts as both, se
paration barrier for filtration and electrode material for the oxidation of
organics [36]. Different materials have been used as reactive electro
chemical membranes: Ti/BDD [37,38], carbon based membranes
[39 42] and sub stoichiometric Ti4O7 [43,44]. Nonetheless, the reports
available are still scarce and great efforts are needed for improvement.

In precedent investigations, graphite based tubular membranes
have been utilized as electrodes for the electrochemical generation of

transfer and (ii) indirect oxidation via the “chemisorbed oxygen” (M 
(%OH)) formed from water discharge (Eq. (1)). The oxidative me
chanism depends on the characteristics of the anode material [6,7,11] 
and boron doped diamond (BDD) electrodes are the most efficient and 
preferred materials for AO [11 13]. On the other hand, in recent years 
TinOn−1 (n ≥ 3) sub stoichiometric ceramic anodes, specially Ti4O7, 
have emerged for water remediation applications due to their ability to 
generate “quasi free” M(%OH) via Eq. (1) in a similar way to BDD 
[14 16]. In recent publications, Ti4O7 anodes have even been reported 
to show similar or better performances than BDD [17,18,19]. However, 
little research on these ceramic materials has been conducted so far. 
TiO2 based materials are another type of electrodes commonly used in 
photoelectrocatalytic EAOPs, in which the photocatalytic oxidative 
properties of TiO2 are enhanced by the application of an external bias 
potential [20].

Because of its numerous advantages, electro Fenton (EF) has re
ceived especial attention among the IEO techniques and several studies 
have evidenced its potentiality [21 25]. The EF process is characterized 
by the in situ cathodic production of the Fenton’s reagent: H2O2 is 
formed through the 2 e− reduction reaction of soluble O2 at a suitable 
electrode material (Eq. (2)), while Fe2+ is constantly regenerated via 
Eq. (4). In this way, %OH are continuously formed in the bulk solution 
via the Fenton’s reaction (Eq. (3)). The efficiency of the process is 
highly dependent on the properties of the cathode material [6,21] and 
generally, carbonaceous electrodes have been used in EF, including gas 
diffusion electrodes (GDE), carbon felt (CF), graphite, carbon nanotubes 
(CNT), reticulated carbon vitreous (RCV), carbon fibers, graphene, etc.
[6,9,21,26 28]. Additionally, the performance of EF can be enhanced 
when powerful anodes promoting the generation of M(%OH) (Eq. (1)) 
like the BDD are utilized in the same system [29,30].

H2O2 during EF in dynamic filtration mode, demonstrating the po
tentiality of this innovative hybrid technique [39]. In fact, carbon based 
membranes have found a wide range of applications (mainly the se
paration of gasses and pesticides) because of their high chemical sta
bility and thermal resistance, as well as their good permeability and 
selectivity [45]. Furthermore, various studies have demonstrated the 
great potential of carbon membranes as electrodes due to their anti
fouling capacity [46]. A recent work reported the use of a membrane 
with a polymer coating film which promoted the electrochemical for
mation of %OH via the EF process. However, the polymer layer was 
supported on a steel mesh with poor filtration capacity, which was 
subjected to corrosion issues [47].

In the present study, we thoroughly investigated the application of 
an electrocatalytic graphite membrane as cathode for the electro pro
duction of the Fenton’s reagent during a combined dynamic cross flow
EF process (DCF EF) at pre pilot scale. Paracetamol (PCTM), a widely 
prescribed analgesic and antipyretic drug, whose unequivocal presence 
in surface, drinking and wastewater has been stated worldwide, was 
used as model compound. The main parameters affecting the efficiency 
of the process, named applied current and transmembrane pressure 
(TMP), were systematically assessed. Furthermore, a “non active” Ti4O7 

anode was used as the counter electrode during EF in filtration mode for 
the very first time, which resulted in a significant rise of efficiency. The 
mechanisms involved in the oxidation of the drug were deeply in
vestigated and a plausible degradation pathway was proposed based on 
the identification of degradation by products.

2. Materials and methods

2.1. Membrane characterization

The conductive membrane used as cathode was a graphite based 
ultrafiltration membrane from Carbone Lorraine, France, with dimen
sions: 15 cm long, 1 cm outer diameter and 0.8 cm inner diameter. 
Before utilization, it was washed in deionized water, sonicated, washed 
with acetone for removal of any organic remnant, overnight in 0.05 M 
H2SO4 and finally immersed in deionized water for hydration (24 h). 
The extremes were covered with epoxy resin for sealing inside the cell/
filtration module (2 and 4 cm each extreme) and the effective inner 
membrane area was 22.62 cm2. Membrane porosity was found to be 
14.4% according to Hg measurements, while it has a pore diameter of 
2.8 and 0.16 μm, according to previous study [39].

2.2. EF Membrane cross flow electrolyses

The electrochemical filtration pre pilot scale reactor used in this 
study is depicted in Fig. SM 1. Experiments were conducted in cross
flow filtration mode under galvanostatic conditions using a DC 30 V/10 
A power supply. The reservoir consisted in a 5 L capacity stainless steel 
tank, in which aqueous solutions of PCTM (0.1 mM) were introduced 
and circulated by a centrifugal pump at a flow rate of 3 L min−1. The 
tank was equipped with a cooling system for temperature control and a 
temperature sensor for monitoring. The electrolytic cell/filtration 
module was a tubular Teflon® container, which held the graphite 
membrane (cathode). It had an outlet for the permeate, which was not 
recirculated. The external wall of the membrane was connected to the 
power supply by a metallic contact. The counter electrode (anode) 
consisted of a 1 mm diameter, 30 cm long Ti/Ti4O7 rod. It was placed in 
the axis of the carbon membrane and connected to the supply power by 
the extremity. Transmembrane pressure (TMP), the driving force of MT, 
was adjusted using compressed air, which also ensured continuous 
supply of O2 for saturation of the solution. For all experiments, the 
electrolysis started after the system had reached a permanent regime 
and the concentration of PCTM in the permeate was constant (adsorp
tion was negligible). The solution was saturated with O2 during the 
stabilization time. All experiments were replicated and the average



values are reported. 

2.3. TI.t07 anode preparation 

The preparation of the Ti4O7 anode (rod) was made by the method 
described in a precedent work, where the deposition of Ti(),, particles 
was effectuated by plasma coating on titanium plates as support [18). 
In titis case, the plasma coating was made by Saint Gobain Coating 
Solutions on a 30 cm titanium rod (1 mm diameter) using their Pro 
Plasma STD plasma torch. X ray Diffraction (XRD) analyses revealed 
that Ti4O7 was the main phase of the plasma coating. Saint Gobain 
CREE synthesized the TiOx particles by electrofusion using a Heroult 
furnace in which a mixture of TiO2 and coke (Coke de Brai AO151203 
ALTICHEM 98% C) was melt by the electric arc created between gra 
phite electrodes. XRD of the obtained powder revealed a mixture of 
Ti4O7, Tis<)9, Ti6 O11 and Ti3O5 phases. 

2.4. Analytic techniques and instrumentation 

HPLC analysis for PCTM quantification were performed in a HPLC 
W Agilent 1200 series chromatograph couple to a UV detector 
set at 240 nm. An Agilent reversed phase C18 column 
(3.5 µm x 100 mm x 3 mm) was used. The mobile phase consisted of A 
(0.1 % formic acid aqueous solution) and B (0.1 % formic acid in acet 
onitrile). The gradient program used for elution at a flow rate of 
1.2 mL min - i was as follows: O 3.5 min (isocratic 97 .5/2.5), 
3.5 6.5min (gradient up to 20/80), 6.5 7.5 (gradient up to 97.5/25) 
and 7.5 10.5 (isocratic 97.5/2.5). Quantitation of short chain car 
boxylic acids was made using an HPLC Jasco BS 2000 04 equipped 
with a W 2077 detector. An Agilent Hi Plex H column was used 
(7.7 x 300 mm, 8 µm) and elution was performed with 0.01 M H2S04 at 
a flow rate of 0.4ml min- 1 and 5o •c. Detection was made at 210nm. 
The mineralization rate was assessed in terms of the TOC decay in the 
treated solutions. TOC analyses were carried out using a Shimadzu VcSH 
TOC analyser. 

HPLC HRMS analyses were performed in a Thermo Fisher instru 
ment (U3000). HPLC separations were carried out at 40 •c using a Luna 
PFP 2 (150 x 2mm, 3 µm) column. The mobile phase was an A (0.1% 
v/v formic acid)/B (acetonitrile) mixture, while the gradient program 
at 200µLmin - 1 was: O 5min (100/0), 5 20min (gradient up to 20/ 
80), 20 25 min (20/80), 25 25.2 min (gradient up to 100/0), 
25.2 30min (100/0). In parallel, analyses were performed using W 
detection (UV Vis RSLC VWD 3400 RS detector) at 250nm. The MS 
spectrometer is combined with an Orbitrap mass analyser. lt is 
equipped with an HCD collision cell, using electrospray ionization 
(FSI), which was operated in positive and negative mode. Mass detec 
tion was made between 50 and 600 m/z. Biological oxygen demand at 
5 days (BOD5) was determined using an OxiTop• system. The samples, 
in which pH was adjusted to a value between 6.5 and 7.5, were in 
cubated at 20 •c in dark conditions during 5 days. KOH pellets were 
used to trap CO2. BOD seed inoculum (PolySeed•, Interlab• Suppl y) was 
used as source of microorganisms, while D( +) Glucose H2O was the 
standard control and N allylthiourea was utilized as nitrification in 
hibitor. H2O2 was quantified by spectrophotometry with Ti~ at 
410nm using a UV vis Libra S12 Biochrom spectrophotometer [48). 

The voltametric studies were performed on an Autolab PGSTAT204 
potentiostat/galvanostat at a scan rate of 50 mV s- 1 using a Ag/AgCl 
referenœ electrode. The electrolytic œll for the batch experiments re 
ported in Section 3.4, was a 200 mL glass tall container equipped with 
either a Ti4Ü7 rod or a fstainless steel rod (316 L stainless steel with 
excellent corrosion resistance) as anode, while the cathode was a Pt 
mesh; 21 cm of both electrodes were immersed in the solution 
(200 mL). The cell for the electrochemical characterization of the gra 
phite membrane, reported in Section 3.1, consisted in a 200ml capa 
city reactor, containing a 7 cm long carbon tubular membrane as 
cathode and a Pt mesh anode (5 cm immersed in the solution, 150 mL). 

12 

::' 9 
~ 
1),0 e 

....., 6 
N 

0 
N 

:c 
3 

0 

7 

6 

- 5 ... 
~ 
1),0 4 e ....., 

N 3 
0 

N 

:c 2 

1 

0 

a) 

• 
0 

b) 

I-

40 

• 
-0.001 

• s -0.003 

'à -0.005 

~ -0.007 

u -0.009 

+ + 

-0.011 .,....--,---,---.--,----,--' 

30 

-1.45 -1.2 -0.95 -0.7 -0.45 -0.2 

Potential (V vs AgCI) 

60 
Time (min) 

T T T 

90 

100 200 

Current (mA) 

120 

- }-, 

300 

Fig. 1. Effect of applied current on the electrochemical production of H20 2. (a) 
evolution ofH20 2 with electrolysis lime (at 100 mA). (b) Concentration of H20 2 

at 30 min-electrolysis under different c111Tent values. V = 1.5 L of 0.05 M 
Na~4 at pH 3 ,18 •c and 0.25 bar. Flow = 3.0 L min_,. The inset panel de
picts the linear voltantmogramm of the electrolyte solution (0.05 M Na;2504 at 
pH 3) in the presence (02) and absence of 0 2 (N2). 

Before experiments, the solution was saturated with 0 2 for 15 min using 
compressed air. For both cells, the anode and the cathode were installed 
in parallel in the center of the cell, separated by 1 cm. Na2S04 50 mM at 
pH 3 was used as a supporting electrolyte. 

3. Results and discussion 

3.1. H2<h electro generation: effect of TMP and CUTTent 

TMP and current are the driving forces of this coupled DCF EF 
proœss. Accordingly, the effect of both parameters was assessed: first, 
on the generation of H2Û2 and second, on PCTM degradation and mi 
neralization efficiencies. 

The use of a graphite based membrane ensured the electrochemical 
production of H2Û2 from the 2 e - reduction reaction of dissolved 0 2 in 
the solution. The formation rate of H2O2 depends on the structure and 
properties of the cathode material sinœ 0 2 reduction can occur through 
either the 2 e - or the 4 e- reaction pathway (Eqs. (2) and (5), re 
spectively), the latter leading to H2O generation [21). Linear Sweep 
Voltammetry (LSV) was used to assess the electrochemical reduction 



reaction of Ch in the tubular membrane. The inset panel of Fig. 1 de 
picts the linear voltammogram of the supporting electrolyte (Na2-'>O4) 
saturated with 0 2 at pH 3. Two reduction waves before the evolution of 
H2 can be observed at - 0.47 V and - 1. 1 V vs Ag/ AgCI, which corre 
spond to the 2 e - 0 2 reduction reaction (ORR) (Eq. (2)) and the con 
secutive 2 e - reduction of H2Û2 (Eq. (6)), respectively. These results 

confirmed the formation of H2Û2. 

02 + 4H+ + 4e - 2H2O 

H2Û2 + 2H+ + 2e - 2H2Û 

(5) 

(6) 

Since current is a crucial parameter for the electro production of 
H2Û2 and the generation of ·oH in the presence of Fe2+ ions (Fenton's 
reaction), its effect on H2O2 production was assessed by a series of 
experiments at <lifferent current values, ranging from 40 to 300 mA 
(1.77 mA cm - 2 to 13.26 mA cm - 2). It was found that the concentration 
of H2O2 in the feed increased with time until a plateau was reached, 
which is illustrated in Fig. l a. lt can be seen that a maximum of 
11 mgL - 1 was obtained after 90 min electrolysis (at 100 mA). Fig. l b 
depicts the generation of H2Û2 as a function of current at 30 min 
electrolysis. The rate of H2O2 production rose with increasing current 
from 40 to 200 mA, but decreased at higher current values (300 mA). 
This trend was in agreement with the electrochemical behaviour of the 
ORR at the cathode membrane (inlet Fig. 1), accor<ling to which higher 
current values (requiring higher potentials) contribute to the pro 
gressive decomposition of H2O2 into H2O (Eq. (5)). The experiments 
were conducted under constant current since it is known that galva 
nostatic mode is preferred for large scale applications due to the slow 
kinetics obtained under potentiostatic conditions [7]. 

TMP is the other driving force of this cou pied proœss. Accor<lingly, 
its effect on the generation of H2Û2 was also investigated. For this 
purpose, a series of electrolyses were performed at pressures ranging 
from 0.5 to 2.0 bars (Fig. 2). lt can be seen that TMP has a positive 
effect on the generation of H2O2. This phenomenon can be explained in 
terms of the increase in 0 2 solubility in water as a function of its partial 
pressure accor<ling to Henry's law. Thereby, a greater amount of 0 2 
<lissolved in the solution increases the mass transport of the gas to the 
electrode, favouring the generation rate of H2Û2. In Fig. 2, the amount 
of H2Û2 is presented as a function ofTMP and the equivalent amount of 
<lissolved Ch calculated from Henry's law accor<ling to the corre 
spon<ling 0 2 partial pressure. Similarly, in a reœnt study the electro 
chemical production of H2O2, as well as the performance of the EF 
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Fig. 3. Effect ofTMP on the degradation of PCTM during DCF-EF. V= 1.5 L, 
[PCTMJ = 0.1 mM, [Fe2 +] = 0.2mM, I = 100 mA, with 0.05 M Na~• at pH 3 
and 1s •c Flow= 3.0Lmin- 1. œ) 0.25bar, C.) l.0bar, (e) 2.0bar, (* ) 

3.0 bar, ( • ) 0.25 bar in the absence of Fe2 + (AO). The inset panel shows the 
kinetic analysis assuming a pseudo-first order mode!. 

proœss, were enhanced by increasing the air pressure in a pressurize 
electrolytic cell operating in batch mode (49]. This phenomenon is of 
noticeable importance since it highlights the synergistic effects of EF 
under pressure driven filtration mode. Therefore, further deposition of 
ultra or nanofiltration layers on the carbon membrane support, asso 
ciated with greater TMP values, will be compatible with EF oxidation. 

3.2. Degradation and mineralization kinetics 

3.2.1. EffectofTMP 
The effect of TMP and current on the degradation and mineraliza 

tion of PC1M aqueous solutions under DCF EF conditions was also as 
sessed. Fig. 3 depicts the drug's removal percentage with time at <lif 
ferent TMP values. As expected, an increment in TMP resulted in a rise 
in the degradation kinetics, which is consistent with the greater pro 
duction of H2O2 from the increase of 02 solubility in solution. Ac 
cor<lingly, larger amounts of H2O2 promoted an extensive generation of 
·oH from Fenton's reaction (Eq. (3)), which accelerated the oxidation 
rate of the drug. The removal rate increased with TMP from 0.25 to 
2.0 bars, while it <lid not show any further increase when 3.0 bar were 
applied. This behaviour can be accounted for by the catalytic capacity 
of the membrane with regard to the 2 e - ORR, which limited the for 
mation of H2Û2 even at higher levels of pressure. A total degradation of 
the drug was achieved in 60 min for a TMP of 2.0 and 3.0 bar, while 
PCTM was totally degraded in 90 and 120 min when using 1.0 and 
0.25 bar, respectively. In addition, we hypothesize that adsorption of 
organics on the membrane played an important role on the electro 
catalytic activity for H2O2 production. In this way, saturation of the 
membrane conducted to electrode passivation, which accounted for the 
decrease in the oxidation rates with time. 

On the other hand, the degradation kinetic of the drug was found to 
follow a pseudo first order kinetic model with very good correlation 
coefficients, as shown in the inset panel of Fig. 3. This behaviour was in 
agreement with reported kinetic rates of organics with ·oH, in which a 
quasi stationary state in the concentration of this species has been 
considered. Table 1 summarizes the calculated pseudo first order rate 
constants Ckaw,PCTM). 

Qmcerning the mineralization of the drug, it can be seen from Fig. 4 
that TMP also had a positive effect on the TOC decay of PC1M solutions. 
The application of 20 and 3.0 bar resulted in up to 44% of mineralization. 
On the other hand, the contribution of AO on the total mineralization yield 
is noteworthy. Fig. 4 shows that 190/4 of TOC decay was aclûeved in the 



Table 1 
Apparent rate constants for the complete disappearance of 0.1 mM PCTM by 
means of the DCF-EF process: effect of TMP and current. A pseudo-first order 
kinetic mode! was assumed. 

Experimental parameters Values ,.,_PCTM (min ') 

1MP(bar) 0,25 o.ois 
(1 = lOOmA) 1.0 0.020 

2.0 0.034 
3.0 0.037 
0.25 (AO)" 0.008 

Current (mA) 40 0.005 
O"MP = 0.25 bar) 100 0.011 

200 0.016 
300 0.019 

• For AO the experiment was conducted in the absence of Fe2 + ions. 
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Fig. 4. Effect of TMP on the TOC decay of PCTM solutions during DCF-EF. 
V= 1.5 L, [PCTMJ = 0.1 mM, [Fe2 +] = 0.2 mM, I = 100 mA, with 0.05 M 
Na~o. at pH 3 and 18 •c. Flow = 3.0 L min_,_ (Il) 0.25 bar in the absence of 
Fe2 + (AO), œ:J 0.25 bar, (Il) 1.0 bar, œ:J 2.0 bar. 

absence of Fe2+ ions, which evidenced that an important part of PCTM 
and its degradation by products were mineralized on the anode's surface 
by meam of the M("OH) formed according to Eq. (1). These results 
highlighted the potential of 1Ï4Ü? anode materials for water remediation. 
Further discussion is presented in Section 3.4. 

3.2.2. The effect of current 
The effect of current on the performance of DCF EF is depicted in 

Fig. 5. lt can be observed that the concentration decay rose with current 
from 40 to 200 mA, with a small difference between 100 and 200mA 
Nevertheless, it decreased when 300 mA were applied. The increase in 
the kinetic rate with current was due to the greater amount of ·oH 
produced from both the Fenton's reaction (Eq. (3)) and water oxidation 
(Eq. (1)) as a consequence of a higher energy input. On the contrary, 
further increment of current entailed progressive acceleration of non 
oxidizing waste reactions: the heterogeneous electrochemical evolution 
of Û2 at the anode (Eq. (7)), the reduction of H2Ü2 at the cathode (Eq. 
(6)), the homogeneous dimerization of ·oH (Eq. (8)), and ·oH reaction 
with Fe2+ and H2O2 according to Eqs. (9) and (10), respectively (8,21). 

M(OH) - 2 M + 02 + 2H+ + 2e 

2"OH- H2O2 

Fe2+ + "OH - Fe3+ + OH 

(7) 

(8) 

(9) 

(10) 

As shown in Fig. 6, TOC decay behaves in a similar way. The mi 
neralization rate increased when rising current from 40 mA to 100 mA, 
whereas the difference between 100 and 200mA was not significant 
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Fig. 6. Effect of current on the TOC decay of PCTM solutions during DCF-EF. 
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(35% of TOC decay was reached after 8 h of treatment for both, 100 and 
200 mA). The application of 300 mA resulted in a significant drop of 
mineralization efficiency, which can be accounted for by the series of 
waste reactions depicted in Eqs. (6) (10), as discussed above. 

lt can be noted that TOC decay rates decrease with treatment time. 
For example, for 100 and 200 mA, more than 200/4 of TOC abatement 
was reached in 4 h electrolysis, whereas, only around 12% more was 
achieved during the next 4 h. This trend can be ascribed to the gen 
eration of more recalcitrant degradation by products to ·oH, whose 
reaction rates are significantly slower. These compounds include mostly 
short chain organic acids. Further discussion is proposed in Section 3.5. 

Finally, even though retention was not involved during CF EF, the re 
levanœ of these carbonaceous electrocatalytic membranes in EF is to be 
underlined as the filtration properties can be improved by deposition of 
ultra and nano filtration layers. Additionally, the efficiency of the mem 
branes towards the 2 e - 0 2 reduction reaction could also be improved by 
structural modifications with graphene (26,50) or nitrogen based corn 
pounds (51) to increase the H2Ü2 production. For these pwposes further 
research needs to be conducted, which was not the scope of the present 
investigation. 
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3.3. The oxidation power of TiOx 

In order to assess the mineralization power of the Ti4O7 electrode, a 
series of experiments were conducted in an electrolysis cell operating in 
batch mode. The cell was equipped with a Ti4O7 anode and a Pt cathode 
in either a three or two electrodes configuration. The use of Pt allowed 
avoiding the cathodic production of H2Û2, l t was found that the con 
centration decay of the drug followed a pseudo first order kinetic re 
action and the degradation rate increased with rising current (Fig. 7), 
which was consistent with findings obtained in the DCF EF reactor. 

When using a stainless steel anode instead of the TÎ4Ü7 in the same 
batch cell, the concentration of the drug decreased with time a1so fol 
lowing a pseudo first order kinetic reaction (Fig. 7). ln fact, PCI'M was 
oxidized at the surface of the stainless steel anode by direct electron 
transfer, which, in acidic medium, lead to the formation and accumu 
lation of p benzoquinone (p BQ), according to Eq. (11) [52). None 
theless, according to HPLC analyses (results not presented), p BQ did 
not suffer further oxidation at prolonged electrolysis time (up to 4 h), 
which was also reflected in the lack of TOC decrease. In the case of the 
Ti4O7 anode, the concentration of p BQ (determined by HPLC and TOC) 
decreased with electrolysis time, which confirmed that M('OH) medi 
ated oxidation of PCTM occurred at the Ti4Ü7 electrode's surface. In 
deed, p BQ is considered as a probe of 'OH generation since this 
compound does not undergo direct electrochemical electron transfer 
reactions [ 44). Thus, the use of PCI'M in the present study resulted in 
an in situ M('OH) probe for the anodic oxidation of organics on Ti4Ü7 
electrodes. 
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Fig . 8 . Cyclic voltammetry of 5 mM PCIM solutions containing 0.0SM NaiSO. 
at pH 3 as supporting electrolyte. Stainless-steel or TI.O7 were used as anodes 
with a Pt cathode using a Ag/ AgCI reference electrode. The scan rate was 
somvs· 1

. 

Fig. 8 depicts the cyclic voltammograms of PCTM solutions in 
50 mM Na2S04 at pH 3 using Ti4Ü7 and stainless steel anodes. On 
stainless steel anode, an oxidation wave can be seen at + 1.18 V vs Ag/ 
AgCl, which corresponds to the irreversible oxidation of PCI'M to p BQ 
(Eq. (11)). On the contrary, any oxidation wave was observed when 
utilizing Tï.O7, which was in agreement with the slow kinetics of 
electron transfer reactions reported for this kind of material [14, 17). 
PCTM was thus oxidized by 'OH formed in the region of 02 evolution 
( + 2.7 V vs Ag/AgCl). The generation of 'OH in sub stoichiometric 
Ti4O7 electrodes (Ebonex@) was previously verified by Bejan et al. 

[17). Moreover, it is known that Ebonex@ anodes have a very high 02 
evolution overpotential [14). Additionally, the electrolysis of a 0.1 mM 
solution of p BQ was performed utilizing a divided cell with a Ti4Û7 
anode. Results showed that p BQ was totally degraded in the anodic 
compartment and up to 200/4 of mineralization was achieved after 8 h 
electrolysis at l OOmA, hence confirming the oxidation of p BQ by 
mediation of heterogeneous Tï.O7C'OH). The slow kinetics for p BQ 
degradation and mineralization can be explained by: ( 1) the small 
surface area of the electrode (5.35 cm2 for 200 mL of p BQ solution), 
and (2) the relative less abundance of 'OH at the Ti4O7 anode in 
comparison to those formed at BDD, as suggested in earlier investiga 
tions [17). 

3.4. PCTM oxidation pathway 

Aiming at establishing the mechanism reaction through which 
PCTM is oxidized during DCF EF, the degradation intermediates were 
identified by means of HPLC and HPLC MS analysis (Table SM 1). Fig. 9 
depicts the proposed mechanism pathway. As mention in the previous 
section, PCTM is oxidized both in the bulk solution with ·oH formed by 
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Fig. 9. Proposed mechanisms pathway for the oxidation of PC1M with 'OH 
during the DCF-EF process. 

Fenton's reaction (Eq. (3)) and at the surface of the anode with 
Ti40:,('0H) (Eq. (1)). The HPLC chromatograms showed that p BQ was 
the degradation by product produced in greatest amount, but it was 
also degraded as the treatment progressed. As depicted in Fig. 9, PCTM 
oxidation began with hydroxylation at the p position with respect to the 
OH group, which gave first hydroquinone (HQ) (A) and aœtarnide (B) 

(route O. Quick subsequent oxidation of HQ generated p BQ (C) as the 
principal product. However, HQ also underwent further hydroxylation 
reactions, which was verified by the detection of 1,2,4 trihydrox 
ybenzene (D). On the other hand, formation of 4 aœtyl aminocatechol 
(E) and 4 aœtyl aminoresorcinol (F) revealed that hydroxylation reac 
tions at the o and m positions of PC1M (route m competed with the 
first hydroxylation path (route O, but at slower kinetic rates. Further 
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Fig . 10. Evolution of the concentration of the main carboxylic acids formed 
during the degradation of PCTM by means of DCF-EF. V = 1.5 L, 
[PCTMJ = 0.1 mM, [Fe2 +] = 0.2 mM, 1MP = 1.0 bar, I = 100 mA, with 0.05 M 
Na~4 at pH 3 and 1s•c. Flow= 3.0Lmin- 1 . œ:, oxalic, (e ) malic, C.) 
oxamic, (• ) formic. 

'OH attack to the aromatic intermediates C, D, E and F provoked their 
scission leading to short chain organic acids (i to vii). The cleavage of E 
and F went through progressive hydroxylation reactions giving qui 
nones Oike C) by disproportionation of transient semiquinones. The 
proposed mechanism is in agreement with previous reports dealing 
with PCTM degradation by anodic oxidation (53), photo Fenton (54) 
and photocatalytic oxidation (55). Moreover, Almeida et al. reported 
that the photoelectron Fenton oxidation of PCTM in a flow plant also 
went through formation of HQ and p BQ (56). However, they did not 
observe either intermediates (E) and (F) formed through the hydro 
xylation route II or acetamide (B), which can be ascribed to the fast 
oxidation kinetics of PCTM and its degradation intermediates. Water 
ston et al. reported that the electrochemical oxidation of PCTM at Ti/ 
Ir02 anodes only conducted to partial degradation to p BQ, since this 
"active" anode does not promote ·oH generation (57). 

lt has been well documented that breakage of aromatic/cyclic by 
products by the attack of 'OH during EAOPs leads to short chain car 
boxylic acids (58,59). The evolution of the identified carboxylic acids 
during DCF EF is depicted in Fig. 10. Qeavage ofintermediates C, D, E 
and F, led mainly to C 4 maleic (i), fumaric (ii) and malic acids (iii). 
These compounds were only detected during the first 60 min of treat 
ment and in very low amounts: malic acid reached a maximum peak 
(7.2 x 10- • mM) at30min. Their further oxidation conducted to lower 
molecular weight compounds: maleic and fumaric acids are known to 
produœ formic (iv) and oxalic acid (v), while malic acid yielded mainly 
oxalic acid (v). l t has been reported that acetic acid (vi) can be formed 
from the oxidation of all the above mentioned C 4 acids. However, only 
a little amount of it was detected during the first 15 min treatment as it 
was rapidly oxidized into oxalic and formic acids (58). Oxalic and 
formic acids were the species formed in greatest amounts. They were 
rapidly produced and accumulated in the solution as C 4 acids were 
oxidized. Both species, along with oxarnic acid, are known as the ulti 
mate degradation by products before mineralization to C02 and in 
organic ions (21,58,59). lt can be noted in Fig. 10 that formic acid 
quickly attained a maximum concentration in 15min and it was oxi 
dized afterwards until undetectable levels. In the case of oxalic acid, it 
was progressively formed and accumulated in the solution, remaining 
even after 8 h treatment. Oxamic acid (vii), which resulted principally 
from the oxidation of acetamide (B), presented a similar trend In fact, 
oxalic and oxamic acids are known to be highly resistant to oxidation 
with 'OH, presenting slow reaction kinetic rates (59). Accordingly, they 
were the main carbon source responsible for the remaining amount of 
TOC at the end of treatment, which was verified by a simple TOC mass 



4. Conclusions

The efficiency and applicability of the one step integrated DCF EF
process to the treatment of refractory organic pollutants such as phar
maceuticals has been demonstrated. It was found that the utilization of
a graphite based membrane as cathode material was suitable for the
electro generation of the Fenton’s reagent during electrolysis. TMP and
current were the main factors affecting the process efficiency. The re
sults showed that the solubility of O2 increased as TMP augmented,
which promoted greater production of H2O2 and a rise of the de
gradation and mineralization rates. Total degradation of PCTM and up
to 44% of mineralization was achieved under optimal conditions
(100mA and 2.0 bar).

The use of a Ti4O7 ceramic anode during DCF EF was a highlight of
this work. It enhanced the performance of the process due to the M
(%OH) generated on the electrode surface, hence demonstrating the
power of Ti4O7 for the anodic oxidation of organic contaminants. In
addition, PCTM was found to be an in situ probe for verification of M
(%OH) formation since its primary oxidation yielded p BQ as the main
intermediate, which is known to resist direct electron transfer reac
tions.

Finally, these findings pointed out the versatility of the EF process,
highlighting its capacity to evolve into different directions. Overall, this
work opens the door to further investigation for scale up and eventual
industrial application of this technology considering the scarce number
of reports available to date.
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balance indicating that 86% of the final TOC content of the treated 
solution corresponded to oxalic and oxamic acids.

3.5. Final considerations: the positive impact of the degradation by products

It has been stated that the carboxylic acids formed during electro
chemical treatment are biodegradable compounds that can be effec
tively metabolized by different microorganisms [60,61]. Generally, the 
subsequent oxidation of these species demands longer treatments times 
owing to their recalcitrant character towards %OH. Prolonged electro
lyses are typically accompanied by a significant drop in current effi
ciency and an increment of energy consumption. Nevertheless, the 
ability of EAOPs to transform recalcitrant compounds into biodegrad
able products is indeed one of its most significant features since the 
striking oxidation power of EAOPs can be capitalized by their combi
nation (as pre  or post treatment steps) with conventional biological 
treatment methods. Thus, the short time partial oxidation of refractory 
effluents achieved during EAOPs can be completed by implementation 
of a microbial oxidation stage, which represents considerable technical 
and economic advantages from a practical perspective [32,62]. In this 
context, the capability of the DCF EF process to transform refractory 
pollutants into biodegradable compounds is to be underlined.

In addition, the capacity of DCF EF to degrade p BQ is worthy of 
note since this intermediate is a hazardous compound much more toxic 
than PCTM. In fact, Le et al. recently reported that p BQ was the main 
by product responsible for the significant increase of toxicity (according 
to the Microtox® method) during the EF treatment of PCTM solutions; 
100% of bacteria bioluminescence inhibition even at the lowest de
tected levels of this compound (0.04 mM) was obtained [26]. They 
reported that the toxicity decreased with the p BQ degradation and the 
final carboxylic acids did not show significant toxic effects. The elim
ination of p BQ during DCF EF is in agreement with these results, which 
highlights the ability of this coupled approach to degrade toxic con
taminants.
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