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Abstract
Skatole (3-methylindole) is a product of bacterial fermentation of tryptophan in the intestine.

A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a

pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR) regulated

genes, such as cytochrome P450 1A1 (CYP1A1), in human bronchial cells. The liver has a

high metabolic capacity for skatole and is the first organ encountered by the absorbed ska-

tole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the

impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using

reporter gene assays, we showed that skatole activates AhR and that this is accompanied

by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary

human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demon-

strated that skatole-inducedCYP1A1 expression is dependent on AhR activation. The effect

of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbi-

nole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole

could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR

agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver

homeostasis by modulating the AhR pathway.

Introduction
Skatole (3-methylindole) is a product of the bacterial breakdown of tryptophan and is found in
the intestine of humans and pigs [1]. Additionally, a significant amount of skatole can be
inhaled during cigarette smoking [2]. In pigs, low hepatic clearance of skatole might be respon-
sible for the off-flavor/odor of the meat from some sexually mature male pigs [3, 4]. Moreover,
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skatole can have pneumotoxic effects in several species, including humans, but not in pigs [1,
5]. This could depend on skatole metabolites produced by specific cytochrome P450 (CYP) iso-
forms, particularly CYP2F1 and CYP3A4 [6]. Moreover, skatole or its metabolites might
induce DNA damage [7], inhibit lipid peroxidation [8] and decrease glutathione content [9].

The CYP1As are part of the phase I enzymes involved in the metabolism of several pharma-
cologic compounds, natural plant products, environmental pollutants and toxins [10]. More-
over, CYP1A enzymes convert specific pro-carcinogens into full carcinogens [11]. Human,
mouse and porcine CYP1A also metabolize skatole [12–14]. Human CYP1A1 is mostly
expressed in extrahepatic tissues, but can be induced in the liver. Conversely, CYP1A2 is pre-
dominantly expressed in liver, and weakly in intestine [15]. It is generally accepted that
CYP1As are controlled by the aryl hydrocarbon receptor (AhR) pathway. When activated,
AhR dissociates from the cytosolic complex formed with HSP90, translocates into the nucleus
where it heterodimerizes with AhR Nuclear Translocator (ARNT) and eventually binds to spe-
cific DNA sequences (Xenobiotic Responsive Elements, XRE) in the promoter region of its tar-
get genes, thus initiating gene transcription. AhR can be activated by several endogenous and
exogenous compounds [16, 17], including tryptophan and its metabolites [18–20]. Skatole can
activate AhR and initiate CYP1A transcription in primary human bronchial epithelial cells and
colonic cell lines (Caco2) [21, 22]; however, it is unknown whether it can do it also in liver
cells, especially primary cells that poses more metabolic activity compared to cell-lines.

To our knowledge most research on skatole physiopathological effects in humans has been
focused on the respiratory tract, because of its importance as pneumotoxin. However, the liver
could also be an important skatole target due to its strategic placement as the first organ
encountered by skatole absorbed from the intestine before entering the circulatory system and
due to its higher capacity to metabolize skatole compared to the lungs [23].

Here, we tested the hypothesis that skatole regulates the expression of CYP enzymes by
modulating AhR activity. To this aim, we investigated the ability of skatole to activate AhR in
reporter gene assays. Moreover, we incubated HepG2-C3 cells (a human hepatoblastoma cell
line) and primary human hepatocytes (PHHs) with skatole and its metabolite indole-3-carbi-
nole (I3C) and evaluated their effect on CYP/AhR gene and protein expression. We also exam-
ined the combined effect of the prototypical AhR activator TCDD and skatole or I3C. We
found that skatole is a weak activator and a partial agonist of AhR and that its activity depends
on its CYP-mediated conversion into more active metabolites.

Material and Methods

Chemicals
TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxine), skatole (3-methylindole), indole-3-carbinol
(I3C), 1-aminobenzotriazole (ABT) and actinomycin D were from Sigma-Aldrich (Saint-
Louis, MO, US). CH-223191 (2-Methyl-2H-pyrazole-3-carboxylic acid-(2-methyl-4-o-tolyl-
azophenyl)-amide, an antagonist of TCDD-mediated AhR activation [24, 25], was from Cal-
biochem (Merck KGaA, Damstadt, Germany).

Cell culture
HepG2-C3 cells (ATCC) were cultured as recommended in Minimum Essential Medium
(MEM) supplemented with 10% fetal calf serum (FCS) and 2 mM glutamine, 1 mM sodium
pyruvate, 1% non-essential amino acids, 100 units/mL of penicillin and 100 μg/mL of strepto-
mycin, in a 5% CO2 humidified atmosphere at 37°C. Cells were used at low passage number
(<20) to ensure constitutive AhR expression.

Skatole Is a Partial AhR Agonist

PLOS ONE | DOI:10.1371/journal.pone.0154629 May 3, 2016 2 / 17

Competing Interests: The authors have declared
that no competing interests exist.



The transfected AhR reporter cell lines HAhLH (stably transfected) and HepAhLH (tran-
siently transfected) were obtained by transfecting HeLa and HepG2 cells, respectively, with the

5(TnGCGTG)3-tata-luciferase-Luc-hygromycin plasmid in which the luciferase reporter gene
is controlled by the XRE 5(TnGCGTG)3. HAhLH and HepAhLH cells were grown in Dulbec-
co’s Modified Eagle’s Medium F12 (DMEM/F12) with phenol red, supplemented with 5% FCS,
100 units/mL of penicillin and 100 μg/mL of streptomycin and 0.25 mg/ml hygromycin in 5%
CO2 humidified atmosphere at 37°C.

Human liver samples and preparation of primary human hepatocytes
Liver samples were obtained from resections performed in adult patients for medical reasons
unrelated to our research program or from donors when the liver was considered unsuitable
for organ transplantation. Regarding livers from non-transplantable organ donor, the informed
consent of the donor's family was obtained by the Service de la Coordination Hospitalière
(CHUMontpellier). The use of liver lobectomies resected for medical reasons, or livers of
organ donors not suitable for transplantation for hepatocytes isolation for research purposes
has been approved by French National Ethics Committees and legal instance, and by the
French Graft Institute “Agence de Biomedecine”, respectively. All human liver samples enter-
ing the laboratory Inserm U1183 are collected after patients have signed informed consent in
agreement with ethics procedures and adequate authorisations obtained from the Ministère de
l’Enseignement Supérieur et de la Recherche, (reference: MESR DC-2008-531). The clinical
characteristics of the liver donors are given in Table 1. PHHs were prepared as described previ-
ously and cultured in collagen-coated dishes at a density of 1.7 x 105 cells/cm2 in ISOM
medium [26, 27]. At day 3 post-isolation, cells were incubated with the different compounds or
with equal amounts of vehicle (DMSO: final concentration 0.1%) (controls). All treatments
were done in duplicates.

Transfection with siRNA
Adherent PHHs were transfected with 20 nM non-targeting siRNA or siRNA specific for AhR
(Dharmacon, Lafayette, CO) using Lipofectamine RNAiMAX (Life Technology) at day 1 and
day 3 post-seeding. At day 5 post-seeding, PHHs were incubated with the indicated com-
pounds for 24 h. All treatments were done in duplicates.

RNA isolation and PCR
After extraction with Trizol reagent (Invitrogen), 500 ng of total RNA was reverse-transcribed
using a random hexaprimer and the MMLV Reverse Transcriptase Kit (Invitrogen). Quantita-
tive PCR was performed using the Roche SYBER Green reagent and a LightCycler 480 appara-
tus (Roche Diagnostic, Meylan, France) with the following program: one step at 95°C for 10

Table 1. Clinical characteristics of the liver donors.

Liver identification Sex Age Pathology

PHH390 M 35 Organ donor

PHH391 F 29 Cystadenoma

PHH396 M 59 Organ donor

PHH397 M 53 Organ donor

PHH400 M 60 Organ donor

PHH401 M 76 Hepatocellular carcinoma

doi:10.1371/journal.pone.0154629.t001
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min, 40 cycles of denaturation at 95°C for 10 sec, annealing at 65°C for 15 sec and elongation at
72°C for 15 sec. The amplification specificity was evaluated by determining the product melting
curve. Results are expressed as indicated in the figure legends. Primer sequences are given in
Table 2.

The relative mRNA expression was normalized to the expression of β-actin and ribosomal
protein large P0 (RPLP0), as recommended by Vandesompele et al [28]. The Ct-values for β-
actin and RPLP0 were not affected by any of the treatments.

Reporter gene assay
HepG2-C3 cells were transfected in suspension with 200 ng of pTXINV-XRE-luc reporter plas-
mid [29] and 20 ng of pTK-luc Renilla control vector in Opti-MEM I medium (Invitrogen)
using Lipofectamine 2000 (Life Technology) for 24 h, according to the manufacturer’s instruc-
tions. The medium was then renewed and cells were pre-incubated or not with 3 μM
CH223191 for 30 min and then with skatole, TCDD or DMSO, as indicated. Dual luciferase
assays were performed according to the manufacturer’s specifications (Promega, Madison, WI)
using a Mithras LB940 apparatus (Berthold Technologies). Results from treated samples were
expressed relative to the mean value of the control samples (arbitrarily set to 1). All treatments
were done in triplicate and repeated in at least one independent experiment.

HAhLH and HepAhLH reporter cells were seeded at a density of 25,000 cells per well in
96-well white opaque tissue culture plates with 150 μl culture medium. Cells were incubated
with different concentrations of skatole or I3C (between 0.1 and 100 μM), or TCDD (between
0.01 nM and 1 μM) for 8 h. At the end of the incubation time, the medium with the test com-
pounds was removed and replaced with culture medium containing 0.3 mM luciferin. At this
concentration, luciferin diffuses in the cells and produces a stable luminescent signal after five
min. Luminescence was measured in intact living cells for 2 sec using a luminometer. Tests
were performed in quadruplicate for each concentration. Results were expressed as the percent-
age of the maximal luciferase activity (100%) obtained in the presence of 100 nM TCDD.

Western blotting
Total protein extracts were prepared using RIPA buffer (Sigma-Aldrich) supplemented with a
protease inhibitor cocktail (Santa Cruz Biotechnology, Santa Cruz, CA). The protein concen-
tration was determined by the bicinchoninic acid method, according to the manufacturer’s
instructions (Pierce Chemical Co., Rockford, IL). Bovine serum albumin (Pierce Chemical Co.)
was used as standard. Equal amounts of total proteins were separated on precast SDS-poly-
acrylamide gels (4–16%) (Bio-Rad, Marnes la Coquette, France), then transferred onto PVDF
membranes (Bio-Rad). Membranes were incubated with mouse monoclonal anti-CYP1A1/2
(SC-53241, Santa Cruz) or goat polyclonal anti-actin (SC-1616, Santa Cruz) antibodies. Immu-
nocomplexes were detected with horseradish peroxidase-conjugated mouse or goat secondary

Table 2. Primer sequences.

Gene Name Forward primer Reverse primer

AhR ATCAGTGCCAGCCAGAACCTC AGGTCTGGCTTCTGACGGATG

CYP1A1 TCCGGGACATCACAGACAGC ACCCTGGGGTTCATCACCAA

CYP1A2 CATCCCCCACAGCACAACAA TCCCACTTGGCCAGGACTTC

CYP1B1 GCCACTATCACTGACATCTTCGG CACGACCTGATCCAATTCTGCC

Actin TGGGCATGGGTCAGAAGGAT TCCATCACGATGCCAGTGGT

RPLP0 TCGACAATGGCAGCATCTAC GCCTTGACCTTTTCAGCAAG

doi:10.1371/journal.pone.0154629.t002
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antibodies (Sigma) followed by enhanced chemiluminescence reaction (Millipore, Molsheim,
France). Chemiluminescence was monitored using a ChemiDoc-XRS+ apparatus (Bio-Rad
Laboratories) and quantified using the Image Lab software (version 4.1)

Assay for CYP1A activity
The relative CYP1A activity was assessed using the P450-Glo™ CYP1A1 Assay (Promega), with
luciferin-CEE as substrate. All obtained activity values were normalized to the cell viability
assessed using the CellTiter-Glo™ assay (Promega), according to the manufacturer’s
instruction.

Statistics
All statistical tests were performed using the SigmaPlot software. For comparison of two
groups, the Students unpaired t-test was used, while for comparison of multiple groups,
ANOVA with Tukey’s post hoc test was used. If data were no normally distributed, the
ANOVA test were executed on log10-transformed data. In all tests, p< 0.05 was considered as
significant.

Results

Skatole activates AhR in reporter gene assays
To test whether skatole activates AhR, hepatic and non-hepatic reporter cell lines were used.
First, HepG2-C3 cells were transiently transfected with the pTXINV-XRE-luc reporter plasmid
and incubated with 100 μM skatole for 24 h to determine a time-response curve (Fig 1A).
Luciferase activity progressively increased, but after 8 h of incubation started to decrease back
to control levels. Then, hepatic HepG2 (HepAhLH) and non-hepatic HeLa (HAhLH) reporter
cells (stably transfected with the 5(TnGCGTG)3-tata-luciferase-Luc-hygromycin plasmid) were
incubated with increasing concentrations of skatole or TCDD (the prototypical AhR activator)
for 8 h. Luciferase activity increased in a dose-dependent manner in both cell lines (Fig 1B and
1C) and with both compounds, although the TCDD effect was significantly stronger than that
of skatole (Fig 1B and 1C). The observed increase in luciferase activity was reduced when cells
were pre-incubated with CH223191 (a known inhibitor of TCDD-mediated AhR-dependent
transcription [24]) for 30 min before stimulation with skatole or TCDD (Fig 1D). These results
indicate that skatole activates AhR in liver cells.

Skatole increases the expression of CYP1A1, CYP1A2 and CYP1B1 in
an AhR-dependent manner
To further test whether skatole is an AhR activator, HepG2-C3 cells were incubated with 1, 10
or 100 μM skatole for 2 to 24 h and the effect on the transcription of AhR-regulated genes was
determined. After 2 and 8 h, CYP1A1mRNA expression was significantly increased in cells
incubated with 10 or 100 μM skatole compared to DMSO-treated cells (Fig 2A). Conversely,
after 24 h, CYP1A1 expression was further increased only in cells incubated with 100μM skatole.
Incubation with 1 μM skatole had no effect on CYP1A1mRNA expression. The induction of
CYP1A1mRNA was not accompanied by major changes in AhR mRNA expression (Fig 2B).

The effect of skatole on CYP1A1/2 and CYP1B1 expression was then evaluated also in
PHHs, which are considered the gold standard model to assess human liver metabolism. Simi-
lar to what was observed in HepG2-C3 cells, incubation with skatole for 8 and 24 h increased
CYP1A1, CYP1A2 and CYP1B1, but not AhRmRNA expression in all tested PHHs (n = 5
donors) (Table 3). Although the mRNA induction upon incubation with skatole greatly varied
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among PHHs, reflecting the known inter-donor variability, no correlation between the clinical
characteristics of the liver donor and the level of CYP induction in PHHs was observed. Skatole
also increased CYP1A1/2 protein expression in PHHs (Fig 2C).

Finally, AhR activation by skatole was confirmed by using PHHs in which AhR was silenced
by siRNA. The basal mRNA expression of AhR and its target genes CYP1A1 and CYP1A2 was
reduced by approximatively 90% in silenced PHHs compared with PHHs transfected with
non-targeting siRNA (Fig 3A). Moreover, the increase in CYP1A1 and CYP1A2mRNA expres-
sion upon incubation with skatole or TCDD was reduced in AhR-silenced PHHs compared
with PHHs transfected with non-targeting siRNA (Fig 3B and 3C).

Skatole is an AhR partial agonist
The finding that skatole could not elicit the maximum possible response obtained with the full
agonist TCDD in cell reporter assays suggests that skatole is an AhR partial agonist. This is
supported by the pronounced differences in the extent of CYP1A1/2 and CYP1B1 induction
observed in PHHs upon incubation with TCDD or skatole (Table 3). In the presence of a full

Fig 1. Skatole activates AhR. (A) Luciferase activity in HepG2-C3 cells transiently transfected with the pTXINV-XRE reporter plasmid and incubated
with 100 μM skatole for 2, 4, 8 or 24 h (n = 3). Luciferase activity measured in HepAhLH (B) or HAhLH (C) cells, in which the luciferase reporter gene is
controlled by the XRE 5(TnGCGTG)3, after incubation with skatole (from 1.10−7 M to 1.10−4 M) or TCDD (from 1.10−11 M to 1.10−7 M) for 8 h (n = 3).
Luciferase activity was expressed as the percentage of the activity obtained by incubation with 1.10−7 M TCDD. (D) Relative luciferase activity
measured in HepG2-C3 cells transfected with pTXINV-XRE and incubated with 1, 10 or 100μM skatole for 2, 4, 8 or 24 h, following 30 min pre-
incubation with DMSO (control) or 3 μMCH223191 (a specific AhR antagonist) (n = 3). In Fig 1D, are all data points significantly different (p < 0.05)
form its time-matched CH 223191 treated counterpart, except for control and 100 μM skatole at time point 24 hours.

doi:10.1371/journal.pone.0154629.g001
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agonist, a partial agonist will act as an antagonist, competing with the full agonist and thereby
reducing its ability to produce its maximum effect. To test this, HepG2-C3 cells and PHHs
were incubated with TCDD (full agonist) and skatole on their own or in combination. TCDD
alone strongly increased CYP1A1 and CYP1A2mRNA expression in both HepG2-C3 cells and
PHHs (Table 3 and Fig 4A and 4B). When HepG2-C3 cells were co-incubated with 10 nM
TCDD and 100 μM skatole, CYP1A1mRNA induction was significantly reduced compared
with cells incubated with TCDD alone (Fig 4A), whereas AhRmRNA expression was minor
affected (Fig 4B). Similarly, in PHHs, CYP1A1, CYP1A2 and CYP1B1 up-regulation was signifi-
cantly reduced after 8 h of co-incubation with TCDD and skatole compared to TCDD-treated
cells (Fig 4C). On the other hand, after 24 h of co-incubation, only CYP1A2 and CYP1B1
expression were affected (Fig 4D). Co-incubation with skatole and TCDD also reduced

Fig 2. Skatole increases CYP1A1 expression in HepG2-C3 cells and PHHs. RT-qPCR analysis of CYP1A1 (A) and AhR (B) mRNA expression
following incubation of HepG2-C3 cells with 1, 10 or 100 μM skatole for 2, 4, 8 or 24 h (n = 3). (C) CYP1A and actin protein expression in PHHs
(Donor #400) after incubation with 10, 50 or 100 μM for 24 h. * Significantly different from time-matched control cells (no treatment) (Student’s t–
test; p < 0.001).

doi:10.1371/journal.pone.0154629.g002

Skatole Is a Partial AhR Agonist

PLOS ONE | DOI:10.1371/journal.pone.0154629 May 3, 2016 7 / 17



CYP1A1/2 protein up-regulation, in comparison with TCDD alone, both in HepG2C3 cells
(data not shown) and in PHHs (Fig 4E).

To test whether the CYP expression decrease observed upon co-incubation with TCDD and
skatole relative to TCDD alone was due to decreased AhR activation, HepG2-C3 cells tran-
siently transfected with the pTXINV-XRE-luc reporter plasmid were incubated with TCDD
alone, or with skatole and/or CH-223191 (inhibitor of TCDD-mediated AhR-dependent tran-
scription) and luciferase activity was measured at different time points (Fig 4F). Incubation
with TCDD alone or with skatole increased luciferase activity over time, although the increase
was significantly lower in cells co-treated with TCDD and skatole compared to TCDD alone.
Addition of CH-223191 reduced luciferase activity almost to control (no treatment) level.

Effect of skatole metabolites on CYP1A expression
To explore the mechanism responsible for the observed increase in CYP1A expression in ska-
tole- treated cells, HepG2-C3 cells were pre-incubated with 4 μM of actinomycin D, a known
transcription inhibitor, for 1 h. Actinomycin D had no effect on cell viability (S1 Fig). Actino-
mycin D blocked the effect of both TCDD and skatole on CYP1A1 expression (Fig 5A), without
affecting the expression of the housekeeping genes (β-actin and RPLP0) (S2 Fig). The same was
true for CYP1A2 (S3 Fig). This demonstrates that CYP1A induction in response to skatole
occurs at the transcriptional level.

Then, we tested whether skatoles effect was due to skatole directly or whether metabolic
conversion by CYPs is required for full activity. To inhibit CYP activity, HepG2-C3 cells were
incubated with 1 mM ABT (a specific inhibitor of animal CYPs) [9, 30] for 1 hour. This treat-
ment reduced CYP1A1/1B1-dependent activity by approximatively 80% compared to DMSO-
treated cells, as assessed by using the P450-Glo™ CYP1A1 assay (Fig 5B). Then, HepG2-C3
cells were pre-incubated with 1 mM ABT for 1 h before addition or not of skatole or TCDD.
After 8 h, CYP1AmRNA expression was increased in cells incubated with ABT alone (insert
Fig 5C). Conversely, after skatole addition, CYP1AmRNA expression was significantly reduced
in cells pre-incubated with ABT compared to cells without ABT (Fig 5C), suggesting that ska-
tole metabolism is required to obtain full induction. As expected, ABT had no effect on
TCDD-induced CYP1A1 expression (Fig 5D), in agreement with the fact that TCDD is poorly

Table 3. CYP1A1, CYP1A2,CYP1B1 and AhRmRNA expression in PHHs (n = 5) incubated with 1, 10, 100 μM skatole or 10 nM TCDD for 8 or 24
hours.

Incubation time 1 μM skatole 10 μM skatole 100 μM skatole 10 nM TCDD

CYP1A1 8 hours 1.1 ± 0.5 (0.5–1.8) 4.1 ± 2.8 (0.8–8.4) 10.6 ± 6.5b,* (1.9–19.9) 52.0 ± 30.2* (16.7–73.6)

24 hours 1.2 ± 1.1 (0.4–3.3) 3.1 ± 2.2 (1.3–7.5) 26.0 ± 22.6*, **, *** (4.6–66.1) 548.7 ± 445.8* (45.3–1275.6)

CYP1A2 8 hours 1.1 ± 0.3 (0.7–1.4) 2.2 ± 0.8 (1.0–3.3) 4.2 ± 2.6*, ** (1.1–8.7) 41.4 ± 52.9 (6,3–145.5)

24 hours 1.1 ± 0.6 (0.6–2.3) 2.0 ± 0.7 (1.2–3.4) 10.4 ± 8.9*, **, *** (2.5–27.3) 410.6 ± 296.9* (201.5–935.9)

CYP1B1 8 hours 1.0 ± 0.5 (0.4–1.6) 3.0 ± 2.1 (0.5–5.5) 7.2 ± 4.1*, ** (2.5–14.7) 56.9 ± 82.3 (11.0–221.0)

24 hours 1.0 ± 0.3 (0.5–1.2) 1.1 ± 0.1 (1.0–1.3) 2.6 ± 0.7*, **, *** (2.0–3.9) 318.9 ± 404.7 (46.4–1119.3)

AhR 8 hours 1.0 ± 0.1 (0.8–1.1) 0.9 ± 0.2 (0.8–1.3) 0.8 ± 0.1 (0.7–1.0) 0.8 ± 0.2* (0.5–1.0)

24 hours 1.0 ± 0.2 (0.7–1.2) 0.9 ± 0.1 (0.8–1.0) 1.0 ± 0.1 (0.9–1.1) 0.8 ± 0.3 (0.5–1.2)

All values (mean ± SD; Data range within brackets) are expressed as fold change compared to control PHHs (only DMSO).

* significantly different from control (DMSO treated PHH)

** significantly difference between samples treated with 1 μM and 100 μM skatole

*** significantly difference between samples treated with 10 μM and 100 μM skatole

doi:10.1371/journal.pone.0154629.t003
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metabolized and has a half-life of ~5 years in adults [31]. Moreover, ABT had no effect on ska-
tole-mediated inhibition of CYP1A1 induction by TCDD (Fig 5D). This suggests that the
observed inhibitory effect on TCDD-induced CYP1A1 expression is caused by skatole and not
by a metabolite.

To investigate whether a skatole metabolite could be the main responsible for CYP1A
mRNA up-regulation, HepG2-C3 cells were incubated with various concentrations of I3C, a
commercially available skatole metabolite [14, 32, 33], for 24 h. I3C induced CYP1A1mRNA
expression more potently than skatole. Indeed, 10 μM I3C increased CYP1A1mRNA expres-
sion by about 30-fold (relative to the DMSO control; Fig 6A) compared with the 2-fold increase

Fig 3. AhR is required for skatole-mediated CYP1A1 and CYP1A2 up-regulation. (A) RT-qPCR analysis of AhR, CYP1A1 andCYP1A2
mRNA expression in PHHs (Donor #391) after siRNA-mediated AhR down-regulation. (B) RT-qPCR analysis of CYP1A1 (B) andCYP1A2(C)
mRNA expression in PHHs after siRNA-mediated AhR down-regulation and incubation with 50 or 100 μM skatole, or 10 nM TCDD. * significantly
different from cells transfected with non-target siRNA.

doi:10.1371/journal.pone.0154629.g003
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Fig 4. Skatole reduces TCDD-induced AhR activity andCYP1A1 expression. RT-qPCR analysis of (A) CYP1A1 and (B) AhRmRNA expression
following incubation of HepG2-C3A cells with 10 nM TCDD in the presence or not of 100 μM skatole for 2, 4, 8 or 24 h (n = 3). RT-qPCR analysis of
CYP1A1, CYP1A2, CYP1B1 and AhRmRNA expression in PHHs treated for 8 (C) or 24 h (D) with TCDD in the presence or not of 100 μM skatole
(n = 5). Results are expressed as the percentage of the induction observed with 10 nM TCDD. (E) CYP1A and actin protein expression in PHHs after
incubation with 10 nM TCDD in the presence or not of 10, 50 or 100 μM skatole for 24 h (Donor #401). (F) Luciferase activity in HepG2-C3 cells
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observed with 10 μM skatole (Fig 2A). This was confirmed in reporter experiments performed
in HAhLH and HepAhLH cells where I3C was a more potent activator of luciferase activity
than skatole (Fig 6B; compare with Fig 1B and 1C). Conversely, I3C had no effect on TCDD-
mediated CYP1A1mRNA expression up-regulation in HepG2-C3 cells (Fig 6C).

transfected with pTXINV-XRE and incubated with TCDD alone or with skatole, in the presence or not of 3 μMCH223191 for 2, 4, 8 or 24 h (n = 3). *
Significantly different from time-matched control cells (DMSO); # significantly different from time-matched TCDD treated cells (Student’s t–test;
p < 0.01).

doi:10.1371/journal.pone.0154629.g004

Fig 5. Effect of skatole metabolism on CYP1A induction in HepG2-C3 cells. (A) RT-qPCR analysis ofCYP1A1mRNA expression in
HepG2-C3 cells following incubation with 4 μM actinomycin D for 1 h and incubation with 10 nM TCDD or 10, 50 or 100 μM skatole for 8 h (n = 3).
(B) Relative CYP1A1 activity following incubation with 1 mM ABT for 1 h (n = 3). (C) RT-qPCR analysis of CYP1A1mRNA expression in HepG2-C3
cells that were pre-incubated or not with 1 mM ABT for 1 h before incubation with 10, 50 or 100μM skatole for 8 h (n = 3). Insert showsCYP1A1
mRNA expression in HepG2-C3 cells after incubation or not with ABT. (D) RT-qPCR analysis ofCYP1A1mRNA expression in HepG2-C3 cells
that were pre-incubated or not with 1 mM ABT for 1 h before incubation with 10 nM TCDD alone or together with 10, 50 or 100μM skatole for 8 h
(n = 3). * significantly different from control cells; § significantly different from its time-matched CH 223191 treated counterpart.

doi:10.1371/journal.pone.0154629.g005
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Discussion
In humans, little is known about skatole effects on the expression of drug-metabolizing
enzymes in the liver. Here, we show, using different cell models and PHHs, that skatole
increases in a time- and dose-dependent manner the mRNA levels of CYP1A1, CYP1A2 and
CYP1B1 genes, the expression which is controlled by AhR. Using reporter-gene assays and
siRNA–mediated down-regulation of AhR expression, we demonstrate that skatole-induced
CYP1A expression up-regulation is dependent on AhR activation. The increase in CYP mRNA
expression after incubation with skatole was low (< 1/10) compared to the increase following
treatment with TCDD, a full AhR activator. Moreover, skatole showed antagonistic activity
towards TCDD-mediated AhR activation, suggesting that skatole is a weak activator and a

Fig 6. Indole-3-carbinol (I3C) induces CYP1A1 expression and activates AhR. (A) RT-qPCR analysis of CYP1A1mRNA expression in
HepG2-C3 cells incubated with 0.1, 1 or 10 μM I3C for 24 h (n = 3). (B) Relative luciferase activity measured in HAhLH or HepAhLH cells incubated
with I3C (from 1.10−7 M to 1.10−4 M) for 8 h (n = 3). (C) RT-qPCR analysis of CYP1A1mRNA expression in HepG2-C3 cells incubated with 10 nM
TCDD alone or in the presence of 0.1, 1 or 10 μM I3C (n = 3). Bars not sharing subscription are significantly different (p < 0.05).

doi:10.1371/journal.pone.0154629.g006
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partial agonist of AhR. Finally, we show that skatole effect is dependent on its metabolic con-
version in the liver, suggesting that its metabolites (e.g., I3C) are more potent inducers of CYP
gene expression than skatole.

Humans, like other mammal species, are exposed to skatole produced from the intestinal
bacterial metabolism of tryptophan [34]. Additionally, smokers are exposed to skatole originat-
ing from tryptophan pyrolysis and humans could also be exposed to skatole from various food
sources [2, 35]. Moreover, patients with liver diseases may have higher skatole plasma concen-
trations compared to people with normal liver functions [36]. Additionally, as shown in pigs,
dietary changes may favor a skatole-producing microflora in the intestine, resulting in more
skatole available for absorption [37–39]. Nevertheless, the basic concentration of skatole in
human liver or plasma is unknown. Several old studies could not detect skatole in samples
from healthy volunteers. However, analytical techniques have improved since then and now it
may be possible to detect skatole in human samples. Moreover, skatole metabolites have been
identified in human urine [40], supporting the presence of skatole in human plasma. In the
current study, we used skatole concentrations from 1 to 100 μM. The latter concentration is
probably much higher than what could be found in normal human liver; however, it could be
relevant in some pathological conditions, as high concentrations of skatole metabolites has
been found in plasma of schizophrenic patients [41, 42]. Moreover higher skatole amount in
feces has been found in patients with colon cancer [43, 44], suggesting higher plasma skatole,
as skatole is freely absorbed through the gut wall [45]. Additionally, specific diets can change
the gut-flora, increasing skatole production and presence in the gut. In these situations, skatole
or its metabolites can act as weak AhR activators, thus inducing the expression of AhR-regu-
lated genes, such as CYP1A1, CYP1A2 and CYP1B1.

Previous studies have shown increased CYP1A1 expression after treatment with skatole and
other tryptophan metabolites [19–22, 46]. Specifically, in human normal bronchial epithelial
cells, the skatole-induced CYP1A1 mRNA/protein expression increase was dependent on AhR
[21], as observed in our study in hepatic cells. In a recently published study, it was shown that
skatole treatment induced CYP1AmRNA expression in a colon derived human cell model
(Caco2) and activated AhR controlled reporter gene in HepG2 [22]. Moreover, we show that
skatole effect on CYP1A1 expression could be limited by chemical inhibition of CYP450 activ-
ity. This suggests that a skatole metabolite is responsible, at least in part, for AhR activation, or
is a more potent AhR activator than skatole. One such metabolite could be I3C, which is pro-
duced via CYP450-dependent metabolism of skatole [14, 33, 37]. Accordingly, treatment of
HepG2-C3 cells with micromolar concentrations of I3C for 24 h increased CYP1A1mRNA
expression, as previously reported [47].

Skatole is a weaker AhR activator than TCDD. As observed for other weak AhR activators
[48, 49], skatole exhibits an antagonistic effect on TCDD-mediated AhR activation. Indeed,
compared to TCDD alone, co-treatment with TCDD and skatole produced a weaker response
in reporter gene assays and a lower CYP1A mRNA and protein up-regulation in PHHs, sug-
gesting that skatole is a partial AhR agonist. Moreover, the fact that the inhibitory effect of ska-
tole on TCDD-induced CYP1A expression is maintained in the presence of ABT (an inhibitor
of CYP activity) suggests that this inhibition is caused by skatole and not by a metabolite. It
was recently described that tryptophan metabolites can exert diverse effects on AhR activity.
Tryptamine and indole 3-acetate were AhR agonists, whereas indole was an AhR antagonist
that inhibited TCDD-induced CYP1A1 expression [46].

HepG2-C3 cells exhibit very low CYP450-dependent activity compared to PHHs. This
could explain the differences observed between HepG2-C3 cells and PHHs. Indeed, skatole
antagonist effect on TCDD-mediated activation of AhR is better maintained in HepG2C3 cells
(Fig 4A) than in PHHs (Fig 4C and 4D). Moreover, in PHHs, the antagonistic effect of skatole
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on TCDD-induced CYP1A1mRNA expression was observed only after 8 h of incubation,
while it was maintained for 24 h for both CYP1A2 and CYP1B1. This seems surprisingly given
the common pathway of induction via AhR. In addition, in pTXINV-XRE-luc reporter plas-
mid-transfected HepG2-C3 cells, co-treatment with skatole and TCDD reduced luciferase
activity compared to TCDD alone, suggesting that the antagonistic effect of skatole is at the
level of AhR activation. Nevertheless, mRNA expression is not only the result of gene transcrip-
tion regulation. Indeed, mRNA degradation also influences mRNA content and can affect the
specific mRNA expression of genes the transcription of which is controlled by common path-
ways. Moreover, although CYP1A1, CYP1A2 and CYP1B1 share AhR as a transcriptional regu-
lator, their tissue-specific expression profiles are very different, suggesting that other
transcription factors participate in their regulation. This difference between CYP1A1 and
CYP1A2/1B1 needs to be further investigated.

Importantly, skatole was administered in micromolar concentrations, while TCDD concen-
trations were in the nanomolar range. How skatole can act as an antagonist of TCDD is not
elucidated by the current study. They could compete for the same ligand-binding domain on
the receptor, as suggested by the antagonist effect of CH223191, which was previously shown
to be a pure AhR antagonist that competes with TCDD for binding to AhR [24].

Finally, we observed, that I3C, a skatole metabolite, also exerts a positive effect on AhR acti-
vation in HepG2-C3 cells, as previously described (review in [16]). However, differently from
skatole, co-incubation with TCDD did not affect TCDD-mediated CYP1A1 induction, suggest-
ing that I3C, like tryptamine and indole 3-acetate, is an AhR agonist. Dietary administration of
I3C protects wild type mice against intestinal cancer development [50] and reduces hepatic
steatosis in mice fed a high-fat diet [51]. Skatole and its metabolites may therefore affect liver
homeostasis in a complex manner.

Fig 7. Schematic model of the impact of skatole on AhR activity, as suggested from the findings of this work.

doi:10.1371/journal.pone.0154629.g007
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In summary, the present study shows that skatole and some of its metabolites (for instance,
I3C) are AhR activators, affecting the expression of AhR-target genes in PHHs. Moreover, ska-
tole acts as an antagonist of TCDD-mediated AhR activation (Fig 7), suggesting that skatole is
a partial AhR agonist. Thus, the concentration and ratio of abundance of skatole and its metab-
olites, alone or in combination with other dietary factors and potential exogenous AhR ligands
(i.e., contaminants), can potentially influence liver functions.
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