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Thirty-seven house mice (Mus musculus, Rodentia) caught in different localities in French Guiana were screened
to investigate the presence of lymphocytic choriomeningitis mammarenavirus (LCMV). Two animals trapped in
an urban areawere found positive, hosting a new strain of LCMV, that we tentatively named LCMV “Comou”. The
complete sequence was determined using a metagenomic approach. Phylogenetic analyses revealed that this
strain is related to genetic lineage I composed of strains inducing severe disease in humans. These results empha-
size the need for active surveillance in humans aswell as in housemouse populations, which is a rather common
rodent in French Guianese cities and settlements.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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The family Arenaviridae is made up of single-stranded RNA viruses
and includes two genera, Mammarenavirus and Reptarenavirus
(Radoshitzky et al., 2015). The Mammarenavirus genus is divided into
two main groups according to phylogenetic and serological criteria:
arenaviruses from the Old World with viruses such as Lassa and
LCMV, and New World arenaviruses such as Tacaribe, Junin and
Machupo viruses, among others (Salvato et al., 2011). All these viruses
are hosted by rodents with the exception of Tacaribe virus, which has
been described in a bat species (Artibeus jamaicensis, Phyllostomidae)
(Downs et al., 1963). The geographical distribution and phylogenetic re-
lationships of arenaviruses have been associatedwith the distribution of
their reservoirs. Indeed, arenaviruses have been suggested to co-evolve
with their rodent hosts (Emonet et al., 2009). Arenaviruses from theOld
World are associated with rodents from the family Muridae, subfamily
Murinae, whereas those from the New World are related to a different
subfamily of Muridae, namely the Sigmodontinae. Each arenavirus spe-
cies seems to be hosted by a unique reservoir species, or by closely relat-
ed species within a given genus, and is distributed in patches (Charrel
ne, Laboratoire des Interactions
uiana.
vergne),
teur-cayenne.fr (S. Tirera),
ur.fr (C. Bouchier),
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et al., 2008). Among arenaviruses, LCMV is the only one distributed
worldwide (America, Africa, Asia and Europe). This wide distribution
is explained by the geographic distribution of its main reservoir, Mus
musculus. In the Old World, other Murinae species can be infected by
LCMV strains such as Apodemus sylvaticus, Mus spretus and Rattus
norvegicus, and even a distantly related rodent, the squirrel Sciurus
vulgaris, whichwas detected positive through serological andmolecular
approaches, although no viral sequence was obtained (Blasdell et al.,
2008; Ledesma et al., 2009). Serological studies performed on
M. musculus captured in urban areas as well as in undisturbed environ-
ments revealed that 8 to nearly 13% of tested individuals can be infected
with LCMV (Ledesma et al., 2009; Lledó et al., 2003; Riera et al., 2005).
Human beings can be infected with LCMV through direct contacts
with infected rodents or through inhalation of contaminated rodent
feces and/or urine. LCMV infection is usually asymptomatic in humans.
It can nevertheless induce febrile illness and even sometimes severe
cases of aseptic meningitis and encephalitis (Barton and Hyndman,
2000; De Ory et al., 2009; Martos Fernández et al., 1996). In the
Americas, numerous arenaviruses have been described as causing se-
vere disease (hemorrhagic fevers) and the LCMV presence has been in-
vestigated in rodents and human populations in several areas (Riera
et al., 2005). In French Guiana, the recent identification of a new arena-
virus (Lavergne et al., 2015) belonging to the New World clade A
(Charrel and de Lamballerie, 2010), which includes viruses that are
known to be poorly pathogenic, led us to investigate the circulation of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Nucleotide and amino acid identities between LCMV Comou and other representative LCMV strains based on the polymerase (L), small zinc finger-like protein (Z), nucleocapsid (NP) and
glycoprotein precursor (GP) sequences.

(%) Identity in nucleotides with LCMV-Comou (%) Identity in amino acids with LCMV-Comou

S L S L

NP GP L Z NP GP L Z

Traub_USA_1936 91.5 90.4 84.8 80.1 96.4 96.8 91.4 89.9
200312154_810,366_California_2003 90.3 90 76.4 74.5 95.7 95.1 83.7 85.4
OQ28_Osaka_Japan_1990 89.8 90.4 87.7 85 95.9 96.2 93.6 92.1
Pasteur_France_2006 86.2 83 81.6 83.5 94.3 94.1 89 91
201102714_USA_2011 86 84.4 NA NA 96.2 96.4 NA NA
IN_2012_M435_USA_2012 85.7 84.4 NA NA 94.8 95.5 NA NA
EEB_7_Spain_2008 85.5 85 80.8 82 95.3 95.3 88.6 91
Douglas_4707_810938_NY_N938_1947 85.5 85.6 83.2 80.1 95.5 95.1 90.4 89.9
WHI_8107_810906_NY_H909_1949 85.5 83.8 NA NA 94.4 94.3 NA NA
811316_Massachusets_2008 85.4 85.4 84.4 81.6 94.8 95.5 91.7 92.1
200501927_810850_Rhode_island_2005 85.4 83.5 81.4 78.7 95 93.1 88.5 88.8
200504219_810885_Michigan_2005 85.3 84.4 81.5 80.9 95.3 96 89.2 88.8
200504261_810896_Ohio_2005 85.3 83.6 81.4 78.7 94.6 93.3 88.7 88.8
WE_UBC_57135_810940_NY_H940_1935 84.9 84.1 82.1 82.4 95.3 94.5 89.4 92.1
200312181_810362_Wisconsin_2003 84.9 85.1 81.6 80.9 93.9 94.9 89.5 93.3
WE_UBC_A337_810909_NY_H909_1935 84.9 84.2 NA NA 95.5 94.7 NA NA
WE_Nagasaki_Japan_2011 84.8 84.7 82.7 81.6 94.4 94.9 89.6 91
Armstrong_53b_Misouri_USA_1933 84.8 84.7 81.5 77.5 94.4 95.3 88.8 88.8
Makokou_Gabon_2012 84.7 85.1 81.6 NA 94.3 94.7 89.2 NA
HP65_2009_France 84.4 83.2 80.3 83.5 90.1 91.1 87.1 91
Marseille_France_2004 84.3 84 81.2 77.3 94.3 95.5 88.5 83
CH_5871_Germany_2000 84.3 83.2 NA NA 94.6 93.5 NA NA
CH_5692_Germany_1999 84.3 82.6 80.5 81.3 94.6 93.9 87.5 92.1
Bulgaria_1956 81.1 77.6 72.6 NA 92.8 89.9 80.1 NA
M2_Austria_2005 80.9 78.3 NA NA 93 89.7 NA NA
M1_Austria_2005 80.9 78.3 NA NA 93 89.7 NA NA
BRC_Nagasaki_2005 80.5 78.5 73 76.9 92.5 90.3 79.5 81.8
Dandenong_0710_2678 79.6 78.6 72.9 78.4 93.4 91.1 80.6 85.2
GR01_Spain_2004 79.6 76.4 NA NA 89.4 83 NA NA
SN05_Spain_2004 79.3 72.8 NA NA 89.6 79.6 NA NA
CABN_Spain_2004 79 72.6 NA NA 89.8 80.6 NA NA
810935_Lyles_Georgia_1984 78.9 78 72.5 70.4 92.1 88.5 79.8 82
Lunk_virus_NKS_1 72.6 70.7 NA 58.1 82.2 79.6 NA 55.6
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the ubiquitous LCMV. We report here the first genetic characterization
of LCMV in M. musculus in French Guiana.

As part of an investigation programon the diversity of viruses hosted
by rodents, captures were implemented in various localities of northern
French Guiana during a 10-year period. Among c.a. 500 rodents, 37
M. musculus were collected in two different types of environments.
Most of them (n = 20) came from a small Amerindian village located
along the Oyapock River (Saint-Georges municipality) at the Brazilian
border, while the others (n = 17) came from the urban and periurban
areas of Cayenne (the largest city in French Guiana). Rodents were
caught alive, brought to the laboratory, anesthetized and euthanized
to collect their organs (kidney, lungs, intestine and spleen) and sera.
AllM. musculus individuals were identifiedmorphologically andmolec-
ularly confirmed by sequencing a fragment from the mitochondrial Cy-
tochrome Oxydase I gene (Borisenko et al., 2008). For all M. musculus,
total RNA was extracted from the lungs and kidneys and cDNA synthe-
sized as previously described (Lavergne et al., 2015). All individuals
were screened for the presence of LCMV using a hemi-nested PCR
targeting a 650-bp fragment of the S segment. Primers were designed
to fit with LCMV strains. First-round PCR was performed using primer
LCMV-1638F: 5′-TGGAGAGTCAGGGAGGCC-3′ (designed in this study)
and modified primer 1010C: 5′-TCNGGNGARGGNTGGCC-3′ (Bowen
et al., 1996). The second-round PCR was performed using the modified
primer 1010C and primer 1696: 5′-ATNATGCARTCCATRAGWGCACA-3′
(Bowen et al., 1996).

Among the 37 animals, two were found positive, in lungs and kid-
neys, for LCMV after sequencing the PCR products. These two animals
were male, adult, with tissue kept in the JAGUARS collection (CITES
agreement FR-973A) at the Institut Pasteur de la Guyanewith the refer-
ence numbers M1504_JAG and M1812_JAG. The two animals were
captured at the same trapping site, 2 months apart in 2013, in a small
residential house, Rémire-Monjoly municipality, in the suburbs of Cay-
enne. We determined the complete sequence of LCMV using a viral
metagenomic approach (detailed sample preparation protocol is avail-
able upon request). Briefly, analyses were done on lung, kidney, intes-
tine and spleen tissues as well as on serum of the two positive
specimens. Sampleswere pooled by organ. Theywere crushed inHank's
buffered saline solution (Gibco BRL) and aliquots were centrifuged to
eliminate the particles and filtrated. Samples were then extracted
using the automated nucleic acid extractor NucliSENS® EasyMAG®
from BioMérieux. cDNA was generated using SuperScript III reverse
transcriptase and was submitted to random amplification using the
WTA kit (Invitrogen, Life Technologies, Paisley, UK). The libraries were
prepared using the NEBNext Ultra DNA Library Prep Kit from Illumina
(New England BioLabs) and were then sequenced on a MiSeq machine
in 250-base paired-end reads (Illumina, San Diego, CA, USA). Sequence
files were generated using Illumina Analysis Pipeline version 1.8
(CASAVA). Raw sequencefileswere submitted to removal of adapter se-
quences using Trimmomatic (Bolger et al., 2014) and subsequently
quality filtered with a quality threshold of 20 using the fastx-toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/). Reads were then assembled
into contigs using SPAdes (Bankevich et al., 2012) and velvet (Zerbino
and Birney, 2008) using different k-mer sizes. Samples showing high
levels of read duplications were deduplicated using fastqMcf from the
ea-utils package (Aronesty, 2011). Contigs were submitted to a blast
search (version 2.2.28+) (Altschul et al., 1990) on nr and viral data-
bases and 380 contigs gave a positive hit on LCMV. Reads were then
mapped against the complete sequence of the S and L segments of
LCMV strain OQ28 (accession numbers AB627952 and AB627955). Of
5 million reads nearly obtained for the two individuals, 6168 (0.08%)

http://hannonlab.cshl.edu/fastx_toolkit/


Fig. 1. Phylogenetic tree based on analysis of the complete nucleotide sequence of the NP gene of LCMV Comou and representative strains of LCMV. The tree is based on the GTR+I+G
model of amino acid evolution. Virus names are associatedwith their locality of origin, the year of identification and their accession numbers. Support for nodes is providedby the posterior
probabilities of the corresponding clades. All resolved nodes have posterior probability greater than 0.7. Scale bar indicates nucleotide sequence divergence among sequences.
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corresponded to the LCMV virus with an average depth of coverage of
99.94 and 59.49 for the S and L segments, respectively. The obtained se-
quences of LCMV identified fromM1504_JAG andM1812_JAG showed a
very high percentage of identity (99.5% on 3196 bp of the S segment and
99.92% for 6958 bp of the L segment).

The sequences of the S and L segments were nearly complete except
for the 5′ and 3′ end for the two segments. Only one sample
(M1504_JAG) was subsequently analyzed to obtain the full sequences
of the S and L segments. Primers were designed to amplify the two ex-
tremities based on the conserved terminal nucleotide sequences with
specific primers. Amplification products were sequenced and complet-
ed the constructed genomes. Nucleotide sequences of the LCMV strain
identified in FrenchGuianawith other available sequenceswere aligned
using MEGA5 (Tamura et al., 2011) software and sequence identities
were determined in nucleotide and amino acid.
The complete sequences of the S and L segments are 3320 and 7205
nucleotides in length, respectively. The S segment encodes the nucleo-
capsid (NP), which is 1677 bp long, and the glycoprotein precursor
(GP), 1497 bp long. The L segment encodes the viral RNA-dependent
RNA polymerase (L), which is 6624 bp long, and the small zinc finger-
like protein (Z) measuring 273 nucleotides. We named this new LCMV
strain LCMV Comou (“Comou” is an Amerindian name for the common
and widespread palm-tree Oenocarpus bacaba).

Comparison of sequence identity of the complete NP gene of the S
segment of LCMV Comou with other LCMV strains revealed that it
shares the highest percentage of identity in nucleotides (91.5%) with a
strain identified in North America called Traub 1936 and with two
other strains identified in California (USA) in 2003 and in Japan
(OQ28) in 1990with 90.3% and 89.8% of nucleotide identity, respective-
ly (Table 1). Similarly, it shows a high percentage of identity at the



Fig. 2. Phylogenetic tree based on analysis of the complete nucleotide sequence of the GP gene of LCMV Comou and representative strains of LCMV. The tree is based on the GTR+I+G
model of amino acid evolution. Virus names are associatedwith their locality of origin, their year and their accession numbers. Support for nodes is provided by the posterior probabilities
of the corresponding clades. All resolved nodes have posterior probability greater than 0.7. Scale bar indicates nucleotide sequence divergence among sequences.

228 A. Lavergne et al. / Infection, Genetics and Evolution 37 (2016) 225–230
amino acid level with these three strains (96.4% with Traub 1936)
(Table 1). The complete GP sequence also shows the highest percentage
of nucleotide (90.4%) and amino acid (96.8%) identities with the Traub
strain. For the L segment, the highest percentage of identity is observed
with the OQ28 strain (87.7% and 93.6% in nucleotide and amino acid, re-
spectively) aswell as for the complete sequence of the Z gene in the nu-
cleotide (85% identity).

Phylogenetic relationships were inferred from the alignment of nu-
cleotide sequences for theNP, GP and L genes using a Bayesian approach
performedwithMr. Bayes 3.2.2 (Ronquist et al., 2012) after selection of
the optimum model using MrModeltest v2 (Nylander, 2004). Phyloge-
netic analyses based on the NP and GP genes showed that LCMV
Comou is closely related to the three above-cited strains (OQ28, Traub
and 810366) with a high posterior probability (Figs. 1 and 2). This
group of sequences is also associated with strains of different
geographical origins (mainly the US, France and Germany). This major
clade, which is also supported by a high posterior probability, has
been described as “lineage I” and includes strains that are associated
with severe human cases (Albariño et al., 2010). Analysis of the L gene
sequence shows that LCMV Comou clusters with a high posterior prob-
ability with strains OQ28, Traub and 810366 (supplemental data).

This study identifies for the first time a LCMV strain circulating in
French Guiana in M. musculus. LCMV Comou is associated with numer-
ous strains belonging to lineage I, which is composed of strains inducing
severe disease in humans. Numerous strains of the lineage I have been
identified worldwide and have M. musculus as the main reservoir
(Albariño et al., 2010). The introduction of M. musculus in northern
South America can be correlated with the arrival of human populations
during colonization (Husson, 1978). In French Guiana, this commensal
species is found in numerous localities, mainly in urban areas, but can



Fig. 3. Current distribution ofMus musculus in French Guiana. Records correspond toM. musculus caught during our field surveys and/or known by vouchered materials in museum col-
lections and are indicated in transparent red. Dots show distribution of main human settlements and urban areas.
(Data sources: “urban areas” derived from the human footprint index [de Thoisy et al. 2010] updated in 2012, and map of land occupancy of the national park, available on http://www.
geoguyane.fr/PRRA/panierDownloadFrontal_parametrage.php?LAYERIDTS=90567.)
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also be encountered in small remote human settlements, even those lo-
cated in a forest environment andnot permanently inhabited (Fig. 3). Its
current distribution is supposedly rising progressively in relation to the
increased movement of human populations (tourism, demographic ex-
pansion, gold mining, urbanization) in the area (Catzeflis F. and de
Thoisy B., unpublished data). The circulation of LCMV could accordingly
increase in forest areas where human populations live in close contact
withwild, commensal and domestic species. In some remote places, na-
tive rodents and especially Sigmodontinae mouse-like species can live
and/or visit traditionalwood houses, as reported in theWayampi Amer-
indian settlement of Trois-Sauts (Catzeflis, 2012). These close contacts
between native rodents andM. musculus could lead to the transmission
of LCMV towild Sigmodontinae rodent species, or even Echimyidae, and
further increase the risk of contamination to humans. With around 30
cases of lethal viral encephalitis reported every year in French Guiana,
for which no defined etiological agent has yet been identified, themon-
itoring of LCMV in the human population using a serological approach
could be of interest to better reveal the public health relevance of this
virus in FrenchGuiana. The present characterization of LCMVComou of-
fers the possibility to investigate its presence in the humans and in
Murinae and shows the importance of monitoring the distribution of
M. musculus in French Guiana as a risk factor in this French overseas de-
partment whose demography is in rapid expansion.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.meegid.2015.11.023.

Sequence accession numbers.

Sequences of LCMV Comou are deposited in the GenBank database
with the following accession numbers: LCMV Comou complete S se-
quence KT731538, LCMV Comou complete L sequence KT731537.
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