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Therapeutic application of mesenchymal stem cells  

in osteoarthritis  

 

 

Introduction: Osteoarthritis is a degenerative disease characterized by cartilage degradation 

and subchondral bone alterations. This disease represents a global public health problem 

whose prevalence is rapidly growing with the increasing aging of the population. With the 

discovery of mesenchymal stem cells (MSC) as possible therapeutic agents, their potential for 

repairing cartilage damage in osteoarthritis is under investigation. 

Areas covered: Characterization of MSCs and their functional properties are mentioned with 

an insight into their trophic function and secretory profile. We present a special focus on the 

types of extracellular vesicles that are produced by MSCs and their role in the paracrine 

activity of MSCs. We then discuss the therapeutic approaches that have been evaluated in pre-

clinical models of osteoarthritis and the results coming out from the clinical trials in patients 

with osteoarthritis. 

Expert Opinion: Mesenchymal stem cell-based therapy seems a promising approach for the 

treatment of patients with osteoarthritis. Further research is still needed to demonstrate their 

efficacy in clinical trials using controlled, prospective studies. However, the emergence of 

mesenchymal stem cell-derived extracellular vesicles as possible therapeutic agents could be 

an alternative to cell-based therapy. 

 

 

 

Keywords: mesenchymal stem cells, trophic factors, extracellular vesicles, regenerative 

medicine, osteoarthritis
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1. Introduction 

 

Diseases affecting the cartilage have an increasing prevalence as people aged or in younger 

athletes following sport-related injuries. This is related to the poor intrinsic capability of 

cartilage to regenerate because of the absence of vascularization within the tissue. As the most 

common form of chronic joint diseases, osteoarthritis (OA) represents a significant public 

health issue associated with a high economic burden. OA affects more than 20 and 39 million 

people in United States and Europe respectively, but these numbers are predicted to double 

until 2020, notably through the increase in average life expectancy and the obesity epidemic 

[1]. The disease has a huge impact on the patients’ quality of life not only related to 

dysfunction and pain but also to sleep disorder and depression, which further increase the 

economic burden [2]. Conventional treatments do not cure the disease, at best slightly delay 

its progression and more generally reduce inflammation and pain. Total joint replacement is 

the end point surgical option, which is generally successful to alleviate pain and recover 

motility but represents a substantial risk of infection or thrombosis. Since the early 90’s, 

cellular therapies based on autologous chondrocyte implantation have proved some efficacy to 

repair lesions following cartilage injuries induced by traumas or early OA [3]. In recent years, 

the interest of mesenchymal stem/stromal cells (MSC) has been evaluated to circumvent the 

drawbacks associated with chondrocyte recovery and expansion. Here, we provide an 

overview of the current knowledge on MSC characteristics and properties as well as their 

potential therapeutic role in preclinical models of OA and in the clinics.  

 

2. Physiopathology and current treatments of osteoarthritis 
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OA is a complex disease, which is associated with risk factors such as age, obesity, genetic 

predisposition, joint instability or trauma. Pain is the predominant symptom with stiffness, 

and is associated with loss of function of the pathological joint, leading to a drastic reduction 

in quality of life. Although OA develops over several years, the absence of innervation within 

the cartilage is associated with delayed symptoms onset, leading to failure in early detection 

and clinical management of the disease [4]. OA primarily affects knee and hip joints, and less 

frequently non weight-bearing joints, such as hands or shoulders. The disease is characterized 

by articular cartilage degradation and osteophyte formation but it also affects other joint 

tissues, leading to subchondral bone sclerosis and synovial inflammation. Actually while 

cartilage has long been thought to be responsible for the disease, recent evidence indicates 

that subchondral bone and synovial tissue are involved in the onset and progression of OA [5-

8].  

At the cellular level, pathological changes within the joint affect the chondrocytes, which 

are the cells responsible for the synthesis and repair of the cartilaginous extracellular matrix 

(ECM) [9]. These alterations result in a decrease in chondrocyte viability and induce a shift in 

the balance between anabolic and catabolic activity in favor of the synthesis of matrix 

metalloproteinases (MMP) and aggrecanases and, cartilage degradation [10]. The altered 

chondrocytes, which cannot properly respond to mechanical stimulation and synthesize 

adequate levels of ECM components, enter a vicious cycle in which ECM breakdown 

dominates synthesis [11]. 

Current treatments, which are primarily symptomatic, focus on pain relief and 

inflammatory modulation but do not impact the progressive degeneration of joint tissues [12]. 

Measures to unload damaged joints by exercise or weight reduction may have a positive effect 

on pain but non-steroidal anti-inflammatory drugs (NSAIDs) or corticoids are largely used as 

effective treatments of inflammatory flares of OA. When these strategies fail to alleviate pain, 
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surgery is indicated. Osteochondral grafts (mosaicplasty) and microfracture can relieve pain 

but do not lead to long-term efficacy while joint replacement is effective when pain is 

associated with disability and radiological deterioration [13]. The efficacy of biotherapies 

targeting TNFα, IL1β or IL6 has also been evaluated, but the results are still disappointing 

[14, 15]. Finally, tissue engineering approaches using autologous chondrocyte implantation 

(ACI) in association or not with matrix (MACI) are routinely applied for the regenerative 

treatment of injured cartilage and in early OA cartilage lesions [16]. The main effect is 

however to delay OA but long-term studies in patients with advanced OA are missing. The 

development of new therapeutic strategies able to prevent the disease progression and 

regenerate large cartilage lesions are therefore of paramount importance and mesenchymal 

stem cell-based therapies may be of high interest.  

 

3. Characteristics and properties of mesenchymal stem cells  

 

MSCs are adult stem cells that can be isolated from bone marrow (BM-MSCs), adipose 

tissue (ASCs), umbilical cord, Wharton’s jelly, synovium and others [17]. The claim that all 

MSCs from all tissues are pericytes residing in perivascular location in post-natal organs has 

been recently discussed [18]. Nevertheless, BM-MSC and ASCs are the two main sources for 

therapeutic use, with a growing interest for umbilical cord MSCs, which are easy to isolate 

[17]. The definition for MSCs as proposed by the International Society for Cellular Therapy 

(ISCT) relies on three criteria: 1) their adherence to plastic, 2) their phenotype CD105+, 

CD73+, CD90+ and CD45-, CD34-, CD14- or CD11b-, CD79a- or CD19-, HLA-DR-  and 3) 

their capacity to differentiate into osteoblasts, adipocytes and chondrocytes [19]. Of interest, 

the concept and definition of a MSC have been recently reviewed [20]. 
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Besides their differentiation potential, MSCs express enzymes and secrete a large number 

of trophic factors, including growth factors, cytokines, chemokines, which participate to the 

paracrine activity of these cells [21]. MSCs exert pro-angiogenic activity by acting as 

pericyte-like cells to support the new vasculature and by secreting factors, such as vascular 

endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), fibroblast growth 

factor 2 (bFGF), insulin-like growth factor 1 (IGF-1), hepatocyte growth factor (HGF) or 

placental growth factor (PIGF). These cells display anti-apoptotic function. Together with 

VEGF, bFGF, HGF and IGF-1, the secretion of stanniocalcin-1 or transforming growth factor 

(TGF)-β contributes to prevent cells from apoptosis [22]. The production of HGF, bFGF and 

adrenomedullin by MSCs is also involved in the modulation of fibrosis. HGF might be an 

important mediator in the anti-fibrotic process by acting on the balance between anti-fibrotic 

MMPs and tissue inhibitor of MMPs (TIMPs), which play an important role in fibrosis 

resolution. MSCs are partly resistant to oxidative stress and secrete potent anti-oxidant 

molecules, namely heme oxygenase (HO)-1 and erythropoietin (EPO). These factors can 

modulate the production of anti-oxidant molecules in injured tissues, such as superoxide 

dismutase (SOD) or glutathione peroxidase (GSH-Px) [23].  

Finally, MSCs exert anti-inflammatory activity, through the expression of indoleamine 2,3-

dioxygenase (IDO), and the secretion of several molecules among which, prostaglandin 

(PG)E2, tumor necrosis factor-inducible gene (TSG)-6, interleukin (IL)-6, HLA-G5 are the 

main mediators (for review, see [24]. MSCs can impact on the proliferation, differentiation 

and function of most effector cells of both innate and adaptive immunity. The extent of the 

immunomodulatory function of MSCs can however differ between samples according to the 

individual, the species, the tissue source, the culture conditions or the activation status and 

requires restimulation in culture after freezing preservation procedures. Recommendations for 

standardization of the assays used to assess the immunoregulatory properties of MSCs have 
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been proposed by the ISCT [25]. Consensus on guidelines was obtained for evaluating the 

immunosuppressive function of MSCs on purified responder cells instead of immune cell 

populations and interrogating the IDO response as part of an in vitro licensing assay. These 

recommendations applied to human MSCs. In summary, many of the paracrine functions of 

MSCs may be of therapeutic interest for reducing cartilage degradation in patients with OA. 

 

4. Role of extracellular vesicles released by MSCs 

 

In recent years, the emergence of the role of extracellular vesicles (EVs) as a new way for 

cell-to-cell communication has rapidly gained much attention. All types of cells release EVs 

that can interact with other cells in the close environment and transfer functional biomolecules 

on long distance. EVs are secreted structures surrounded by a phospholipid bilayer and are 

present in body fluids. There exist different types which can be classified according to their 

size, composition and biogenesis [26]. The three major types described are exosomes, 

microparticles and apoptotic bodies. Exosomes are EVs with a size of approximately 80-

150 nm that derive from the endosomal compartment, where membrane invaginates and forms 

intraluminal vesicles in multivesicular bodies (MVB). Exosomes are then constitutively 

secreted after fusion of MVBs with the plasma membrane and released in the extracellular 

space [27]. Exosomes are characterized by tetraspanin proteins (CD9, CD61, CD83) and 

proteins of the endosomal sorting complex required for transport (ESCRT) (Alix, Tsg101). 

EVs that are approximately 300-600 nm in diameter are called microparticles (MP) or 

microvesicles. They are secreted by budding of the cell membrane after cell stimulation by a 

stress signal, such as apoptosis, hypoxia, increase of calcium. MPs are characterized by the 

expression of the membrane markers specific for the cell from which they derive. Apoptotic 

bodies have a size superior to 1000nm and are induced during the late stage of apoptosis as 
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blebs of died cells. All EVs are enriched in proteins, lipids and nucleic acids (DNA, mRNA, 

miRNA, tRNA) that can be delivered to recipient cells, thus contributing to intercellular 

communication [28]. Even though a selective enrichment of specific molecules into EVs has 

been described, they display functions that mirror those of their parental cell.  

MSCs release EVs that are proposed to be important mediators of the paracrine action in 

regenerative medicine. The role of MP or exosomes secreted by MSCs is intensively 

investigated in various animal models and encouraging therapeutic effects have been reported, 

positioning EVs as a potentially novel alternative to cell-based therapies [29]. However to our 

knowledge, no literature exists on the possible role of MSC-derived EVs (MSC-EV) in OA. 

Only one study reports that exosomes from IL1β-stimulated synovial fibroblasts could induce 

OA changes in vitro and in ex vivo models [30]. Since MSCs represent a sub-population of 

synovial fibroblasts, it can be hypothesized that depending on the environmental signals, the 

production of exosomes or more generally EVs may be modulated and play a role in the 

physiopathology of the disease. Nevertheless, MSC-EVs possess functional characteristics 

that may be of high interest in the treatment of OA. 

MSC-EVs have been shown to exert an immunomodulatory effect [31]. MSC-EVs inhibit 

auto-reactive lymphocyte proliferation, and serve as vehicles for tolerogenic components by 

induction of regulatory T cells [32, 33].  Another study reports that the immunosuppressive 

effect of MSC-EVs is not directly exerted on T lymphocytes but through the interaction of 

MSC-EVs with macrophages. Upon interaction, macrophages are induced towards a M2-like 

phenotype secreting anti-inflammatory cytokines that provide the environment for the 

generation of a regulatory T cell population [34]. The effect of MSC-EVs has also been 

investigated on B cells. An inhibitory effect both on B cell proliferation and differentiation 

with a reduced secretion of immunoglobulins has been described [35]. Although the reports 

on the immunoregulatory function of MSC-EVs are still scarce and poorly documented, they 
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argue for MSC-EVs as potent modulators of the immune responses and inducers of peripheral 

tolerance.  

The role of MSC-EVs has been largely investigated in many in vivo models including 

myocardial infarction, brain, lung, liver and acute kidney injuries [29]. In a myocardial 

infarction model, MSC-EVs protect cardiac tissue from ischemic injury by blood vessel 

formation, resulting in a significant reduction of the infarct size [36]. In kidney injury, MSC-

EVs reduce apoptosis, oxidative stress and fibrosis and induce the recovery of renal function 

[37, 38]. The anti-fibrotic effect of MSC-EVs was also shown on liver by the reduction of 

collagens I, III and TGF-β1 expression and Smad2 phosphorylation [39]. In the hypoxia-

induced pulmonary hypertension model, MSC-EVs suppress the hypoxic pulmonary influx of 

macrophages and the induction of pro-inflammatory mediators. They also suppress 

hyperproliferative pathways including STAT-3 signaling induced by hypoxia [40]. Finally, in 

a model of stroke in rats, MSC-EVs contribute to tissue repair by the delivery of miR-133b 

that enhances neurite outgrowth and functional recovery [41]. Indeed, even though the role of 

MSC-EVs has not been addressed in osteoarticular diseases, the pro-regenerative, anti-

apoptotic, anti-fibrotic and anti-inflammatory effects of MSC-EVs as exemplified in the 

preclinical models described above could justify the interest of using MSC-EVs in OA. The 

large body of evidence that MSC-EVs exert similar functions as the parental cells provides 

new perspectives for their use in the treatment of OA.  

 

5. MSCs-based tissue engineering for OA treatment 

 

MSCs have been largely used to develop innovative treatments of bone and cartilage disorders 

including OA. MSCs can either be used as chondroprogenitors to replace injured cartilage in 
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tissue engineering approaches or as regenerative cells to stimulate cartilage repair by 

endogenous cells.  

The ability of MSCs to differentiate into chondrocytes in response to several chondrogenic 

signals such as TGF-β superfamily activators and in combination with scaffolds has been 

reviewed elsewhere [42, 43]. MSCs can differentiate in vitro into chondrocytes able to secrete 

the cartilage ECM with properties close to native hyaline articular cartilage. However, 

stability of the mature chondrocyte phenotype is difficult to achieve while cells tend to 

undergo hypertrophic differentiation. The source of MSCs is an important issue, as several 

studies indicate that synovium-derived MSCs and BM-MSCs have higher chondrogenic 

differentiation potential than other MSC sources [44]. Synovium-derived MSCs differentiate 

into chondrocytes, which exhibit enhanced expression of specific markers (SOX9, Aggrecan 

and Collagen 11A1) and higher capacity of proteoglycan synthesis [45]. Even among MSC 

samples isolated from the same tissue source, there is a vast heterogeneity in the capacity of 

the cell populations in their trilineage potential [46]. This heterogeneity likely reflects a 

decrease in the number of true stem cells in the sample. However in term of functionality, no 

change in chondrogenic potential can be related to age, environmental stresses or disease 

status [47-49]. A better characterization of homogenous chondroprogenitor populations 

capable of efficient chondrogenic differentiation is still lacking [50]. Much of the tissue 

engineering approaches rely on the use of BM-MSCs and develop combinations of cells with 

scaffolds and growth factors able to support chondrogenic differentiation and form fully 

functional hyaline articular cartilage. Such strategies are frequently tested in small animal 

models of surgically induced chondral or osteochondral defects and do not address large 

defects associated with OA. However, large animal models including sheeps and horses are 

required for modelling the defects occurring in humans and evaluating the regenerative 

capacity of MSC-based therapies. The average cartilage thickness in humans is approximately 
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2.2-2.5 mm while it is 0.4-1.7 mm in sheeps and 1.75-2 mm in horses [51]. In the ovine 

model, which is anatomically similar to humans, one study reports that implantation of 

autologous BM-MSCs mixed with chitosan scaffold and TGF-β3 resulted in hyaline-like 

cartilage filling the defects created in the internal groove of the patella [52]. Pre-

differentiation of BM-MSCs in a collagen gel before implantation allowed better repair than 

undifferentiated BM-MSC or untreated controls and the efficacy was even enhanced when 

using triphasic constructs [53, 54]. The horse is the large animal model with the highest 

similarity to humans. BM-MSCs loaded on a biphasic sponge scaffold, made of a 

chondroinductive acid gelatin-β-tricalcium phosphate (GT) layer and an osteoinductive basic 

GT underlying layer containing BMP-2, were implanted in osteochondral defects. Higher 

radiographic, macroscopic and histological scores were recorded with the BM-MSCs loaded 

on the biphasic sponges [55]. These pre-clinical studies in large animal models do not fulfill 

all the requirements for evaluating MSC-based therapy for large OA lesions but still indicate 

improvement of both clinical and functional scores with defects filled with newly 

hyaline/fibrocartilage on the short or middle term [51].  

In the clinics, the proof-of-concept that cell-based therapy could be efficient to restore 

cartilage function was given in the 90’s when Brittberg and collaborators used autologous 

chondrocytes and demonstrated the efficacy of ACI [56]. Since then, matrix-assisted ACI 

(MACI) based on different types of scaffolds is in routine use and thousands of patients with 

osteochondral lesions have been treated [16]. Long term efficacy of the technique is reported 

primarily on pain relief and fibro/articular cartilage formation, which delays OA. Importantly, 

some investigations using chondrocytes from end-stage OA patients disclosed similar 

outcomes as chondrocytes from healthy subjects [57, 58]. However, the issue of chondrocyte 

dedifferentiation during culture as well as the need for a more accessible source of cells, with 

higher expansion potential has prompted the studies on MSCs. The first clinical trial on OA 
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patients was performed in 2002 where autologous BM-MSCs within a collagen gel were 

implanted inside the cartilage lesions under a periosteal flap [59]. Both control and BM-MSCs 

implanted groups improve functionally but hyaline cartilage was observed only after addition 

of BM-MSCs. The same group further reported safety and effectiveness of MSC 

transplantation on the long-term for cartilage repair [60]. In addition when compared to ACI, 

MSC transplantation was equally effective to relief pain and to improve the patient’s quality 

of life, independently of patient’s age. Nevertheless, BM-MSC-based treatment appeared less 

invasive and reduced both morbidity and operative costs [61]. Similar outcomes with 

improvement of OA clinical scores were published in additional case reports using BM-MSCs 

in platelet-rich fibrin glue or collagen [62, 63]. Finally, a recent investigation comparing the 

implantation of matrix-induced autologous BM-MSCs versus chondrocytes in 14 patients 

described significantly better functional outcomes, better knee injury and OA outcome score 

(KOOS) and visual analog scale score (VAS) with BM-MSCs than chondrocytes [64]. Indeed, 

although several studies indicate safety and efficacy of MSC-based tissue engineering 

approaches, no product is available for routine use. A clear demonstration of their interest in 

larger cohorts of OA patients would be required before they can be used in large scale 

applications. 

 

6. Scaffold-free MSC-based therapy in OA patients 

 

Beyond the capacity of MSCs to repair cartilage after chondrogenic differentiation and 

implantation in chondral lesions, a growing body of evidence indicates that MSCs can 

stimulate endogenous cartilage repair through their secretory function, which can modulate 

local articular environment. Using in vitro chondrocyte coculture models, a number of studies 

reported that MSCs promote chondrocyte proliferation and stimulate ECM synthesis [65-67]. 
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Other reports described the inhibitory effect of MSCs on chondrocyte differentiation [68, 69]. 

In our group, we showed that coculture of both BM-MSCs or ASCs with primary 

chondrocytes isolated from OA patients did not influence the expression of cartilage markers, 

such as Sox9 or Aggrecan but significantly reduced the expression of fibrotic and 

hypertrophic markers, which are expressed by OA cartilage [70]. The anti-fibrotic effect of 

ASCs was mainly associated with the secretion of HGF as demonstrated using neutralizing 

antibodies that reverted the therapeutic effect of ASCs. We also showed in this coculture 

system, that ASCs can decrease the camptothecin-induced apoptotic death of chondrocytes. 

Apart from these properties, MSCs can affect the secretion of inflammatory mediators by 

chondrocytes and synovial cells that have been isolated from the joint of OA patients. Down-

regulation of IL-1β, IL-6, IL-8 was reported in both cell types and this effect was related to 

the secretion of PGE2 by ASCs [71]. Similar effect was observed in another study where the 

expression of IL-1β, MMP-1, MMP-13 was decreased in OA synoviocytes while in cartilage, 

IL1-RA was enhanced upon MSC addition [72]. In addition, a number of factors identified in 

the secretome of MSCs, namely TGF-β1, insulin growth factor (IGF)1, thrombospondin 

(TSP)-2, stromal-derived factor (SDF)-1, have been shown to favor chondrogenesis in vivo 

and may be of therapeutic interest for cartilage regeneration [73]. 

The therapeutic effectiveness of a scaffold-free injection of MSCs has now been validated 

in numerous pre-clinical models. The first demonstration was published in 2003 by Murphy 

and collaborators in a caprine model of OA induced by resection of the anterior cruciate 

ligament and median meniscectomy [74]. Injection of autologous BM-MSCs resulted in 

regeneration of the medial meniscus, and reduction in osteophyte remodeling, subchondral 

sclerosis and articular cartilage degradation. Interest of MSC transplantation has been 

validated in other pre-clinical models of OA [75]. Notably in the murine model of 

collagenase-induced OA, a dramatic decrease in cartilage degradation, synovial inflammation 
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and osteophyte formation was noticed [76]. These impressive results were not observed in the 

traumatic model of destabilization of the median meniscus (DMM) or in CIOA-induced mice 

with low synovial inflammation [77]. These findings strongly suggest that inflammation-

driven activation of ASCs is required for their protective and immunosuppressive effect in 

experimental OA. Of note, a beneficial effect of MSC injection was disclosed in horses with 

OA induced arthroscopically in the middle carpal joint. A significant improvement in PGE2 

effusion in synovial fluid was recorded while other parameters did not significantly changed 

[78]. When evaluated in these models, the survival of exogenously injected MSCs was 

generally short. We previously reported that intra-articular injection of human ASCs in 

immunocompromised mice resulted in maintenance of a small percentage of the cells for at 

least six months [79]. This survival was attributed to the fact that mice could not elicit an 

adaptive immune response and to the quantity of implanted ASCs, which was very high as 

compared to similar studies. Nevertheless, when a lower number of human ASCs was infused 

in immunocompetent naïve mice or mice with CIOA or autoimmune collagen-induced 

arthritis (CIA), they survived few days. Survival of cells was independent of the healthy or 

inflammatory environment induced by the disease status but dependent on the route of 

administration [80].  

A number of clinical trials based on the injection of MSCs or ASCs for OA treatment have 

been initiated or are under way [75]. An updated list of undergoing clinical trials is available 

in the recent review by Pers and coauthors (Pers et al, in press). A case report has first 

described cartilage and meniscus growth by MRI, as well as increased range of motion and 

decreased VAS score after autologous BM-MSC injection in a patient with knee OA [81]. 

Preliminary studies on 4 or 6 patients with knee OA reported improvement in pain and 

function after injection of 8-9x106 to 20-24x106 autologous BM-MSCs [82, 83]. In the first 

study, patient follow-up at 5 years indicated degradation of the clinical parameters but they 
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were still better than at baseline [84]. Safety of BM-MSC implantation was assessed in 227 

patients and absence of tumor formation was reported [85]. In a retrospective study where 

2x106 infrapatellar fat pad-derived MSCs were injected after combination with platelet-rich 

plasma (PRP), significant reduction of pain as well as increase in function as compared to 

baseline were reported in the 25 patients with knee OA enrolled [86]. VAS improvement was 

significantly better in patients with OA of ICRS grade 3 than grade 4. The results were 

however not different from the control group, in which the patients had undergone 

arthroscopic debridement and PRP injection. At 26 months of follow-up, clinical 

improvement was still significant [87]. Another report on 12 patients who received 40x106 

autologous BM-MSCs disclosed improvement of cartilage morphology and quality using MRI 

T2 mapping suggesting a possible structural benefit of stem cell therapy [88]. In addition in 

18 patients with either ankle, hip or knee OA, safety as well as improvement of function and 

pain were noticed at 12 months post-BM-MSC transplantation, which were no more observed 

at 30 months follow-up [89]. The effect of intra-articular injection of autologous BM-MSCs 

three weeks after high tibia osteotomy and microfracture treatment in 28 patients with knee 

OA was significantly better than in the control group of 28 patients, although both groups 

improved [90]. A phase I three dose-escalation study on 18 patients and a phase II study with 

the 9 patients who received the highest dose of 108 autologous ASCs demonstrated safety, 

improvement of the WOMAC score and regeneration of thick hyaline-like cartilage at 6 

months [91]. In another phase I dose-escalation study, we also reported improvement in pain 

and function in 18 patients with knee OA who received autologous ASCs. Interestingly, the 

best results were obtained with the lowest dose of 2x106 ASCs as compared to the doses of 10 

x106 and 50x106 injected cells (Pers et al, submitted). All these studies have demonstrated the 

safety and tolerability of MSC or ASC injection in patients with knee OA. However, there is 

an urgent need for randomized, controlled studies.  
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7. Expert opinion 

 

Continuous growing knowledge on MSC in terms of management of cell isolation and 

expansion, molecular and functional characterization as well as therapeutic evaluation in pre-

clinical models of many different diseases have pave the way for MSC-based regenerative 

medicine. MSC-based therapies are relevant for chronic and degenerative disorders in ageing 

populations, such as OA, where no curative treatments are available. In the present review, we 

have discussed the two major types of clinical approaches for OA based on either a tissue 

engineering scaffold-based implantation of MSCs or a scaffold-free direct injection of the 

stem cells in the injured joint.  

The data available from the clinical trials have disclosed the safety of both approaches with 

no sign of neoplastic proliferation or related side effects. However to date, in contrast to 

MACI, matrix-induced MSC implantation is not in routine use. One possible reason for that is 

the inconstant reproducibility of MSC differentiation and uncontrolled in vivo stability of the 

chondrocyte phenotype. Another reason is the fact that regeneration of large lesions such as 

those found in patients with high grade OA has not been demonstrated. It is also possible that 

a better identification of patients who would most benefit for these treatments is required. 

Profiles of patients have to be drawn based on OA subtypes classified according to the joint 

involved, the age, the body mass index (BMI), the level of pain, the grade of the disease, the 

functional limitation, a history of traumas, the genetic susceptibility or the presence of 

relevant biomarkers. An attempt for such classification is being discussed by the European 

Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) 

working group [92]. Such classification of OA subtypes would also benefit for other 

therapeutic approaches. 
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Although preliminary measures of efficacy of the direct injection of MSCs in patients with 

severe knee OA are encouraging, prospective and placebo-controlled studies are required to 

determine the effectiveness of this approach. The focus of new clinical trials should address 

the efficacy of MSC injection in patients with moderate OA and early radiographic stages. In 

the study by Koh and colleagues, the efficacy of MSC implantation was better in OA patients 

with grade 3 than with grade 4 [86]. It can be speculated that MSC-based therapy should be 

more efficient in preventing or limiting the structural progression of the disease at early stages 

of the disease. Another important issue to be tested is the optimal dose of cells. There are 

huge differences between cell doses ranging from 2x106 to 108 cells/joint and discrepancies 

between clinical trials. We observed the best efficacy on pain and function with 2x106 

ASCs/knee joint (Pers et al, submitted) whereas Jo and collaborators noticed improvement of 

pain, function and histology with the highest dose of 108 cells/joint [91]. We and others are 

evaluating this aspect in ongoing clinical trials [93]. Beside the cell dose, the need for 

repeated injections of MSCs, which should theoretically enhance or prolong the response, has 

not been investigated. This comes along with the possibility to use autologous MSCs that 

have been frozen and/or allogeneic MSCs and the requirement to evaluate the host immune 

response against the injected cells. 

The exact mechanism by which MSCs exert their therapeutic efficacy in patients with OA 

is not known. Indications from the mouse models suggest that the main effector mechanism 

could be the modulation of inflammation that in turn reduces cartilage degradation. Although 

differentiation of injected cells into chondrocytes may occur, this is likely not the major 

mechanism. It is plausible that other mechanisms, such as inhibition of apoptosis or induction 

of endogenous cell proliferation act in concert with the immunomodulatory effects of MSCs. 

This points to the notion that MSCs likely act via the secretion of diverse molecules whose 

overall effect will be difficult to reproduce by a unique molecule but rather, a combination of 
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molecules will be needed. This is why the use of EVs isolated from MSC supernatants could 

be an alternative to cell-based therapies. Since EVs reproduce the functions of the cells from 

which they originate, they should be tested in cell-free therapeutic approaches in the many 

applications where MSCs have proven to be effective. Although not yet validated for 

osteoarticular disease models, our preliminary data suggest that EVs can efficiently reduce 

histological scores in a murine model of OA (pers. com.). Future experiments are required 

before MSCs or MSC-derived EVs can be used routinely in the clinic for treating patients 

with OA.  
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