K. Beider, H. Bitner, M. Leiba, O. Gutwein, M. Koren-michowitz et al., Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype, Oncotarget, vol.5, pp.11283-11296, 2014.

S. K. Biswas and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm, Nature Immunology, vol.11, pp.889-896, 2010.

C. J. Cambier, K. K. Takaki, R. P. Larson, R. E. Hernandez, D. M. Tobin et al., Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids, Nature, vol.505, pp.218-222, 2013.

B. Chazaud, Macrophages: supportive cells for tissue repair and regeneration, Immunobiology, vol.219, pp.172-178, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00877510

G. Chinetti-gbaguidi and B. Staels, Macrophage polarization in metabolic disorders: functions and regulation, Current Opinion in Lipidology, vol.22, pp.365-372, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00618280

F. Ellett, L. Pase, J. W. Hayman, A. Andrianopoulos, and G. J. Lieschke, mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish, Blood, vol.117, pp.49-56, 2011.

S. Gordon, Alternative activation of macrophages, Nature Reviews. Immunology, vol.3, pp.23-35, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00474829

N. B. Hao, M. H. Lu, Y. H. Fan, Y. L. Cao, Z. R. Zhang et al., Macrophages in tumor microenvironments and the progression of tumors, Clinical & Developmental Immunology, p.948098, 2012.

P. Herbomel, B. Thisse, and C. Thisse, Ontogeny and behaviour of early macrophages in the zebrafish embryo, Development, vol.126, pp.3735-3745, 1999.

C. M. Machado, L. N. Andrade, V. R. Teixeira, F. F. Costa, C. M. Melo et al., Galectin-3 disruption impaired tumoral angiogenesis by reducing VEGF secretion from TGFbeta1-induced macrophages, Cancer Medicine, vol.3, pp.201-214, 2014.

A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes, Trends in Immunology, vol.23, pp.549-555, 2002.

F. O. Martinez, S. Gordon, M. Locati, and A. Mantovani, Transcriptional profiling of the human monocyte-tomacrophage differentiation and polarization: new molecules and patterns of gene expression, The Journal of Immunology, vol.177, pp.7303-7311, 2006.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nature Reviews. Immunology, vol.8, pp.958-969, 2008.

H. Nagaso, T. Murata, N. Day, and K. K. Yokoyama, Simultaneous detection of RNA and protein by in situ hybridization and immunological staining, The Journal of Histochemistry and Cytochemistry, vol.49, pp.1177-1182, 2001.

M. E. Nguyen-chi, R. Bryson-richardson, C. Sonntag, T. E. Hall, A. Gibson et al., Morphogenesis and cell fate determination within the adaxial cell equivalence group of the zebrafish myotome, PLOS Genetics, vol.8, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02097514

M. Nguyen-chi, Q. T. Phan, C. Gonzalez, J. F. Dubremetz, J. P. Levraud et al., Transient infection of the zebrafish notochord with E. coli induces chronic inflammation, Disease Models & Mechanisms, vol.7, pp.871-882, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02088301

L. Pase, C. J. Nowell, and G. J. Lieschke, In vivo real-time visualization of leukocytes and intracellular hydrogen peroxide levels during a zebrafish acute inflammation assay, Methods Enzymol, vol.506, pp.135-156, 2012.

T. A. Petrie, N. S. Strand, C. Tsung-yang, J. S. Rabinowitz, and R. T. Moon, Macrophages modulate adult zebrafish tail fin regeneration, Development, vol.141, pp.2581-2591, 2014.

B. Pourcet and I. Pineda-torra, Transcriptional regulation of macrophage arginase 1 expression and its role in atherosclerosis, Trends in Cardiovascular Medicine, vol.23, pp.143-152, 2013.

L. E. Sanderson, A. T. Chien, J. W. Astin, K. E. Crosier, P. S. Crosier et al., An inductible transgene reports activation of macrophages in live zebrafish larvae, Developmental and Comparative Immunology, vol.53, pp.63-69, 2015.

R. Shechter, O. Miller, G. Yovel, N. Rosenzweig, A. London et al., Recruitment of beneficial M2 macrophages to injured spinal cord is orchestrated by remote brain choroid plexus, Immunity, vol.38, pp.555-569, 2013.

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, The Journal of Clinical Investigation, vol.122, pp.787-795, 2012.

R. D. Stout, C. Jiang, B. Matta, I. Tietzel, S. K. Watkins et al., Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences, The Journal of Immunology, vol.175, pp.342-349, 2005.

V. Thermes, C. Grabher, F. Ristoratore, F. Bourrat, A. Choulika et al., I-SceI meganuclease mediates highly efficient transgenesis in fish, Mechanisms of Development, vol.118, pp.218-224, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00122203

A. C. Thomas and J. T. Mattila, Of mice and men': arginine metabolism in macrophages, Front Immunol, vol.5, p.479, 2014.

A. M. Van-der-sar, R. J. Musters, F. J. Van-eeden, B. J. Appelmelk, C. M. Vandenbroucke-grauls et al., Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections, Cellular Microbiology, vol.5, pp.601-611, 2003.

T. A. Wynn, A. Chawla, and J. W. Pollard, Macrophage biology in development, homeostasis and disease, Nature, vol.496, pp.445-455, 2013.

J. Xue, S. V. Schmidt, J. Sander, A. Draffehn, W. Krebs et al., Transcriptome-based network analysis reveals a spectrum model of human macrophage activation, Immunity, vol.40, pp.274-288, 2014.