R. Jenni, E. N. Oechslin, and B. Van-der-loo, Isolated ventricular non-compaction of the myocardium in adults, Heart, vol.93, issue.1, p.16670098, 2007.

J. Finsterer, C. Stollberger, and J. A. Towbin, Left ventricular noncompaction cardiomyopathy: cardiac, neuromuscular, and genetic factors, Nat Rev Cardiol, vol.14, issue.4, p.28079110, 2017.
DOI : 10.1038/nrcardio.2016.207

J. A. Towbin, A. Lorts, and J. L. Jefferies, Left ventricular non-compaction cardiomyopathy, Lancet, vol.386, issue.9995, p.25865865, 2015.

S. Klaassen, S. Probst, E. Oechslin, B. Gerull, G. Krings et al., Mutations in sarcomere protein genes in left ventricular noncompaction, Circulation, vol.117, issue.22, p.18506004, 2008.

J. A. Towbin, Ion channel dysfunction associated with arrhythmia, ventricular noncompaction, and mitral valve prolapse: a new overlapping phenotype, J Am Coll Cardiol, vol.64, issue.8, p.25145519, 2014.
DOI : 10.1016/j.jacc.2014.06.1154

URL : https://doi.org/10.1016/j.jacc.2014.06.1154

C. Stollberger, J. Finsterer, and G. Blazek, Left ventricular hypertrabeculation/noncompaction and association with additional cardiac abnormalities and neuromuscular disorders, Am J Cardiol, vol.90, issue.8, p.12372586, 2002.

R. M. Freedom, S. J. Yoo, D. Perrin, G. Taylor, S. Petersen et al., The morphological spectrum of ventricular noncompaction, Cardiol Young, vol.15, issue.4, pp.345-64, 2005.

H. Ashraf, L. Pradhan, E. I. Chang, R. Terada, N. J. Ryan et al., A mouse model of human congenital heart disease: high incidence of diverse cardiac anomalies and ventricular noncompaction produced by heterozygous Nkx2-5 homeodomain missense mutation, Circ Cardiovasc Genet, vol.7, issue.4, p.4140955, 2014.

G. Luxan, J. C. Casanova, B. Martinez-poveda, B. Prados, D. 'amato et al., Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy, Nat Med, vol.19, issue.2, p.23314057, 2013.

M. Pashmforoush, J. T. Lu, H. Chen, T. S. Amand, R. Kondo et al., Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block, Cell, vol.117, issue.3, p.15109497, 2004.

W. Zhang, H. Chen, X. Qu, C. P. Chang, and W. Shou, Molecular mechanism of ventricular trabeculation/compaction and the pathogenesis of the left ventricular noncompaction cardiomyopathy (LVNC), Am J Med Genet C Semin Med Genet, vol.163, issue.3, p.3725649, 2013.

D. Sedmera and P. S. Thomas, Trabeculation in the embryonic heart, Bioessays, vol.18, issue.7, p.8757939, 1996.
DOI : 10.1002/bies.950180714

L. A. Samsa, B. Yang, and J. Liu, Embryonic cardiac chamber maturation: Trabeculation, conduction, and cardiomyocyte proliferation, Am J Med Genet C Semin Med Genet, vol.163, issue.3, p.3723796, 2013.
DOI : 10.1002/ajmg.c.31366

URL : http://europepmc.org/articles/pmc3723796?pdf=render

R. H. Anderson, B. Jensen, T. J. Mohun, S. E. Petersen, N. Aung et al., Key Questions Relating to Left Ventricular Noncompaction Cardiomyopathy: Is the Emperor Still Wearing Any Clothes? Can J Cardiol, vol.33, p.28395867, 2017.

L. Miquerol, S. Beyer, and R. G. Kelly, Establishment of the mouse ventricular conduction system, Cardiovasc Res, vol.91, issue.2, pp.232-274, 2011.

L. Miquerol, N. Moreno-rascon, S. Beyer, L. Dupays, S. M. Meilhac et al., Biphasic development of the mammalian ventricular conduction system, Circ Res, vol.107, issue.1, p.20466980, 2010.
URL : https://hal.archives-ouvertes.fr/pasteur-01572048

P. Y. Jay, C. I. Berul, M. Tanaka, M. Ishii, Y. Kurachi et al., Cardiac conduction and arrhythmia: insights from Nkx2.5 mutations in mouse and humans, Novartis Found Symp, vol.250, p.12956333, 2003.

M. Tanaka, C. I. Berul, M. Ishii, P. Y. Jay, H. Wakimoto et al., A mouse model of congenital heart disease: cardiac arrhythmias and atrial septal defect caused by haploinsufficiency of the cardiac transcription factor Csx/Nkx2.5, Cold Spring Harb Symp Quant Biol, vol.67, p.12858555, 2002.

S. Meysen, L. Marger, K. W. Hewett, T. Jarry-guichard, I. Agarkova et al., 5 cell-autonomous gene function is required for the postnatal formation of the peripheral ventricular conduction system, Dev Biol, vol.303, issue.2, p.17250822, 2007.

M. W. Costa, G. Guo, O. Wolstein, M. Vale, M. L. Castro et al., Functional characterization of a novel mutation in NKX2-5 associated with congenital heart disease and adult-onset cardiomyopathy, Circ Cardiovasc Genet, vol.6, issue.3, p.3816146, 2013.

S. Beyer, R. G. Kelly, and L. Miquerol, Inducible Cx40-Cre expression in the cardiac conduction system and arterial endothelial cells, Genesis, vol.49, issue.2, p.21344610, 2011.

M. B. Furtado, J. C. Wilmanns, A. Chandran, M. Tonta, C. Biben et al., A novel conditional mouse model for Nkx2-5 reveals transcriptional regulation of cardiac ion channels, Differentiation, vol.91, issue.1-3, p.26897459, 2016.

L. Miquerol, J. Thireau, P. Bideaux, R. Sturny, S. Richard et al., Endothelial plasticity drives arterial remodeling within the endocardium after myocardial infarction, Circ Res, vol.116, issue.11, p.25834185, 2015.
DOI : 10.1161/circresaha.116.306476

URL : https://hal.archives-ouvertes.fr/hal-01763859

X. Tian, T. Hu, H. Zhang, L. He, X. Huang et al., Vessel formation. De novo formation of a distinct coronary vascular population in neonatal heart, Science, vol.345, issue.6192, p.24994653, 2014.

B. A. Pallante, S. Giovannone, L. Fang-yu, J. Zhang, N. Liu et al., Contactin-2 expression in the cardiac Purkinje fiber network, Circ Arrhythm Electrophysiol, vol.3, issue.2, p.3068837, 2010.

E. Zudaire, L. Gambardella, C. Kurcz, and S. Vermeren, A computational tool for quantitative analysis of vascular networks, PLoS One, vol.6, issue.11, p.3217985, 2011.

B. Emde, A. Heinen, A. Godecke, and K. Bottermann, Wheat germ agglutinin staining as a suitable method for detection and quantification of fibrosis in cardiac tissue after myocardial infarction, Eur J Histochem, vol.58, issue.4, p.4289847, 2014.

P. Y. Jay, B. S. Harris, C. T. Maguire, A. Buerger, H. Wakimoto et al., Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system, J Clin Invest, vol.113, issue.8, pp.1130-1137, 2004.

R. Grifone, J. Demignon, C. Houbron, E. Souil, C. Niro et al., Six1 and Six4 homeoproteins are required for Pax3 and Mrf expression during myogenesis in the mouse embryo, Development, vol.132, issue.9, p.15788460, 2005.

D. Gerger, C. Stollberger, M. Grassberger, B. Gerecke, H. Andresen et al., Pathomorphologic findings in left ventricular hypertrabeculation/noncompaction of adults in relation to neuromuscular disorders, Int J Cardiol, vol.169, issue.4, p.24182672, 2013.

L. E. Briggs, M. Takeda, A. E. Cuadra, H. Wakimoto, M. H. Marks et al., Perinatal loss of Nkx2-5 results in rapid conduction and contraction defects, Circ Res, vol.103, issue.6, p.2590500, 2008.

R. Terada, S. Warren, J. T. Lu, K. R. Chien, A. Wessels et al., Ablation of Nkx2-5 at mid-embryonic stage results in premature lethality and cardiac malformation, Cardiovasc Res, vol.91, issue.2, pp.289-99, 2011.

, Epub, p.3125071

C. Jellis, J. Martin, J. Narula, and T. H. Marwick, Assessment of nonischemic myocardial fibrosis, J Am Coll Cardiol, vol.56, issue.2, p.20620723, 2010.

S. Oebel, B. Dinov, A. Arya, S. Hilbert, P. Sommer et al., ECG morphology of premature ventricular contractions predicts the presence of myocardial fibrotic substrate on cardiac magnetic resonance imaging in patients undergoing ablation, J Cardiovasc Electrophysiol, vol.28, issue.11, p.28791747, 2017.

F. Triposkiadis, G. Giamouzis, K. D. Boudoulas, G. Karagiannis, J. Skoularigis et al., Left ventricular geometry as a major determinant of left ventricular ejection fraction: physiological considerations and clinical implications, Eur J Heart Fail, p.29105899, 2017.
DOI : 10.1002/ejhf.1055

X. Tian, Y. Li, L. He, H. Zhang, X. Huang et al., Identification of a hybrid myocardial zone in the mammalian heart after birth, Nat Commun, vol.8, issue.1, p.5519540, 2017.

P. Delgado-olguin, Y. Huang, X. Li, D. Christodoulou, C. E. Seidman et al., Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis, Nat Genet, vol.44, issue.3, p.3288669, 2012.

A. He, Q. Ma, J. Cao, A. Von-gise, P. Zhou et al., Polycomb repressive complex 2 regulates normal development of the mouse heart, Circ Res, vol.110, issue.3, p.3282145, 2012.

F. Peters, B. K. Khandheria, E. Libhaber, N. Maharaj, D. Santos et al., Left ventricular twist in left ventricular noncompaction, Eur Heart J Cardiovasc Imaging, vol.15, issue.1, pp.48-55, 2014.
DOI : 10.1093/ehjci/jet076

URL : https://academic.oup.com/ehjcimaging/article-pdf/15/1/48/7139303/jet076.pdf

Y. Nakashima, D. A. Yanez, M. Touma, H. Nakano, A. Jaroszewicz et al., Nkx2-5 suppresses the proliferation of atrial myocytes and conduction system, Circ Res, vol.114, issue.7, p.24563458, 2014.

M. Takeda, L. E. Briggs, H. Wakimoto, M. H. Marks, S. A. Warren et al., Slow progressive conduction and contraction defects in loss of Nkx2-5 mice after cardiomyocyte terminal differentiation, Lab Invest, vol.89, issue.9, p.2733927, 2009.

M. Luedde, P. Ehlermann, D. Weichenhan, R. Will, R. Zeller et al., Severe familial left ventricular non-compaction cardiomyopathy due to a novel troponin T (TNNT2) mutation, Cardiovasc Res, 2010.
DOI : 10.1093/cvr/cvq009

URL : https://academic.oup.com/cardiovascres/article-pdf/86/3/452/17199188/cvq009.pdf

, , vol.86, 20083571.

L. Shan, N. Makita, Y. Xing, S. Watanabe, T. Futatani et al., SCN5A variants in Japanese patients with left ventricular noncompaction and arrhythmia, Mol Genet Metab, vol.93, issue.4, pp.468-74, 2008.

S. Ohno, M. Omura, M. Kawamura, H. Kimura, H. Itoh et al., Exon 3 deletion of RYR2 encoding cardiac ryanodine receptor is associated with left ventricular non-compaction, Europace, vol.16, issue.11, pp.1646-54, 2014.

M. E. Mccormick, C. Collins, C. A. Makarewich, Z. Chen, M. Rojas et al., Platelet endothelial cell adhesion molecule-1 mediates endothelial-cardiomyocyte communication and regulates cardiac function, J Am Heart Assoc, vol.4, issue.1, p.4330051, 2015.

R. Jenni, C. A. Wyss, E. N. Oechslin, and P. A. Kaufmann, Isolated ventricular noncompaction is associated with coronary microcirculatory dysfunction, J Am Coll Cardiol, vol.39, issue.3, p.11823083, 2002.

J. A. Towbin, Left ventricular noncompaction: a new form of heart failure, Heart Fail Clin, vol.6, issue.4, p.20869646, 2010.

D. U. Udeoji, K. J. Philip, R. P. Morrissey, A. Phan, and E. R. Schwarz, Left ventricular noncompaction cardiomyopathy: updated review, Ther Adv Cardiovasc Dis, vol.7, issue.5, pp.260-73, 2013.

R. H. Pignatelli, C. J. Mcmahon, W. J. Dreyer, S. W. Denfield, J. Price et al., Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation, vol.108, p.14623814, 2003.

B. M. Van-dalen, K. Caliskan, O. I. Soliman, A. Nemes, W. B. Vletter et al., Left ventricular solid body rotation in non-compaction cardiomyopathy: a potential new objective and quantitative functional diagnostic criterion?, Eur J Heart Fail, vol.10, issue.11, p.18815069, 2008.

N. Ono, T. Yamaguchi, H. Ishikawa, M. Arakawa, N. Takahashi et al., Morphological varieties of the Purkinje fiber network in mammalian hearts, as revealed by light and electron microscopy, Arch Histol Cytol, vol.72, issue.3, p.20513977, 2009.

B. J. Boukens, R. Walton, V. M. Meijborg, and R. Coronel, Transmural electrophysiological heterogeneity, the Twave and ventricular arrhythmias, Prog Biophys Mol Biol, vol.122, issue.3, p.27221779, 2016.

H. Kasahara, H. Wakimoto, M. Liu, C. T. Maguire, K. L. Converso et al., Progressive atrioventricular conduction defects and heart failure in mice expressing a mutant Csx/Nkx2.5 homeoprotein, J Clin Invest, vol.108, issue.2, pp.189-201, 2001.

B. Jensen, A. C. Van-der-wal, A. Moorman, and V. M. Christoffels, Excessive trabeculations in noncompaction do not have the embryonic identity, Int J Cardiol, vol.227, p.27838129, 2017.

K. Kimura, K. Takenaka, A. Ebihara, K. Uno, H. Morita et al., Prognostic impact of left ventricular noncompaction in patients with Duchenne/Becker muscular dystrophy-Prospective multicenter cohort study, Int J Cardiol, p.23333368, 2013.

M. B. Furtado, J. C. Wilmanns, A. Chandran, J. Perera, O. Hon et al., Point mutations in murine Nkx2-5 phenocopy human congenital heart disease and induce pathogenic Wnt signaling, JCI Insight, vol.2, issue.6, p.88271, 2017.

A. Tschirner, S. Palus, R. Hetzer, R. Meyer, S. D. Anker et al., Six1 is down-regulated in end-stage human dilated cardiomyopathy independently of Ezh2, ESC Heart Fail, vol.1, issue.2, p.5024036, 2014.

S. Srinivas, T. Watanabe, C. S. Lin, C. M. William, Y. Tanabe et al., Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus, BMC Dev Biol, p.31338, 2001.

C. I. Rodriguez, F. Buchholz, J. Galloway, R. Sequerra, J. Kasper et al., High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP, Nat Genet, vol.25, issue.2, pp.139-179, 2000.

L. Miquerol, S. Meysen, M. Mangoni, P. Bois, H. V. Van-rijen et al., Architectural and functional asymmetry of the His-Purkinje system of the murine heart, Cardiovasc Res, vol.63, issue.1, p.15194464, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00311138

M. Theveniau-ruissy, S. Alcolea, I. Marics, D. Gros, A. F. Moorman et al., Investigation of connexin gene expression patterns by in situ hybridization techniques, Methods Mol Biol, vol.154, p.11218643, 2001.

F. Kober, I. Iltis, P. J. Cozzone, and M. Bernard, Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: influence of ketamine/xylazine and isoflurane anesthesia, Magn Reson Med, vol.53, issue.3, p.15723407, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02119119

R. Edgar, M. Domrachev, and A. E. Lash, Gene Expression Omnibus: NCBI gene expression and hybridization array data repository, Nucleic Acids Res, vol.30, issue.1, p.99122, 2002.