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An imbalance between oxidants and antioxidants that favors the oxidants leads to a disruption of the
redox signaling control and/or molecular damage. The action of the oxidants in a non-enzymatic process
generates isoprostanoids from polyunsaturated fatty acids. In this review, we will focus on the effects of
w3-polyunsaturated fatty acids in two different pathogeneses related to chronic and acute oxidative
stress, one in neurodevelopmental, also known as the Rett syndrome, and the second in myocardial
infarction and cardiac arrhythmias, respectively. We hypothesize that w3-polyunsaturated fatty acid
supplementation displays antioxidant properties under a high oxidative stress situation, as in the Rett
Syndrome, as well as protective properties of isoprostanoids from polyunsaturated fatty acids in pro-
arrhythmic conditions.

Practical applications : In this review, we highlighted the role of omega 3- polyunsaturated fatty acids
in 2 distinct pathologies where oxidative stress is elevated (in the Rett syndrome as an anti-oxidant
molecule and in cardiac arrhythmias as messenger with biologic properties). The physiological relevance
of these data open new unexplored pathways in integrative mechanism and thus potential new “non-

drug” applications.
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1 Introduction

Mitochondrion is the site for ATP synthesis by oxidative
phosphorylation, as well as regulating apoptosis, redox

Correspondence: Dr. Marie Demion, Inserm U1046-UMR CNRS 9214
Physiologie et Médecine Expérimentale du ceeur et des muscles—PHY-
MEDEX, Université de Montpellier, Montpellier, France

E-mail: marie.demion@inserm.fr

Fax: +334 674 152 42

Abbreviations: AdA, adrenic acid; ALA, a-linolenic acids; DHA,
docoshexaenoic acid; EPA, eicosapentaenoic acid; Fp-dihomo-IsoPs,
Fo-dihomo-isoprostanes; Fs-IsoPs, Fs-isoprostanes; F;-NeuroPs, F;-
neuroprostanes; Fy-PhytoPs, Fi-phytoprostanes; NEO-PUFAs, non-
enzymatic oxidation of polyunsaturated fatty acids; OS, oxidative stress;
PUFAs, polyunsaturated fatty acids; ROS, reactive oxygen species; RTT,
Rett syndrome; RyR2, Ryanodine Receptor Type 2; SCD, sudden cardiac
death

status, and reactive oxygen species (ROS) production [1].
During the reverse electron transfer through the respiratory
chain (from complex III to I) [2], free radical oxidants are
generated [3]. However, ROS production is not limited to
the mitochondria. Other organelles and cell types such as
sarcoplasmic reticulum, T-tubules, or macrophages are
potent sources of ROS due to the presence of NADPH
oxidase. Alternative mechanisms to these main sources of
ROS are arachidonic acid (AA) metabolism via the
activation of various enzymes, mainly cyclooxygenase,
lipoxygenase or cytochrome P450-dependent
monooxygenase [4-7], nitric oxide (NO), and xanthine
oxidase (XO) [8-11].

The intracellular redox balance is maintained [8, 12, 13]
through antioxidant defenses such as enzymatic scavengers,
namely superoxide dismutase (from SODI1 to SOD3),
glutathione peroxidase (GPx group), and catalase, as well as
non-enzymatic factors including flavonoids or vitamins C



and E. However, in the event of excess ROS, that is,
oxidative stress (OS), a disruption of the redox signaling and
control and/or molecular damage occurs [14], initiating
certain biological processes including immune response of
T-lymphocytes [15] or synaptic plasticity [16, 17]. Also,
ROS production is found to increase in chronic diseases and
aging, for example, in the development of hypertension [18]
or neurodegenerative disorders such as Alzheimer or
Parkinson’s diseases [19-21], where both incidents involve
non-enzymatic lipid peroxidation. It is known that OS
induce the oxidation of lipids, proteins and/or DNA. For
over two decades, it has been shown that non-enzymatic
oxidation of polyunsaturated fatty acids (NEO-PUFAs)
generates isoprostanoids and are noted as classic biomarkers
of OS in biological systems [22-24]. The degree of
unsaturation of PUFAs, oxygen concentration, or redox
signaling modulates the rate of PUFAs peroxidation [25].
The chemical stability and the use of the proper analytical
techniques allow scientists to quantify these molecules,
which led to an in-depth understanding of the role of OS in
human physiology and pathophysiology [22]. Recently,
isoprostanoids were described not only as biomarkers but
also appear to have biological functions. Indeed, F3-
isoprostanes (F3-IsoPs), F4-neuroprostanes (F4-NeuroPs),
F2- dihomo-isoprostanes (F2-dihomo IsoPs), and F1-
phytoprostanes (F1-PhytoPs), which are respectively
derived from eicosapentaenoic (EPA), docoshexaenoic
(DHA), adrenic (AdA), and «-linolenic acids (ALA)
(Fig. 1), were described to be potentially beneficial for
health [26, 27].

In this review, we will focus on ROS in Rett syndrome
(RTT) and sudden cardiac death (SCD), with a special
emphasis on ®3-PUFA supplementation, leading to the
decrease of disease severity through two different
mechanisms.

2 Rett syndrome (RTT)

RTT (OMIM #312750) is a severe neurodevelopmental
disease due to the X-linked mutation of the gene encoding
methyl-CpG-binding protein 2 (MeCP2) [28]. Because of X
chromosome inactivation, the individuals most affected are
female heterozygotes, who are somatic mosaics for the
normal and the mutant MeCP2 gene. Since they have only
one X chromosome, males are rarely born with a MeCP2
mutation, but those affected display more severe disorders
and early mortality [29]. The prevalence of RTT is estimated
from 1:10,000 to 1:15,000 live female births [30]. Approxi-
mately 95% of the patients have confirmed MeCP2 mutation,
in which eight to nine hotspot mutations account for more
than 60% for all cases.

Following a normal development of 6-18 months the
acquired cognitive, social, and motor skills of the RTT
patients begin to deteriorate in four stages and develop
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autistic-like behavior with stereotypic hand movements.
Autonomic and respiratory problems are frequent as well as
gastrointestinal  dysfunction or cardiac conduction
disorders [31-39]. These phenotypes arise from the
pleotropic effects of MeCP2, which is expressed very early



CO,H

_——
a-Linolenic Acid HO ()H
(ALA)
16-F,-PhytoP
ROS
—_—_~_COH HQ
_—
HO OH
Arachidonic Acid (AA) 15-F,-IsoP

ROS
Eicosapentaenoic Acid
(EPA)

—_ = CO,H ROS HQ
— = \ ¥

HO o
Adrenic Acid (AdA) H

17-F,-dihomo-IsoP

HO OH
— — — CO.-H ROS . Figure 1. Chemical structures of phytopros-
. . - 2 COH tanes  (PhytoP), isoprostanes (IsoPs),

. ) \ dihomo-Isoprostanes  (dihomo-IsoPs) and

Docosahexaenoic Acid HO 4-F,-NeuroP neuroprostanes (NeuroP) generated from

(DHA)

in neuronal progenitors and continues to be expressed into
adulthood. The effects of MeCP2 are mediated by diverse
signaling, transcriptional, and epigenetic mechanisms.

The MeCP2 function is clearly to bind DNA. However, its
precise role as an activator or repressor of transcription, a
regulator of miRNA processing, or/and splicing or even as a
regulator of chromosome looping or compaction is not
known yet [29, 40-47]. As mentioned, the condition of RTT
patients is subdivided into four stages from I to IV. Stage I
represents a period in which girls have a developmental
stagnation; stage II: a rapid regression; stage III: a stationary
stage; and then stage IV when girls are in late motor
deterioration. In comparison with other organs, the brain is
the most vulnerable to ROS damage because of its high
concentration of PUFAs, high metabolic rate, high cellular

polyunsaturated fatty acids oxidation.

iron level and “relatively” low antioxidant concentration [48].
In 1987, it was shown for the first time that there was a
reduced antioxidant capacity, in particular ascorbic acid and
glutathione [49], in the postmortem brain of one RTT
patient. Reduced antioxidant defense was confirmed by low
serum vitamin E levels in RTT patients, and subsequent
oxidative damage of lipids and proteins [50, 51]. In 2004,
oxidative damage of DNA due to epigenetic modification by
free radicals was reported in RTT patients [52] and in 2008
F2-dihomo-IsoPs, NEO metabolites of AdA, were identified
to be indicators of OS in human brain white matter [53]. Base
on the apparent gap between the MeCP2 mutation and the
disease expression (as a function of time and phenotype
severity), the search for an appropriate OS biomarker was
needed to explain this gap. It was speculated that the white



matter was already damaged at the early stage of RTT,
therefore De Felice et al. quantified plasma F2-dihomo-IsoPs
from stage I to IV patients and compared them to healthy
subjects. They demonstrated that plasma F2-dihomo-IsoP
levels were three times higher in stage II to IV RTT patients
and 100 times higher in stage I RTT patients, compared to
the controls [54, 55].

Interestingly, RTT patients with preserved speech
variant, which is the mildest form of the disease, showed a
noticeable concentration of plasma F2-dihomo-IsoPs com-
pared to healthy subjects, suggesting a relation between
symptomatic severity and AdA peroxidation.

De Felice et al. [56] also evaluated OS markers in whole
brains of Mecp2-null (pre-symptomatic, symptomatic, and
rescued) and Mecp2-308 mutated (pre-symptomatic and
symptomatic) mice, that is, animal models, which recapitu-
late the disease. They found that IsoPs (F2-IsoPs, F4-
NeuroPs, F2-dihomo-IsoPs) increased before the onset of
symptoms [56]. These results indicate an early insult of AdA
during stage I of this disease. AdA is a critical component of
myelin in brain white matter. The main function of myelin is
to insulate axon, allowing Ranvier nodes to be formed and
potential action to jump from one node to another. There is
therefore a correlation between plasma F2-dihomo-IsoPs,
AdA OS insult in the white matter and clinical onset of
neurodegeneration.

To test the involvement of OS hypothesis in RTT
patients, in a preliminary clinical study stage I RTT patients
were supplemented with w3-PUFAs (86 and 134 mg/kgb.w./
day of DHA and EPA, respectively) for 6 months. Surpris-
ingly, NEO metabolites from DHA and EPA were not
increased in the plasma from RTT-supplemented patients
but instead significantly decreased with NEO metabolites
from AdA [57]. The fact that F2-dihomo-IsoPs decreased in
the plasma of RTT-supplemented patients, without increas-
ing F2-IsoPs or F4-NeuroPs, strongly suggests a significant
lowering of OS. These results were also associated with the
diminution of clinical severity scores, recovery of ambulation,
purposeful hand movements, fewer hand stereotypies, and
recovery of social engagement. Nonetheless, the mechanism
of w3-PUFAs supplementation leading to the decrease of OS
still needs to be determined.

3 ®3-PUFAs: From antioxidant properties to
biological effect of their oxidized products in
cardiovascular pathology

The incident of cardiovascular diseases (CVD) is constantly
increasing worldwide. According to the European Society of
Cardiology (ESC), in 2015 more than 17 million deaths are
due to CVD, of which 25% is accounted to sudden cardiac
death (SCD) [58]. It is now well established that the
propensity to sudden death comes from favorable substrate

that are genetically related or acquired by electrical and/or
mechanical modifications as well as the triggering of multiple
external factors to provoke the fatal event. The major strategy
to reduce SCD risk includes anti-arrhythmic drugs and
defibrillator implantation. These symptomatic treatments
are associated with stress (electrical shock) without inhibiting
disease progression. Despite the fact that defibrillators are
life-saving in SCD, they do not prevent disease. Therefore, it
is necessary to develop new drugs, but to date such drugs
have not been discovered.

Among SCD causes, aging (>65 years old) brings about
chronic remodeling of the cardiac muscle from hypertension,
valvular disease, and/or repeated coronary ischemia. During
repeated ischemia events, irreversible loss of cardiomyocytes
is observed, which is also associated with the modification of
local metabolism [59]. Excess amount of ROS production
during ischemia is a potential trigger of arrhythmia genesis, as
well as an activator of cellular remodeling [60-64]. These
modifications can lead to arrhythmias that might be lethal. It
has been shown that free fatty acids and prostanoid
accumulation in the ischemic zone is correlated to the
severity of the ischemia but also with the development of
arrhythmias [65].

However, the mechanism linking fatty acid and prosta-
noid accumulation to arrhythmia remains unclear; some
prostanoid receptors show pro-arrhythmic or anti-arrhyth-
mic properties [66, 67]. The discrepancy of the effects could
depend on which type of fatty acid the prostanoids originate
from (AA or EPA) [68, 69].

Studies show w3-PUFAs clearly prevent arrhythmias and
SCD related with myocardial infarction and atrial fibrillation in
in vivo and ex vivo models, and these effects involve enzymatic
and non-enzymatic  metabolites from  ®w3-PUFA
oxidation [70-72]. In fact, Le Guennec et al. were the first
to hypothesize that these effects are mediated by NEOPUFAs
[73, 74]. They demonstrated that the incubation of isolated
murine cardiomyocytes in the presence of 10 uM DHA
prevented cellular arrhythmias. This anti-arrhythmic property
was also observed in the presence of oxidants (1 pM H,0,) and
not in antioxidants (1 wM Vitamin E). Indeed, the anti-
arrhythmic effect was much stronger in the presence of H,O,
when compared to DHA alone. They then demonstrated that
the oxidized product responsible for the effect was a DHA
NEO metabolite, namely 4(RS)-4-F4T1-Neuroprostane (4-
F41-NeuroP). In collaboration with Durand et al.,, who
synthesized numerous NEO-PUFAs, they found 4-F4t-
NeuroP to reduce cellular arrhythmias and the effective
concentration (EC50) was close to 100 nM. The underlying
mechanism for the observation is contributed by the ability of
4-F41-NeuroP to maintain calcium homeostasis in the cells.
The diastolic calcium concentration was comparable to the
concentration observed in control conditions whereas it was
increased in arrhythmic cells. The augmentation in the
arrhythmic cells was caused by the calcium leak from the
sarcoplasmic reticulum through type 2 Ryanodine receptor



(RyR2), a major intracellular calcium channel involved in the
excitation-contraction coupling. This leak was prevented in the
presence of 4-F41-NeuroP, DHA or DHA + H,0,. The
normalization was aligned with post-transduction modifica-
tion of RyR2 protein where carbonylation and S-nitrosylation
were the two alterations observed in the pathological state of
the cardiomyocytes. The modification induced a leaky channel
function, which is responsible for the intracellular calcium
elevation and thus cellular arrhythmias [73].

4-F4T1-NeuroP is also active in vivo. In mice, 4-F4T-
NeuroP (1pM) reduced arrhythmias evoked by a
B-adrenergic agonist (2.5 mg/kg) after myocardial infarction.
The reduction was equivalent to those observed using a
reference anti-arrhythmic drug, the B-antagonist carvedilol
(1wM). Altogether, the study indicated a novel therapeutic
opportunity for the use of natural products, NEO-PUFAs, by
explicitly showing the cellular mechanism of 4-F4T1-NeuroP
mediating prostanoid receptor activation and in mice
addressing its adverse effects.

4 Conclusions

The study suggests that w6-PUFAs replacement by w3-
PUFAs in the diet increase DHA and EPA incorporation, by
substituting AA and modifying metabolic processes. From
this review, we propose the hypothesis that OS can be
modulated by w3-PUFAs, as in the Rett syndrome, or can
generate metabolites of w3-PUFAs and exert cardioprotec-
tion in myocardial infarction. The physiological relevance of
these data open new unexplored pathways in integrative
mechanisms. Moreover, OS is not only a consequence of an
unbalanced redox system but also a signal with downstream
adapted (or not) responses.

The authors have declared no conflict of interest.
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