Women’s attractiveness is linked to expected age at menopause
Jeanne Bovet, Melissa Barkat-Defradas, Valérie Durand, Charlotte Faurie, Michel Raymond

To cite this version:
Jeanne Bovet, Melissa Barkat-Defradas, Valérie Durand, Charlotte Faurie, Michel Raymond. Women’s attractiveness is linked to expected age at menopause. Journal of Evolutionary Biology, Wiley, 2018, 31 (2), pp.229 - 238. 10.1111/jeb.13214 . hal-01829172

HAL Id: hal-01829172
https://hal.umontpelier.fr/hal-01829172
Submitted on 3 Jul 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
WOMEN’S ATTRACTIVENESS IS LINKED TO EXPECTED AGE AT MENOPAUSE

(WOMEN’S ATTRACTIVENESS AND AGE AT MENOPAUSE)

Jeanne Boveta*, Mélissa Barkat-Defradasb, Valérie Durandb, Charlotte Faurieb, Michel Raymondb

a. Institute for Advanced Study in Toulouse, France
b. Institut des sciences de l’évolution de Montpellier. CNRS UMR 5554 – IRD – EPHE-
Université de Montpellier, Montpellier, France

* Corresponding author. Address: Institute for Advanced Study in Toulouse, Manufacture des Tabacs, 21 allée de Brienne, 31015 Toulouse Cedex 6; Telephone: +33668114426; E-mail address: jeanne.bovet@iast.fr

Data available from the Dryad Digital Repository: https://doi.org/10.5061/dryad.jb7m1

Acknowledgements

The authors would like to thank Mona Joly for assisting in data collection, as well as the City Hall of Montpellier, Luc Gomel and all the staff from the Serre Amazonienne for providing places to recruit raters. We also thank two anonymous reviewers for their valuable comments on the manuscript. This study was supported by the Agence Nationale pour la Recherche ‘HUMANWAY’ project (ANR-12-BSV7-0008-01). Funding from the ANR through the Labex IAST to J.B. is also gratefully acknowledged. This is contribution 2017-283 of the Institut des Sciences de l’Évolution de Montpellier (UMR CNRS 5554).
Abstract

A great number of studies have shown that features linked to immediate fertility explain a large part of the variance in female attractiveness. This is consistent with an evolutionary perspective, as men are expected to prefer females at the age at which fertility peaks (at least for short-term relationships) in order to increase their reproductive success. However, for long-term relationships, a high residual reproductive value (the expected future reproductive output, linked to age at menopause) becomes relevant as well. In that case, young age AND late menopause are expected to be preferred by men. However, the extent to which facial features provide cues to the likely age at menopause has never been investigated so far. Here, we show that expected age at menopause is linked to facial attractiveness of young women. As age at menopause is heritable, we used the mother’s age at menopause as a proxy for her daughter’s expected age of menopause. We found that men judged faces of women with a later expected age at menopause as more attractive than those of women with an earlier expected age at menopause. This result holds when age, cues of immediate fertility and facial ageing were controlled for. Additionally, we found that the expected age at menopause was not correlated with any of the other variables considered (including immediate fertility cues and facial ageing). Our results show the existence of a new correlate of women’s facial attractiveness, expected age at menopause, which is independent from immediate fertility cues and facial ageing.

Key words: humans, sexual selection, mate choice, female attractiveness, face, menopause, residual reproductive value, fertility
1. Introduction

Why some women are more attractive than others has been the focus of many studies, and it has been repeatedly shown that features linked to immediate fertility (i.e. fertility at a given time) explain a large part of the variance in attractiveness (see Rhodes 2006 for a review). Cues of immediate fertility can be found in body shape, voice pitch, or facial features; in fact, all traits linked to sexual maturity, age and parity or substantially influenced by sex hormones (which are factors influencing immediate fertility) have the potential to influence physical attractiveness (see, for example, Symons 1995; Henss 2000; Singh 2002; Jasienska et al. 2004; Feinberg et al. 2005; Law Smith et al. 2006; Pipitone and Gallup 2008; Singh et al. 2010; Little et al. 2011; Puts et al. 2012, 2013; Pfluger et al. 2012; Jones 2014; Mondragón-Ceballos et al. 2015; Sugiyama 2015; Butovskaya et al. 2017 but see Marcinkowska et al. 2014, 2015 for some modulations of these preferences). To increase their reproductive success, males should prefer females of the age at which age-specific fertility peaks, at least for short-term mates (Maestripieri et al. 2014). For long-term relationships such as marriage, however, residual reproductive value - the expected future reproductive output - becomes pertinent too. In humans, this trend is strengthened by the existence of reproductive senescence or menopause (i.e., the permanent cessation of menstruation), associated with the ultimate cessation of child-bearing potential, long before the somatic senescence.

Consequently, for long-term relationships, the number of offspring produced by the couple will depend in part on the number of years before the woman reach menopause, particularly in natural fertility populations where reproduction could theoretically extend until menopause. Thus, men can increase their reproductive success by choosing a long-term mate with a longer reproductive window (i.e. higher residual reproductive value). The first criterion of a long reproductive window is of course age. And indeed, youth is one of the most important factor of women’s attractiveness (Buunk et al. 2001). Then, for a given age, the temporal reproductive window will vary according to the age at menopause, which is highly variable both across and within populations (Avis et al. 2001; Thomas et al. 2001; Velde et al. 2002;
Dratva et al. 2009; Morris et al. 2011; Stepaniak et al. 2013). If the future age at menopause is somehow detectable in young adults, it could contribute substantially to mate choice and thus influence female attractiveness. It is possible that previously identified components of immediate fertility are also informative of female residual reproductive value: reproductive value at a young age and later in life could be positively correlated due to some common underlying factors, or negatively correlated as a result of a biological trade-off (Hamilton 1966; Wood et al. 2001; Carter and Nguyen 2011). Alternatively, future age at menopause could be independent of immediate fertility cues, and thus a correlate of attractiveness that has not yet been identified.

In this study, we investigated whether expected age at menopause is related to the attractiveness of young women’s faces. As age at menopause is heritable (heritability between 0.42 and 0.72 depending on the study: Snieder et al. 1998; de Bruin et al. 2001; van Asselt et al. 2004; Murabito et al. 2005; Morris et al. 2011), mother’s age at menopause was used as a proxy for the daughter’s expected age of menopause. To better understand how the residual reproductive value could be facially detectable, immediate fertility cues were included in the model as possible explanatory variables. It could also be speculated that women who reach menopause later have an overall slower life history trajectory, with a slower general physical ageing, and may look younger, at the same age, than women who will experience menopause at an earlier age (in line with this idea, a later age at menopause is associated with a longer life expectancy, for a review see Gold 2011). To see if general physical ageing could mediate the relationship between facial attractiveness and expected age at menopause, we included facial ageing (measured as the difference between actual age and perceived age) as another explanatory variable.

2. Materials and Methods

2.1 Ethics Statement. The protocol used to recruit participants and collect data was approved (#1226659) by the French National Committee of Information and Liberty (CNIL). For each
participant, the general purpose of the study was explained (“a study on the determinants of mate choice”) and a written voluntary agreement was requested for a statistical use of data (private information and photographs). Data were analysed anonymously.

2.2 Stimuli. A total of 97 women between 25 and 35 years of age were recruited by social networks and advertising in Montpellier, France. Sixty-eight Caucasian women whose mother had a natural and known age at menopause constituted our final stimuli sample (mean age = 28.4, age range: 25-35, see table S4). Volunteers were instructed to come to the lab after collecting information about their mother’s and (when possible) grandmothers’ menopause (menopause was defined as the first full year without any menstruation) and without wearing any make-up. For each woman, the following information was collected: date and place of birth for themselves, their parents and grandparents; monthly income (divided into ten classes from less than 760€ to more than 4705€) for themselves and their parents; education level; and age at menopause for their mother and grandmothers. A facial photograph was taken with the same digital still camera (Canon EOS 20D) at a distance of 1 m using the same general settings. Each woman was asked to have a neutral facial expression, to remove any glasses or earrings, and to wear a hairband (to make sure that all the face was visible). All photographs were electronically processed using Adobe Photoshop CS3 to normalise size (photographs were aligned on eyes position, with a fixed distance between eyes and chin), colour balance, contrast and luminosity (using the Photoshop auto-corrections tools). Hairstyle was cropped, and the background was replaced by a uniform grey colour (see figure 1). A compensation of 20€ was provided for the subjects’ participation.

2.3 Procedure. A Delphi-based computer program was generated to present randomly drawn pairs of photographs of the 68 women (see figure 1). For each pair, the rater was instructed to click on the photograph depicting the woman he found the most attractive (the outcome measure of our study). The position of the photograph on the screen (left or right) was randomly ascribed. Each rater had 30 distinct pairs of photographs to assess, corresponding to 60 different women. If the rater knew one of the women he had to judge, the trial was
removed. Also, the first pair seen by each participant was not used for the analyses, because the task could require some habituation. Three pairs, randomly chosen from among those previously viewed, were presented again at the end to estimate judgement reliability.

2.4 Raters. A total of 156 male raters assessed the relative attractiveness of these women. Volunteer raters were recruited in public places in Montpellier (France) and were unaware of the purpose of the study when assessing the pairs of pictures. For each rater, the following information was collected: date and place of birth, grandparents’ origins, monthly income, occupation, house ownership, taxability, education level, and sexual orientation. Only data from Caucasian and heterosexual raters were used for the analyses. Assessments of unreliable raters (i.e., with more than one incorrect answer during the test of judgement reliability) were removed. A total of 119 raters were retained in the final sample, with a mean age of 36.2 (age range: 17-72, see table S4). Each woman was observed, on average, by 101.1 raters (range: 93-108).

2.5 Immediate fertility cues. We collected 3 physical features hypothesised to be linked to women’s immediate fertility: the waist-to-hip ratio (the ratio between body circumference at the waist and the hips or WHR, Singh 1993; Jasienska et al. 2004; Singh and Randall 2007; Laszek and Gaulin 2007; Mondragón-Ceballos et al. 2015; Butovskaya et al. 2017; but see Nenko and Jasienska 2009), the fundamental frequency of the voice (F0, Harries et al. 1998; Abitbol et al. 1999; Feinberg 2008; Evans et al. 2008; Abend et al. 2014) and the facial femininity (Farkas 1987; Johnston and Franklin 1993; Perrett et al. 1998; Fink and Neave 2005; Law Smith et al. 2006; Little et al. 2011; Pfluger et al. 2012; Jones 2014). The WHR was measured in the lab by the investigator. To measure the F0, women were recorded reading the French version of a standard text (“La bise et le soleil”) using a Tascam DR-07 MKII digital recorder. Across each recording, the fundamental frequency (F0, the acoustic correlate of pitch) was measured using Praat software (Boersma and Weenink 2013). To generate morphological facial femininity scores, a geometric morphometric analysis of the faces was
used following methods described in Scott et al. 2010; Lee et al. 2014; Dixson et al. 2017:

First, the coordinates of 142 landmarks (anatomical points present in all individuals, e.g. the
corners of the lips) and semi-landmarks (sliding points positioned along some anatomical
curves, such as the bow of the eyebrow) were delineated for each female face, as well as for
26 male facial photographs retrieved from another database. These 26 additional men were
recruited according to the same criteria as for the women’s recruitment: heterosexuality,
Caucasian origin, 25-35 years old. The delineation of the landmarks and semi-landmarks were
done using Psychomorph (Tiddeman et al. 2005). The R package Geomorph (version 3.0.3)
was used to carry out a Procrustes superimposition of the landmark and semi-landmark data,
which removes non-shape information such as translation, size, and rotational effects
(Zelditch et al. 2012, 2013). A Principal Component Analysis (PCA) was conducted on the
Procrustes-registered landmarks and semi-landmarks data of the 26 male faces and 26 female
faces randomly drawn from this study dataset, matching the age distribution of the 26 men.
This PCA produced shape variables which are a decomposition of the landmark coordinates of
the male and female faces (see figure S1). The values on the factors of the PCA were
computed for the remaining 42 female faces (not used to create the PCA). Then, a linear
discriminant analysis (LDA) incorporating the two first components of the PCA was used to
discriminate between male and female faces. The resulting analysis provided correct sex
classification for 92.6% of faces. Discriminant function scores were therefore used as an
index of facial femininity, with high scores indicating a more feminine facial morphology
scores (Scott et al. 2010; Lee et al. 2014; Dixson et al. 2017). All analyses were performed
using R software, version 3.4.2.

2.6 Estimation of facial ageing. It could be speculated that women who reach menopause
later have an overall slower life history trajectory, with a slower general physical ageing, and
may look younger, at the same age, than women who will experience menopause at an earlier
age. To control for this possibility, a second Delphi-based computer program was generated to
present the facial photographs of the 68 women to 136 raters. For each photograph, the rater
was instructed to estimate the age of the woman (see figure S2). Each rater had 20 distinct photographs to assess, randomly drawn among the 68 pictures. Three photographs, randomly chosen among those previously viewed, were presented again at the end to estimate judgement reliability. For each rater, information about sex and age was collected. The reliability of raters was assessed by computing the sum of absolute differences between the 3 first estimations and the corresponding repetitions. Raters with values higher than 15 years were removed (a more stringent threshold of 9 years, or no threshold, did not change qualitatively the results). A total of 107 facial ageing raters (including 61 women) were retained in the final sample, with a mean age of 35.1 (age range: 16-65). Each woman was observed, on average, by 31.2 raters (range: 24-43). For each woman, the difference between their real age and the mean age given by the raters was calculated. This variable represents the facial ageing of the women, a critical explanatory variable for the analysis of attractiveness.

2.7 Statistical analyses. Logistical regressions were used to analyse raters' attractiveness preferences. The binary response variable corresponded to being chosen or not for the focal woman (arbitrarily the woman presented at the left position) during the presentation of each pair. Women and attractiveness raters were considered random samples from a larger population of interest and were thus random-effect variables. Therefore, generalised linear mixed models with a binomial error structure were used. For each choice made by a rater, the difference between the ages at menopause of the focal and the non-focal woman’s mothers was calculated. The value of this difference was integrated into the model as the main variable of interest. To control for potential confounding effects, the differences between the focal and the non-focal woman’s ages and socio-economic status (SES, a PCA combination of education level and the woman’s and her parents’ monthly incomes) were introduced into the model. Because the subjects displayed a perceptible smile in some photographs, a qualitative variable describing this aspect was also introduced (this binary variable was coded by three independent raters, blind to the other characteristics of the women). Variables concerning the raters’ characteristics were also included in the model as potential confounding effects. These
variables were the rater’s age and SES (a PCA combination of the variables “monthly income”, “occupation”, “house ownership”, “taxability”, and “education level”). All variables were standardized for the analysis. In a second model, the difference between the two women for cues of immediate fertility (facial femininity, WHR and F0), and facial ageing were included as explanatory variables. Indeed, these variables, which may be linked to expected age at menopause, could potentially mediate the relationship between expected age at menopause and facial attractiveness.

Linear regression was used to analyse the mother’s age at menopause according to the maternal grandmother’s age at menopause. The “one-parent - one child” regression coefficient represents half the heritability (h^2) of the trait (Lynch and Walsh 1998). Pearson correlations were used to analyse relationships between each woman’s measured traits: expected age at menopause, immediate fertility cues, facial ageing, age, and SES. All statistical analyses were performed using R software, version 3.4.2.

3. Results

3.1 Attractiveness, age at menopause and immediate fertility. The variable expected age at menopause (estimated by mother’s age at menopause) had a significant positive effect on the probability of a woman being chosen as the most attractive: Men tend to prefer women who are likely to reach menopause later ($\beta = 0.22$, SE = 0.053, $P < 0.001$ see model 1 in table 2). This result holds when immediate fertility cues and facial ageing are controlled for ($\beta = 0.24$, SE = 0.053, $P < 0.001$, see model 2 in table 1 and figure 2), showing that the effect of expected age at menopause on attractiveness is not due to know cues of immediate fertility cues or facial ageing. Additionally, the 3 cues of immediate fertility had a significant effect on the probability of being chosen: men tend to prefer more feminine faces ($\beta = 0.4$, SE = 0.057, $P < 0.001$, see model 2 in table 1), and the faces of women who have a higher (i.e. more feminine) F0 ($\beta = 0.2$, SE = 0.058, $P = 0.001$). In contradiction with our prediction, men also
tend to prefer the faces of women who had a higher (i.e. more masculine) WHR ($\beta = 0.13$, SE = 0.057, $P = 0.02$). Facial ageing had a negative effect on the probability to be chosen ($\beta = -0.56$, SE = 0.06, $P < 0.001$): Independently of their actual age, women who look younger than their actual age were preferred by men. Women’s age and smile demonstrated a significant effect on the probability of being chosen: men preferred women who were younger ($\beta < -0.2$, $P < 0.001$, see models 1 and 2 in table 1) and smiled more ($\beta > 0.27$, $P < 0.001$, see models 1 and 2 in table 1). The socio-economic status of the woman had a negative effect on the probability to be chosen as the more attractive, but this result was significant only in model 2 ($\beta = -0.17$, SE = 0.057, $P = 0.003$). The raters’ age and socio-economic level had no significant effect on their choices (all $P > 0.5$, see models 1 and 2 in table 1).

3.2 Menopause and other women’s features. There was no significant correlation between expected age at menopause and immediate fertility cues (facial femininity, F0 and WHR), facial ageing, woman’s age or socio-economic status (all $P > 0.1$, see table 2), showing that expected age at menopause is capturing a distinct correlate of facial attractiveness. There was no significant correlation between the other variables, except a negative correlation between facial ageing and SES ($r = -0.29$, $P = 0.021$, see table 2).

3.3 Heritability of age at menopause. To help establish the validity of our sample, we measured the heritability of age at menopause, for comparison with previous studies done with various samples and methods (Snieder et al. 1998; de Bruin et al. 2001; van Asselt et al. 2004; Murabito et al. 2005; Morris et al. 2011). Here we used the regression between grandmother and mother, without controlling for possible shared environments (this is not crucial for the present study, as the main purpose here is to establish the validity of the mothers’ age at menopause as a proxy for the daughters’ expected age at menopause). Among the 97 women, 42 completed information about both their mother’s and maternal grandmother’s menopause. The mean age at menopause was 51.0 (range: 42-58) for the mothers and 50.3 (range: 39-60) for the grandmothers. The maternal grandmother’s age at menopause had a
significant effect on the mother’s age at menopause ($\beta = 0.275$, $SE = 0.11$, $P = 0.016$, see figure 3). This implies a heritability of age at menopause from the maternal side of 27.5% and thus an overall heritability $h^2 \approx 55\%$ ($SE = 0.22$).

4. Discussion

Here, we show that expected age at menopause is significantly related to the facial attractiveness of young women. This result holds when variables potentially linked to immediate fertility (age, facial femininity, voice pitch and WHR), facial ageing and socio-economic status are controlled for. Additionally, immediate fertility cues and facial ageing were not correlated with the expected age at menopause. Thus, the expected age at menopause seems to be linked to independent facial information, which is not deducible from previously documented components of facial attractiveness linked to immediate fertility or facial ageing.

Results classically found in the literature were replicated in this study, suggesting that this sample of young females is not different from those described elsewhere. First, our sample provided an heritability estimate for age at menopause of 0.55, consistent with previous values ranging from 0.42 to 0.72 (Snieder et al. 1998; de Bruin et al. 2001; van Asselt et al. 2004; Murabito et al. 2005; Morris et al. 2011). Moreover, immediate fertility cues were positively correlated with facial attractiveness, as in previous studies: men in our sample preferred more feminine faces as in Cunningham et al. 1995; Perrett et al. 1998; Rhodes et al. 2003; Koehler et al. 2004; Little et al. 2011, and facial attractiveness was positively correlated to pitch voice (F_0), consistent with Collins and Missing 2003; Feinberg et al. 2005; Wheatley et al. 2014; Smith et al. 2016. Also, attractive faces were rated younger than their true age, as in the study of Kwart (2012). However, two variables had significant effects on attractiveness, but in the opposite direction than expected. First, men in our sample had a preference for faces of women who have a higher (i.e. more masculine) WHR, which is in contradiction with the idea that face and body would signal one same quality. However, our results go in the same direction than results of Thornhill and Grammer (1999), who found a
positive but insignificant correlation between facial attractiveness and WHR. Further studies are needed to investigate if face and WHR are signaling different aspects of female mate quality. Secondly, we found that socio-economic status of the women had a negative effect on facial attractiveness. We were expecting a positive correlation, as a higher socio-economic status is related to less stress during development, better nutrition, less unhealthy behavior, etc. (Adler et al. 1994; Kalick et al. 1998). But here again, even if counterintuitive, our results are in the same direction than a previous study showing a negative correlation between facial attractiveness and SES for female (Hume and Montgomerie 2001). We cannot speculate on this result, as the variance of SES in our female sample is very narrow (women were all students at the university). However, we can suggest that it deserves more study (a lot of research focused on the effect of attractiveness on SES, but less on the reverse relationship).

Spurious significant results may sometimes arise following model simplification (Whittingham et al. 2006). This statistical bias is unlikely in this study, as all terms were kept and no model simplification was performed. However, it is still possible that a confounding variable, which remains to be identified, explains the link between expected age at menopause and facial attractiveness. Moreover, further study is needed to specify the facial cues used by men to detect residual reproductive value in young women (in this respect, figure S3 shows the differences in face shape between women of high and low expected age at menopause).

Here, we investigated the mediating role of immediate fertility cues and facial ageing, as residual reproductive value could potentially be linked to these two traits (Wood et al. 2001; Gold 2011). The next step would be to consider a large range of facial features such as facial symmetry, averageness, adiposity, skin colour, skin homogeneity, hair, etc., in an exploratory attempt to detect the facial cues linked to expected age at menopause. Also, age at menopause could additionally be assessed with more objective methods then self-report, for example by using the serum antimüllerian hormone concentration (Disseldorp et al. 2008), or through genetic analysis (He et al. 2009, 2010). Assuming that preferences reflect actual mate choice (which remains to be established for this trait), men’s preference for women signalling a late
age at menopause - and thus a longer temporal reproductive window - could suggest a
current selection towards a later menopause, at least in Western societies. Interestingly, a
secular trend of increased menopausal age has recently been observed (vanNoord et al. 1997;
Rodstrom et al. 2003; Dratva et al. 2009). This suggests that the social, familial and cultural
conditions found today in Western societies are promoting current selection towards a later
menopause in women. As a consequence, studies carried out in these societies are probably
not adequate to empirically test evolutionary hypotheses on the ancestral selection on the
emergence or maintenance of an extensive post-reproductive life-span in the human lineage
(Thouzeau and Raymond 2017). Our results also suggest that sexual selection should be
included in studies investigating the evolution of menopause in humans.

Somatic senescence, or ageing, is readily detectable in a face through wrinkles, skin
texture and colouration, etc. (for a review, see Rhodes 2009). Those traits are specifically
targeted by cosmetic changes when a younger appearance is desirable. Facial traits correlated
with reproductive senescence have yet to be identified, and it remains to be determined
whether they can be, or are already, manipulated to increase attractiveness by signalling a
later menopause.

References

signal of vocal and facial attractiveness. Evol Hum Behav 36:174–181. doi:
10.1016/j.evolhumbehav.2014.10.004

446. doi: 10.1016/s0892-1997(99)80048-4

status and symptoms across racial/ethnic groups. Soc Sci Med 52:345–356. doi:
10.1016/S0277-9536(00)00147-7

index, age and number of children in seven traditional societies. Sci Rep 7:1622. doi:

Singh D (2002) Female mate value at a glance: Relationship of waist-to-hip ratio to health,

Table 1. Effects of the different variables on the probability to be chosen during the test of attractiveness (male raters had to choose the woman found to be the most attractive between two facial photographs). *N* = 3439 observations (119 male raters and 68 female faces). Model 1 only includes the variable of interest (mother’s age at menopause), and the control variables. Model 2 also includes cues of immediate fertility and facial ageing as explanatory variables. Significance codes: *** *p < 0.001; ** *p < 0.01; * *p < 0.05.

<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th></th>
<th></th>
<th>Model 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Std. Error</td>
<td>z value</td>
<td>Pr(></td>
<td>z</td>
<td>)</td>
</tr>
<tr>
<td>(Intercept)</td>
<td>0.092</td>
<td>0.121</td>
<td>0.762</td>
<td>0.446</td>
<td>0.096</td>
<td>0.112</td>
</tr>
<tr>
<td>Mother’s age at menopause†</td>
<td>0.217</td>
<td>0.053</td>
<td>4.129</td>
<td>< 0.001</td>
<td>0.240</td>
<td>0.057</td>
</tr>
<tr>
<td>WHR†</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.132</td>
<td>0.057</td>
</tr>
<tr>
<td>Facial femininity†</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.404</td>
<td>0.057</td>
</tr>
<tr>
<td>F0†</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.200</td>
<td>0.058</td>
</tr>
<tr>
<td>Age†</td>
<td>-0.204</td>
<td>0.053</td>
<td>-3.883</td>
<td>< 0.001</td>
<td>-0.271</td>
<td>0.058</td>
</tr>
<tr>
<td>Facial ageing †</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.563</td>
<td>0.060</td>
</tr>
<tr>
<td>Smile†</td>
<td>0.335</td>
<td>0.053</td>
<td>6.364</td>
<td>< 0.001</td>
<td>0.271</td>
<td>0.058</td>
</tr>
<tr>
<td>Socio-economic status†</td>
<td>-0.067</td>
<td>0.052</td>
<td>-1.302</td>
<td>0.193</td>
<td>-0.170</td>
<td>0.057</td>
</tr>
<tr>
<td>Age</td>
<td>-0.033</td>
<td>0.061</td>
<td>-0.548</td>
<td>0.584</td>
<td>-0.041</td>
<td>0.063</td>
</tr>
<tr>
<td>Socio-economic status</td>
<td>-0.015</td>
<td>0.061</td>
<td>-0.252</td>
<td>0.801</td>
<td>-0.012</td>
<td>0.063</td>
</tr>
</tbody>
</table>

*For each of these variables, the difference between the two women presented was integrated into the model.

Table 2. Pearson’s correlations between measures in the female sample (N=68 women).

Significance codes: *** *p < 0.001; ** *p < 0.01; * *p < 0.05.

<table>
<thead>
<tr>
<th></th>
<th>Mother’s age at menopause</th>
<th>F0</th>
<th>WHR</th>
<th>Facial femininity</th>
<th>Facial ageing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother’s age at menopause</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0</td>
<td>-0.10</td>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHR</td>
<td>0.22</td>
<td>-0.04</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facial femininity</td>
<td>-0.20</td>
<td>-0.13</td>
<td>0.03</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>Facial ageing</td>
<td>-0.23</td>
<td>-0.08</td>
<td>-0.13</td>
<td>-0.03</td>
<td>0.24</td>
</tr>
</tbody>
</table>
| Socio-economic status | 0.05 | 0.13| 0.08| 0.20 | -0.18 | -0.29*
Figure 1. Example of screenshot during the evaluation of women’s facial attractiveness by the raters. For each pair of women, which was randomly chosen, the rater was instructed to click on the photograph of the woman that he found the most attractive. Photographs reproduced with permission.

Figure 2. Predicted probability to be chosen during the test of attractiveness, according to the difference in expected age at menopause (unstandardized values) between the focal and the non-focal women, controlling for all the other variables of model 2. Circle areas are proportional to the number of choices made by the raters: chosen (1) or not (0) as the most attractive woman. 95% confidence interval is represented by the dotted lines.

Figure 3. Relationship between age at menopause of mothers and maternal grandmothers. Plain line represents the linear regression with all points ($\beta = 0.275$, SE = 0.11, $P = 0.016$, corresponding to a heritability of age at menopause $h^2 = 0.55$). 95% confidence interval in grey.

Supporting Information

Figure S1. Results of the Principal Component Analysis (PCA) conducted on the Procrustes-registered landmarks and semi-landmarks data. This PCA produced shape variables which are a decomposition of the landmark coordinates of the female (black dots) and male (grey dots) faces. Only the two first components (or shape variables) are represented here.

Figure S2. Example of screenshot during the evaluation of women’s age by the raters. The rater was instructed to estimate the women’s age. The age appearing by default for each picture was randomized. For each woman, the difference between their real age and the mean age given by the raters was calculated. This variable represents the facial ageing of the women. Photograph reproduced with permission.

Figure S3. Top: Shape differences of a low expected reproductive value face (average face of the 7 women with the earlier expected age at menopause in our sample) relative to the average face (average of all the women’s face in our study), on a Thin-Plate Spline (TPS) grid. Bottom: shape differences of a high expected reproductive value face (average face of the 7 women with the later expected age at menopause) relative to the average face. For both, the shape deformation has been magnified by 2. Figure created using R package Geomorph 3.0.3.
Table S4. Descriptive statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Mean</th>
<th>St. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mother's age at menopause (year)</td>
<td>68</td>
<td>50.97</td>
<td>3.22</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td>WHR (ratio)</td>
<td>68</td>
<td>0.73</td>
<td>0.04</td>
<td>0.62</td>
<td>0.83</td>
</tr>
<tr>
<td>Facial femininity (index)</td>
<td>68</td>
<td>0.78</td>
<td>0.98</td>
<td>-1.71</td>
<td>3.33</td>
</tr>
<tr>
<td>F0 (Hz)</td>
<td>68</td>
<td>203.28</td>
<td>19.94</td>
<td>142.50</td>
<td>243.70</td>
</tr>
<tr>
<td>Age (year)</td>
<td>68</td>
<td>28.43</td>
<td>3.00</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>Facial ageing (years)</td>
<td>68</td>
<td>1.34</td>
<td>3.90</td>
<td>-5.57</td>
<td>12.71</td>
</tr>
<tr>
<td>Smile (binary)</td>
<td>68</td>
<td>0.31</td>
<td>0.47</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Socio-economic status (PCA coordinate)</td>
<td>68</td>
<td>0.07</td>
<td>0.75</td>
<td>-1.23</td>
<td>2.08</td>
</tr>
</tbody>
</table>

Raters' characteristics

| Age (year) | 119 | 36.23 | 12.25 | 17 | 72 |
| Socio-economic status (PCA coordinate) | 119 | 0.02 | 0.72 | -0.99| 1.98 |
How old is she?