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Control of DNA integrity in skeletal muscle under physiological

and pathological conditions
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Abstract Skeletal muscle is a highly oxygen-consuming
tissue that ensures body support and movement, as well as
nutrient and temperature regulation. DNA damage induced
by reactive oxygen species is present in muscles and tends
to accumulate with age. Here, we present a summary of
data obtained on DNA damage and its implication in
muscle homeostasis, myogenic differentiation and neuro-
muscular disorders. Controlled and transient DNA damage
appears to be essential for muscular homeostasis and dif-
ferentiation while uncontrolled and chronic DNA damage
negatively affects muscle health.
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Introduction

DNA damage is a part of the daily life of a living organism,

and the capacity of the organism to detect and repair DNA
damage ensures health and survival. DNA integrity is
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essential for a living cell to maintain its survival and
growth. Tens of thousands of spontaneous modifications
per day occur in DNA of a single human cell (for review
see [1, 2]). They are mainly due to endogenous genotoxic
sources related to DNA replication and repair as well as
free radicals which can oxidatively damage DNA. Skeletal
muscles are subjected to DNA damage by exposure to
endogenous and exogenous genotoxic sources. Reactive
oxygen species (ROS) are thought to be a major cause of
DNA damage in skeletal muscles. ROS in muscles are
generated during cellular metabolism, muscle contraction,
hypoxia, inflammation and muscle regeneration. In this
review, we discuss the major sources of DNA damage in
skeletal muscles, the consequences of DNA damage and
oxidative stress in muscle physiology and in myopathies.

Ocxidative stress

Reactive oxygen species represent a group of highly
reactive molecules with oxidizing properties. The incom-
plete reduction of O, generates ROS with a high oxidizing
potential: the superoxide radical (O, "), hydrogen peroxide
(H,0,) and the hydroxyl radical (OH™); they are products
of O, reduction by one, two, or three electrons, respec-
tively. Cells constantly produce ROS; in fact, any
controlled enzymatic reaction involving electron transfer
can lead to electron leakage which produces ROS in the
presence of O,.

Respiratory chain of mitochondria catalyzes electron
transfer to oxygen and a partial reduction of O,; this can
generate ROS [3]. Muscle contraction increases oxygen
consumption. This oxygen is further reduced to H,O [4, 5].
At the same time, from 0.15 to 5% of O, is converted to
superoxide radical [5-7]. Thus, mitochondria are an
important source of ROS in skeletal muscle. Other



pathways also lead to generation of ROS. These pathways
involve xanthine oxidase (XO) [8, 9], lipoxygenases (LOX)
[6, 10] and nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase (NOX) [6, 8, 11].

Overproduction of ROS can occur under physiological
conditions and participate in normal biological processes
such as signal transduction, cellular response against
infections, cell proliferation, apoptosis and stimulation of
antioxidant systems (for review, see [12]). ROS pro-
duced above certain limits can damage proteins, lipids,
nucleotides, RNA and DNA. To avoid intracellular
accumulation of ROS and to maintain cellular home-
ostasis, several enzymatic [13, 14] and non-enzymatic
[15-19] cellular antioxidant defense systems can be
activated in a coordinated manner to prevent or reduce
oxidative damage. Oxidative stress occurs when redox
homeostasis is impaired in the cell; this imbalance may
be due to overproduction of ROS or deficiency of the
antioxidant system. Non-physiological production of
ROS may be the result of cellular metabolism dysfunc-
tion or exposure to an exogenous pro-oxidative source
such as ionizing radiation, ultraviolet radiation, inflam-
mation and stimulation of the immune system. For
example, stimulation of the immune system leads to
local and massive production of ROS partially due to
stimulation of NADPH oxidase activity in phagocytes
(for review see [20]). Inflammation resulting from a
chronic infection generates ROS via recruited neu-
trophils which produce superoxide radicals and H,O,
[21]. An antioxidant system deficiency, including
deregulation in the synthesis of glutathione or antioxi-
dant enzymes [22] or a decrease in the stock of
antioxidant vitamins [23], leads to an increase of intra-
cellular ROS. Excessive ROS accumulation may cause
irreversible damage to cellular macromolecules and
consequently lead to apoptosis [24] or carcinogenesis
[25]. ROS may also oxidize and alter the pool of
nucleotides, thus influencing genomic integrity (for
review see [26]). Importantly, several diseases are
characterized by high levels of ROS including Type 2
diabetes and Alzheimer’s disease. Indeed, hyperglycemia
stimulates ROS production from NADPH oxidases [27],
glucose auto-oxidation [28], xanthine oxidase [29] and
others. Patients suffering from Alzheimer’s disease
accumulate high levels of amyloid-B-peptide in their
brain; this peptide interacts with copper and generates
Cut from Cu?t due to its Cu-reductase activity, thus
producing hydrogen peroxide as a by-product [30].
Increased oxidative stress in patients’ brain has been
correlated with increased DNA and protein oxidation and
lipid peroxidation [31]; this damage participates in the
development of Alzheimer’s disease.

Oxidative stress and muscle homeostasis

Reactive oxygen species production is a prominent event
during muscle contraction. ROS affect the function and
health of skeletal muscle. ROS are generated in multiple
compartments within the muscle cell; mitochondria, sar-
coplasmic reticulum, and transverse tubular sarcolemma
(for review, see [6]). However, the source of ROS may also
be external to the muscle cells; e.g., phagocytic cells may
produce ROS after muscle injury. ROS were consudered to
be toxic toxic to the muscle tissue. Now it appears that low
concentrations of ROS participate in the physiological
regulation of muscle. Indeed, ROS participate and trigger
signaling pathways causing either “positive” responses
such as muscle adaptation or “negative” responses
including cell damage and death. This duality given to
ROS is mainly dependent on their concentration and on
time of exposure, but also on the efficiency of the antiox-
idant system and the capacity to repair cellular DNA.

Physiological roles of ROS in skeletal muscles

During moderate exercise, ROS act as signaling mole-
cules and activate several signaling pathways including
NF-kB (nuclear factor-xB) and AP-1 pathways, which
directly stimulate the expression of several antioxidants
genes such as SOD and GPX [32]. In addition, ROS
stimulate expression of IGF-1 (insulin-like growth factor
1), a growth factor crucial for muscle growth [33]. Also,
ROS appear to be essential for the muscle strength
[34, 35]. This physiological response to ROS production
reflects muscle adaptation to physical exercise. ROS
released by phagocytic cells recruited to a damaged
muscle site are important for the regeneration of muscle
fibers [36].

ROS also influence the morphology, function and bio-
genesis of mitochondria [37, 38], an essential organelle for
energy metabolism and muscle function. In fact, ROS
produced above the physiological level, e.g., following a
physical training, activate signaling pathways [39, 40].
This leads to expression of nuclear genes encoding mito-
chondrial proteins, genes necessary for the activation of
transcription and replication of both mitochondrial DNA
[41], and genes involved in mitochondrial (Mn-SOD) and
cytosolic (CAT and GPX) antioxidant defense.

Muscle growth is a costly process restricted to optimal
nutrient and energy availability. The central regulator of
the eukaryotic cell growth and response to the variety of
signals, including nutrients and oxygen, is the highly
conserved mammalian target of rapamycin complex 1
(mTORC1) [42]. Mammalian TORCI is a critical signaling
complex that regulates muscle mass. For example, in mice,



muscle-specific loss of mTORCI reduces muscle mass and
oxidative function and leads to early death [43]. The
reduction of muscle weight is a common effect in cancer
patients, especially those that are treated with mTORCI1
inhibitors, rapamycin and rapalogs. At the same time,
rapamycin has been shown to consistently increase the
lifespan in many model organisms. In particular, a signif-
icant decrease in the amount and function of muscle
mitochondria was detected upon life-long high protein diet
in mice which was reverted by chronic treatment with
rapamycin [44].

Among many functions exerted by mTORCI, one of
the most complex ones involves regulation of mito-
chondrial homeostasis. mTORC1 is essential for
mitochondrial biogenesis, phosphorylation of mitochon-
drial proteins and regulation of selective degradation of
mitochondria by autophagy and mitophagy [45]. Under
favorable conditions, mMTORCI1 stimulates mitochondrial
biogenesis via transcriptional regulation of a number of
mitochondrial genes. Remarkably, mTORCI1 activity is
induced by low level of ROS, while high ROS levels
lead to its inhibition [46]. ROS probably activate
mTORCI1 via oxidation of cysteine groups either in the
mTORCI1 complex itself [47] or in some of its upstream
regulators [48]. In addition, one of mTORCI1 upstream
regulators, Sestrin 2, has an antioxidant function that
suppresses ROS [49]. Sestrin 2 may function as a direct
scavenger for ROS [50] and is also involved in the
regulation of mitochondria respiration [51]. Overall, the
inactivation of mTORCI1 by ROS represents a feedback
mechanism, since it leads to reduction of mitochondria
via mitophagy and thus prevents further increases in
ROS formation. Taken together, these findings demon-
strate that skeletal muscle adaptation to ROS production
is important for the energy metabolism and mitochon-
drial biogenesis (Fig. 1).

Fig. 1 Physiological and
pathological roles of ROS and
DNA damage in muscle
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Pathological effects of oxidative stress on skeletal
muscles

Oxidative stress is a major contributor to aging. Indeed,
ROS can affect skeletal muscles health and aging; they can
reduce the efficiency of myogenic differentiation. An
excess in ROS production alters mitochondria necessary
for the myogenic differentiation [52]. Besides oxidative
damage to mitochondrial DNA, ROS can also cause
mitochondrial fragmentation and alteration of mitochon-
drial permeability facilitating the release of cytochrome c,
which triggers apoptosis (for review see [53]). Oxidative
stress can also promote autophagy by stimulating the
maturation of autophagosomes [54], as well as mitophagy
[55]. Interestingly, mitochondrial ROS can change the fate
of muscle precursor cells (satellite cells) by promoting their
transdifferentiation into adipocytes [56]. This may con-
tribute to muscle aging.

ROS can also affect muscle regeneration. Besides the
flow of ROS produced by skeletal muscle cells in response
to various internal and external stimuli, ROS can be gen-
erated by non-muscle cells. Indeed, ROS produced by
inflammatory cells after a muscle injury followed by a local
inflammation are involved in the regeneration and repair of
the damaged muscle. In contrast, a constitutive presence of
ROS maintained by neutrophils develops into a patholog-
ical state which promotes muscle injury by damaging
myoblasts and myotubes and by slowing muscle regener-
ation [36]. During inflammation, ROS generated as a result
of the TNFa inflammatory cytokine action may prevent the
formation of p-catenin-E-cadherin complexes in the
vicinity of the cell membrane, thereby altering interactions
between the cell and the extracellular matrix and between
cells, thus inhibiting the formation of myotubes [57, 58].

ROS accumulation causes muscle atrophy and muscle
weakness. In fact, aged muscles produce more ROS and
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accumulate oxidative damage [59, 60]. Muscle inactivity,
most commonly seen in elderly people, causes local ROS
production which might lead to muscle atrophy [61, 62]. In
old muscles, antioxidant muscle adaptation to ROS pro-
duction is diminished [63]. In addition, the accumulation of
iron with age accelerates the production of ROS [64].
Therefore, muscles become more susceptible to ROS with
aging, which leads to an increased level of lipid oxidative
degradation, protein oxidation and oxidative damage of
DNA. A strong ROS production is accompanied by muscle
fatigue and a decrease in muscle strength [35, 65].

To sum up, oxidative stress can severely affect myo-
genic differentiation and muscle regeneration by altering
satellite cells proliferation, cell fusion and differentiation.
It thus alters the morphology and function of skeletal
muscle and accelerates muscle aging. ROS have been
described to be involved in the pathophysiology of several
muscle diseases, including DMD [120-122], myotonic
dystrophy [123], LGMD dystrophy [124], FSHD [80] and
sarcopenia [125]; antioxidants have been suggested as a
treatment of muscle disease in dystrophic mouse models
[126, 127] (discussed in the “Antioxidants in treatment of
neuromuscular disorders” section).

Oxidative DNA damage

DNA damage plays a major role in mutagenesis, car-
cinogenesis, and aging. It may be either endogenous (i.e.,
due to respiration and cell metabolism) or exogenous.
Several types of oxidative DNA damage are caused by
ROS: simple DNA lesions (oxidized bases, abasic sites,
etc.) and complex DNA lesions such as OCDL (non-DSB
oxidative clustered bi-stranded DNA lesions) (for review,
see [52]).

8-Hydroxy-2'-deoxyguanosine (8-OH-dG) is the most
abundant and most studied oxidative modification of
DNA [53]. The 8-OH-dG is generated following guano-
sine hydroxylation and pairs preferably with adenine.
When 8-OH-dGs are not eliminated, they can generate
GC — TA transversions during DNA replication [54].
8-OH-dG lesions are repaired primarily by the base
excision repair (BER) pathway; this releases the base and
creates an abasic site (AP site, for apurinic/apyrimidinic
site) [55, 56].

ROS can also generate apurinic/apyrimidinic sites by
capturing the hydrogen of deoxyriboses. Unrepaired AP
sites can lead to the cleavage of the sugar-phosphate bond
of the DNA backbone and cause DNA single-strand breaks
(SSB) [57]. AP sites are frequently induced in the genome
(50,000-200,000 injuries per mammalian cell) [58, 59].
However, in the presence of ROS their amount is largely
increased [60] and their persistence causes deleterious

effects. Indeed, AP sites may be transformed into SSB.
Several SSBs close to each other on both strands of DNA
can form double-strand breaks (DSBs). This effect is fre-
quently caused by ionizing radiation (for review see [57]).
DSBs are mutagenic when repaired by non-homologous
end joining and have the potential to induce chromosomal
translocations (reviewed in [61]. AP sites are also muta-
genic due to the preferential incorporation of adenine on
the opposite strand of the DNA during replication. To
ensure the complementarity of bases, the AP site is thus
replaced by a thymine nucleotide [62] (for review, see

[63]).

DNA damage response

DNA damage response (DDR) is distinct, complex and
functionally intertwined pathways for maintaining genome
integrity. These pathways include coordinated process for
the detection of DNA damage, the accumulation of DNA
repair factors at the site of damage, and finally the
physical repair of DNA damage. Each DNA repair
mechanism is specific for one or more types of DNA
damage [64]. Two major DNA damage detection path-
ways, ATM (Ataxia Telangiectasia Mutated) and ATR
(ATM-related), are interconnected and regulate each other
in response to different stimuli and different types of
DNA damage (reviewed in [65]). These DDR pathways
lead to a temporary cell cycle arrest, thus coordinating
DNA repair. When DNA damage is excessive, apoptosis
is triggered upon excessive DNA damage [66]. When
lesions affect DNA bases and do not alter the double
helix structure of DNA, such as 8-OH-dG, AP sites and
SSB, they are repaired via the BER pathway [56]. DNA
mismatches induced by 8-oxo-dG and AP sites are
repaired by the mismatch repair (MMR) (for review see
[67]). Two DDR pathways are responsible for DSB
repair: the homologous recombination (HR) pathway that
requires sister chromatid as a DNA template [68] and is
thus considered as an error-free repair mechanism, and
the non-homologous end joining (NHEJ) pathway, an
error-prone repair process that can generate insertions or
deletions [69].

DNA replication and transcription are also affected by
DNA damage. Indeed, if replication bypasses DNA lesions,
it can generate mutations and can, therefore, initiate car-
cinogenesis. If transcription is blocked by DNA damage, it
causes senescence or apoptosis, thus accelerating cellular
aging [1]. Thus, excessive ROS production, antioxidant
deficiency or inefficient DNA damage detection or repair
affect the level of oxidative modifications of DNA and,
therefore, modulate the frequency of mutations and possi-
bly cancer incidence [63, 70].



DNA damage, myogenic differentiation and muscle
function

DNA damage, as well as oxidative stress, affects myogenic
differentiation of skeletal muscle cells. Several studies
have demonstrated the transient presence of DNA breaks in
the process of myogenic differentiation in vitro and during
muscle regeneration in vivo [71, 72]. Indeed, in skeletal
muscle cells, the activation of the caspase-activated DNase
(CAD) by caspase 3 during early stages of the myogenic
differentiation results in controlled DNA cleavage and
transient strand breaks formation. These controlled events
are described as crucial to the myogenic differentiation
progress, activating and targeting particular genes, e.g., by
inducing DNA damage in the promoter of P21 cell cycle
regulatory factor [73]. Coordinated DNA strand breaks are
then rapidly repaired by the temporary caspase-triggered
base excision repair pathway, as demonstrated by transient
accumulation of XRCC1 repair foci in early myogenic
differentiation [74]. Thus, as with the ROS, the transient
and controlled DNA damage turns out to be “beneficial”
for the muscle cells. For example, high doses of antioxi-
dants which significantly reduced DNA damage also
inhibited cell differentiation [75]. However, the excess and/
or constitutive presence of ROS negatively affects both
myogenic differentiation and muscle function.

In post-mitotic differentiated cells which no longer
replicate their genetic material, DNA repair mechanisms
are generally attenuated and this leads to accumulation of
DNA damage during and after myogenic differentiation.
However, DNA repair remains active for genes highly
expressed in differentiated cells, such as genes encoding
structural proteins and functional enzymes, thereby pro-
tecting the integrity of these genes and the function of their
products [76, 77].

DNA damage accumulated in myoblasts after genotoxic
treatment inhibits the expression of specific muscle genes
(myogenin and MHC) and blocks the formation of myo-
tubes [78]. This “differentiation checkpoint” induced by
DNA damage corresponded to the cell cycle arrest of
myoblasts in G1 or in G2 phases. However, the myogenic
differentiation checkpoint is reversible since withdrawal of
the genotoxic agent leads to restoration of myogenic dif-
ferentiation in vitro. This differentiation checkpoint delays
global gene reprogramming associated with myogenic
differentiation to allow DNA repair and most likely pro-
tects against the accumulation of DNA damage in
differentiated myotubes, which can compromise genomic
integrity of muscle fibers. Thus, the presence of DNA
damage in muscle satellite cells may affect their capacity to
regenerate damaged muscles. On the other hand, the
presence of sustained DNA damage from prolonged and

repeated exposure of myoblasts undergoing differentiation
to genotoxic agents such as ionizing radiation led to the
formation of giant multinucleated myotubes with distorted
phenotype [78]. Thus, phenotypically abnormal myotubes
may arise from the bypass of the differentiation checkpoint
which can compromise muscle remodeling and function.

DNA damage and chromosomal aberrations were
observed in the skeletal muscle tissue and primary myo-
blast cultures from patients with muscular dystrophies,
such as facioscapulohumeral dystrophy (FSHD), Duchenne
muscular dystrophy (DMD) and limb girdle muscular
dystrophy (LGMD), resulting in the accumulation of
YH2AX foci, a marker of DNA double-strand breaks
[79-82].

DNA damage directly contributes to aging by repressing
gene expression, or indirectly by inducing apoptosis or
cellular senescence [83, 84]. Oxidative DNA damage
seems to be the major type of DNA damage which appears
with/during aging [85, 86]. Accumulation of oxidative
damage in nuclear and mitochondrial DNA was observed
in aged skeletal muscles of mice, rats and humans [87-89].
Oxidative DNA damage blocks transcription and reduces
protein synthesis and degradation; an attenuated synthesis
of key proteins such as actin and myosin weakens the
muscle function and strength [90, 91].

Mitochondrial DNA damage in aging and disease

Accumulation of mitochondrial DNA (mtDNA) damage
in muscles leads to sarcopenia, an age-related health
problem that results in the loss of skeletal muscle function
and mass (up to 50% by age 80) [92]. Mitochondrial
DNA damage occurs at a higher level than nuclear DNA
damage [93], due to a high rate of ROS production in
mitochondria, the absence of histones which protect DNA
molecule from damage and the absence of some types of
DNA repair in mitochondria. Oxidative damage con-
tributes to accumulation of mtDNA deletions and in
particular of a “common deletion” or mtDNA4977 which
occurs between two 13 bp direct repeats that are separated
by 4977 bp. The levels of mtDNA4977 were at least
100-fold higher in human skeletal and cardiac muscles
from aged subjects [92, 94]. Both the number and variety
of mtDNA rearrangements increased dramatically with
age [95]. This correlated with mtDNA oxidative damage
and a decline in mitochondrial ATP production in skeletal
muscles [88, 96].

As multiple copies of the mtDNA exist in the mito-
chondrial reticulum, both wild-type and mutant mtDNA
coexist in a state of heteroplasmy. Thus, almost no effect of
mutation is observed until mutant mtDNA reaches a certain



fraction (a so-called “phenotypic threshold”). This
threshold can be attained only after expansion of the
mutation which appears in a single mtDNA molecule. This
process called “clonal expansion” can occur without
selection due to random genetic drift and nonselective
increase of mtDNA replication which keeps the number of
wild-type mtDNA copies constant [97]. Studies of clonal
expansions of mtDNA mutations are particularly important
for understanding age-related changes in skeletal muscles.
Histological analysis using specific staining for the active
mitochondrial cytochrome ¢ oxidase (COX) revealed rare
distinctive COX-deficient fibers containing a large pro-
portion of mutant mtDNA (typically with deletions)
[98, 99]. Each COX-deficient fiber contained one type of
deletion while other deficient fibers contained different
deletions, which clearly confirmed their clonal nature and
indicated that expanded mutations caused most if not all of
the observed COX defects. The proportion of COX-defi-
cient fibers was typically less than 0.1% in young human
muscles and increased ~ 10 times with age. At least in
some cases, COX deficiency was followed by complete
degeneration of the fiber via apoptosis and necrosis
[99-101].

The age-related defects in mtDNA could be recapit-
ulated in vivo in mice with a genetic modification of a
proofreading exonuclease activity of mitochondrial
polymerase gamma (polG) resulting in an error-prone
“mutator” enzyme. The “mutator” (homozygous
Polg™"™"  knock-in) mice generates 10-20 x 10~*
mutations per base pair of mtDNA; this is accompanied
by multiple symptoms of premature aging, including
dilated cardiomyopathy, thymic involution, testicular
atrophy, sarcopenia, etc. [102, 103]. No signs of oxida-
tive stress were detected in these studies; however,
recent studies using more sensitive ROS assays have
demonstrated oxidative stress in various tissues of the
mutator mice [104]. Mitochondrial hydrogen peroxide
level was similar in young “mutator” and control mice,
but increased with age in “mutator” mice while
remaining unchanged in the control. Furthermore,
transgenic  overexpression of mitochondria-targeted
catalase has been shown to partially attenuate car-
diomyopathy in the “mutator” mice [105]. Recently, it
was shown that the mitochondria-targeted antioxidant
10-(6'-plastoquinonyl) decyltriphenylphosphonium
(SkQ1) [106] diminished the expression of the oxidative
stress markers, delayed development of aging-related
pathologies and prolonged the lifespan of the “mutator”
mice. All these findings suggest a link between pro-
longed accumulation of mtDNA mutations, ROS
production and premature muscular aging.

DNA damage in neuromuscular disorders

The accumulation of YH2AX foci, a DNA double-strand
breaks marker, and the appearance of aneusomia with age
was observed in muscle tissue and primary myoblast cul-
tures from patients with DMD and LGMD type 2B
(LGMD2B). DNA damage was also detected in the non-
affected muscles of a DMD fetus and young DMD patients
and was, therefore, considered to be an early event in this
pathology [81]. In addition, disruption of genes responsible
for muscular dystrophies (dystrophin gene for DMD, dys-
ferlin gene for LGMD) in murine models was accompanied
by DNA damage, YH2AX foci accumulation, genetic
instability characterized by duplications and amplifications
of oncogenes, activation of the DNA damage response
pathway, and an increased susceptibility to develop sar-
coma [81].

A deficiency in DNA damage repair has been reported in
Emery-Dreifuss muscular dystrophy, disease caused by the
mutation in genes encoding emerin or lamin A/C, and in
several laminopathies caused by mutations in genes
encoding proteins of the nuclear lamina. Indeed, mutations
in the gene encoding lamin A/C, involved in DNA repair
and maintenance of genome integrity, disrupt DNA dam-
age response and repair mechanisms, leading to genomic
instability and premature aging [107-109].

The presence of DNA damage prenatally and at birth has
been described in skeletal muscles of a mouse model of
spinal muscular atrophy (SMA), a genetic disorder char-
acterized by progressive limb and trunk paralysis, muscle
atrophy and motor neuron degeneration. An increase in
DNA fragmentation was observed few days after birth,
accompanied by cell death [110].

Recently, DNA damage and oxidative stress were shown
to be involved in the pathophysiology of facio-scapulo-
humeral dystrophy (FSHD), one of the most common
genetic myopathies characterized by a progressive and
asymmetric weakening of a specific group of skeletal
muscles, typically facial, shoulder girdle and upper arms
muscles. FSHD is a multifactorial disease that results from
the combination of genetic and epigenetic events mapped
at the 4q35 locus [111]. These alterations lead to chromatin
relaxation followed by overexpression of many 4q35
genes, notably DUX4, the major actor in FSHD pathology.
FSHD myoblasts derived from patients show a distinct
transcription profile; they exhibit morphological differen-
tiation defects and are sensitive to oxidative stress. We
found that constitutive presence of oxidative DNA damage
in in vitro cultured FSHD myoblasts is related to DUX4
expression and appearance of morphological defects in
FSHD myotubes [80]. Moreover, we demonstrated that a



high basal level of DNA damage resulted in the accelerated
saturation of DNA repair machinery in FSHD [79].

Antioxidants in treatment of neuromuscular
disorders

The consequences of DNA damage in muscle satellite cells
and fibers are dual: the controlled DNA damage is neces-
sary for muscle differentiation [73, 74] while ROS-induced
DNA damage may lead to degeneration and aging of dif-
ferentiated muscles [78, 88, 112, 113]. DNA damage and
ROS may also inhibit proliferation and differentiation of
muscle satellite cells [78] (for review, see [4]). Since the
most DNA damage is caused by ROS, treatment of muscle
cells with antioxidants was proposed and tested. Applica-
tion of antioxidants improved proliferation of muscle
progenitor cells [114], myotubes formation [115], func-
tioning of differentiated muscles [116, 117] and the
capacity of muscle satellite cells to fuse and to regenerate
damaged muscles [80, 91, 118]. Antioxidants also stimu-
lated angiogenesis which can improve muscle regeneration
after ischemia [119]. On the other hand, high doses of
antioxidants inhibited normal muscle differentiation
[75, 118]. Whether specific treatment of DNA damage in
in vivo injured muscles or muscles of patients with neu-
romuscular dystrophies could reverse the defective
phenotype remains the subject of further studies.

Conclusions

DNA damage and oxidative stress seem to be closely
linked and can affect myogenic differentiation, the mor-
phology and function of skeletal muscle. ROS are involved
in the pathophysiology of several muscle diseases,
including DMD [120-122], myotonic dystrophy [123],
LGMD dystrophy [124], FSHD [80] and sarcopenia [125].
The beneficial effect of antioxidant treatment on muscles
was observed in dystrophic mouse models [126, 127].

Oxidative stress, inefficient or altered DNA repair,
chronic inflammation, overtraining, inactivity and muscle
injury are major causes of DNA damage in skeletal mus-
cles. DNA damage accumulation can induce point
mutations, deletions, translocations and illegitimate
recombination [128-130]. Apoptosis can protect cells from
cell transformation and malignancy; thus, programmed cell
death could simultaneously be a secure alternative to pre-
serve muscle health, and a reason for muscle atrophy and
muscle regeneration exhaustion.

Common characteristics of certain muscular dystrophies
suggest the involvement of DNA damage and genetic
instability in the pathophysiology of these diseases and

their susceptibility to developing cancer (for review, see
[82]). Mutations in genes responsible for muscular dys-
trophies can lead to DNA damage, premature aging as well
as cancer development. Further studies are needed to
decipher the molecular pathways linking DNA damage,
muscle atrophy, muscle aging and cancer in human mus-
cular dystrophies.
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