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Measurements of the status and trends of key indicators for the ocean and

marine life are required to inform policy and management in the context of

growing human uses of marine resources, coastal development, and climate change.

Two synergistic efforts identify specific priority variables for monitoring: Essential

Ocean Variables (EOVs) through the Global Ocean Observing System (GOOS),

and Essential Biodiversity Variables (EBVs) from the Group on Earth Observations
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Biodiversity Observation Network (GEO BON) (see Data Sheet 1 in Supplementary

Materials for a glossary of acronyms). Both systems support reporting against

internationally agreed conventions and treaties. GOOS, established under the auspices

of the Intergovernmental Oceanographic Commission (IOC), plays a leading role in

coordinating global monitoring of the ocean and in the definition of EOVs. GEO

BON is a global biodiversity observation network that coordinates observations to

enhance management of the world’s biodiversity and promote both the awareness

and accounting of ecosystem services. Convergence and agreement between these

two efforts are required to streamline existing and new marine observation programs

to advance scientific knowledge effectively and to support the sustainable use and

management of ocean spaces and resources. In this context, the Marine Biodiversity

Observation Network (MBON), a thematic component of GEO BON, is collaborating with

GOOS, the Ocean Biogeographic Information System (OBIS), and the Integrated Marine

Biosphere Research (IMBeR) project to ensure that EBVs and EOVs are complementary,

representing alternative uses of a common set of scientific measurements. This work is

informed by the Joint Technical Commission for Oceanography and Marine Meteorology

(JCOMM), an intergovernmental body of technical experts that helps international

coordination on best practices for observing, data management and services, combined

with capacity development expertise. Characterizing biodiversity and understanding its

drivers will require incorporation of observations from traditional andmolecular taxonomy,

animal tagging and tracking efforts, ocean biogeochemistry, and ocean observatory

initiatives including the deep ocean and seafloor. The partnership between large-scale

ocean observing and product distribution initiatives (MBON, OBIS, JCOMM, and GOOS)

is an expedited, effective way to support international policy-level assessments (e.g.,

the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services

or IPBES), along with the implementation of international development goals (e.g., the

United Nations Sustainable Development Goals).

Keywords: essential ocean variables (EOV), essential biodiversity variables (EBV), marine biodiversity observation

network (MBON), global ocean observing system (GOOS), ocean biogeographic information system (OBIS), marine

global earth observatory (MarineGEO), integrated marine biosphere research (IMBeR)

INTRODUCTION

“At some level in monitoring and marine ecology more generally,

we have to turn the argument around so that we are monitoring

recovery and restoration, or even resilience in the face of

increasing threats - as well as the many ongoing declines.

Monitoring is but a small and necessary cost to sustain or increase

the value of the benefits we get from nature”.

Nicholas Bax, Institute for Marine and Antarctic Science,

University of Tasmania, Australia.

For millennia, humans have sought to learn about the state of
the ocean, driven by the need to know waves, currents, tides,
and weather patterns to plan for daily life along the coast and
to carry out migrations and commerce. The ocean covers 71%
of the Earth’s surface and contains 97% of the Earth’s water,
and thus is a three-dimensional ecosystem holding over 99%
of the living space on Earth (Costello et al., 2010). Life in the

sea has been of particular interest to humans in the quest to
sustain and expand human population and cultures. Yet our
ability to characterize and monitor marine life, including its
diversity, abundance, productivity, and the interactions among
different forms of life and the environment remains primitive.
It was not until the late nineteenth century that oceanography
was established as a multidisciplinary science by the Challenger
Expedition (Rice, 1999). World War II propelled oceanography
forward, given the need to understand the physical environment
for national security purposes. Afterward, the industrialization of
the ocean for increased fishing, offshore oil and gas extraction
opportunities, combined with other human uses, continued to
drive the need to improve our understanding of the global
ocean. Our ability to observe, measure and understand the
ocean has again grown dramatically since the 1980s, combining
routine observations from satellites and autonomous devices like
buoys, drifters and other devices to address critical operational
requirements for the protection of human life and property
(Costello et al., 2016). Scientific research has been instrumental
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in improving forecasts of the physical and chemical state of
the ocean. It is now possible to assess the state of the global
ocean surface from space continuously by using complementary
measures of temperature, height (for ocean currents and global
sea level estimates), roughness (for estimates of waves andwinds),
and color (for bulk phytoplankton biomass, colored dissolved
matter, and water quality indices) (see summary in Muller-
Karger et al., 2013). The ocean interior is monitored by a
variety of observing platforms, some of which are organized
in observing networks (e.g., Argo1, OceanSITES, the Global
Ocean Ship-based Hydrographic Investigations Program or GO-
SHIP, the Data Buoy Cooperation Panel or DBCP, OceanGlider,
The Global Sea Level Observing System or GLOSS, etc.). Each
observing platform is characterized by its specific sampling in
time, space, and many have different suites of sensors. The
observing networks are the backbone for the Global Ocean
Observing System (GOOS) and its regional alliances (GOOS
RA). The concerted use of a number of different observing
platforms provides the sampling characteristics needed for
one specific observing problem (UNESCO, 2015; Liblik et al.,
2016). At present, almost all programs record physical data
(temperature, salinity, etc.) while biogeochemical sensor and
ecosystem parameters sensors are rare. However, there is progress
and the networks are engaged in discussions on biological
observations. An important international effort is underway to
deploy biogeochemical Argo floats (BGC-Argo; Claustre et al.,
2010; Johnson et al., 2017). As fishery andmining concerns evolve
to extract resources in increasingly deeper waters, discussions are
underway to develop a Deep Ocean Observing Strategy (DOOS).
Numerical models seek to incorporate all of this information to
improve weather and ocean prediction, as well as to understand
details of the global heat budget.

In addition to the advances made in understanding the
physical environment of the ocean, there is a renewed effort to
organize the collection of information on biology and ecosystem
characteristics including the status and trends in the abundance,
movement, and genetic diversity of species located across large,
traditionally undersampled areas of the ocean. For example,
two programs under the International Geosphere-Biosphere
Programme (IGBP) and the Scientific Committee on Oceanic
Research (SCOR), specifically the Global Ocean Ecosystem
Dynamics (GLOBEC; 1991–2001) and the Integrated Marine
Biosphere Research project (IMBeR; established in 2005 and
ongoing as of 2018 with support from SCOR and Future Earth),
have sought to understand how global change will affect the
abundance, diversity and productivity of marine populations.
These programs aim to enable innovation and collaboration
in marine ecosystem research to transform the world toward
sustainability. This growing interest is sustained by human
population growth, the increasing habitation of coastal shores,
and accelerating use and industrialization of ocean spaces,
both within Exclusive Economic Zones and in areas beyond
national jurisdiction (Merrie et al., 2014; McCauley et al., 2015;
Golden et al., 2017). Concerns over ecosystem impacts have

1Argo 2018. http://www.argo.ucsd.edu/About_Argo.html, visited January 16,

2018.

led to efforts to track and limit harmful change. Examples
of such efforts include the Aichi Biodiversity Targets of the
UN Strategic Plan for Biodiversity (2010–2020), the negotiation
of a new treaty for the conservation and sustainable use of
biodiversity beyond national jurisdiction, and theUN Sustainable
Development Goals (SDGs; UN Resolution A/RES/70/1 of 25
September 2015; Anderson et al., 2017). Information about life
in the sea is needed to sustain a healthy ocean and the ecosystem
services it provides, and to promote a vibrant blue economy by
managing human activities that affect ocean life in multiple ways
(U.S. Commission on Ocean Policy, 2004; Dunn et al., 2016;
Golden et al., 2017). Although several of the SDGs touch on
the ocean’s ecosystem services (e.g., fisheries in relation to food
security under SDG 2), SDG 14 specifically has six targets tied
to marine life and associated ecosystem services (ICSU, 2017).
Many other SDGs are closely linked to SDG 14, such as those
concerning food security, health, gender equality, economic
growth, climate action, and sustainable cities and responsible
consumption (Singh et al., 2017). To address these requirements,
the United Nations General Assembly (A/RES/72/73, December
2017) proclaimed the United Nations Decade of Ocean Science
for Sustainable Development (2021–2030) and called upon the
Intergovernmental Oceanographic Commission to prepare an
implementation plan (UNESCO, 2017).

The scientific community has a responsibility to provide
the information and knowledge needed to enable wise policy
decisions, which can be achieved by assembling measurements
of particular variables into indicators (Niemeijer, 2002) useful
to governments and users of resources, for instance. The
best approach to obtaining this information is through a
multidisciplinary and transdisciplinary ocean observing system
that promotes regional monitoring efforts and organizes them
into a global network. Transdisciplinarity brings the natural,
social, and health sciences together, spanning traditional
disciplines (Choi and Pak, 2006; Cornell et al., 2013). In
extending existing biological observing systems into a global
network, we need to identify, obtain consensus on, and measure
a core set of variables focused on quantifying biotic and
abiotic changes in the ocean. This requires integration of
biogeochemical and biological observations with the continually
developing physical observing system and expanding even
its broad geographic scope. Four main groups are now
engaged in this discussion: the Marine Biodiversity Observation
Network (MBON), the GOOS, the Ocean Biogeographic
Information System (OBIS), and IMBeR. Many other groups are
participating in this conversation, including the Marine Global
Earth Observatory (MarineGEO) directed by the Smithsonian’s
Tennenbaum Marine Observatories Network (TMON), animal
tracking efforts, deep ocean observing initiatives (e.g., the Deep
Ocean Observing Strategy or DOOS, and the International
Network for Scientific Investigations of Deep-Sea Ecosystems or
INDEEP), the Global Ocean Acidification Observing Network
(GOA-ON; Newton et al., 2015), groups focused on land-ocean
interactions, and the public and private sector groups interested
in ocean development and blue growth (Golden et al., 2017).

The technology for synoptic biological observations has
lagged behind measurements of physical and biogeochemical
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properties of the ocean. There are highly selective sampling
programs that have accumulated substantial observations of
life in the sea. For example, the Sir Alister Hardy Foundation
for Ocean Science (SAHFOS) has operated the Continuous
Plankton Recorder (CPR), a device towed behind ships of
opportunity, since 1946 (Reid et al., 2003; Costello et al., 2016).
SAHFOS accumulated remarkable plankton collections along
certain ship routes. The CPR surveys are now managed by the
Marine Biological Association of the United Kingdom, which
continues to expand CPR lines in other locations, although there
is still a noticeable lack in the tropical ocean. MarineGEO is
focusing on understanding coastal marine life and its role in
maintaining resilient ecosystems around the world, wheremarine
biodiversity and people are concentrated and interact most.
MarineGEO is making important contributions by deploying
simple experiments in different coastal environments around the
world. The Bermuda-Atlantic Time-Series (BATS), Hawaii Ocean
Time-Series (HOT), and the CARIACOOcean Time-Series, have
integrated a large number of observations of lower trophic
level diversity and production with nutrient flux observations
at point locations for periods exceeding 20 years (Church
et al., 2013; Neuer et al., 2017; among many publications).
The California Cooperative Oceanic Fisheries Investigations
(CalCOFI), established in 1949 after years of efforts to understand
the collapse of the sardine fishery off California, continues a time
series of observations that span all trophic levels (Bograd and
Lynn, 2003; Wells et al., 2017; and many others).

There is growing interest in networking microbial
observatories around the world to monitor EOVs and EBVs
at time and space scales relevant to human health (Buttigieg
et al., 2018). Matching the broad geographic scope of ship-
based observation with the detailed information of point
location data is a key requirement for a global system that
requires the expansion of existing networks, accompanied
with developing new technologies that can gather marine
biodiversity observations with increasing detail and efficiency.
While progressing quickly, available technology and systems
limit the ability of scientists to link observations at these scales to
higher trophic levels. Evaluating the density of OBIS records as
a function of bottom depth and vertical sampling depth reveals
major gaps in the mesopelagic (Sutton et al., 2017; Muller-Karger
et al., 2018) and deep ocean zones (Webb et al., 2010; Appeltans
et al., 2016). Some of the programs that have provided long time
series of observations, such as the CARIACO Time-Series, have
subsequently stopped due to lack of funding and conditions that
make logistics difficult.

Despite many individual efforts, our overall current set of
observations is inadequate to measure, characterize, and monitor
the changing life of the sea across trophic levels at most
regional scales, and definitely at a global scale. Such links are
of direct utility to managing for sustainable use of the ocean.
Here we call for a collaboration between research, private, and
government sectors to promote observing systems that include
ocean biological and biodiversity observations as well as physical
and biogeochemical measurements, as a means to address the
challenge of sustaining a healthy and vibrant ocean ecosystem.
The goal is to detect changes in life in the ocean when and where

they occur by field observations being rapidly published into
open-access community databases (notably OBIS).

HISTORICAL PERSPECTIVE

The concept of “Essential Climate Variables” evolved in the
late 1990s as a way to focus resources on the collection of
minimal sets of “key variables” for which data records were
necessary to understand the status and trends in climate
variability (Bojinski et al., 2014). The set of Essential Climate
Variables (ECVs) was selected by evaluating readiness, feasibility,
and impact to address societal needs. The ECVs are now
fundamental information used to inform negotiations under
the United Nations Framework Convention on Climate Change
(UNFCCC)2 and the Intergovernmental Panel on Climate
Change (IPCC). The requirements of readiness and feasibility
at a global scale have led to a major focus on the physical
ocean, with biological ECVs relatively poorly developed (World
Meteorological Organization, 2018). Following this example, the
Group on Earth Observations Biodiversity Observation Network
(GEO BON) proposed a set of Essential Biodiversity Variables
(EBVs; Figure 1) for use in monitoring programs to understand
patterns and changes in Earth’s biodiversity. The EBVs have
been grouped into six classes: genetic composition, species
populations, species traits, community composition, ecosystem
structure, and ecosystem function (Pereira et al., 2013). This
concept has taken root within wide segments of the theoretical
and applied ecology communities (e.g., Geijzendorffer et al.,
2016; Pettorelli et al., 2016; Proença et al., 2016; Turak et al.,
2016; Kissling et al., 2018 and others). Within GEO BON,
MBON was established in 2016 to frame the EBVs concept
in the marine realm (Duffy et al., 2013; Muller-Karger et al.,
2014; Costello et al., 2016). The goal of MBON is to coordinate,
promote and augment the capabilities of present and future
national and international observing systems to characterize and
monitor diversity of marine life at the genetic, species, and
ecosystem levels using a broad array of in situ and remote sensing
observations. MBON is not the observing system, but a network
that is contributing to the toolbox and library of standards,
methods, and models required by ocean observing systems, such
as those operated under the GOOS umbrella. MBON facilitates
building an ocean community of practice by participating in the
design and development of content of BON in a Box (https://
boninabox.geobon.org), which is being developed by GEO BON.
MBON also serves as the biodiversity arm of the evolving Blue
Planet initiative under GEO, which aims to ensure that these
observations are of benefit to society.

The process of developing a multidisciplinary, integrated
ocean observing system for operational uses, including sustained
scientific research, follows the guidelines of the Framework for
Ocean Observing (FOO, 2012). This framework was developed
through sponsorship of the Intergovernmental Oceanographic
Commission (IOC) of UNESCO. The implementation is

2GCOS Implementation Plan for the Global Observing System for Climate in

Support of the UNFCCC (2010 Update) (World Meteorological Organization,

Geneva, 2010), p. 180.
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FIGURE 1 | Conceptual relationship between EOVs and EBVs, with simple examples. EOVs (listed on the left hand side) are broadly taxonomically focused around

productivity at the base of the food chain (microbes, phytoplankton and zooplankton), higher trophic levels (benthic invertebrates; fish; TBM: marine turtles, birds, and

mammals), and habitat forming species (macroalgae, seagrass, mangrove, coral). In contrast, example EBVs (listed on the left hand column) evaluate taxa across

scales of spatial and temporal diversity within species (allelic diversity, species distribution, population abundance, population structure by age/size class, phenology),

across species (taxonomic diversity), and in terms of ecological context (primary productivity, secondary productivity, habitat structure, ecosystem extent /

fragmentation, ecosystem composition / functional type). EOVs are described in Miloslavich et al. (2018). EBV classes from Pereira et al. (2013) are shown as colored

boxes which aggregate different example EBVs, specifically: GC, Genetic composition; SP, Species populations; ST, Species traits; CC, Community composition; ES,

Ecosystem structure; EF, Ecosystem function. EBVs on primary/secondary production are directly associated with the microbe, phytoplankton, zooplankton, and fish

EOVs. Other EBVs can be applied more broadly to the rest of the EOVs. References for the methods listed on the right-hand column of the diagram are as follows:
1Holm-Hansen and Riemann (1978); Knap et al. (1997); 2Behrenfeld and Falkowski (1997); 3Harris et al. (2000); 4Madin et al. (2001); 5Omori (1969); 6Landry et al.

(2001); 7Gordon et al. (1994); 8Goodwin et al. (2018); 9Djurhuus et al. (2017); 10Goodwin et al. (2017); 11Zhao and Bajic (2001); 12Van Heukelem and Thomas

(2001); 13Wright (xbib1997); 14Castellani et al. (2017); 15Hussey et al. (2015); 16Robinson et al. (2010); 17Sathyendranath (2014); Bracher et al. (2017); 18Soto et al.

(2009); 19González-Rivero et al. (2016); 20Sosik and Olson (2007); 21Hill and Wilkinson (2004); 22Simmonds and MacLennan (2005); 23McIntyre et al. (2015);
24Caldwell et al. (2016); 25Short et al. (2001); 26Klemas (2008); 27Green et al. (2005); Miller et al. (2005); Tiner et al. (2015); Turpie et al. (2015).

coordinated by the GOOS. GOOS was established under the
auspices of the IOC in 1991 and has played a lead role in
coordinating global monitoring of the physical ocean and in
the definition of Essential Ocean Variables (EOVs; Figure 1).
EOVs evolved jointly with Essential Climate Variables, and
their readiness is evaluated on whether they are at the stage
of concept, pilot, or mature. This includes an evaluation of
technology maturity, feasibility, and whether the measurements
have been or can be implemented in regional or global observing
systems. The Framework for Ocean Observing also promotes
identifying biological and ecological EOVs in a fit-for-purpose
process with user-driven feedback loops (e.g., Kelble et al., 2013;
NOC, 2016; Bax et al., submitted; Miloslavich et al., 2018).
Today, GOOS is engaged in a continuing process of refining
and expanding the EOVs, and has extended the suite of EOVs
to include biogeochemical and biological variables. The initial
concept for biological EOVs may be traced to the GOOS Coastal
Observations Panel (e.g., Malone and Knap, 2004; Malone et al.,
2014).

GOOS is developing the implementation plans for the EOVs.
An important program that is also engaged in developing
the definitions and implementation plans for the biological
EOVs is the Ocean Biogeographic Information System (OBIS),
which is part of the IOC’s International Oceanographic

Data and Information Exchange (IODE). OBIS is the data
legacy of the Census of Marine Life (CoML; 2000–2010)
project and was adopted by IOC in 2009 as its biological
information management system (Costello et al., 2015). OBIS
has evolved significantly since the days of the CoML (De Pooter
et al., 2017), when it was originally designed to document
“presence/absence” of species by location based on protocols
for natural history museum specimen collections. OBIS works
with scientific communities to facilitate free and open access
to primary data on species distributions, abundance, and
other biodiversity metrics in space and time. It provides a
mechanism for data integration and broad access. More than
500 institutions from 56 countries have provided over 50
million observations of nearly 120,000 marine species, which
are hosted and shared openly through OBIS for the global
community. OBIS has been continuously developing to host
new types of global marine biodiversity monitoring data and
meet new demands from the global biodiversity monitoring
community. Other relevant IODE programs are focused on data
organization and management (e.g., World Ocean Database),
ocean observation best practices (www.oceanbestpractices.net;
Pearlman et al., 2017a), and capacity building programs (e.g.,
Ocean Data and Information Networks, or ODINs; Large Marine
Ecosystems/LME:LEARN; OceanTeacher Global Academy; OBIS
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training workshops; OceanTeacher Global Academy; OBIS
training workshops).

These efforts are closely coordinated with the Joint Technical
Commission for Oceanography and Marine Meteorology
(JCOMM), which is an intergovernmental body of technical
experts that provides amechanism for international coordination
on best practices for observing, data management, and services,
and capacity development. These efforts are closely linked
together in a complex landscape of ocean observation and
data services that the partnership between IOC and GEO BON
encompasses (Figure 2). The partnership with JCOMM is
implicit.

A WAY FORWARD TO COORDINATING
ESSENTIAL VARIABLES FOR BIOLOGY
AND BIODIVERSITY IN THE OCEAN

All ocean observing strategies improve understanding of the
environment and biodiversity in coastal, neritic, and pelagic
areas, including the seafloor from the shelf to the abyss. This helps
to conserve and sustainably use life in coastal and pelagic areas.
It protects human life and property, improves human health,
conserves the environment, and promotes a vibrant economy.
An important part of this is to characterize and enable accurate
forecasts of environmental and biological change, including
trends and impacts of disturbances on ecosystem structure,
function and composition, as well as associated services. This
requires concurrent measurement of biological EOVs alongside
appropriate physical and biogeochemical EOVs. Much work in
oceanography considers it sufficient to make bulk measurements
about biological properties, such as characterizing stocks and
biomass of microbes, plankton, or fish simply in terms of grams
of Carbon per unit area in the euphotic zone or in the mixed
layer (such as per square meter or gC m−2), or fluxes as changes
in stocks over time (gC m−2 per unit time). The concept of
the EBVs provides a path to a focused operational monitoring
of biodiversity and ecosystem services (Brummitt et al., 2016;
Geijzendorffer et al., 2016; Turak et al., 2016; Kissling et al.,
2018). EBVs provide a measure of the complexity of life that has
direct relevance to community structure and therefore stocks and
fluxes, such as productivity.

The integration of marine EBVs into sustained research and
operational ocean observing systems should occur following the
guidelines of the FOO. In general, physical and biogeochemical
ocean variables, already included in EOVs, provide the
environmental context for biological EOVs and for EBVs. Yet, to
facilitate integration into observing systems and enable broader
interpretation, the EBVs need to be co-developed and mapped
alongside the biological and ecological EOVs (bio-eco EOVs)
in a manner illustrated in Figure 1. Each existing and planned
element or node of the ocean observing system will need
guidance on which EOVs and EBVs to target, and on the
requirements for particular applications.

The bio-eco EOV definitions include “Complementary
Variables,” which are other EOVs and/or EBVs that are necessary
to fully describe the phenomena or understand impacts on the

EOV of natural and anthropogenic pressures (Miloslavich et al.,
2018). This establishes a link between the EOVs of GOOS and the
EBVs proposed by GEO BON (Pereira et al., 2013). Further, there
is consensus in MBON that marine EBVs need to be based on
primary species-based data at a level that can be used to estimate
biodiversity indices.

Figure 1 is an attempt to illustrate the many-to-many
relationship between EBVs and EOVs. These are two systems that
identify many (or all) of the same primary measurements, but
aggregate them using different approaches. EBVs and EOVs are
complementary and the standard operating procedures should
be common to both as they develop. However, EBVs are not
exclusively complementary to the variables under the GOOS
schema. For example, a key difference between the EBVs and
EOVs is that the EBVs are cross-domain (land, atmosphere and
ocean), while the EOVs focus on the oceans. Other differences
between the systems may seem contentious, as one aggregates
the species level (or function) data, while the other tends to
aggregate across processes or emergent properties. There will be
different implications at the biological, ecosystem and domain
levels from looking at just one schema or the other. For example,
an EBV could include aggregated species level information about
a particular group of organisms (e.g., genus, species or higher
classification of groups of organisms such as fish, phytoplankton,
zooplankton, birds or marine mammals, but without mixing
organisms from these different groups such as would be common
for evaluating a functional diversity metric). This recognizes
that while some taxa may not be easily defined at species level,
generally identification would be as close to this as practical.
Our recommendation is, therefore, that standard biodiversity
indices, such as species richness and α and ß diversity (Tuomisto,
2010a,b) be calculated within a specific taxonomic group (e.g.,
only within phytoplankton, or only within zooplankton, and so
on), or within functional groups (e.g., all animals within a size
class that serve as forage for larger predators). Even if there are
new or introduced organisms, these should be counted within
their taxonomic or functional groups. In this manner, the indices
would be valid EBV metrics and they would be Complementary
Variables of EOVs. To further illustrate this concept, measures
of biomass (e.g., chlorophyll concentration, dry weight, or total
weight), productivity (photosynthesis or secondary production),
or of abundance (e.g., number of individuals in a population)
represent an EBV at ecosystem level and an EOV. These EBVs
would also function as Complementary Variables to EOVs. They
serve to aggregate EOVs with measures of taxonomic diversity
(i.e., richness, abundance, community structure), or functional
diversity (i.e., trait data). Increasingly, many efforts focus on the
various fields of study in biology that end in ’-omics’, such as
genomics, proteomics, or metabolomics, which hold significant
promise to study and categorize biodiversity in terms of species,
genetics, physiology, traits and function, etc.. We emphasize
the importance of proper metadata associated with EBVs since
use of different gear, methods (microscopy, ’omics, or pigment
detection), or levels of taxonomic resolution can lead to very
different outcomes.

EBVs and EOVs remain dynamic and will evolve in
response to advances in sampling methodologies and our
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FIGURE 2 | Schematic of the linkages between the GEO BON Marine Biodiversity Observation Network (MBON), the Global Ocean Observing System (GOOS), and

the Ocean Biogeographic Information System (OBIS) proposed for biodiversity assessments. The strategies for observing are defined by national government and

organizations, non-governmental organizations, and research groups, in an iterative loop that links with the elements that integrate the GOOS, MBON, and OBIS

networks. The outer (blue) circle highlights feedbacks, and indicates that there are direct linkages between the users and the top levels in the partnership, including the

IOC, GEO BON and JCOMM.

understanding of the ocean ecosystem. For example, Figure 1
may not adequately address the importance of measuring
species interactions in ocean ecosystems. While it includes
primary and secondary productivity as EBVs, there are no EBVs
for top-down and wasp-waist processes despite our current
understanding of marine trophodynamics. These differences in
trophic processes are important because they can define the
outcome of ecosystem services like fish production or water
quality (Hunt and McKinnel, 2006; Litzow and Ciannelli, 2007;
Baum and Worm, 2009). This suggests the need to add EOVs
and EBVs that measure top-down dynamics, e.g., predation rates,
diet compositions, or stable isotope measurements to determine
trophic status.

The integration of EOVs and EBVs streamlines the concept
of “essential variables,” minimizing duplication across multiple
and diverse organizations under the IOC and GEO umbrellas.
This addresses the goal of the FOO to integrate biological

observations into international elements of a multidisciplinary
GOOS. To advance this goal, MBON, GOOS, and OBIS entered
into a partnership in December 2016. The partnership, shown
in the schematic in Figure 2, seeks to standardize methods
wherever possible, document best practices, and build capacity.
While complete standardization across the globe is perhaps
too high a goal for many EOVs, we recommend verified
and calibrated observations and the use of best practices,
so that the results from different areas can be compared at
some level of aggregation. This is required to detect change
across a region or within and between ocean basins, and for
interoperability of data collected in different programs and with
different gear. This “next step” process (i.e., the discussion,
adoption, and implementation of best practices to facilitate
comparisons across different regions and over time) is just
starting and will evolve as the MBON community becomes
organized. Such guidelines are useful to any effort that seeks
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either to start a new monitoring program or to strengthen
existing ones.

There are examples of successes where data have been
collected in a way that supports intercomparison. Australia has
an initiative to standardize metadata on marine imagery for
identifying benthic habitats and organisms. While individual
studies collect additional data for their own purposes, key
observations can be compared (Althaus et al., 2015). Another
example is the World Register of Marine Species (WoRMS),
which is expert-controlled, flexible and allows for rapid updates
(Horton et al., 2017). Consistent use of WoRMS by the
marine community, such as applied within OBIS for taxonomic
assessment, has led to important advances in biogeography
(Appeltans et al., 2016). This convergence on standards and
conventions is now being applied through the partnership to
inform monitoring, through consistent use of variables and
protocols across ocean observing systems.

CHALLENGES AND OPPORTUNITIES

Numerous international policy assessments and processes have
highlighted the need to better measure the status and trends
of marine biodiversity: the UN Sustainable Development
Goals (SDGs) (Lu et al., 2015; Anderson et al., 2017); the
Convention on Biological Diversity (CBD); the Convention on
Migratory Species (CMS); the Intergovernmental Platform on
Biodiversity and Ecosystem Services (IPBES); the UN Regular
Process (World Ocean Assessment); and the various efforts
coordinated by the Food and Agriculture Organization of the
United Nations (FAO). The United Nations General Assembly
(UNGA) has initiated a negotiation over a new treaty for
the conservation and sustainable use of biodiversity beyond
national jurisdiction including, inter alia, mechanisms to develop
area-based management tools (e.g., marine protected areas and
marine spatial planning), strategic environmental assessments
and environmental impact assessments (Gjerde et al., 2016). This
requires an understanding of the state of biodiversity in areas
beyond national jurisdictions to inform policy development.
Requirements are often defined in broad terms, such as
those documented in decisions and resolutions taken during
Conferences of the Parties, without specifying which variables
to measure and the methods required (including data archiving
and reporting formats). In cases where data seem abundant,
they are often collected using different methods and protocols
that make it difficult and time consuming to aggregate the data
reliably and at a scale most useful to managers and policy-
makers. The need for routine marine biodiversity observations
presents important technological and scientific opportunities,
but making useful operational measurements needs standards
and best practices that are followed internationally. Again, the
importance of adequate metadata to accompany the data cannot
be overemphasized.

Implementing New Technologies to
Increase Observing Efficiency
There are several technical and resource challenges to enable
the practical, operational use of marine biodiversity information.

An important challenge is to design new technologies that
can be integrated into existing and planned coastal and
ocean observation programs in a practical and cost effective
manner. New technologies are required to obtain basic
measures of biodiversity to complement, for example, automated
estimates of phytoplankton biomass derived from in situ
chlorophyll fluorescence observations, or acoustic estimates of
fish or zooplankton biomass. At present, there are numerous
methods to estimate phytoplankton community composition,
or productivity of various functional groups. Many of these
are time consuming, such as microscopy, or they may also
be costly, such as pigment concentration analyses or genomics
assessments. Yet the most common methods used at present to
assess phytoplankton abundance are ocean color observations,
including from satellite-based sensors, and in situ chlorophyll
fluorescence measurements, given the widespread use of
chlorophyll fluorometers in profiling, towed, autonomous, and
other devices. These in situ devices are undergoing a state change
with the introduction of a new generation of compact, low power
sensors that can lead to widespread use on autonomous vehicles
(Pearlman et al., 2017b).

Today, partnerships such as the one established between
MBON, GOOS and OBIS, for instance, provide opportunities
for the biological community to make a step change similar to
that accomplished by the physical oceanographic community in
the early 2000s when the Argo deployments began (Roemmich
et al., 2009). This step change would involve developing sensors
to observe any and all trophic levels in the ocean, from microbes
to marine mammals (e.g., Sigsgaard et al., 2016; Djurhuus et al.,
2017). For example, new in situ devices are being designed
to collect and process environmental DNA (eDNA) samples
and also to identify plankton and microbes (Bowers et al.,
2016; Herfort et al., 2016). The Video Plankton Recorder (VPR;
Davis et al., 1992), Optical Plankton Recorder, and Imaging
FlowCytoBot (Olson and Sosik, 2007; Sosik and Olson, 2007)
are examples of submersible microscopes used to collect video or
images of small organisms, cells, and particles. Such technologies
should incorporate new ways of publishing data directly to
regional or international databases such as OBIS. It would be
desirable to have compact, inexpensive and practical models of
these devices that produce high quality observations for broad
and widespread operational use. The automated observations,
when combined with ecological models, can lead to the high-
throughput biodiversity data that are required for assessments
(Bush et al., 2017).

The oceanographic community needs to work in concert
and push to integrate existing technologies for biological
observations, including biodiversity through imaging and
“omics,” into regional and global ocean observing networks such
as GO-SHIP, OceanSites, and the Ocean Observatories Initiative
(OOI). Observing networks need to develop and share best
practices, standards, protocols and observations on bioindicators,
and to address significant gaps in geographic coverage (e.g.,
Buttigieg et al., 2018). Funders, including private investors, have
a fundamental role in pushing this agenda forward by requiring
research outputs and the underlying data to be made broadly
available, and to bring down the costs of instrumentation and
deployment.
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Defining Biodiversity Measures for
Practical Applications
The EOVs are defined with the goal of propagating standard
methods and protocols for specific observations that can be
used to address problems of societal relevance. Aligning EOVs
with the EBV framework would strengthen understanding of
possible causes of changes in biological elements of nature. For
example, it is important to add biological diversity information
to measures of biomass in order to characterize community
structure changes that result in, or that are the result of,
cascades of ecosystem disturbance at large and small scales,
including anticipated responses to climate change. Similarly, it is
important to bring measures of top-down pressures into the EBV
framework.

Examples include the coral reef cover or reef fish abundance
EOVs. The EBV framework helps design the products required
for management. For example, the linkage of multidisciplinary
EOVs including EBVs, accounts for the causes of changes in
the benthic cover of different corals (i.e., the diversity of corals)
as opposed to changes in bulk coral cover alone. Moreover,
understanding changes in fish trophic and community structure
or in functional diversity, in any location, helps understand
whether top-down (e.g., fisheries, predation rates) or bottom-up
pressures (e.g., changes in physical, nutrient regime, or climate)
control characteristics like the decline in fish length, dominance
of a particular species, or possible changes in the geographic
distribution of these organisms.

Existing observing systems and plans for new ones should be
linking a multidisciplinary set of EOVs with the EBVs to bring
biodiversity and the drivers of biodiversity change into the same
observing framework.

Constructing Networks
Animal tagging and animal tracking conducted by programs
such as the US Animal Telemetry Network (ATN), Ocean
Tracking Network (OTN), Tagging of Pacific Predators (TOPP),
and many others, provide information on environmental
conditions, animal movement and migration phenology, and
animal physiological conditions. These programs offer examples
of the complementarity between EOVs and EBVs. The
emerging Migratory Connectivity in the Oceans (MiCO)
program is synthesizing migratory marine species information
to characterize the patterns of connectivity corridors and
connected hubs in marine ecosystems. Mapping the concert
of migrations of different species over time provides unique
insights on the location and timing of biodiversity hotspots
and how these may be changing over time. They help explain
the trophic and reproductive drivers of migrations. These
observations can also detect regime shifts in oceanographic
conditions over broad geographic domains driven by climate
cycles (e.g., El Niño). This work complements the work of
MBON in defining standards for observation of lower, middle,
and higher trophic levels. Specifically, quantifying biodiversity
requires a time element from the point of view of observing
traits of different species which may be expressed at different
times to evaluate functional diversity. Phenology itself is also

useful to detect species, since some obvious traits may not be
apparent at a time when another species may express their
traits.

Similarly, the expansion of efforts to coordinate observations
of life, such as those planned by the GOA-ON, will help to
understand the impacts of changing ocean chemistry on marine
life, and vice versa. Linkages are also needed between these
programs and those focusing on the deep sea, including the
benthos from shelves to the abyss. These have received less
attention from large-scale programs due to the difficulty in
sampling ability and processing time. However, advances in
technologies like new sensors incorporated into tethered and
autonomous underwater vehicles (AUVs) are helping to sample
the biodiversity of the seafloor. This includes the Monterey
Accelerated Research System (MARS), the North-East Pacific
Time-Series Underwater Networked Experiment (Neptune), and
similar efforts stimulated by the NOAA Ocean Exploration (OE)
program and parallel international initiatives. Many of these
have started to organize under the Deep Ocean Stewardship
Initiative (DOSI) and the International Network for Scientific
Investigation of Deep-Sea Ecosystems (INDEEP), with the goal
of refining the Deep Ocean Observing Strategy (DOOS) as part
of GOOS. These efforts require forethought and planning on
which databases should be used to best serve the needs of the
International Seabed Authority. Ideally, these should include
the same databases used for other parts of the ocean, following
standards such as Darwin Core for biological and biodiversity
measurements.

There are important linkages that need to be developed
or leveraged to identify and share practical and societally
relevant measures of biology that can be adopted globally.
This partnership aims to achieve this by integrating ocean
observations with data from fisheries surveys, Continuous
Plankton Recorder data, citizen science observation programs
such as the Reef Life Survey (RLS) (Edgar et al., 2017),
and networks like the Marine Global Earth Observatory
(MarineGEO) of the Smithsonian, the Global Coral Reef
Monitoring Network (GCRMN), seagrass.net, and the Kelp
Ecosystems Ecology Network (KEEN). By doing so, we will
be able to expand our understanding of how different drivers
affect marine biodiversity and characterize change to support
sustainable management of human activities in the ocean.

Collating, Managing, and Sharing Data
Ultimately, understanding life in the sea for broad societal benefit
requires a willingness to share observations and observation
methodologies. Many countries have agreed to the IOC
Oceanographic Data Exchange Policy (Resolution IOC-XXII-6,
2003, http://www.iode.org/policy), the Global Earth Observation
System of Systems (GEOSS) “Data Sharing Principles” (GEOSS,
2018), and similar agreements that data should be made
open-access (Costello, 2009). Yet considerable biological and
biodiversity data falls short of being truly open, including in
terms of availability in global databases such as OBIS. Thus,
regional comparisons and global assessments remain difficult
to make due to the vast disparity of approaches and access to
collected data. More openness may occur once individuals who
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collect and sponsor monitoring programs understand that data
sharing (a) opens doors for researchers, including students, to
collaborate more broadly and to engage in regional and global
scientific and policy developments, and (b) lifts the burden of
curating data while minimizing risks of data loss. Indeed, as more
data become openly available, the value in collecting comparable
data will rapidly increase as existing collections provide greater
context for the interpretation of the new observations. Many
observations can be lost forever if not deposited in a long-
term database. Such loss comes at a great cost to society,
since much of these data were collected with public funds.
Furthermore, species, ecosystems, and the pressures that affect
them are not constrained by political borders, which means
that understanding changes requires analyses of uniform data
at regional and global scales. However, an analysis of data
published in OBIS after 2015 reveals that the majority of effort
is still allocated to digitizing historical data to prevent them
from being lost, rather than uploading more recent observations
(Figure 3).

In contrast, oceanographers, navy personnel, and climate
scientists worked together in the 1980s to implement
international data archeology efforts to recover basic
hydrographic observations of variables such as salinity,
temperature, oxygen and nutrient concentrations (Teague
et al., 1987; Parker, 1992; Levitus et al., 1994). Further, they
worked to ensure that newly collected data were shared openly
as soon as practical, which was often within 24 h of collection.
In this instance, the first 1,000 profiling ARGO floats used to
measure temperature and salinity profiles at different depths
were in the water by the end of 2003, and were supported and
analyzed by a multinational community (Gould et al., 2004). This
step-change in observing capacity for the physical oceanographic
community required defining common measures, harmonizing
protocols for sampling, and agreeing on the use of common

FIGURE 3 | Number of data records by collection year that have been added

to the public OBIS database after 2015. The median year is 2000 with a peak

between 2008 and 2010. The sharp decline post-2010 illustrates the difficulty

of obtaining more recent (<5 years old) marine biodiversity data for publication

in the public domain. There remains an immense, ongoing effort to digitize and

publish older data (pre-2000) to OBIS. Updating such global databases is

important to establish robust baselines against which change can be detected.

frameworks for data and metadata storage and sharing. It also
required a willingness to share data. The physical oceanography
community, like the weather community, understood the
opportunities for collaboration and became engaged in big
regional and global science and policy developments, as well as
in implementing strategies to support industry sectors related
to maritime activities and marine science (i.e., “blue growth”;
Golden et al., 2017).

The biological community has initiated this process, but we
are only in the early stages of taking it forward. Some data,
like commercial fisheries data, have routinely been collected
and aggregated for international management, but they are
often not publicly available due to protection for specific
commercial, personal identification, or political reasons. For
those biological data that are shared, they are frequently made
available at an aggregated level (geographic, time, etc.). Yet
fishery research trawl data comprises some of the largest well-
georeferenced standardized time-series data in OBIS. Thus, even
with existing data, inefficient data sharing habits and a lack of
public availability inhibit our ability to detect change over time
across coastal and open ocean habitats. The molecular biology
community, including journal editors, referees, authors and
readers, expect publication of data in open-access database before
publication (Costello and Wieczorek, 2014). Unfortunately such
best practice is notmandated in the biodiversity and conservation
journals (Costello et al., 2015). Our ability to conduct regional,
national, and international time series-based assessments for
international policy processes is at present compromised due to
poor data availability. The information and advice provided to
policy makers regarding trends in biodiversity, such as the state
of threatened species populations, spread of invasive species, and
change in ecosystems, needs to be current and not delayed by
years as is presently the case.

The GEO BON and GOOS communities need to foster better
and more efficient means for digitally cataloging data with
appropriate metadata, and need to promote and build capacity
in the use of data storage formats and data exchange formats that
have been accepted and understood by a wide community. The
uncalibrated data from the Argo floats are released for public use
within 24 h. The quality controlled data are available within 6
months. There is a clear and present need to build the capacity in
the biological oceanography community to deliver observations
within the timeframes needed to detect changes and to make
relevant decisions. This requires a new paradigm to ensure that
quality of the data is not compromised.

OBIS provides a mechanism for integrating and making
accessible standardized marine biodiversity data, including
abundance and associated environmental data. The “OBIS 2.0”
currently in development will include a workbench for scientists
to process data and for the data to be kept “private” (e.g.,
data can be kept by the eventual provider but still be checked
using OBIS quality control services such as outlier detection).
The data holder can then push the data to OBIS at their
command. The database conforms to international standards
(e.g., OBIS-ENV-DATA format of Darwin Core). This system
is being adopted by the European Marine Observation and
Data Network (EMODnet), Fisheries andOceans Canada (DFO),
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the US Integrated Ocean Observing System (IOOS), and the
Integrated Marine Observing System (IMOS) in Australia.
More national and regional systems may ideally follow this
model.

The data should be available in defined formats and be
supported by complete metadata. The provenance of the data,
including methods of collecting observations, data processing,
and quality control should be well described and available to
the ocean research community. Such methodologies, sometimes
called best practices or standard operating procedures, can vary
significantly across teams or communities, often with limited or
out-of-date documentation, or no documentation. To address
repeatability of observations and to retain historical access
to measurement and data processing techniques, a long-term
sustained repository of best practices is needed. This has been
defined as an extended operational capability of the IODE
(Pearlman et al., 2017a) that will permit storage, advanced
discovery, and access to provide widespread use of best practices.
Development of this resource needs to be coordinated with the
incipient GEO BON’s BON in a Box efforts.

A separate but related challenge is the reconciliation between
operational taxonomic units (OTUs) derived from molecular
biology observations and other measures of taxonomic diversity.
One issue is that the databases against which sequences
of aminoacids or genes extracted from organisms or the
environment are compared to identify species or taxonomic
groups are still not well populated. The algorithm for these
comparisons is referred to as BLAST (Basic Local Alignment
Search Tool). As more genetic samples are collected and
available databases grow, the computational cost to conduct
BLAST comparisons increases. Molecular methods are being
refined and will become more widespread. This includes
environmental DNA (eDNA) techniques, which seek to capitalize
on the genetic material that is derived from whole microbial
cells or shed from multicellular organisms via metabolic
waste, damaged tissue, or sloughed skin cells, all of which
are ubiquitous in the environment (Thomsen et al., 2012;
Andruszkiewicz et al., 2017; Djurhuus et al., 2017). The
“omics” community delivers genetic observations to nucleotide
databases, including several databases that are linked via the
International Nucleotide Sequence Database Collaboration (e.g.,
DNA Data Bank of Japan, GenBank in the USA, and the
European Nucleotide Archive). These records, however, typically
have minimal environmental or biological data other than
the nucleotide data. The opportunity exists to link these
with biogeographic and environmental databases, including
the Global Biodiversity Information Facility (GBIF) and OBIS.
Marine species nomenclature, classification and associated
information are managed in the World Register of Marine
Species (WoRMS) which is expert-controlled and dynamic,
allowing for rapid updates (Costello et al., 2013). WoRMS is used
for “cleaning” species synonyms and misspellings by OBIS, GBIF
and many other databases.

Implementing these standards is becoming especially
important as species move with the changing oceans or are
transported by human intervention, changing the makeup of
tomorrow’s communities. Individual researchers and groups

that constitute the marine biological research and monitoring
communities need to better collaborate, adopt advanced data and
metadata schema like Darwin Core, and deliver data to national
and international databases such as OBIS and GBIF.

In general, another challenge is the increased informatics. This
includes high capacity computing and networking requirements,
expected for current processing, analysis, and visualization of
eDNA, imagery, or other geographically-distributed data. It
also includes further adoption of data format and control
standards, to allow easier assimilation into numerical models.
These require significant machine-learning and human resources
to develop reliable products and applications. Making such
resources available, as well as addressing the quality assurance
and quality control (QA/QC) of the processes, needs to be part
of EOV/EBV implementation strategies.

Capacity Building
An important aim of the partnership is to create, advertise, and
generate capacity to implement a set of standard methods or
documented best practices (Costello et al., 2016). This would
facilitate the start of observation programs and activities in areas
where they do not exist, and facilitate the interoperability of
data collected through different programs and by different people
and equipment. MBON, BON in a Box, OBIS, and some of
the GOOS Regional Alliances are initiating specific activities
to layer biological observations onto present and planned
observing systems by allocating efforts to strengthen capacity
internationally, with the aim to ensure global participation
and global ocean coverage. As part of this process, OBIS
partners are collaborating with the regional training centers of
IODE’s OceanTeacher Global Academy to organize OBIS training
sessions around the world (seven of these took place in 2017
involving 152 people). These experiences are being used to
develop online training modules that explain the steps required
for publication of and access to biodiversity-relevant data,
including short chapters that contain focused online tutorials.
Additional activities will include training in the observation of
essential variables, building the systems and capacity to organize
and share observations using international data standards (e.g.,
Darwin Core), and best practices in data quality control (e.g.,
obistools R package, github.com/iobis/obistools).

The Path Forward
How do we implement a sustained system of biological
observations based on EOVs? Overcoming the various challenges
outlined above for operational collection of biological data
requires substantial scientific work, a commitment to integrate
biological EOVs into the GOOS Regional Alliances, and
collaboration among nations. A sustained system of biological
observations also requires clearly defined and shared measures,
documented protocols for sampling, and agreement on the use
of common frameworks for data and metadata storage and
publication. To initiate this process, it is necessary to set specific
and feasible targets, and to focus on short-term goals. Table 1
provides a roadmap for these goals.

It is incumbent on the scientific community to harmonize
the EOV and EBV concepts and work with operational agencies
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TABLE 1 | Roadmap to implementation of biological and biodiversity variables into ocean observing systems with outputs relevant to societal need.

1. Identify relevant multidisciplinary EOVs and marine EBVs that should be collected concurrently with each other, to address specific purposes;

2. Validate the EOVs and marine EBVs with the scientific and observing community;

3. Establish strategic alliances (e.g., MBON, Partnership for Observation of the Global Oceans/POGO, Blue Planet, etc.) that are interdisciplinary (e.g., combining

biology and biodiversity with physics, biogeochemistry, and geology) including through the GOOS Implementation of Multi-disciplinary Sustained Ocean

Observations (IMSOO) process and JCOMM (Palacz et al., 2017); extend links to relevant social science areas (economy, anthropology, human and social health);

4. Encourage cross-fertilization among EOV and marine EBV groups;

5. Organize expert implementation workshops for each EOV and marine EBV, or a selection of these variables;

6. Draft Implementation Plans for each EOV, including marine EBV, documenting requirements, capabilities, expected impact, and actions needed to achieve the

plan;

7. Publish scientific and policy papers based on the strategy, presenting at policy related events (e.g., CBD, UN-related);

8. Deliver products to scientists and to policy makers;

9. Develop and document observation and data best practices, retaining these in a global repository with open access.

10. Ensure the sustainability, interoperability and modernization of data systems like OBIS;

11. Coordinate the observer and observing system communities, working with GEO and IOC/GOOS.

12. Continuous review and improvement with information feedback between these steps.

around the world to implement a multidisciplinary ocean
observing system that delivers information that is relevant
and timely for the SDGs and the United Nations Decade of
Ocean Science for Sustainable Development. We invite these
communities to enter the dialogue occurring between MBON,
GOOS, OBIS, and JCOMM to refine the concepts and the
roadmap laid out in this paper further. Together, we will build
an integrated system that includes proper observations of life
in the sea and has the power to influence regional and global
decisions. The partnership will provide guidelines for IPBES and
for planning the United Nations Decade of Ocean Science for
Sustainable Development 2021-2030 (IOC XXIX-1, 2017). As
this information improves, it will serve the intended purpose of
supporting the sustained development of the ocean, or what is
now called the “Blue Economy” (Golden et al., 2017).
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