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INTRODUCTION

After myocardial infarction (MI), the heart is characterized by reduced contractility and impaired filling resulting from changes in cardiac structure (hypertrophy, dilatation), cell death, maladaptative remodeling of the extracellular matrix, abnormal energy metabolism and cellular dysfunction. The underlying cellular mechanisms that have been suggested include altered calcium homeostasis, 1 impaired myofilament calcium responsiveness, [2][3][4] and reduced crossbridge cycling rate. 5 A hierarchy of cellular events during the development of heart failure (HF) has been proposed, starting with electrical remodeling and altered Ca 2+ homeostasis during the early phase followed by myofilament dysfunction. 6 Moreover, transmural myocardial contractile performance is non-uniform across the different layers of the LV wall. 7,8 This non-uniformity of cardiac function plays a fundamental role in cardiac mechanical work. Its loss has been previously reported to be a sensitive index to discriminate physiological from pathological left ventricular (LV) remodeling. 8 We previously reported that HF affects preferentially the contractile machinery of the sub-endocardial cells (ENDO), leading to loss of transmural heterogeneity. 3 In clinic, pharmacological treatments are used to maintain as much as possible the pump function of the failing heart. However non-pharmacological approaches may be attempted. For example, many clinical studies have shown that exercise training performed by patients with HF is beneficial for heart performance and quality of life. 9,[START_REF] Joshi | Exercise training in the management of cardiac failure and ischaemic heart disease[END_REF] In the normal heart of small [START_REF] Palmer | Shortening and [Ca2+] dynamics of left ventricular myocytes isolated from exercise-trained rats[END_REF] and large [START_REF] Hinken | Porcine cardiac myocyte power output is increased after chronic exercise training[END_REF] animals, exercise training increases cellular contractile function such as cardiomyocyte shortening, Ca 2+ dynamics and myocyte power-generating capacity, and myocardial perfusion capacity. [START_REF] Cohen | Coronary and collateral blood flows during exercise and myocardial vascular adaptations to training[END_REF] There are also clinical evidences that exercise after MI has a beneficial effect on disease progression and survival. 9,[START_REF] Joshi | Exercise training in the management of cardiac failure and ischaemic heart disease[END_REF] A recent study has shown that early
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exercise in MI mice had no effect on LV remodeling but attenuates global LV dysfunction, which can be essentially explained by the exercise-induced improvement of myofilament function. [START_REF] De Waard | Early exercise training normalizes myofilament function and attenuates left ventricular pump dysfunction in mice with a large myocardial infarction[END_REF] However after a small MI, exercise has either no effect or improved LV function independently of the starting point of exercise (early or late after MI). [START_REF] De Waard | Early exercise training normalizes myofilament function and attenuates left ventricular pump dysfunction in mice with a large myocardial infarction[END_REF] For large infarct, exercise can have detrimental effects when performed at an early stage while beneficial effects on LV remodeling and function appear when exercise is started late after MI. [START_REF] Gaudron | Effect of endurance training early or late after coronary artery occlusion on left ventricular remodeling, hemodynamics, and survival in rats with chronic transmural myocardial infarction[END_REF][START_REF] Kubo | Exercise at ventilatory threshold aggravates left ventricular remodeling in patients with extensive anterior acute myocardial infarction[END_REF] In animal models, most of the studies tested the effect of exercise on LV global and/or cellular functions, 4 weeks after MI, when LV remodeling is still ongoing. [START_REF] Wisloff | Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction[END_REF][START_REF] Krenz | Impact of beta-myosin heavy chain expression on cardiac function during stress[END_REF] Moreover, it has been shown in rat models that 3-5 weeks after MI exercise capacity is still high and close to shamoperated animals while it decreased significantly from 10 weeks after MI. [START_REF] Trueblood | Biphasic temporal pattern in exercise capacity after myocardial infarction in the rat: relationship to left ventricular remodeling[END_REF] Thus the cellular adaptations between early and late exercise after MI may be different. 

Moreover

Animals and exercise training

Myocardial Infarction was produced by permanent ligation of the left coronary artery in male Wistar rats as previously described. 3 Thirteen weeks post-MI, rats were randomly assigned to the sedentary (MI) or 5 weeks treadmill exercised (MI-Ex, 40 min/day, 5 days/week, 16 m/min) groups. At the end of the training protocol, morphological and functional parameters were determined by echocardiography and compared to sham-operated animals. Animals were then sacrificed for cellular investigations.

Echocardiography and noninvasive hemodynamics

Doppler-echocardiography was performed with a MyLab 30 (ESAOTE, Italy).

Wall Thicknesses and Left Ventricular End Diameters (LVED) were obtained at the level of the papillary muscles. LV shortening fraction and End Systolic strain of the posterior wall, measured as deformation from end-diastole to end systole [(PWTs -PWTd)/ PWTd]*100 were calculated. PWTs and PWTd are respectively end systolic and end diastolic Posterior Wall Thickness. [START_REF] Turschner | The sequential changes in myocardial thickness and thickening which occur during acute transmural infarction, infarct reperfusion and the resultant expression of reperfusion injury[END_REF] Ascending aortic blood flow was recorded, as previously described, [START_REF] Reboul | Cardiac remodeling and functional adaptations consecutive to altitude training in rats: implications for sea level aerobic performance[END_REF] via pulsed-wave Doppler permitting measurements of the aortic blood flow velocity time integrals (VTI Ao ). LV sub-endocardial (ENDO) and sub-epicardial (EPI) posterior wall displacements were measured offline at the level of the papillary muscles. Tissue Doppler imaging (TDI) was performed after each conventional echocardiography as previously described. [START_REF] Borenstein | An ovine model of chronic heart failure: echocardiographic and tissue Doppler imaging characterization[END_REF] 

Contractile properties in intact cardiomyocytes

Single LV cardiomyocytes were isolated by enzymatic dissociation from the remaining inner free wall (ENDO) and from the outer free wall (EPI) as previously described (n=5 rats per group). [START_REF] Cazorla | SR33805, a Ca2+ antagonist with length-dependent Ca2+ -sensitizing properties in cardiac myocytes[END_REF] Unloaded cell shortening and calcium concentration [Ca 2+ ] (indo 1 dye) were studied using field stimulation (0.5Hz, 22°C, 1.8 mM external Ca 2+ ). Sarcomere length (SL) and fluorescence (405 nm and 480 nm) were simultaneously recorded (IonOptix system, Hilton, USA).

Force measurements in permeabilized cardiomyocytes

Isometric force was measured in single permeabilized cardiomyocytes at different [Ca 2+ ], at 1.9 then 2.3 m SL as described previously (n=5 rats per group). 3,[START_REF] Cazorla | SR33805, a Ca2+ antagonist with length-dependent Ca2+ -sensitizing properties in cardiac myocytes[END_REF] Force was normalized by the cross-sectional area measured from the imaged cross-section. Force-pCa relations were fitted to a Hill equation. To prevent degradation, all solutions contained protease inhibitors (PMSF: 0.5 mmol/L; leupeptin: 0.04 mmol/L and E64: 0.01 mmol/L).

Myosin-Heavy chain composition

MyHC isoforms were separated on a 6% SDS-PAGE and silver stained as previously described. [START_REF] Cazorla | Effects of highaltitude exercise training on contractile function of rat skinned cardiomyocyte[END_REF] -MyHC content was expressed relative to the total amount of MyHC protein.

Western Immunoblotting

SERCA2a and phospholamban (PLB) were separated on a gradient SDS-PAGE (2-20%) and then blotted onto nitrocellulose membrane. Proteins were revealed with specific antibodies and were expressed relative to Calsequestrin content.

Troponin I (TnI) was separated by 15% SDS-PAGE and the protein kinase A phosphorylated form of cardiac TnI was normalized by the total TnI form as previously described. 3 Myosin light chain 2 (MLC-2) phosphorylated and nonphosphorylated forms were separated by a 10% urea gel and were specifically detected with a cardiac MLC-2 antibody. 3 Immunodetection was revealed with ECL Plus system.

Statistical analysis

Data were analyzed using one-way or 2-way ANOVA between groups. When significant interactions were found, a Bonferroni t-test was applied with adjusted P < 0.05 (Sigmastat 3.5). Data are presented as mean±SEM.

Results

In vivo cardiac morphological and functional parameters

MI animals had large antero-lateral infarcts detected by visual inspection. In a preliminary longitudinal study (data not shown), we observed that in our model, most of the morphological and functional alterations occurred over 11-13 weeks. Minimal changes will occur after this period. Thirteen weeks after MI, LV diameters were increased in MI at the end-diastolic and end-systolic phases without hypertrophy of the posterior wall thickness (Figure 1A). The posterior wall end systolic strain during a cardiac cycle was largely reduced (-80%) in MI animals (Figure 1B). In sham animals, the LV sub-endocardial layer contracted faster (+50% of the section motion)

than the sub-epicardial layers (Figure 1C). Heart failure significantly decreased contraction velocities of both EPI and ENDO layers by 15 and 32%, respectively, homogenizing the transmural velocities of contraction toward the slowest values. The global cardiac systolic function was also altered as shown by the reduction in fractional shortening (FS) (Figure 1D). Since the calculation of FS, measured at the level of papillary muscle, is highly affected by the akinetic infarct zone, we measured the aortic blood-flow velocity time integral (VTI Ao ) as another index of systolic function. VTI Ao was also decreased after MI (Figure 1D). Additional weeks after MI corresponding to the training duration had little impact on these parameters (see below).

Effect of exercise on in vivo cardiac function

We then investigated the effect of exercise training while most of the remodeling and dysfunction of the heart had already occurred. Eighteen weeks post-MI, hearts were hypertrophied as shown by the increase in the heart weight/body weight ratio between Sham and MI animals and further increased after exercise training (Table 1). Part of this exercise-induced hypertrophy may be explained by an increase of the posterior wall thickness although the difference did not reach significance (p= 0.069) (Table 1). The main effect of exercise on LV morphologies was a decrease of both end-systolic and end-diastolic left ventricular diameters (Table 1). Eighteen weeks after MI, we observed a large decrease in the end systolic strain (from 83±4% to 24±11% in sham and MI, respectively) and in the absolute ENDO posterior wall displacement between diastole and systole (from 2.7±0.2 mm to 1.3±0.2 mm in sham and MI, respectively). The values obtained were similar to the one measured 13 weeks post-MI confirming the stability of these indexes during this phase of the disease (Figure 2B). Exercise had a significant beneficial effect on the end systolic strain (63±7%) and on the ENDO posterior wall displacement (1.8±0.4 mm). Sm was similarly decreased between 13 and 18 weeks after MI in both regions.

Exercise restored Sm completely in EPI and only partially in the ENDO layers (Figure 2C). The gradient of velocity across the LV defined as the difference of velocity between ENDO and EPI, observed in normal conditions (1.66±0.11 cm.s -1 ), disappeared almost completely in MI animals (0.28±0.05 cm.s -1 ) and was partially restored in MI-Ex (0.76±0.05 cm.s -1 ) (Figure 2C). Finally, VTI Ao , used as an accurate index of LV stroke volume, decreased by 37% in MI animals and was partially restored by exercise in MI-EX remaining 14% lower than sham (Figure 2D). Exercise had no impact on the mortality of the animals (Figure 2E).

Effect of exercise on myocyte shortening and Ca 2+ transient

The effect of exercise on the excitation-contraction coupling of long-term MI was tested in intact LV unloaded cardiomyocytes. For this purpose, sarcomere length shortening and intracellular calcium content were simultaneously measured on field stimulated cardiomyocytes. Unloaded contraction decreased significantly with HF only in ENDO cells and was restored by exercise (Figure 3). The duration of unloaded shortening (data not shown) and relaxation (Figure 3B) were not different between the various groups. However, the speed of contraction and relaxation were significantly reduced in ENDO MI cells and were restored by exercise (Figure 3C). The amplitude of Ca 2+ transient decreased significantly only in ENDO MI cells and was restored by exercise (Figure 4B). In addition, the calcium transient decay in both EPI and ENDO MI myocytes was significantly slowed (increase in tau), reflecting an altered calcium reuptake. All parameters were normal in MI-Ex. The calcium transient decay in MI is known to be altered due to changes in SERCA2a expression or in the inhibition of SERCA2a/PLB activity. We found that SERCA2a expression was significantly decreased in MI animals, both in ENDO and EPI layers. PLB expression was unchanged. Levels of protein expression in MI-Ex were similar to sham samples (Figure 4C).

Force development in single permeabilized myocytes

Force development of intact myocytes depends on the amount of calcium released by the sarcoplasmic reticulum and the myofilament Ca 2+ sensitivity. Thus, we measured the myofilament Ca 2+ sensitivity (pCa 50 ) at short length (1.9 m SL) and at long length (2.3 m SL). Passive force and maximal isometric tension measured at both SL were similar between Sham, MI, and MI-Ex (Table 2). Neither pathology nor exercise had any effect on myofilament Ca 2+ sensitivity at short SL (Figure 5, Table 2). Stretching the cells to 2.3 m SL induced a leftward shift of tension in all conditions reflecting an increase in myofilament Ca 2+ sensitivity.

However, pCa 50 was significantly lower in the ENDO cells isolated from MI rats.

Exercise restored Ca 2+ sensitivity at 2.3 m SL (Figure 5A). The difference between pCa 50 at the long and short SL (pCa 50 ), used an index of the length-dependent activation of contractile machinery, was significantly smaller in ENDO MI cells compared to the Sham and MI-Ex cells. EPI myocytes were affected neither by the pathology nor by the exercise at both lengths (Figure 5B).

We have previously shown that pCa 50 is closely related to passive tension rather than to SL. 3 The differences in passive and active properties across the left free wall described a positive relationship in which ENDO cells develop more passive tension after a stretch to 2.3 µm SL associated with higher stretch-induced myofilament Ca 2+ sensitivity than did EPI cells (Figure 5C).This correlation disappeared in MI rats, mostly due to a decrease in pCa 50 of ENDO cells.

Interestingly, values obtained in MI-Ex myocytes were similar to those found in sham rats.

Contractile protein isoforms and phosphorylation

Rat heart expresses two isoforms of MyHC (α-or β-MyHC). Variation in α/β-MyHC expression influences cardiac function. In our conditions β-MyHC content increased after MI in both ENDO and EPI cells. Exercise had no effect on β-MyHC content in either ENDO or EPI cells of MI rats (Figure 6A).

TnI and MLC-2 phosphorylations are known to shift the tension-pCa curves in cardiac muscle. Western blot analysis was performed on non-stretched and stretched skinned muscle strips dissected from the sub-endocardial layer or the sub-epicardial layer. Phosphorylation of TnI on the PKA sites was similar between regions, before and after stretch, in sham and MI animals (Figure 6B). We have previously shown that the linear relationship between pCa 50 and passive tension was associated with changes in the phosphorylation level of MLC-2. 3 As previously reported, stretch increased by ≈10% the amount of phosphorylated MLC-2 in the ENDO myocardium of sham animals and not in MI animals (Figure 6C). Exercise restored the stretchinduced increase in MLC-2 phosphorylation in MI animals. MLC-2 phosphorylation was not affected by pathology, stretch and exercise in EPI myocardium.

Discussion

The present study tested whether a remodeled end-stage failing heart following myocardial infarction could benefit from 5 weeks of endurance exercise training. To this end, we evaluated the effects of exercise on LV remodeling, regional in vivo function, cardiomyocyte contractility, Ca 2+ handling, and myofilament Ca 2+ sensitivity. The main findings were that: (1) normal myocardial function is nonuniform due to heterogeneous cellular properties across the wall (2) transmural nonuniformity of myocardial function was lost in MI rats due to ENDO cellular dysfunction

(3) exercise recovered a transmural heterogeneity by improving LV function mostly in sub-endocardial layer, in relation with a normalization of MI-induced dysfunctions of both Ca 2+ handling and myofilaments Ca 2+ sensitivity in ENDO cardiomyocytes.

Regional pathophysiology of MI-induced LV dysfunction

It is now established that cardiac function is non-uniform across the wall due to larger and faster contraction of the sub-endocardial layer as compared with the sub-epicardial tissue one. 7, A recent study using transmural bead markers under biplane cineradiography showed that the onset of myofiber shortening occurred earlier in endocardium than epicardium while the onset of myofiber relaxation occurred earlier in epicardium than endocardium. [START_REF] Ashikaga | Transmural Dispersion of Myofiber Mechanics: Implications for Electrical Heterogeneity In Vivo[END_REF] These differences in fiber strains may be explained by telediastolic and telesystolic transmural differences in wall stress, increasing toward the endocardium. [START_REF] Buchi | Left ventricular wall stress distribution in chronic pressure and volume overload: effect of normal and depressed contractility on regional stressvelocity relations[END_REF] Our data showed that the higher subendocardial fiber shortening during systole was likely due to higher basal cardiomyocyte contractility and a higher stretch-induced increase in myofilament Ca 2+ sensitivity.

As previously reported, [START_REF] Litwin | Serial echocardiographic assessment of left ventricular geometry and function after large myocardial infarction in the rat[END_REF][START_REF] Konstam | Prevention and reversal of left ventricular remodeling: Summation[END_REF] the remodeling of MI heart was characterized by LV dilatation, hypertrophy, and dysfunction. The cardiac pump dysfunction was characterized here by a reduction in LV fractional shortening and other indexes such as the aortic velocity time integral, and the amplitudes and velocities of contraction of the myocardial layers. We also observed that the pathology did not affect uniformly the heart. Following MI, wall contractility decreased mostly in the sub-endocardial layer with a higher decrease in the amplitude of displacement (-52% vs -28%, Endo vs Epi) and in the velocity of contraction (-36% vs -13%, Endo vs Epi). These changes resulted in a homogenization in regional myocardial function and the complete loss of transmural nonuniformity.

Beneficial effects of exercise training on MI cardiac function

In our MI model, most parameters of the LV remodeling and in vivo dysfunctions were achieved 13 weeks after MI and were stable 18 weeks after MI (Figures 1 and2). We thus assessed whether exercise could improve myocardial function and restore the transmural heterogeneity in a remodeled MI heart. Studies in humans with large MI reported that exercise had either no [START_REF] Sullivan | Exercise training in patients with severe left ventricular dysfunction. Hemodynamic and metabolic effects[END_REF] , or a beneficial [START_REF] Giannuzzi | Attenuation of unfavorable remodeling by exercise training in postinfarction patients with left ventricular dysfunction: results of the Exercise in Left Ventricular Dysfunction (ELVD) trial[END_REF] effect on ejection fraction and LV volumes. Previous studies in animal models reported that exercise had no effect on LV function parameters such as LV dP/dtmax or fractional shortening irrespective of whether exercise was started early or late after MI, despite an improvement in cell function. [START_REF] Gaudron | Effect of endurance training early or late after coronary artery occlusion on left ventricular remodeling, hemodynamics, and survival in rats with chronic transmural myocardial infarction[END_REF][START_REF] Wisloff | Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction[END_REF] Neither was fractional shortening in MI improved by exercise in our study. However, other indexes of cardiac function such as aortic blood flow (VTIAo) and regional amplitude and velocities of contraction were improved after exercise. In several clinical studies, alterations in wall motion (including wall thickening) measured by echocardiography were shown to be good predictors of subsequent cardiac events of morbidity and mortality [START_REF] Carluccio | Usefulness of the severity and extent of wall motion abnormalities as prognostic markers of an adverse outcome after a first myocardial infarction treated with thrombolytic therapy[END_REF][START_REF] Moller | Prognostic importance of systolic and diastolic function after acute myocardial infarction[END_REF] and interventions that halt, slow or reverse these ventricular dysfunctions should markedly improve clinical outcomes. [START_REF] Haykowsky | A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed[END_REF] The higher exercise-induced improvement of amplitude and velocity of contraction in ENDO allowed to partially recovering a transmural nonuniformity. This may in turn contribute in the exercise-induced beneficial effect on cardiac function.

In view of the concern that late exercise may aggravate LV remodeling after a large MI and life expectancy, we investigated LV remodeling with or without exercise.

Five weeks of exercise decreased LV end-diastolic and end-systolic diameters, and did not aggravate LV remodeling. Our exercise protocol was a moderate endurance protocol, confirmed by the fact that sham animals exercised at the same intensity did not show any change in any parameters investigated (data not shown). These observations are in agreement with a recent study reporting that 8 weeks of moderate exercise in mice with MI cardiomyopathy [START_REF] De Waard | Early exercise training normalizes myofilament function and attenuates left ventricular pump dysfunction in mice with a large myocardial infarction[END_REF] and hypertrophic cardiomyopathy [START_REF] Konhilas | Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy[END_REF] reversed collagen content with little effect on cardiac hypertrophy.

In our study, exercise did not induce a higher mortality consistent with previous studies with human patients. [START_REF] Kubo | Exercise at ventilatory threshold aggravates left ventricular remodeling in patients with extensive anterior acute myocardial infarction[END_REF] 

Exercise-induced effects on contractile cellular properties

The mechanisms for LV dysfunction after MI remain incompletely understood but have been proposed to be a consequence of cellular alterations and extracellular matrix remodeling. 1 Recent studies have shown that early exercise in mice after MI had no effect on LV remodeling but slightly attenuates global LV dysfunction mostly by improving myofilament function without Ca 2+ signaling. [START_REF] De Waard | Early exercise training normalizes myofilament function and attenuates left ventricular pump dysfunction in mice with a large myocardial infarction[END_REF] However, similar protocols performed in female Sprague-Dawley rat model showed a recovery of contraction function, Ca 2+ handling and some indexes of improved myofilament Ca 2+ sensitivity following early exercise after MI. 17 sensitivity. Finally the origin of heart failure (ischaemic, pressure overload) and the stage of HF may also affect the results. 6 Heart failure in small rodents is associated with a shift in isomyosin synthesis from predominantly α-myosin toward β-myosin. [START_REF] Swynghedauw | Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles[END_REF] This shift observed during the LV remodeling has been proposed to improve myocardial work efficiency by generating cross-bridge force with a higher economy of energy consumption and thus maintaining contractility. 6 Similar shift can be observed in exercised animals. [START_REF] Cazorla | Effects of highaltitude exercise training on contractile function of rat skinned cardiomyocyte[END_REF] In our study, β-MyHC content was increased by HF but was not affected by exercise. Thus the beneficial effect of exercise on MI myocardial function is independent on myosin expression.

The level of MLC-2 phosphorylation affects myofilament Ca 2+

sensitivity. [START_REF] Morano | Tuning the human heart molecular motors by myosin light chains[END_REF] MLCK and a protein phosphatase (PP). [START_REF] Rajashree | Modulation of myosin phosphatase targeting subunit and protein phosphatase 1 in the heart[END_REF] MLCK activity is modulated by PKA and PKC phosphorylations, and Ca 2+ -calmodulin interaction offering potential regulators for the exercise-induced effect on MLC-2 phosphorylation. [START_REF] Rajashree | Modulation of myosin phosphatase targeting subunit and protein phosphatase 1 in the heart[END_REF][START_REF] Grimm | The MLCK-mediated alpha1-adrenergic inotropic effect in atrial myocardium is negatively modulated by PKCepsilon signaling[END_REF] The normalization of Ca 2+ transient after exercise in MI may contribute to increasing MLCK activity and thus MLC-2 phosphorylation. MLC-2 dephosphorylation is classically attributed to PP1. Studies suggest that PP1 activity and expression is increased in end-stage CHF in dog [START_REF] Gupta | Cardiac SR-coupled PP1 activity and expression are increased and inhibitor 1 protein expression is decreased in failing hearts[END_REF] but PP1 expression was found unchanged in rat with CHF. [START_REF] Belin | Augmented protein kinase C-alpha-induced myofilament protein phosphorylation contributes to myofilament dysfunction in experimental congestive heart failure[END_REF] In our study, alteration in PP1 activity after MI and/or exercise, could account for the changes in MLC-2 phosphorylation and the lack of effect on TnI between MI and MI-Ex.

However, more experiments are required to explore the kinase/phosphatase alteration after MI and exercise. The present study indicates that exercise training started late after a large MI improved regional LV function and molecular phenotype, without any adverse effects on LV remodeling and survival during the protocol. The beneficial effects of exercise on cellular function have been proposed to restore β1-adrenergic signaling. [START_REF] De Waard | Early exercise training normalizes myofilament function and attenuates left ventricular pump dysfunction in mice with a large myocardial infarction[END_REF] However, there is no sign here of such improvement that should affect the phosphorylation status of various proteins (TnI, PLB, titin-based passive tension).

Limitations of the study

Future studies should be aimed at investigating whether this difference is due to the fact that exercise was performed in organisms in which the β-adrenergic signaling has been already extensively stimulated, suggesting other signaling pathways for exercise-induced beneficial effects. This is of particular interest since most patients with heart failure are treated with β-blockers. Another positive aspect of this study is that exercise preferentially restored the contractile properties of the tissue altered by the pathology (ENDO), allowing physiological cardiac contractile heterogeneity to be restored. Because of its relatively low cost, high availability and ease of use, exercise training is an intervention that could be accessible to most patients with heart failure. 

Legends

  , part of the discrepancy on the effect of exercise on MI in the literature may be due to use of swimming training 15 , which is known to have different responses from those to treadmill running, complicated by factors such as the diving reflex, mental stress, and episodes of hypoxia associated with diving. The present study evaluated in a rat model the effect of exercise training, started at a late stage of HF (13 weeks post-MI), on LV remodeling and function of the global and cellular contractile properties in various regions of the LV free wall. The results indicated that in vivo systolic function (Fractional Shortening and aortic Velocity Time Integral (VTI Ao )) was reduced in MI rats in association with a reduction of the amplitude and speed of contraction of the ENDO layer and to a lesser extent of the sub-epicardial layer (EPI). These alterations led to a uniformity of the transmural myocardial function, which were partially reversed by exercise. Exercise improved part of the systolic parameters and slightly reduced LV dilatation. The in vivo beneficial effect of exercise was associated with a restoration of the ENDO cellular properties, by reversing the MI-induced abnormalities in Ca 2+ -handling function and proteins, phosphorylation status of contractile proteins, and myofilament function. METHODS For a detailed description, see expanded Materials and Methods in the online data supplement. Experiments complied with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publications No. 85-23, revised 1996) and with the approval of the French Ministry of Agriculture.

  In our study, cell shortening decreased after MI exclusively in ENDO cells, most probably due to both reduced Ca 2+ release and decreased myofilament function. Exercise fully restored the ENDO cellular properties without affecting the EPI cells. The recovery of calcium transient after exercise was associated with changes in SERCA2a 17,present study and Na + /Ca 2+ exchanger[START_REF] Wisloff | Aerobic exercise reduces cardiomyocyte hypertrophy and increases contractility, Ca2+ sensitivity and SERCA-2 in rat after myocardial infarction[END_REF] expression suggesting a recovery of the loading conditions of the sarcoplasmic reticulum. Further studies are needed to determine whether the exercise-induced improvement in systolic Ca 2+ levels are due to changes in Ca 2+ release properties through the ryanodine receptors.Myofilament Ca 2+ sensitivity was depressed at end-stage HF in the present study. Previous studies in single skinned myocytes have reported either increases[START_REF] Van Der Velden | Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins[END_REF] or decreases3,4 in myofilament Ca 2+ sensitivity both in human and experimental HF. The reasons for these different findings are not entirely clear. One explanation for these different findings may relate to the different experimental preparations that were studied (multicellular vs. single myocyte skinned myocardium).Another explanation might be the level of neurohormonal stimulation present at the time of tissue preparation that will affect the balance between kinases and phosphatases. Indeed, most of the studies reported alterations of the level of phosphorylation of sarcomeric regulatory proteins that correlated with the changes in myofilament Ca2+ 

  Increasing MLC-2 phosphorylation by incubating myofilaments with exogenous MLC Kinase (MLCK) increases myofilament Ca 2+ sensitivity. 38- 40 A decrease in MLC-2 phosphorylation has been described in failing human 41 and animal 3 hearts and has been associated with the observed decrease in myofilament Ca 2+ sensitivity; similar results were obtained in Endo MI myocytes of the present study. Thus, the increase in MLC-2 phosphorylation in the sub-endocardial tissue exclusively, observed in the present study after exercise may by itself explain the improved myofilament Ca 2+ sensitivity. The phosphorylation level of MLC-2 depends on the balance of activities between the

From

  the present study, we cannot draw any conclusions as to the effect of this protocol on life expectancy since the animals were sacrificed at the end of the exercise protocol. In particular, future studies should determine how the improvement of the global and regional cardiac function and the normalization of the cellular dysfunctions post-MI at the end of the training could affect the occurrence of sudden cardiac death because of arrhythmic events. It would have been also interesting to obtain intraventricular pressure measurements that would have given more in vivo functional index, allowing to further explore the effect of exercise training on diastolic (dys)function in our model.

Figure 1 .

 1 Figure 1. Left ventricular morphological and functional characteristics 13 weeks post-MI. End-diastolic and end-systolic diameters and diastolic posterior wall thickness (PWTd) (A), end systolic strain (B), Systolic velocity of the LV Epicardial and Endocardial layers (C), global systolic function (D) as indexed by fractional

Figure 2 .

 2 Figure 2. Left ventricular morphological and functional characteristics in MI and MI-Ex rats. A) Echocardiography images with an enlargement of the posterior wall. B) End systolic strain (left) and displacement of Epicardial and Endocardial layers during a cardiac cycle (right). C) Systolic velocity (left) and Gradient of velocity Endo-Epi (right). D) Aortic velocity time integral (VTI Ao ). E) Survival curve following the beginning of exercise program. * adjusted p<0.05 (n=12-17 hearts/group).
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 3456 Figure 3. Sarcomere length shortening in isolated MI and MI-Ex cardiomyocytes. A) SL shortening examples of endocardial (left trace) and epicardial (right trace) sham, MI, and MI-Ex myocytes. B) Averaged data of SL shortening (in % on baseline) and time to 50% of relaxation (TR50). C) Speeds of contraction (left) and relaxation (right) (n=55-106 cells/5 hearts) * adjusted p<0.05
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Table 1 : Cardiac morphological and functional parameters :

 1 LVEDs, left ventricular end-systolic diameter; LVEDd, left ventricular end-diastolic diameter; AWTd, enddiastolic anterior wall thickness; PWTd, end-diastolic posterior wall thickness; FS, Fractional shortening. VTI AO , aortic Velocity Time Integral. HR, heart rate. Values are means ± SEM (n= number of cells).

	Sham	MI	MI-Ex
	(n=12)	(n=17)	(n=14)

*

Sham vs MI.

† MI vs MI-Ex ; p<0.05.

Table ( s)

 ( 

Table 2 : Regional mechanical properties of cardiomyocytes isolated from sham, myocardial infarcted (MI), and MI exercised (MI-Ex) rats :

 2 Tpass) and maximal active (Tmax) tensions in mN/mm 2 were measured at pCa 9 and 4.5 and at 1.9 and 2.3 mm sarcomere length, respectively, on sub-epicardial (EPI) and sub-endocardial (ENDO) cells isolated from sham, MI, and MI-Ex hearts. pCa 50 (pCa for half-maximal activation) and nH (Hill coefficient), were calculated by fitting the force-pCa relation (see materials and methods). Values are means ± SEM (n= number of cells; 5 rats per group).

			Sarcomere length, 1.9 µm			Sarcomere length, 2.3 µm	
		(n)	Tpass Tmax	pCa 50	n H	Tpass	Tmax	pCa 50	n H	pCa 50
	Endocardium							
	Sham	(15) 0.9±0.2 47±4 5.75±0.02 4.1±0.3	11.5±0.9*	50±3	5.98±0.02*	4.7±0.3	0.23±0.01*
	MI	(10) 0.9±0.3 40±3 5.74±0.03 4.6±0.5	9.4±1.2	47±3	5.88±0.03* † ‡ 5.2±0.5	0.13±0.02 † ‡
	MI-Ex	(10) 1.0±0.2 45±5 5.74±0.03 4.7±0.6	11.1±1.9*	46±5	5.98±0.02	5.1±0.4	0.24±0.02
	Epicardium							
	Sham	(12) 0.8±0.1 36±4 5.74±0.01 4.4±0.3	8.3±0.8	38±5	5.93±0.01	4.6±0.3	0.19±0.01
	MI	(8) 0.8±0.3 35±4 5.80±0.01 5.0±0.5	7.3±1.5	40±4	5.95±0.01	5.4±0.5	0.15±0.02
	MI-Ex	(13) 0.9±0.3 38±3 5.77±0.01 4.8±0.2	7.1±0.5	40±3	5.94±0.01	5.2±0.6	0.18±0.02
	Passive (								

* EPI vs ENDO, † sham vs MI, ‡ MI vs MI-Ex ; p<0.05, two-way ANOVA.
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Expanded methods

Animals and exercise training:

Male Wistar rats (5 weeks old) were subjected to coronary artery ligature to produce MI (Myocardial Infarcted) rats as previously described. [1][2][3] Thirteen weeks after myocardial infarction, rats were subdivided into two groups: sedentary (MI) and exercised (MI-Ex) animals. The exercise program consisted of 5 weeks exercise on a treadmill (40 min/day, 5 days/week). The speed of running was gradually increased from 10 m/min to 16 m/min. At the end of the training protocol, morphological and functional parameters were determined by echocardiography and compared to sham-operated animals that were subjected to the same surgical operation without tightening the coronary ligature. 

Noninvasive hemodynamics

Ascending aortic blood flow was recorded, as previously described 
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was preferentially used in this study as an accurate index of LV stroke volume and therefore of LV global function because this index is less sensitive to error measurement from the aortic annulus than the stroke volume. 6 LV sub-endocardial (ENDO) and sub-epicardial (EPI) posterior wall displacement was measured offline on the short axis view at the level of the papillary muscles. Tissue Doppler imaging (TDI) was performed after each conventional echocardiography as previously described.

7

Measurement of myocardial velocities resulting from the LV radial contraction was performed on the short axis view at the level of the papillary muscles. TDI analysis was performed offline with the MyLabDesk software (ESAOTE, Italy). The angle of interrogation of the myocardial velocities was carefully aligned to be perpendicular to LV walls. The TDI sample was manually positioned along the posterior wall within the Endo and Epi layers to obtain the ENDO and EPI velocities. Intra-and interobserver Doppler echocardiography and TDI variabilities are evaluated during a previous study in Wistar rats (n=6) by means of variation coefficients. Coefficients were all equal to or lower than 6.5 % (aortic VTI) with a minimal value for LVEDd (1.5 %).

Contractile properties in intact cardiomyocytes

Eighteen weeks post-infarctus, single ventricular myocytes were isolated by enzymatic digestion as previously described (n=5 rats par group). 8 Briefly, hearts were quickly removed and mounted on a Langendorff apparatus. The heart was perfused 10 min with a Ca 2+ -free Hanks-HEPES solution followed by perfusion with an enzymatic solution for 10-20 min at 37°C (see below for solution compositions). Small pieces of ventricular tissues from the inner free wall Endocardium and from the outer free wall Epicardium were dissected and gently dissociated with a pipette in Ca 2+ free solution. Calcium concentration was gradually increased to 1 mmol/L Ca 2+ . To prevent protein degradation after collagenase treatment, all solutions contained protease inhibitors (PMSF: 0.5 mmol/L and E64d [transepoxysuccinyl-1-leucine-guanidobutylamide]: 0.01 mmol/L).

Cells were loaded for 30 min at room temperature with Indo-1 AM (10mol/L Invitrogen inc., France). Experiments were performed in 1.8 mM Ca 2+ containing solution. Cells were electrically stimulated at a frequency of 0.5 Hz (20V, 1 ms), and simultaneously illuminated at 305 nm using a xenon arc bulb light. Sarcomere length (SL) and fluorescences emitted at 405 nm and 480 nm were simultaneously recorded using IonOptix acquisition software (IonOptix system, Hilton, USA).

Force measurements in permeabilized cardiomyocytes

Ventricular myocytes were isolated by mechanical dissociation as described previously. 1,8 The heart was pre-skinned by perfusing relaxing solution (for composition see below) containing 1% Triton X-100 and protease inhibitors (see above) for 10 min. Right ventricle and PMI fibrotic tissue were discarded. Several left sub-epicardial and sub-endocardial skinned strips (8-mm long, 2-mm width, 1mm thick) were dissected under a microscope following the orientation of the fibers in the skinning solution, and were further skinned 10 min at 4°C in relaxing solution containing 1% Triton X-100.

Strips were frozen in liquid nitrogen at slack length or after stretching by ~20-30% of initial slack length to 2.30±0.05 µm SL in relaxing solution for biochemistry or prepared for mechanical experiments as follow. The strips were mechanically disrupted at 11,000 rpm for 2-3 sec (Polytron PT45-80 with a PTA 10TS shaft, KINEMATICA AG, Switzerland) in fresh ice-cold relaxing solution, resulting in a suspension of small clumps of myocyte-sized preparations. The homogenized tissue was filtered and centrifuged at 1.000 rpm for 1 min at 4°C. The pellet containing the myocytes was further skinned in 0.3% Triton X-100 solution for 6 min to remove remaining sarcolemma membranes, and then extensively washed in relaxing solution. To prevent degradation, all solutions contained protease inhibitors (PMSF: 0.5 mmol/L; leupeptin: 0.04 mmol/L and E64: 0.01 mmol/L). Cells were kept on ice and used within the day. Cells were used immediately after cell isolation within one day for mechanical experiments.

Active and passive forces were measured as described previously. 1 Myocytes were attached to a piezoresistive strain gauge (AE801 sensor, Memscap, Crolle, France) and to a stepper motor driven micromanipulator (MP-285, Sutter instrument company, Novato CA, USA) with thin needles and optical glue (NOA 63, Norland products Inc, North Brunswick, NJ) that polymerized by 2 min UV illumination. SL was determined online throughout the experiment at 50 Hz by using a Fast Fourier Transform algorithm on the video images of the cell. Force was normalized by the cross-sectional area measured from the imaged cross-section. After a test-activation at pCa 4.5, the cell was stretched to various SL in relaxing solution using a stepper motor driven micromanipulator at a speed of 0.1 length/sec to evaluate passive tension. Steady state passive tension (after the rapid phase of stress relaxation) was sequentially measured at 1.9, and 2.3 µm SL. Then pCa-force relationships were established at two SL, 1.9 then 2.3 µm at 22°C. The cell was kept five minutes at slack length in relaxing solution between each phase of the protocol for complete refolding of titin. Active tension at
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each pCa was the difference between total tension and relaxed tension. Cells that did not maintain 80% of the first maximal tension or a visible striation pattern were discarded. The SL change varied somewhat from cell to cell, and we continued with cells that were well attached with minimal SL changes (< 0.1 µm). When required, cell length was varied during contraction in order to keep SL constant. Active tensions at submaximal activations were normalized to maximal isometric tension (classically obtained at pCa 5) at the same SL. The relation between force and pCa was fitted to the following equation:

, where n H is the Hill coefficient and pCa 50 , pCa for halfmaximal activation equals -(log K)/n H .

Experimental solutions

For isolating intact cells, three different solutions were used. Ca 2+ -activating solutions were prepared daily by mixing relaxing (pCa 9.0) and maximal activating (pCa 4.5) solutions. 8 The relaxing and activating buffers contained (in mmol/L): phosphocreatine 12, imidazole 30, free Mg 2+ 1, EGTA 10, Na 2 ATP 3.3, and dithiothreitol 0.3 with pCa 9.0 (relaxing solution) and pCa 4.5 (maximal activating solution), protease inhibitors (PMSF 0.5 mmol/L, leupeptin 0.04 mmol/L, and E64 0.01 mmol/L) pH 7.1 adjusted with acetic acid. Sufficient potassium acetate was added to adjust ionic strength to 180 mmol/L.

Protein analysis:

MyHC isoforms were separated on a 6% SDS-PAGE as previously described 9 . Intact myocytes were dissolved in an SDS lysis buffer (Tris-HCl 50 mM, 2% (w/v) SDS, urea 8 mol/L, EGTA 1 mmol/L, EDTA 1 mmol/L, DTT 80 mmol/L, 10% (v/v) glycerol, pH 6.8, protease inhibitors) and heated 6 min at 50°C. Gels were silver stained and analyzed with an imaging system (Kodak Image Station 2000R). -MyHC content was expressed relative to total amount of the MyHC protein.
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For the SERCA and phospholamban (PLB) intact myocytes were dissolved 15 Proteins (20 µg) were separated either on 15% SDS-PAGE (for TnI) or 10% urea gel (for MLC-2). For both studies, all samples from one animal in the various conditions (ENDO/EPI, relax/stretch) were always loaded on the same gel. MLC-2 phosphorylated and non-phosphorylated forms were separated by a 10% urea gel and were specifically detected with a cardiac MLC-2 antibody (Coger SA, Paris, France). Total TnI content was determined on the first wells of the membrane with a total cardiac TnI antibody (Cat#4T21, Hytest, Turku, Finland) and the protein kinase A phosphorylated form of cardiac TnI antibody on the other wells (Cat#4T45, Hytest). Immunodetection was revealed with ECL Plus system (Amersham Pharmacia, Little Chalfont Buckinghamshire, England).

Statistical analysis

One-way or 2-way ANOVA was applied for comparison between groups. When significant interactions were found, a Bonferroni t-test was applied with P < 0.05 (Sigmastat 3.5). Data are presented as mean±SEM.