
HAL Id: hal-01824325
https://hal.umontpellier.fr/hal-01824325

Submitted on 13 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional evidence for an active role of B-type
natriuretic peptide in cardiac remodelling and

pro-arrhythmogenicity
Jérôme Thireau, Sarah Karam, J. Fauconnier, Stéphanie Roberge, Cécile
Cassan, Olivier Cazorla, Franck Aimond, Alain Lacampagne, Dominique

Babuty, Sylvain Richard

To cite this version:
Jérôme Thireau, Sarah Karam, J. Fauconnier, Stéphanie Roberge, Cécile Cassan, et al.. Func-
tional evidence for an active role of B-type natriuretic peptide in cardiac remodelling and pro-
arrhythmogenicity. Cardiovascular Research, 2012, 95 (1), pp.59 - 68. �10.1093/cvr/cvs167�. �hal-
01824325�

https://hal.umontpellier.fr/hal-01824325
https://hal.archives-ouvertes.fr


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Functional evidence for an active role of B-type
natriuretic peptide in cardiac remodelling
and pro-arrhythmogenicity
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Cécile Cassan1, Olivier Cazorla1, Franck Aimond1, Alain Lacampagne1,
Dominique Babuty2, and Sylvain Richard1*
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Aims During heart failure (HF), the left ventricle (LV) releases B-type natriuretic peptide (BNP), possibly contributing to
adverse cardiovascular events including ventricular arrhythmias (VAs) and LV remodelling. We investigated the
cardiac effects of chronic BNP elevation in healthy mice and compared the results with a model of HF after myocar-
dial infarction (PMI mice).

Methods
and results

Healthy mice were exposed to circulating BNP levels (BNP-Sham) similar to those measured in PMI mice. Telemetric
surface electrocardiograms showed that in contrast with fibrotic PMI mice, electrical conduction was not affected in
BNP-Sham mice. VAs were observed in both BNP-Sham and PMI but not in Sham mice. Analysis of heart rate vari-
ability indicated that chronic BNP infusion increased cardiac sympathetic tone. At the cellular level, BNP reduced
Ca2+ transients and impaired Ca2+ reuptake in the sarcoplasmic reticulum, in line with blunted SR Ca2+ ATPase
2a and S100A1 expression. BNP increased Ca2+ spark frequency, reflecting Ca2+ leak through ryanodine receptors,
elevated diastolic Ca2+, and promoted spontaneous Ca2+ waves. Similar effects were observed in PMI mice. Most of
these effects were reduced in BNP-Sham and PMI mice by the selective b1-adrenergic blocker metoprolol.

Conclusion Elevated BNP levels, by inducing sympathetic overdrive and altering Ca2+ handling, promote adverse cardiac remod-
elling and VAs, which could account in part for the progression of HF after MI. The early use of b-blockers to prevent
the deleterious effects of chronic BNP exposure may be beneficial in HF.
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1. Introduction
B-type natriuretic peptide (BNP) is synthesized in cardiac myocytes
and released in excess into the blood circulation following left ven-
tricular (LV) wall stretching.1 During the onset of ventricular remod-
elling after myocardial infarction (PMI), BNP is chronically elevated
and is a strong indicator of heart failure (HF) severity.1 Despite fa-
vourable haemodynamic effects, high blood BNP is associated with
the risk of ventricular arrhythmias (VAs) and sudden cardiac death
(SCD).2,3 Consequently, the effectiveness of therapies aimed at in-
creasing BNP during HF is still questionable.4 While short-term
BNP infusion is of haemodynamic benefit, with natriuretic, diuretic,

and vasorelaxant effects, chronic BNP treatment increases the risk
of mortality.3,5,6 Sympathetic activation related to a reflex response
triggered by these haemodynamic effects could be implicated in this
process.7,8 Although the signalling pathways mediating the effects of
BNP are poorly understood, a therapeutic strategy that could
prevent the deleterious effects of BNP without affecting its benefits
remains of interest.

Altered Ca2+ cycling, characterized by increased sarcoplasmic re-
ticulum (SR) Ca2+ leak, decreased SR Ca2+ uptake leading to diastolic
Ca2+ elevation, and decreased systolic Ca2+ levels, is a common
feature in chronic HF.9– 11 Such altered Ca2+-handling and chronic
sympathetic overdrive are established components of chronic HF
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triggering VA.12 BNP decreases the expression of SR Ca2+ ATPase 2a
(SERCA2a)13,14 and induces pro-adrenergic effects.15 We thus
hypothesized that BNP could influence two key players in the trigger-
ing of VA and, more globally, in cardiac remodelling during HF.

Our present study attempts to determine the effect of chronic BNP
treatment on LV function both in vivo in healthy mice and at the cel-
lular level. Here, we show, by heart rate variability (HRV) analysis
and the use of the b-blocker metoprolol, that increased sympathetic
tone associated with Ca2+-handling alterations contributes to
BNP-mediated LV remodelling and VA.

2. Methods
2.1 Animals and BNP
All procedures conformed to European Parliament Directive 2010/63/EU
and the 22 September 2010 Council on the protection of animals and
were approved by the local institutional animal research committee
(Languedoc Roussillon, No. CE-LR-0714).

For cardiomyocyte experiments, the heart was explanted after euthan-
asia by cervical dislocation. Seven-week-old male C57BL/6 mice (Janvier,
Le Genest-Saint-Isle, France) were randomly assigned to the following
groups: (i) Sham; (ii) Sham treated with BNP (BNP-Sham); (iii) mice sub-
jected to HF by left coronary artery ligation (PMI); (iv) BNP-Sham mice
treated with the b1-adrenergic blocker metoprolol (BB-BNP-Sham);
and (v) PMI mice treated with metoprolol (BB-PMI). For PMI, a left thora-
cotomy was performed under anaesthesia and cardiac monitoring (2% iso-
flurane/O2, Aerranew, Baxter, France). The artery was ligated 1–2 mm
beyond its point of emergence from the top of the left atrium, using an
8-0 suture. A subcutaneous injection of 0.01 mL buprenorphine solution
(0.3 mg/mL) was administered for post-operative analgesia. Sham mice
were subjected to the same surgical procedure but without coronary
artery ligation. Two mice died during surgery, i.e. before their inclusion
in the study, and were replaced. Metoprolol (Sigma-Aldrich, 100 mg/kg/
day) was administered in the drinking water. The dose was determined
based on the literature. In the range of 60–350 mg/kg/day, metoprolol
has beneficial effects on cardiac and cellular function.16 –20 Here, the
dose of 100 mg/kg/day reduced the heart rate and improved the HRV
parameters in PMI mice without affecting the water intake. Mouse
BNP(1–45) (Ref 14-5-30A, American Peptide, Sunnyvale, CA, USA) was
administered to Shams at a rate of 0.03 mg/kg/min for 14 days, using a
micro-osmotic pump (Alzet 1002, Charles River, France), to achieve
plasma BNP levels similar to the steady-state level observed in PMI
mice. Circulating BNP levels were measured in duplicate using a commer-
cial kit (Phoenix Pharmaceuticals, Belmont, CA, USA). The timeline of
experiments is shown in the Supplementary material online, Figure S1.

2.2 Histology
Haematoxylin–eosin and Sirius red staining were performed as
described.21 Results indicate the area of Sirius red-stained tissue as a per-
centage of the total area of myocardial tissue.

2.3 In vivo analysis
Cardiac function was assessed by echocardiography (Vivid7Pro, GE
Medical Systems, USA). LV mass, LV shortening fraction (SF), end-diastolic
LV dimension (LVEDd), and end-systolic LV dimension (LVEDs) were
measured.10 Electrocardiograms (ECGs) were recorded by telemetry
(DSI, St Paul, MN, USA, and EMKA Technologies, France).10 HRV, the
PR, QRS, and QTc intervals, and arrhythmias were analysed using 12 h
nocturnal ECGs (ECG-auto, EMKA Technologies).21

2.4 Ca21 handling
LV myocytes were enzymatically dissociated, loaded with a fluorescent
Ca2+ indicator Fluo-4 AM (5 mmol/L, Molecular Probes, Paris, France),
and field-stimulated at 1.0 Hz to assess intracellular Ca2+ transients
and cell shortening.10 Ca2+ sparks were recorded in quiescent cells
(1.5 ms/line, LSM510 Zeiss confocal microscope; ×63 water-immersion
objective; NA: 1.2) at 258C.10 Cell volume was estimated using Z-stack
(x–y projection, front view) image acquisition. Data were analysed using
ImageJ and ‘SparkMaster’. Cellular arrhythmias and diastolic Ca2+ levels
were measured with ratiometric Indo-1 AM (10 mM, Invitrogen, France;
IonOptix System, Hilton, USA).10 Ca2+ fluorescence was measured
during a 30 s pacing period (1.0 Hz), followed by a 30 s rest period. Dia-
stolic Ca2+ levels and the number of cells developing ectopic Ca2+ tran-
sients during the rest period were quantified.

2.5 Ca21-handling proteins
LV proteins were separated using 2–20% SDSi–PAGE, blotted onto
PVDF membranes (Protean, Germany) and incubated overnight at
48C with primary antibodies: RyR-2 (Covalab, France), Phospho
Ser2809-RyR-2 (A010-30, Badrilla, UK), SERCA2a (A010-20, Badrilla),
phospholamban (PLB; A010-14, Badrilla), PhosphoSer16-PLB (A010-12,
Badrilla), NCX1 (R3F1, Swant, Switzerland), and S100A1 (SP5355P,
Acris Antibodies GmbH, Germany). Protein levels were expressed rela-
tive to calsequestrin (PA1-913, ABR, USA). Immunodetection was per-
formed using the ECL Plus system (Amersham, UK).

2.6 Statistical analysis
All data are reported as means+ standard deviation. Statistical analyses
were performed using GraphPad Prism and Origin Softwares. One-way
ANOVA for multiple comparisons was used, followed by a parametric
t-test with Bonferroni’s correction for all parameters. A P-value of 0.05
or less indicated a statistically significant difference.

3. Results

3.1 Plasma BNP levels in BNP-Sham
and PMI mice
Sham mice had levels of circulating BNP lower than the detection limit
(,0.34 ng/mL). In PMI mice, BNP increased to 5.4+ 1.2 ng/mL (n ¼
8) 14 days after MI and remained stable over the next 2 weeks.
At week 4, BNP-Sham mice presented BNP levels (6.8+1.4 ng/mL,
n ¼ 8) similar to those measured in PMI animals (5.1+0.9 ng/mL,
n ¼ 7).

3.2 Morphofunctional and
electrocardiographic effects of BNP
Chronic BNP treatment increased the heart weight–body weight
ratio (HWR) of BNP-Sham and PMI mice (Table 1). Unlike modifica-
tions in PMI mice, echocardiography revealed an unchanged LVEDd
and SF in BNP-Sham mice (Table 1). ECG showed an unchanged
heart rate in BNP-Sham mice, whereas it was increased in PMI mice
as indicated by the decreased RR interval (Figure 1A). The PR interval,
corresponding to the conduction time from the sinus node through
the atrioventricular (AV) node to the ventricle, was unaltered in
both BNP-Sham and PMI mice (Figure 1A), whereas the QRS duration,
representing the time to ventricular depolarization and early repolar-
ization, was lengthened in PMI mice (Figure 1C). In addition, multiple
spikes within the complex (fragmented QRS),22 probably caused by
myocardial scarring, were observed in PMI but not in BNP-Sham
mice. The QTc interval was increased in both BNP-Sham and PMI
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Figure 1 ECG analysis. Parameters estimated from 12 h nocturnal ECGs: heart rate (RR interval) (A), PR interval (B), QRS duration (C ), and QTc
interval (D). Heart rate variability analysed in the time-domain (SDNN) (E) and frequency-domain with low-frequency (LF; F) and high-frequency
bands (HF; G) and LF/HF ratio (H ). *P , 0.05, **P , 0.01, BNP-Sham/PMI vs. Sham animals; £P , 0.05, ££P , 0.01 for metoprolol-treated vs.
untreated animals, n ¼ 12 for each group.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Echocardiography, histology, and cellular hypertrophy

LVEDd (mm) SF (%) HWR Collagen (%) Cell volume (1025 mm3)

Sham 26.2+0.4 61.7+1.2 3.30+0.23 0.1+0.0 3.5+0.1

BNP-Sham 27.1+0.1 57.9+1.2 3.72+0.08* 0.2+0.0 5.0+0.3**

PMI 48.6+0.2** 17.9+1.4** 4.01+0.32* 5.1+1.8** 5.3+0.5**

End-diastolic diameter of left ventricular cavity (LVEDd), shortening fraction (SF), and heart weight–body weight ratio (HWR) (10 mice/group). Collagen content, expressed as a
percentage of the total area of myocardial tissue analysed (7 mice/group) and cell volume (n ¼ 30 cells, 3 mice/group) were estimated *P , 0.05, **P , 0.01, BNP-Sham/PMI vs. Sham
animals.
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mice (Figure 1D). ECG analyses showed that chronic BNP treatment
did not alter electrical conduction. In accordance with this finding,
BNP had no effect on fibrosis as quantified by collagen content,
whereas a large increase was observed in PMI mice (Table 1).

3.3 Effect of BNP on cardiac
sympathovagal regulation
We examined the regulation of the cardiac rhythm by the autonomic
nervous system (ANS) by examining the HRV.10,21,23,24 The HRV,
assessed by the standard deviation of the mean of all normal sinus
intervals (SDNN), was comparably decreased in BNP-Sham and PMI
mice (Figure 1E), suggesting an elevation of sympathetic tone.23,24

Frequency-domain analysis showed that oscillations in ‘low’-frequency
bands (LF), reflecting parasympathetic and sympathetic components,
were increased in BNP-Sham mice (Figure 1F), whereas ‘high’-
frequency oscillations (HF), reflecting exclusively vagal activity, were
unchanged (Figure 1G). The increase in the LF bands in BNP-Sham
mice is consistent with increased sympathetic activity without a de-
tectable modification of the mean heart rate.25 The typical profile
of HRV parameters measured in PMI mice, with a blunted LF band
and LF/HF ratio (Figure 1F–H), confirmed the loss of rhythmicity of
ANS activity on the heart and the severity of cardiac pathology in
PMI animals.24,26,27 This blunting could result from the saturating

influence of persistent high sympathetic tone on the sinus node24

(as attested by the decreased RR interval), or from an impairment
of b-adrenergic receptor signalling following chronic sympathetic
activation.26,27

3.4 BNP promotes rhythm disorders
Mice, like humans, display spontaneous arrhythmias (Figure 2A–C).
Sham, BNP-Sham, and PMI mice exhibited comparable incidences of
sinus arrests (Figure 2D) and AV blocks (Figure 2E). In contrast,
more VAs were observed in BNP-Sham and PMI than in Sham mice
(Figure 2F). Ventricular tachycardia (VT, defined as more than five con-
secutive ectopic beats; Figure 2G) was observed in BNP-Sham (2/8
mice) and PMI (3/12) but not Sham mice (0/12).

3.5 Preventive effect of the b-blocker
metoprolol
The influence of the BNP-induced neurohormonal imbalance on the
ANS was further investigated using the b1-adrenergic blocker meto-
prolol. Metoprolol reduced the heart rate, as shown by the increased
RR (Figure 1A) and PR intervals (Figure 1B) in BB-BNP-Sham and
BB-PMI mice. It had no effect on QRS lengthening either in
BB-BNP-Sham, or in BB-PMI mice, as would be expected from the

Figure 2 Arrhythmic events. Sinus arrests (A), atrioventricular blocks (B), and PVC (C) were counted and averaged (D–F). Typical spontaneous
non-sustained VT recorded in a BNP-Sham mouse (G). *P , 0.05, BNP-Sham/PMI vs. Sham animals; **P , 0.01; £P , 0.05 for metoprolol-treated
vs. untreated animals.
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structural alterations (fibrosis) in PMI mice (Figure 1B). In addition,
myocardial collagen deposits were unchanged in BB-BNP-Sham
when compared with BNP-Sham mice (0.2+0.0, n ¼ 7 vs. 0.2+
0.0%, n ¼ 4) and in BB-PMI when compared with PMI mice (4.4+
1.9, n ¼ 7 vs. 5.2+1.8%, n ¼ 4), consistent with a previous study.28

Metoprolol had a weak effect on morphofunctional parameters
such as LVEDd (26.6+0.4 and 39+0.6 mm) and SF (60.1+4.6
and 22+2.2%, respectively, in BB-BNP-Sham and BB-PMI mice,
n ¼ 5 each). However, metoprolol decreased the QTc in both
BB-BNP-Sham and BB-PMI mice (Figure 1D).

Metoprolol also abolished the decrease in the SDNN in both
BB-BNP-Sham and BB-PMI mice (Figure 1E). In the frequency
domain, metoprolol decreased the LF in both BB-BNP-Sham and
BB-PMI mice (Figure 1F), without modifying the HF (Figure 1G).
Overall, metoprolol prevented the sympathovagal imbalance
observed both after BNP treatment and in PMI mice (Figure 1H).
Metoprolol also reduced premature ventricular contractions (PVC)
both in BB-PMI and BB-BNP-Sham mice (Figure 2F). No VT was
observed with metoprolol, but two of eight BB-BNP-Sham and one
of eight BB-PMI mice presented a high incidence of sinus arrests
and AV blocks (first degree), in line with the slowing of the AV con-
duction time by metoprolol.29

3.6 BNP promotes alterations in Ca21

handling
The detection of VAs in the absence of conduction disorders or fibro-
sis led us to investigate the cellular mechanisms underlying the
pro-arrhythmogenic effect of BNP in single LV cardiomyocytes.
First, we found that both BNP and MI increased cell size. BNP
increased the cell volume (Table 1) and cell length when compared
with Shams, consistent with cell hypertrophy, which was prevented
by metoprolol (data not shown). We next measured intracellular
Ca2+ transients using Fluo-4 AM (Figure 3A–F) and Indo-1 AM
(Figure 4A–C). In BNP-Sham and PMI mice, the amplitude of Ca2+

transients was smaller (Figure. 3A–C) and decay kinetics were
slower (Figure 3D) than in Sham mice. Cell shortening was similarly
decreased in BNP-Sham and PMI when compared with Sham mice
(Figure 3E). Cardiomyocyte shortening depends on the amount of
Ca2+ released from the SR by ryanodine receptors (RyRs) during
systole. We assessed SR Ca2+ content by measuring the Ca2+ transi-
ent induced by rapid caffeine application, which instantly opens all
RyRs. SR Ca2+ content was lower in Sham-BNP and PMI than in
Sham mice (Figure 3F). Metoprolol prevented the effects of BNP
and MI on Ca2+ transient amplitude, Ca2+ reuptake, and SR Ca2+-
store depletion, resulting in improved cell shortening in BB-BNP-Sham
and BB-PMI mice (Figure 3E).

We next examined the arrhythmogenic propensity of cardiomyo-
cytes. In BNP-Sham and PMI mice, diastolic Ca2+ was higher and
spontaneous Ca2+ waves more frequent than in Shams (Figure 4A–
C). Metoprolol prevented the diastolic Ca2+ increase similarly in
BB-BNP-Sham and BB-PMI mice and decreased Ca2+ wave occur-
rence (Figure 4C). Since elevated diastolic Ca2+ and ectopic Ca2+

waves are suggestive of abnormal spontaneous RyR opening, we
investigated RyR activity by directly visualizing Ca2+ sparks.9,10 Repre-
sentative linescan images are shown in Figure 4D. Both BNP-Sham and
PMI cells exhibited more Ca2+ sparks, with lower amplitudes, than
Sham cells, a change prevented by metoprolol (Figure 4E and F ).

3.7 BNP decreases SERCA2a and S100A1
expression
Although SR Ca2+ leak reduces SR Ca2+ content and cell shortening,
it does not explain the slowing of Ca2+ transient decay kinetics,
known to result mainly from Ca2+ reuptake into the SR via
SERCA2a, and Ca2+ extrusion by the Na+/Ca2+ exchanger
(NCX1). SERCA2a activity is inhibited by PLB, and PLB phosphoryl-
ation (P-PLB) relieves this inhibition.12 SERCA2a activity is also modu-
lated by the small Ca2+-binding protein S100A1.30 Here, we found
reduced SERCA2a and S100A1 protein expression in the LV of
BNP-Sham mice (Figure 5A and C ), with no modification of PLB or
the P-PLB/PLB ratio (Figure 5D–F). RyR protein content was
decreased (Figure 5G), whereas the Pser2809RyR/RyR ratio remained

Figure 3 Ca2+ transients and cell shortening. Ca2+ transients in
single LV cardiomyocytes field-stimulated at 1.0 Hz visualized
(Fluo-4 AM), expressed as DF/F0 in Sham, BNP-Sham, and
BB-BNP-Sham mice (A) and in PMI and BB-PMI mice (B); averaged
Ca2+ transient amplitude (C ); averaged decay time constant, Tau,
of Ca2+ transients (D); cellular shortening (E); and averaged SR
Ca2+ content, estimated from the caffeine-induced peak in Ca2+

transients (F ). *P , 0.05, BNP-Sham/PMI vs. Sham animals;
£P , 0.05 for metoprolol-treated vs. untreated animals. Sham,
n ¼ 60 cells, 6 mice; BNP-Sham, BB-BNP-Sham, PMI, and BB-PMI,
n ¼ 40 cells; 4 mice.
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constant (Figure 5H and I ). NCX1 protein content was increased
(Figure 5B). In PMI mice, the results were similar overall, notably
regarding SERCA2a, NCX1, and S100A1. However, the P-PLB/PLB
ratio was decreased (Figure 5D–F), and the Pser2809RyR/RyR ratio
was increased (Figure 5G–I). Metoprolol had substantial beneficial
effects on both BB-BNP-Sham and BB-PMI mice by preventing the re-
duction in SERCA2a and S100A1 and the increase in NCX1, and by
increasing the P-PLB/PLB ratio (Figure 5A–F). Metoprolol also
decreased the Pser2809RyR/RyR ratio in BB-PMI mice (Figure 5G–I).

4. Discussion
In the present study, we show that in healthy mice, circulating BNP,
at levels consistent with those measured during HF following MI,
severely alters cellular and molecular functions in cardiomyocytes.
Chronically elevated BNP sets the stage for alterations in cellular
contraction and Ca2+ handling and promotes the occurrence of
spontaneous cellular Ca2+ waves and VAs in vivo. Most of these
changes are prevented by the b-blocker metoprolol, suggesting a

Figure 4 Diastolic Ca2+ levels, spontaneous Ca2+ waves, and Ca2+ sparks. Ca2+ transients evoked by field stimulation (1.0 Hz) and spontaneous
Ca2+ waves in cardiomyocytes loaded with Indo-1 AM (A); averaged diastolic Ca2+ levels (B); percentage of cells exhibiting spontaneous Ca2+ waves
(C); representative DF/F linescan images of Ca2+ sparks, recorded in intact Fluo-4 AM-loaded cardiomyocytes (D); averaged Ca2+ spark frequency (E);
averaged Ca2+ spark amplitude (F). *P , 0.05, **P , 0.01, ***P , 0.001, BNP-Sham/PMI vs. Sham animals; £P , 0.05, ££P , 0.01, and £££P , 0.001 for
metoprolol-treated vs. untreated animals. Sham, n ¼ 60 cells, 6 mice; BNP-Sham, BB-BNP-Sham, PMI, and BB-PMI, n ¼ 40 cells; 4 mice.
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role for the sympathetic nervous system in the cardiac effects of cir-
culating BNP.

4.1 High blood BNP levels promote Ca21

waves and VA in healthy mice
A striking finding was that chronic exposure of the heart to high BNP
levels promoted PVC, consistent with the correlation between high
BNP levels and VA and SCD in HF patients.2 VA occurred in the

absence of fibrosis, in line with the normal QRS duration, and was
associated with mechanisms intrinsic to LV cardiomyocytes and con-
sistent with the participation of spontaneous diastolic Ca2+ waves.
The accumulation of aberrant RyR openings in diastole, observed
functionally by the higher incidence of Ca2+ sparks, provided the sub-
strate for VA/VT by generating Ca2+ waves.9,10 Spontaneous Ca2+

waves are known to induce a transient inward depolarizing current
(Iti) via NCX activation.31 The increase in NCX1 protein was also
likely to favour cellular arrhythmias.11

Figure 5 Ca2+-handling proteins. Normalized protein content and ratios obtained by western blotting for SERCA2a (A), NCX1 (B), S100A1 (C),
PLB (D), P-PLB (E), P-PLB/PLB (F ) RyR2 (G), P-RyR (H ), and P-RyR/RyR (I ). *P , 0.05, **P , 0.01, BNP-Sham/PMI vs. Sham animals; £P , 0.05 and
££P , 0.01 for metoprolol-treated vs. untreated animals; n ¼ 8 animals per group.
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4.2 High blood BNP blunts SERCA2a
and S100A1
Chronic exposure to BNP increased the frequency of Ca2+ sparks
and reduced SR Ca2+ content, normally regulated by the activity of
SERCA2a and its regulatory proteins PLB and S100A1.12,30 In a key
finding, BNP blunted the expression of both SERCA2a and S100A1,
explaining both the impairment of SR Ca2+ uptake and RyR-mediated
SR Ca2+ leak. S100A1 is a Ca2+-dependent molecular inotrope that
regulates cardiac SR Ca2+-handling and myofibrillar Ca2+ responsive-
ness.32,33 S100A1 colocalizes and interacts with both the SERCA2a/
PLB complex and RyR, thereby playing a key role in the coordinated
enhancement of RyR2-mediated Ca2+ release during systole and
SR-Ca2+ uptake during diastole.34,35 S100A1 enhances SR Ca2+

load without changing the PLB/SERCA2a ratio or PLB phosphoryl-
ation.36 S100A1 also inhibits spontaneous RyR activity and decreases
SR Ca2+ leakage.34,35

The lack of change of Pser2809RyR/RyR and P-PLB/PLB ratios in
BNP-Sham mice and the fact that neither PKA nor CaMKII is involved
in the regulation of RyR and PLB by S100A136 together suggest that
phosphorylation is not a key player in the chronic effects of BNP.
Our data are also consistent with the functional consequences of
an S100A1 deficit.36 Abnormal RyR openings in diastole occurred in-
dependently of increased PKA-dependent RyR phosphorylation,
known to favour RyR opening.37 An increase in spark frequency in
the absence of increased PKA-dependent RyR phosphorylation is
already known.10 Therefore, the elevation in diastolic Ca2+ due to
impaired SR Ca2+ uptake may contribute to SR Ca2+ leak, notably
in relation with the biphasic Ca2+-dependent effect of S100A1 on
RyR activity, which depends on cytosolic Ca2+ levels.30,36 Other
mechanisms, such as S-nitrosylation, cannot be excluded.10

4.3 The role of ANS and the b1-adrenergic
pathway
A recent report shows the beneficial effects of local BNP on
SERCA2a following intramyocardial gene delivery.38 This apparent in-
consistency with our data, together with other reports,13–15 may in
fact reflect different aspects of BNP action: localized vs. systemic
effects, and/or acute vs. chronic effects. A dose-dependent effect of
circulating BNP has been described.7,39 Our study points to the crit-
ical importance of systemic effects of chronically elevated BNP on
cardiac function. Indeed, BNP induces a neurohormonal imbalance
and affects the myocardium through sympathetic activation.
Decreased HRV is a strong adverse prognostic marker for heart dis-
tress and cardiac mortality40 in patients with decompensated HF7 or
sympathetic overdrive.24 A decrease in SDNN is an established
marker of sympathetic activation in HF, where its reduction parallels
disease severity.24 The increase in the LF and the LF/HF ratio, a sym-
pathovagal index, in healthy mice treated with BNP further confirms
enhanced sympathetic tone.23,24 This is consistent with findings
showing that high-dose BNP increases sympathetic activity in decom-
pensated HF7 or in patients with essential hypertension.8 Overactiva-
tion of the sympathetic system is in part responsible for the cellular
alterations observed in our model. These effects could result
from a reflex response7,8 or an enhancement of the adrenergic
pathway,15,41,42 which is known to promote ventricular hypertrophy
and Ca2+-cycling alterations.43

The use of metoprolol, which counteracts sympathetic overdrive,
provides strong evidence for an active role of the b-adrenergic

system in the adverse cardiac remodelling induced by chronic BNP.
Indeed, metoprolol prevented several functional alterations, including
Ca2+ mishandling and the triggering of cellular Ca2+ waves and VA in
healthy BNP-treated animals. This is in line with results showing that
high BNP sensitizes the b1-adrenergic response via NPR-B,42 the pre-
dominant natriuretic peptide receptor in the failing heart.41 At the
protein level, metoprolol prevented SERCA2a and S100A1 blunting,
thus maintaining normal SR Ca2+ re-uptake, correcting RyR-mediated
Ca2+ leakage, and retaining low diastolic Ca2+ levels.17,44 In short,
metoprolol contributed to preserving SR Ca2+ content and Ca2+

transient amplitude, and consequently, cardiomyocyte contraction.45

4.4 Role of endogenous BNP during
the progression of HF?
There were certain phenotypic differences between BNP-Sham and
PMI mice: unlike PMI, BNP had no noticeable effect on myocardial
function, heart rate, electrical conduction (QRS), or fibrosis in
Shams. At the cardiomyocyte level, however, BNP-Sham mice exhib-
ited established features of HF (reproduced in PMI mice) regarding
Ca2+ handling. In addition, both BNP treatment and MI blunted the
expression of S100A1, which contributes to Ca2+-handling alterations
and depressed contraction.36,46 S100A1 is decreased in HF,30

promotes SR Ca2+ leak by increasing the probability of RyR2
opening,47 and hampers Ca2+ reuptake due to reduced SERCA2a ac-
tivity.30 Both altered SERCA2a expression and BNP production are
considered early indicators of HF and are inversely correlated in
human cardiac hypertrophy and HF.14,48,49 Our finding regarding
blunted S100A1 and SERCA2a expression in BNP-Sham mice
further strengthens the concept that BNP contributes to adverse
cardiac remodelling early in the progression of HF.13,14 This could
explain the ineffectiveness of nesiritide in treating HF, despite its bene-
ficial haemodynamic effects.15 Both HRV analysis and the prevention
of the deleterious effects of BNP by metoprolol suggest that BNP
acts in part through adrenergic overdrive. We observed similar
effects of metoprolol in BB-PMI mice, confirming previous studies de-
scribing an increase in Ca2+ reuptake through increased SERCA2a ex-
pression, increased phosphorylation of PLB,50 and decreased RyR2
phosphorylation. Our study also highlights the functional conse-
quences of the previously unsuspected but recently described
cardiac pro-adrenergic property of BNP,15 which could potentially
lead to a cellular HF-like profile with Ca2+-cycling defects or
aggravate existing HF.

4.4.1 Clinical implications
Our work shows that elevated blood BNP is not only a biomarker for
guided therapy in HF but contributes per se to adverse cardiac remod-
elling and the triggering of VA, making the rapid lowering of BNP
levels in HF patients a highly desirable end, in harmony with early
in-hospital treatment aimed at decreasing BNP levels to improve sur-
vival.51 –53 Our study brings into question the treatment of HF
patients with synthetic natriuretic peptide-like drugs, whose efficacy
is uncertain54,55 and whose link to increased mortality has been sus-
pected.5,6 Indeed, the ventricular remodelling induced by chronically
elevated natriuretic peptides may limit their haemodynamic benefits.
Overall, our work supports the general concept that the very early
normalization of SERCA2a56 or/and S100A1 expression30 is critical
in limiting adverse cardiac remodelling in HF. Last, but not least,
b-blocker therapy should be considered as soon as BNP levels rise,
even in patients without cardiac symptoms.
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