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Introduction

An exploration into the history of genetics reveals a complex pattern of interconnected concepts, hypotheses, and research programs. A remarkable historical fact is that population geneticists laid the foundations of their discipline several decades before the physical support of heredity was known. [START_REF] Avery | Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III[END_REF] demonstrated that DNA was the molecule coding for genes, a fact that was not immediately accepted by their contemporary geneticists for several reasons, perhaps the main one being that, at this time, it was widely accepted that genes most likely consisted of proteins [START_REF] Lederberg | The transformation of genetics by DNA: an anniversary celebration of Avery, MacLeod and McCarty[END_REF][START_REF] Deichmann | Early responses to Avery et al.'s paper on DNA as hereditary material[END_REF]). Population genetics was a mature field at the time of Avery et al.'s finding as witnessed by the long-dated publication of seminal books on the subject (Fisher 1930, e.g.,). Thus, population and molecular genetics have had separate histories at some time and this certainly had an impact on how empirical studies were conducted or motivated. During almost half a century, population genetic studies were based on genotyping individuals on a limited number of loci, especially in conservation-oriented research [START_REF] Ekblom | A field guide to whole-genome sequencing, assembly and annotation[END_REF]. A crucial preliminary of these studies was to find the 'right genetic marker for the study' [START_REF] Sunnucks | Efficient genetic markers for population biology[END_REF].

At the end of the century, genomic data from human populations started to accumulate making possible to address new questions in the emerging field of population genomics, even though at this time we were "a long way from knowing all the SNPs, even in any given population" mainly because "exhaustive typing is currently prohibitive" [START_REF] Goldstein | Population genomics: linkage disequilibrium holds the key[END_REF]. Nevertheless, it appeared clearly that this wealth of human genetic data could not be interpreted without traditional population genetic concepts such as linkage disequilibrium, genetic drift, or coalescent [START_REF] Jorde | Population genomics: a bridge from evolutionary history to genetic medicine[END_REF].

Another result that came out at this time was the peculiarity, from an evolutionary point of view, of human populations compared to other species: low overall genetic diversity, considerable continental-level homogeneity, and small effective population size [START_REF] Jorde | Population genomics: a bridge from evolutionary history to genetic medicine[END_REF]. These features associated with the relatively simple biology of humans (lack of polyploidy, long lifespan) and the considerable interest in medically oriented applications of genomic research resulted in a lot of developments for handling and analysing population genomic data. However, these tools did not appear flexible enough to be applied to organisms with more complex biologies.

In the early twenty-first century, next generation sequencing technologies (NGS) have made possible to access the genotype of an individual at a very large number of loci and even its complete genome sequence [START_REF] Luikart | The power and promise of population genomics: from genotyping to genome typing[END_REF]. Even though there are still few species with their genome sequenced, several approaches have been proposed to apply NGS to any living species [START_REF] Ellegren | Genome sequencing and population genomics in non-model organisms[END_REF]. Furthermore, the decreasing costs of NGS make increasingly easy to generate data on a large number of loci and to apply these technologies in studies on natural populations [START_REF] Narum | Genotyping-by-sequencing in ecological and conservation genomics[END_REF][START_REF] Andrews | Recent novel approaches for population genomics data analysis[END_REF]. This is a radical change in point of view for population geneticists compared to almost a century of practice of their discipline. In his review, [START_REF] Sunnucks | Efficient genetic markers for population biology[END_REF] listed three components in population genetics studies: genetic markers, statistical methods, and computer programs. We believe that the NGS revolution has solved, at least in principle, the problem of genetic markers. The availability of vast amount of data clearly points to new developments in software. Furthermore, the perspective of merging population and molecular genetics calls for a unified approach to software development.

In this paper, we review the current state of progress in the analysis of population genomic data using R. We illustrate some recent developments with three recently published data sets: the human Y chromosome with 62,042 loci for 1233 individuals (The 1000 Genomes Project Consortium 2015), a set of 1,055,818 phased genotypes for 121 fruit flies (Drosophila melanogaster, Kao et al. 2015ab), and a set of 61,951 SNPs for 113 dolphins (Lagenorhynchus spp., Fernández et al. 2016ab). In the next section, we summarize the challenges ahead and explain how R can help meeting them. The following two sections explore some specific issues related to handling and analyses of large data sets in the context of population genomics, and how the R packages presented in this paper integrate with other genomic bioinformatics software. We argue that R solves the issue of software in population genetics in the current context of NGS and in the perspective of a constant flux of genomic data. In the last section, we discuss the future developments of statistical methods which will, hopefully, complete the merging of population and molecular genetics.

Challenges

NGS contrast sharply with their predecessor (the Sanger method) in two important aspects: they generate far larger quantities of data, which is clearly a source of practical difficulties for data storage and analysis [START_REF] Stephens | Big data: astronomical or genomical?[END_REF], and they evolve much more quickly. The tremendous potential applications of NGS have stimulated a lot of research and development [START_REF] Erlich | A vision for ubiquitous sequencing[END_REF]. A new technology or platform can be created and made available rapidly, but tests and validation for reproducibility take time.

Meanwhile, competing laboratories or companies may initiate another cycle of testing, assessment, and validation for a new method. Furthermore, the commercialisation of a technology and the training of laboratory staff to use this technology on an appropriate scale also take time. All these time-lags result in a form of inertia in the deployment of NGS in research laboratories. A now famous example is provided by the 454 platform which was discontinued in 2013, just six years after being acquired by a large company-some emerging platforms will probably have a shorter lifespan. It appears that we are now in a situation where we can start sampling in the field without knowing exactly what genotyping or sequencing method will be used in the laboratory.

Nowadays, it is possible to genotype a single individual at thousands or even millions of loci, and population genomic studies typically do this for a few individuals (n), at least far less than the number of loci that are analysed (p). This 'small n, large p' problem raises some difficulties, especially in statistical analyses (see section below on multivariate methods). This situation contrasts with traditional population genetic studies which generally used sampling protocols with n > p. With complete genome sequencing the value of p is theoretically bounded by the size of the genome; however, the number of variants (the sites in the genome which are variable among individuals in the sample) depends on the sampling protocol. For instance, the 1000 Genomes Project found almost 38,000,000 variants from 1092 individuals sampled from 14 populations (The 1000 Genomes Project Consortium 2012); this number increased to more than 88,000,000 when 2504 individuals were sampled from 26 populations (The 1000 Genomes Project Consortium 2015). With non-model organisms, we certainly have to expect even more variation since most species are distributed among several subspecies over their range.

The fast pace of NGS development is usually accompanied with a rapid development of bioinformatics tools often resulting in the appearance of a wide variety of data formats. A problem is that very different technologies are used by the different NGS platforms, so that raw data and their assembly differ a lot even though the final goal is the same. For instance, though the FASTQ file format has been adopted as the de facto standard for storing raw DNA reads, the emerging NGS platforms in the late 2000's used subtle differences in their respective FASTQ files making the development of common bioinformatics tools problematic (see: https://en.wikipedia.org/wiki/FASTQ_format for a review of the variation in FASTQ formats). Another difficulty comes from the fact that population genetics software have traditionally been developed independently of each other and often created their own data file formats, resulting in burdensome conversions necessary along bioinformatics workflows (see [START_REF] Lischer | PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs[END_REF], for a tool to work around this problem). Besides, because of the conceptual separation between population and molecular genetics, most software for population genetics has been developed with classical genetic markers and cannot handle large genomic data sets simply because of memory limitations.

Why R

The quest for standardization is a common and recurrent issue in software development, and applications for data analysis are no exception to this. The 1990's were a key period in this respect: efficient hardware (e.g., 32-bit processors) were widely available, Internet became common, and a new generation of software started to spread. R was developed in this exciting context [START_REF] Ihaka | R: a language for data analysis and graphics[END_REF], and started to be progressively adopted by a wide community of scientists for analysing their data, but also for developing new applications [START_REF] Vance | Data analysts captivated by R's power[END_REF]. Several reasons can explain the success of R: we can cite a few that are relevant for population genetics. R is available for all common platforms and operating systems. Its fast graphical capabilities make it ideal for exploratory analyses. Some generic features of R are extremely useful when manipulating data, such as factors or data structures indexed with names. R is modular so that building new packages or pipelines, or conducting simple analyses is straightforward. R can be easily interfaced with code written in C, C++, and some other languages, so that computations which are not efficient in R can be recoded in these languages without losing the advantages of the R environment. R has a standard documentation system which makes very easy to find the relevant information when using a new package or a new function (of course, providing the package developers have written the documentation appropriately). R has been widely adopted in statistics courses in many countries so that most students have a fair knowledge of this language.

Finally, and not the least, several user interfaces (Emacs+ESS, JGR, R-commander, RKWard, RStudio, Tinn-R, among others) are available which considerably ease the work flow while accomodating each researcher's personal taste.

Naturally, all these features (and others) apply to the analysis of population genetic data which has led to the progressive development of a software environment that is attractive to a wide community of population geneticists. Two remarkable features of this software are worth mentioning here. First, these R packages consider all kinds of genetic markers: DNA sequences, SNP, micro-satellites, allozymes. Second, all situations can be handled: genotypes with single or multiple loci, locus with more than two alleles, all levels of ploidy including cases where ploidy level varies within the same data set, phased and unphased genotypes (Table 1). By contrast to some applications which have been developed specifically for diploid organisms with simple life histories and relatively low polymorphism, R packages are developed to meet the needs of a wide community of molecular ecologists. This underlines the philosophy of R to be inclusive in its developments: from the simplest to the most complex or challenging situations.

Data and files

R has a wide range of tools to handle and analyse DNA sequences (mostly in the package ape; [START_REF] Paradis | APE: analyses of phylogenetics and evolution in R language[END_REF], and traditional allelic data (mostly in the package adegenet; [START_REF] Jombart | adegenet: a R package for the multivariate analysis of genetic markers[END_REF]. In this section, we detail how some other kinds of data that are more specific to NGS can be handled with R.

SNP Data

Molecular genetic studies have revealed that variation in genetic materials can take many forms. In humans, among 88,332,015 genetic variants identified in a sample of 2504 individuals, 95.53% were biallelic single nucleotide polymorphism (SNP), 4.07% insertions-deletions (indels), 0.33% multiallelic SNPs, and 0.07% structural variants (The 1000 Genomes Project Consortium 2015). Thus, biallelic SNPs are by far the most common form of genetic variation in natural populations (see also the examples below).

Among the technologies developed to acquire this kind of variants, two are most frequently used: sequencing and genotyping arrays, the second one being able to acquire only biallelic SNPs (which are often called 'SNPs' in short). The approach based on genotyping SNPs can be seen as an intermediate stage between the use of traditional population genetic markers and the more modern genomic sequencing-based approaches which consider the whole set of genetic variation in populations.

Typically, SNP data files store genotypes of individuals at many loci in a matrix form with additional information for each locus such as its position along the chromosome. A difficulty with these files is that there is no widely accepted standard format. For instance, a genotype can be coded in the usual form (e.g., A/A, A/T, or T/T), or as the number of minor alleles in the genotype (0, 1, or 2, if T is the minor allele). However, it appears that the VCF format has recently been adopted as a standard for all kinds of SNP data files (see the example with the dolphin data).

The package adegenet provides several tools to read and handle SNP data [START_REF] Jombart | adegenet 1.3-1: new tools for the analysis of genome-wide SNP data[END_REF]. The core of these tools is the class "genlight" designed to store SNP data in a compact way: for example, such an object with one million SNPs for 100 individuals uses about 16 Mb of RAM (or active memory) which is less than 1% of the available RAM on most modern computers. Besides, adegenet has several functions specially designed for the analysis of "genlight" data, such as glPca which performs a principal components analysis (PCA; see below), glPlot which plots a set of SNPs, or glSim which simulates efficiently SNP data. The function read.PLINK in the same package can read some SNP files. More generally, SNPs are stored in plain-text files in tabular form, so standard R functions (e.g., read.table) can be used to parse such files.

VCF files

Over the last few years, the Variant Call Format (VCF) has appeared as a standard for storing population genetic data from NGS sequencing or genotyping [START_REF] Danecek | The variant call format and VCFtools[END_REF]. By contrast to SNP data files, VCF files can contain data on all types of genetic variation. VCF files are text files storing a lot of information, including on the process used to create it from the raw sequencing reads (variant calling). The genetic data are stored in a matrix-like layout where the individuals are the columns and the loci are the rows.

Several R packages have tools to analyse VCF files: two of them, stacksr and vcfR, are described in this issue. Bioconductor has the package VariantAnnotation [START_REF] Obenchain | VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants[END_REF] for annotating VCF files. We focus here on the functions in pegas because this package is dedicated to population genetics [START_REF] Paradis | pegas: an R package for population genetics with an integrated-modular approach[END_REF]. vcfR provides functions to assess the quality of the VCF file [START_REF] Knaus | VcfR: an R package to manipulate and visualize VCF format data[END_REF] together with functions for data conversion (Table 2).

VCF files can be very big, so a strategy is to first scan the files before reading more detailed information such as the genotypes. pegas follows this strategy by providing several functions: the main ones are VCFloci and read.vcf. The first function scans a VCF file and extracts the information on the loci; the second one reads the individual genotypes with the possibility to select a subset. VCFloci uses a specific mechanism to read big files: the file is scanned sequentially by chunks of one billion bytes (1 Gb; the chunk size can be modified by the user). The function then stores a small table with the name of the file, the size of each chunk adjusted to meet the nearest end of a line, and the number of loci in each chunk. With this mechanism, not more than 1 Gb of RAM is used at the same time whatever the size of the file. The running time increases roughly linearly with the file size: it takes about 20 sec to scan an 8 Gb file (compressed or not) with about 500,000 loci. For smaller files, the running time depends on whether the file is compressed or not: for a 200 Mb file with 62,000 loci, this takes 1 sec or 0.2 sec, respectively.

The output of VCFloci is a data frame (R's usual data table) with nine columns where each row is a locus and the columns are the information for each locus from the VCF file. The information correspond to the mandatory VCF header fields (see [START_REF] Danecek | The variant call format and VCFtools[END_REF]: chromosome (CHROM), position (POS), unique identifier (ID), reference and alternative alleles (REF and ALT), phred-scaled quality score (QUAL), site-filtering information (FILTER), a semicolon-separated list of additional annotation metadata (INFO) and the FORMAT field containing genotype data information (often a semicolon-separated list). The data frame can be manipulated to extract information with standard R functions (Box 1). The function VCFheader prints the header of a VCF file which, usually, contains details on these different fields.

The genotypes are then read by read.vcf. At this stage, it is good to think if it is interesting or feasible to read a complete VCF file. pegas takes roughly four bytes of RAM to store a single genotype; so (using the above notation), about 4np bytes are needed for a given genetic data set. With the rule of thumb that data in R should not use more than 25% of the available RAM to perform "comfortable" analyses, one million loci for 1000 individuals appears as a reasonable upper limit on a computer with 16 Gb of RAM. Furthermore, the user may be interested in only some loci depending on the type of genetic variant, position on the chromosome, or else. A strategy is to locate these loci by finding the rows of the output of VCFloci using standard R data manipulation (Box 1). Similar operations can be done on the field "CHROM" (if loci from several chromosomes are in the same file), "QUAL", or "FILTER". The field "INFO" requires a special attention because it includes detailed information on each locus. To make this information easier to digest, pegas provides the function getINFO to extract a specific information from this character string; by default this is the sequencing depth (DP), but the option what makes possible to extract another information, for instance, the variant type (Box 2).

For small VCF files, read.vcf can be used directly without calling VCFloci first, but the latter is still needed to get the information on the loci.

Analysis of population genomic data with R

Haplotypes and Linkage Disequilibrium

The possibility to investigate the genetics of populations at many loci of individuals brings the perspective to study the dynamics of genomes in populations. An exciting opportunity is to identify parts of species genomes which evolve as a single unit [START_REF] Andrews | Recent novel approaches for population genomics data analysis[END_REF]). Several approaches with NGS allow one to infer genotype phasing for diploid or polyploid organisms, either directly by sequencing long fragments of DNA (e.g., [START_REF] Mccoy | Illumina TruSeq synthetic long-reads empower de novo assembly and resolve complex, highly-repetitive transposable elements[END_REF], or with high coverage sequencing of shorter fragments [START_REF] Nielsen | Genotype and SNP calling from next-generation sequencing data[END_REF]. With phased genotypes, it is straightforward to reconstruct the haplotypes of each individual. pegas has the generic function haplotype which does this operation (it also works with DNA sequences). Linkage disequilibrium (LD) is the most widely used statistical method to identify alleles at different loci that are statistically associated. It is also of central importance in association studies of genetic diseases [START_REF] Goldstein | Population genomics: linkage disequilibrium holds the key[END_REF][START_REF] Jorde | Population genomics: a bridge from evolutionary history to genetic medicine[END_REF]. The function LDscan permits to analyse LD by calculating pairwise correlation coefficients (r 2 ) for a series of biallelic loci. The output of this function can be plotted with LDmap; this function has an option POS to plot the correlation coefficients together with the positions of the loci on the chromosome.

Figure 1 shows the LD at two scales for the chromosome 2L of the fruit fly data: for the first 100 loci and for 100 loci equally spaced on the chromosome (Box 3). Two other functions analyse LD for a pair of loci with any number of alleles: LD and LD2 for phased and unphased genotypes, respectively. These two functions return detailed statistics and tests [START_REF] Schaid | Linkage disequilibrium testing when linkage phase is unknown[END_REF][START_REF] Zaykin | Correlation-based inference for linkage[END_REF].

Multivariate Methods

Multivariate methods are common when analysing big data sets because of their abilities to provide dimension reduction, that is to provide a summary of many variables into a few, usually linear, combinations of them. Thus, population genetics has used these methods for some time [START_REF] Westfall | Allozyme markers in breeding zone designation[END_REF][START_REF] Guinand | Use of a multivariate model using allele frequency distributions to analyse patterns of genetic differentiation among populations[END_REF][START_REF] Moazami-Goudarzi | Is a multivariate consensus representation of genetic relationships among populations always meaningful[END_REF]. The package adegenet implements a lot of tools for the multivariate analysis of genetic data [START_REF] Jombart | Genetic markers in the playground of multivariate analysis[END_REF]. Some of the methods of particular interest here include the spatial principal components analysis (sPCA; [START_REF] Jombart | Revealing cryptic spatial patterns in genetic variability by a new multivariate method[END_REF]) and the discriminant analysis of principal components (DAPC; [START_REF] Jombart | Discriminant analysis of principal components: a new method for the analysis of genetically structured populations[END_REF] which is illustrated below.

In spite of their efficiency with large tables, multivariate methods are penalized when analysing very large data sets, for instance, when n and p are larger than 10,000. Some approaches have been developed to decompose very large matrices without using traditional methods such as eigen or singular value decomposition [START_REF] Halko | Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions[END_REF].

These approaches are based on random matrices and aim to approximate the first few principal components. [START_REF] Abraham | Fast principal component analysis of large-scale genome-wide data[END_REF] implemented this approach to perform a PCA on genomic microarray data collected on a large sample of individuals (n > 10,000). Their implementation is available as the R package flashpca distributed on GitHub (https://github.com/gabraham/flashpca). This approach is quite straightforward to code in R and is available in several forms with more or less accuracy [START_REF] Halko | Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions[END_REF].

Discriminant analysis (DA) is a multivariate method which searches for linear combinations of variables resulting in the strongest discrimination of groups identified from the data [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF]. Under some assumptions, it is possible to quantify the reliability of the inferred assignments. Thus, DA offers a powerful approach to assess the presence of structure in genetic data with many loci. However, because it is based on matrix decomposition algorithms, it suffers from the same limitations than PCA with very big data sets, and these methods need to be adapted to be used on genomic data.

The DAPC gives a solution to this problem: it can be used to assess group structure in genetic diversity with large datasets, and is also implemented separately for "genlight" objects [START_REF] Jombart | adegenet 1.3-1: new tools for the analysis of genome-wide SNP data[END_REF]. The main idea behind the DAPC is to first perform a data reduction using a PCA. Typically, less than 100 principal axes are sufficient. If group priors are missing, a sequential k-means clustering with model selection based on the Bayesian information criterion (BIC) is done to infer prior clusters. The next step is to perform a discriminant analysis in the reduced data space using the prior clusters returned by the k-means clustering (or the cluster definition provided by the user if available). The results can be graphically visualized in two ways: by plotting the projections of the individuals on discriminant axes (as usual in multivariate analyses), or by examining the relative posterior probabilities to the different clusters inferred from the discriminant analysis (as usual in stochastic assignment methods).

We consider here the dolphin data and try to show evidence for geographical structure (Fernández et al. 2016a). The data are provided as a VCF file (simply named 'vcf') available from Dryad [START_REF] Fernández | Data from: A genomewide catalogue of single nucleotide polymorphisms in white-beaked and Atlantic white-sided dolphins[END_REF]. Because the multivariate methods are implemented in adegenet, we have to convert the data read by pegas into the appropriate class (Box 4). Remarkably, none of these analyses take significant running time (in fact, the longest operation is to convert from the class "loci" to the class "genind").

Population Genetics and Genomic Bioinformatics

The main strength of R, and maybe the most attractive one for data analysis, is the possibility to integrate a great variety of methods and tools while using the same programming language. In the past few years, the analysis of genetic data has changed quite radically. Until the early twenty-first century, population geneticists used to get their data from the laboratory on their physical support (e.g., electrophoresis gels), then input the data in the computer, and analyse them with specialised software. With the advent of NGS, genetic data are directly acquired on the computer, but an additional step is required: the identification of alleles from the many (hundreds of millions) sequencing reads. This step is called 'variant calling' and requires highly specialised software. Because NGS technologies are evolving very fast (see above), this software is also evolving very fast. Fortunately, the past few years have seen the development of more integrated bioinformatics tools to accomplish such tasks. The R package poRe has been recently released to analyse data from the the mobile nanopore sequencer MinION [START_REF] Watson | poRe: an R package for the visualization and analysis of nanopore sequencing data[END_REF]. This package takes profit of R's tools such as scanning a directory with many files, searching for patterns in file names, and reading files in a specific format (here HDF5), to extract and plot summary statistics from the sequencing runs, as well as export data into FASTQ or FASTA format.

Bioconductor is a long-term effort to produce R packages for the analysis of large-scale genomic data sets (Gentleman et al. 2005;[START_REF] Huber | Orchestrating high-throughput genomic analysis with Bioconductor[END_REF]). Bioconductor's website (www.bioconductor.org) hosts a suite of integrated R packages mostly dedicated to the analysis of expression data. Several packages have been released for the analysis of DNA microarray data (e.g., [START_REF] Dunning | beadarray: R classes and methods for Illumina bead-based data[END_REF][START_REF] Ritchie | R/Bioconductor software for Illumina's Infinium whole-genome genotyping BeadChips[END_REF][START_REF] Morgan | argyle: a R package for analysis of Illumina genotyping arrays[END_REF]. The package ape has functions to convert DNA data from Bioconductor classes into the "DNAbin" class from which population and evolutionary analyses can be performed.

A crucial aspect of R packages which permits the integration of different tasks is the stability of the packages themselves and especially of the data classes defined therein (Tables 1,3). Several R packages for evolutionary genetic analyses are now more than one decade-old and have been widely used and tested, so that their contents are now reliable for a wide range of applications, and package developers have the possibility to work with them to develop new tools and methods (e.g., [START_REF] Paradis | Analysis of Phylogenetics and Evolution with R (Second Edition)[END_REF]Lawrence & Morgan 2014).

Perspectives

Remarkable progress has been accomplished in the development of software for population genetics in the context of analysing data sets from NGS. There is no doubt that this will continue in the years to come where population genetic data will become more and more important to assess biodiversity dynamics and adaptations of species in a changing environment. We discuss below three specific areas where significant progress is likely to be achieved in the coming years.

As apparent from the contributions to this Special Issue, a lot of effort has been devoted to improve the overall quality of the software dedicated to population genetics.

On the other hand, hardware has continued to improve. For instance, multi-core processors are now the rule rather than the exception, so that parallel computing can be accomplished on almost all computers. The adaptation of genetic software to this has been uneven. Lawrence & Morgan (2014) give some examples using Bioconductor, illustrating the issue that implementing a parallel algorithm to accomplish a given task may not always be beneficial. R has a built-in capacity to parallelize computations using the package parallel. The functions in parallel can be used with most R packages described in this article, for instance, by distributing a calculation to several cores of a processor.

However, there is certainly some improvements possible since a lot of the computations used in population genetics implies repetitive and independent calculations (e.g., for allele frequencies by population or for LD).

NGS raw data are more or less noisy because they are generated through some biological and electronical processes which may be affected by random variation. Besides these measurement errors, intrinsic biological processes induce another form of variation, for instance because of cell-specific genetic changes. [START_REF] Lynch | Estimation of nucleotide diversity, disequilibrium coefficients, and mutation rates from high-coverage genome-sequencing projects[END_REF] addressed the issue of inferring population genetic parameters using NGS data (see [START_REF] Korneliussen | Calculation of Tajima's D and other neutrality test statistics from low depth next-generation sequencing data[END_REF], for a more recent contribution). [START_REF] Blischak | Accounting for genotype uncertainty in the estimation of allele frequencies in autopolyploids[END_REF] developed a hierarchical Bayesian model to assess genotype uncertainty in autopolyploids using raw read counts. They implemented their method in the R package polyfreqs (available on CRAN). We take this opportunity to emphasize the importance of open source software for the future of population genomics. O' Rawe et al. (2015) warned about the risk that commercial NGS applications tend to ignore uncertainty in genotyping inference. As a sign of this risk, these authors mention that several applications for haplotype or variant call are proprietary and closed-source. Considering the continuously increasing diversity of NGS technologies and the increasing range of their applications, a special attention to uncertainty in statistical inference using NGS data will be crucial.

Environmental monitoring already allows acquisition of data in real time, and recent developments in NGS (e.g., nanopore sequencing) strongly suggest that similar things will soon be accomplished with population genetic data. This is a crucial challenge for developing efficient software and making sense of the results in real time. Facing this forthcoming challenge will mean having to combine data analysis with theoretical population genetics in order to help us meet issues related to global change, biodiversity conservation, and pathogen dynamics. It will surely be useful to remember the words of caution-if not wisdom-from [START_REF] Gower | The biological stimulus to multidimensional data analysis[END_REF]: "Automatic instrumentation ensures that there is no lack of large data sets. This is something new but I sometimes think that we are getting perilously close to the search for the philosophers stone. If only we could find the right recipe, great truths would be revealed by analysing vast masses of data." disequilibrium with multiple alleles. Genetics, 180, 533-545.
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Box 1 Scanning and reading VCF files First we scan the human Y chromosome data with VCFloci, print the number of loci and the labels of the columns with names: > info.Y <-VCFloci ("chrY.vcf The number of individuals in the VCF file are obtained with the function VCFlabels which extracts their labels (or identifiers):

> labs <-VCFlabels("chrY.vcf.gz") > length(labs)

[1] 1233 > head(labs)

[1] "HG00096" "HG00101" "HG00103" "HG00105" "HG00107" [6] "HG00108"

Then we read the genotypes with read.vcf. Here, we select the loci in a 1 Mb region of the Y chromosome between positions 5,000,000 and 6,000,000 which can be found with:

> sel <-which(info.Y$POS > 5e6 & info.Y$POS <= 6e6) > length(sel) [1] 5
read.vcf has two ways to specify which loci to read: either using the options from and to (which are set to 1 and 10,000 by default), or using the option which.loci which requires a vector of integers specifying the indices of the loci to read: 

> x <-

Box 3 Analysis of linkage disequilibrium

We read the fruitfly data and call the two functions LDscan and LDmap on the first 100 loci (we could use the option to as above to read only 100 loci, but this gives us the opportunity to show how to subset a data frame of genotypes). The positions of the loci are stored in the column POS output by VCFloci (Box 2), so we extract the positions for these 100 loci and pass them as the (optional) second argument of LDmap (Fig. 1a):

> x <-read.vcf(fl) > res <-LDscan(x[, 1:100]) > LDmap(res, info.fly$POS[1:100])

We now select 100 loci regularly spaced from 1 to 224,253 (this value comes from the last tabulation in Box 2) and using ceiling to ensure we have only integers:

> s <-ceiling(seq(1, 224253, length.out = 100))

We then repeat the LD analysis using the appropriate POS information (Fig. 1b):

> xs <-read.vcf(fl, which.loci = s) > res2 <-LDscan(xs) > LDmap(res2, info.fly$POS[s]) 549 
Box 4 DAPC with the dolphin data

We read 1000 loci and convert them to the class "genind": > x2 <-read.vcf("vcf", to = 1000) > g2 <-loci2genind(x2)

We can now call the method implemented in the function find.clusters: > o2 <-find.clusters(g2)

When called with no other option, the function displays two graphs (Fig. 2) and asks the user to input the number of principal components (PCs) and the number of clusters to retain. The first graph shows that 40 PCs retain about 80% of the variance, so we select this number. The second graph shows a lowest value of BIC with seven clusters. However, the present data has eight populations (see below) so we select this number of clusters (K) for this analysis (we could use simply the original populations).

The output is a list with several elements, including grp giving the cluster assignment of the individuals. The labels of the individuals include the geographical origin of the samples (as often the case with this kind of data set). So it is simple to extract this information, and cross-tabulate it with the cluster assignment done by find.clusters:

> head(names(o2$grp))

[1] "FAE_2" "FAE_609" "FAE_660" "FAE_667" "FAE_668" "FAE_671" > pop <-gsub("_.*", "", names(o2$grp)) > cluster <-o2$grp > table(pop, cluster) cluster pop 1 2 3 4 5 6 7 8 DEN 0 0 0 0 4 2 0 0 FAE 0 9 1 3 2 0 2 1 FRA 0 0 0 0 1 0 1 0 GER 3 0 0 0 5 3 1 0 ICE 0 0 0 0 15 2 0 0 IRE 0 9 0 0 2 2 3 0 NOR 0 0 0 0 5 2 0 0 SCO 0 5 0 0 24 1 2 0 There does not seem to be a very good match between the originally sampled populations and the cluster assignments. Thus, we repeat the analysis with a smaller number of clusters (K = 4) in a non-interactive way by specifying the required options: > o2b <-find.clusters(g2, n.pca = 40, n.clust = 4)

As above, we extract the 'pop' and 'cluster' information (not shown):

> table(pop, cluster) cluster pop 1 2 3 4 DEN 0 6 0 0 FAE 0 6 4 8 FRA 0 1 0 1 GER 6 5 0 1 ICE 2 15 0 0 IRE 2 4 0 10 NOR 2 5 0 0 SCO 0 26 0 6

We now perform the DAPC with 4 groups asking to output two discriminant axes: > d2b <-dapc(g2, cluster, n.pca = 40, n.d = 2)

The output contains several elements, including the coordinates of the individuals and the group means. The plots can now be done with R's standard functions (see Supplementary Information) or with adegenet's functions (Figs. 3,4): > col <-c("red", "blue", "gold", "darkgreen") > scatter(d2b, posi.da = "topright", col = col) > compoplot(d2b, legend = FALSE, col = col) [START_REF] Goudet | Hierfstat, a package for R to compute and test variance components and F -statistics[END_REF], poppr [START_REF] Kamvar | Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction[END_REF], and mmod [START_REF] Winter | mmod: an R library for the calculation of population differentiation statistics[END_REF].

Package Main methods implemented The linkage coefficients (r 2 ) between each pair of loci are indicated as coloured squares: the squares at the bottom of the triangle are for nearby loci, whereas the square at the top is for the two most distant loci. 

adegenet*

  Multivariate methods (sPCA, DAPC) ape Evolutionary distances, distance-based phylogenetics, phylogenetic bootstrap hierfstat* Hierarchical F -statistics pegas Population differentiation (HWE,, AMOVA), haplotype networks, linkage maps poppr* Applications to clonal organisms, distances for microsatellites mmod* Population differentiation (F ST , G ST , Φ ST , D) stacksr Interface to STACKS vcfR Tools for FASTA, GFF, and VCF files *These packages use the class "genind".

Fig. 1

 1 Fig. 1 LD maps at two different genomic scales for the fruit fly data: (a) for the 100 first loci on the chromosome 2L, and (b) for 100 loci regularly spaced along this chromosome. The horizontal axis indicates the position of the loci on the chromosome.

Fig. 2

 2 Fig. 2 Results of finding clusters with the dolphin data. (a) Cumulated variance explained by the principal components (PCs). (b) Bayesian information criterion (BIC) for the different values of K (number of clusters).

Fig. 3

 3 Fig.3Results of the DAPC with the dolphin data.

Fig. 4

 4 Fig. 4 Posterior probabilities of group membership from the DAPC with the dolphin data. The color scheme is the same than in Fig 3.
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  Box 2 Going further with the INFO field in VCF filesHere we use the information returned by VCFloci, such as the field CHROM (if loci from several chromosomes are in the same file), to select some loci to be read. The field INFO requires a special attention because it includes detailed information on each locus:To make this information easier to digest, the function getINFO helps to extract a specific information from this character string; by default this is the sequencing depth (DP), but the option what makes possible to extract any other information, for instance, the variant type:To illustrate how to use other information returned by VCFloci, we scan the fruitfly data[START_REF] Kao | Data from: Population genomic analysis uncovers African and European admixture in Drosophila melanogaster populations from the south-eastern United States and Caribbean Islands[END_REF]) which include genotypes from all chromosomes in a single file:

	> info.Y$INFO[1]	
	[1] "AA=G;AC=22;AF=0.0178427;AN=1233;DP=84761;NS=1233;\
	AMR_AF=0.0000;AFR_AF=0.0000;EUR_AF=0.0000;SAS_AF=0.0000;\
	EAS_AF=0.0451;VT=SNP;EX_TARGET"
	> VT.Y <-getINFO(info.Y, what = "VT")
	> table(VT.Y)		
	INDEL	MNP	SNP	SV
	1314	113 60505	110
	The function VCFheader reads the header of the VCF file where details on the abbreviations used
	can be found:		
	> cat(VCFheader("chrY.vcf.gz"))
	....			
	##INFO=<ID=VT,Number=.,Type=String,Description="indicates what type\
	of variant the line represents"
	....			
	Thus, we can now locate which loci are SNPs:
	> sel.snp <-which(VT.Y == "SNP")
	> length(sel.snp)	
	[1] 60505		
	As usual with R, it is possible to combine these logical comparisons with the AND operator (&),
	for instance, to locate the SNPs within a 2 Mb region:
	> sel <-which(VT.Y == "SNP" & info.Y$POS > 1e6 & info.Y$POS <= 3e6)
	read.vcf("chrY.vcf.gz", which.loci = sel) > length(sel)
	Reading 5 / 5 loci. [1] 1231
	Done.			
	> x			
	Allelic data frame: 1233 individuals
	5 loci > fl <-"global.pop.GATK.SNP.hard.filters.V3.phased_all.pop.maf.05.recode.vcf.gz"
	> info.fly <-VCFloci(fl) If the user wants to read all loci with a single command, the following can be done: > table(info.fly$CHROM)
	> x <-read.vcf("chrY.vcf.gz", to = nrow(info.Y)) 2L 2R 3L 3R R X
	224253 193675 214235 270619	1 153035

Table 1 :

 1 Major R data classes for population genetics and genomics. The package in parentheses is where the class is defined and which contains the main functions for data manipulation and visualization. The question mark (?) is not part of the IUPAC ambiguity code.†Standard missing value in R.

	Class Data type Main features Missing data	DNAbin (ape) DNA sequences Single or multiples sequences, aligned or not Ambiguity code + ?*	NA †; null allele(s) can genind (adegenet) Allelic (allele-centered) Any level of ploidy; ploidy may vary	be specified at input among loci and among individuals	Not supported genlight (adegenet) biallelic SNP Any level of ploidy	NA †; null allele(s) can loci (pegas) Allelic (locus-centered) Any level of ploidy; ploidy may vary	be specified from R among loci and among individuals;	genotypes may be phased or not

*

Table 2 :

 2 Data inter-operability.

	Class		File	Class conversion
		Input	Output	From	To
	DNAbin FASTA	FASTA	Bioconductor* genlight
		Phylip	Phylip	
		Clustal		
	genind	Genetix		loci	loci
		Structure		
		Fstat		
		Genepop		
		GenAlex		
	genlight PLINK		DNAbin
	loci	Tabular files † Tabular files †	genind	genind
		Genetix		
		VCF		
	vcfR	VCF	VCF		DNAbin
					genind
					loci

*Several classes are supported.

†Tab-delimined, CSV, and similar formats.

Table 3 :

 3 Main R packages for population genetics and genomics. The packages not cited in the text are hierfstat
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Supplementary Information

R code for custom plot of the results from the DAPC on the dolphin data. This example shows how to extract the coordinates of the individuals and plot them with a symbol representing the original populations (Fig. S1):

plot(d2b$ind.coord, type = "n") points(d2b$grp.coord, pch = 19, col = "grey50", cex = 4) text(d2b$grp.coord, labels = 1:4, col = "white") points(d2b$ind.coord, pch = (1:8)[pop]) legend("top", legend = levels(pop), pch = 1:8, ncol = 4)