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Abstract

A lot of effort has been devoted to analyse the distribution of branching times observed in a

phylogenetic tree. On the other hand, the distribution of branch lengths has not received similar

attention. In this paper, the distribution of branch lengths is studied. It is shown that different

types of branches within a tree have distinct distributions. Some equations to predict these

distributions are derived with respect to diversification parameters and whether the size of the tree

is known or not. A simulation study validated these predictions. The inferred distributions are

used to develop graphical and statistical tools to assess the goodness-of-fit of diversification

models. An application is presented on a recently published dated phylogeny of Carnivora. Some

future developments are discussed.
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1. Introduction

Phylogenetic trees have become a foundamental tool to study macroevolutionary processes.

Several information can be extracted from a phylogeny: its general tree shape or various3

summaries of branch lengths (Mooers and Heard, 1997; Pybus and Harvey, 2000; François and

Mioland, 2007). These information can then be used to infer the speciation and extinction rates of

the studied group thus quantifying the tempo of its diversification through time. An important6

class of models considers the homogeneous models which assume that the rates of speciation and

extinction may vary with respect to time but at a given time they are the same for all species

present in the clade. From a biological point of view, these models are justified when9

diversification is driven by global environmental variables such as climate. An important result

from Lambert and Stadler (2013) is that under a homogeneous model of diversification, the

distribution of branching times depends only on the rates of speciation and extinction. Therefore,12

the branching times of a phylogenetic tree summarize the information required to estimate these

rates under the assumption of homogeneity. However, when this assumption does not hold, one

has to consider other quantities such as the distribution of branch lengths. For instance, Venditti15

et al. (2010) analysed the distribution of internal branch lengths for 101 phylogenies in order to

assess the constancy of speciation rates accross a wide range of taxonomic groups. Besides, the

distribution of branch lengths had retained some attention, for instance for the study of18

phylogenertic diversity (Faith, 1992; Mooers et al., 2012; Stadler and Steel, 2012). These

previous studies have mostly considered models of constant diversification, i.e., with constant

rates of speciation and extinction.21

The main objective of this paper is to develop an approach to infer the distribution of the

branch lengths of a phylogenetic tree considered as the result of a diversification process with

known rates of speciation and extinction. Contrary to previous contributions, the present24

approach handles time-dependent variation in speciation and extinction rates. Two cases are

considered: when the size of the tree is unknown, and when it is known so that the predictions of

the mean branch length can be conditioned on tree size. A simulation study was performed to27

assess the accuracy of the predictions of the equations derived in this work. Some applications of
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these equations are considered with a focus on a method to assess the goodness of the fit of a

diversification model using graphical tools and statistical tests based on the cumulative30

distribution function. An analysis of a phylogeny of Carnivora (Mammalia) is presented to

illustrate their practical use.

2. Models33

2.1. THE GENERAL CASE UNCONDITIONAL ON TREE SIZE

We consider a dated phylogenetic tree with N species. We assume that this tree is rooted and

fully dichotomous; consequently, it has N−1 (= m) internal nodes. Several quantities can be

extracted and analysed from such a tree (Fig. 1). The branching times (also known as node times,36

node heights, or node depths), measured from the root, are denoted t1, . . . , tm. In this section, the

root is the origin of the time scale, so that t1 = 0, and the present is denoted T . Alternatively, we

could consider the branching intervals (known as coalescent intervals in population genetics)39

which summarise the same information as the branching times and are defined as ti+1− ti

(i = 1, . . . ,m−1). The branch lengths provide more information than the branching times

because different sets of branch lengths can result in the same branching times. However, one42

needs the topology of the tree to fully determine the branching times from the branch lengths.

Birth–death models are a class of continuous-time models where each species (or individual)

is continuously exposed to speciation (birth) and extinction (death). The time-dependent45

birth–death model assumes that the probability of a speciation event varies with time and follows

a function λ(t), and similarly for the probability of extinction µ(t). This formulation implies no

lineage-specific variation: at a given time, all species have the same probabilities of speciation48

and extinction. We first remind some general mathematical background.

Under a time-dependent birth–death model, we can write the probability that a lineage,

originating from a single species at time t, has exactly one descendant at time T (Kendall, 1948):51

Pr(t,nT = 1) =
e−ρ(t,T )

W (t)2 ,

with
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ρ(t,T ) =
∫ T

t
µ(u)−λ(u)du,

and

W (t) = e−ρ(t,T )
[

1+
∫ T

t
eρ(t,u)µ(u)du

]
.

The probability of a lineage being extinct during the same time interval is:54

Pr(t,nT = 0) = 1− e−ρ(t,T )

W (t)
,

from which we can write the probability that a lineage is not extinct:

Pr(t,nT ≥ 1) = 1−Pr(t,nT = 0) =
e−ρ(t,T )

W (t)
.

We easily deduce the probability that a lineage has two or more lineages which we will use

below:57

Pr(t,nT ≥ 2) = 1−Pr(t,nT = 0)−Pr(t,nT = 1).

The number of species living at time t is a random variable with expectation given by:

E(nt) = e−ρ(0,t).

These equations are the basis to derive the distribution of branching times of an ultrametric

phylogenetic tree (Nee et al., 1994). If we are interested in the distribution of branch lengths, we60

need to consider separately different types of branches. Traditionally, two types are

distinguished: terminal and internal branches. In this paper, two kinds of terminal branches are

distinguished: those connected to the same internal node, and thus defining a cherry (McKenzie63

and Steel, 2000), and those that are sister-group of a clade of two or more species. These two

types of terminal branches are termed cherry and outer branch, respectively (Fig. 2). The cherry

branches are by definition duplicated in a tree.66

A cherry is the result of a speciation at time t leading to two species surviving at present (time
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T ) with no other (recorded) speciation event. Under the assumption that these events do not

covary, the density ξ1(t) of a cherry is given by the product of the probabilities of these three69

events (speciation at t and survival of both species from t to T ):

ξ1(t) = λ(t)Pr(t,nT = 1)2. (1)

Note that this is a density function, not a probability function because we cannot assume that

ξ1(t) sums to one over all possible values of t.72

We can use a similar reasoning and apply it to derive the density of outer branches. We

consider here three events: a speciation at time t, the survival of a single species from t to T , and

the survival of a clade with at least two species from t to T . There is an additional factor 275

because there are two possible combinations (i.e., left and right children from the speciation at t).

Thus, the density ξ2(t) of a single terminal branch originating at time t and being sister of a clade

with two or more species is:78

ξ2(t) = 2λ(t)Pr(t,nT = 1)Pr(t,nT ≥ 2). (2)

These two density functions ξ1(t) and ξ2(t), after being multiplied by E(nt) and properly

normalized, lead to probability density functions (pdf) of the distribution of both types of

terminal branch length. The respective expected means can be calculated with:81

E(l) =
∫ T

0
uξ̃(u)du, (3)

where ξ̃ is the normalized function and l is the branch length. The normalizing factor is

computed with:

∫ T

0
E(nu)ξ(u)du,

where ξ is replaced by either ξ1 or ξ2 depending on the type of branch. The cumulative density84

function (CDF) of branch lengths, which is by definition the probability that l is smaller than or

equal to a given value (t) is:
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Pr(l ≤ t) =
∫ t

0
ξ̃(u)du,

The expected mean terminal branch length over the tree (i.e., pooling both types) is computed87

by the mean of both means weighted by their normalizing factors.

We now turn to the distribution of internal branch lengths. The problem is more difficult as it

requires to derive the probabilities of branches connecting two internal nodes. The first (oldest)90

node connects two sister-clades, one of them includes two or more species and the other one

includes one or more species. The density function of such a node being observed at time t is

denoted as g1. This node is the result of three events: a speciation at time t, the survival of a clade93

with two or more species from t until T , and the survival of a clade with one or more species

during the same time. Thus:

g1(t) = 2λ(t)Pr(t,nT ≥ 2)Pr(t,nT ≥ 1).

The factor 2 is, again, because there are two possible combinations for the sister-clades. The96

second (youngest) node connects two clades both made of one or more species, and its density

function is:

g2(t) = λ(t)Pr(t,nT ≥ 1)2.

The density of internal branches is found by multiplying the density functions of these two99

nodes and the probability of neither extinction, nor recorded speciation between t and t ′. The

probability of this last event is precisely given by the function g2. It is thus necessary to integrate

between t and t ′ the sum of the two functions µ(t) and g2(t) (Cox and Oakes, 1984). We finally102

find that the density of an internal branch starting at time t and ending at time t ′ is:

f (t, t ′) = g1(t)g2(t ′)exp
[
−
∫ t ′

t
g2(u)+µ(u)du

]
.

As before, we can use this density, after proper normalization, as a pdf of internal branch

lengths. In this case, calculating the expected mean requires a double integration on t and t ′ (with105

6



the constraint 0≤ t < t ′ < T ):

E(l) =
∫ T

0

∫ T

t
(t ′− t) f̃ (t, t ′)dt ′dt. (4)

Note that t ′− t is the internal branch length (l), and f̃ is, as above, the normalized density.

2.2. CONDITIONING ON TREE SIZE

The above development assumes that T (the age of the root of the tree) is known whereas N is108

unknown. In this section, it is assumed that N is known and fixed whereas T is a random variable.

To derive the distributions of branch lengths, a different approach is needed. The approach used

here is inspired from the coalescent approach developed by Stadler (2008, 2009, 2011a). The111

coalescent (Kingman, 1982) considers the way a sample of gene lineages from a population

coalesce backwards in time. In population genetics, the distribution of the times to coalescence is

determined by the genealogical structure within the population (Wakeley, 2009). On the other114

hand, in a phylogenetic tree, the coalescence events follow the speciation and extinction events

(see Stadler, 2011a, for a clear exposition of this rationale). This approach leads in a

straightforward way to the distribution of branching times in a phylogeny conditioned on N (see117

below); however, we also need to know the distribution of cherry and outer terminal branches.

Consider a coalescent tree of size N; each node of this tree is the result of a coalescent event

between two lineages. These lineages may be either a lineage not yet coalesced, or the result of a120

previous coalescent event (i.e., lineages already clustered). For simplicity, we may call the first

kind of lineage ‘singleton’ and the second kind ‘cluster’. Let αi and ωi denote the respective

number of these two kinds of lineages, where the subscript i denote the coalescent event123

(i = 1, . . . ,N−1) with i = 0 designing the initial state (i.e., present time). Clearly, we have

α0 = N and ω0 = 0 (no coalescent event have yet occurred). The first event (i = 1) is the

coalescence of two singleton lineages so that α1 = N−2 and ω1 = 1. The second coalescence126

event may join, either two singleton lineages, so α2 = N−4 and ω2 = 2, or a singleton lineage

with the cluster lineage built at the previous step, so α2 = N−3 and ω2 = 1. We can continue

along the successice steps of the coalescent process, and find that, under the assumption that129

lineages coalesce randomly, αi and ωi follow a random bivariate discrete process with the three
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following possible transitions with their respective probabilities on the right-hand side:

αi+1 = αi−2

ωi+1 = ωi +1

 αi(αi−1)
2Ki

, (5)

132

αi+1 = αi−1

ωi+1 = ωi

 αiωi

Ki
, (6)

αi+1 = αi

ωi+1 = ωi−1

 ωi(ωi−1)
2Ki

, (7)

with Ki = (αi +ωi)(αi +ωi−1)/2. The first transition (5) is the coalescence of two singleton

lineages; the second transition (6) is the coalescence of one singleton lineage with one cluster135

lineage; and the third transition (7) is the coalescence of two cluster lineages. Ki denotes the

number of combinations among the αi +ωi lineages not yet coalesced. Because α and ω are

discrete values, it is straightforward to compute their pdf for each coalecent event (see code138

provided with this paper). Trivially, the first coalescent event (i = 1) is of the first type (since

ω0 = 0), and at the end of the coalescent process (i = N−1), we have α = 0 and ω = 1 (Fig. 3).

We note that at each step of a coalescent the number of lineages not yet coalesced is given by141

N− i and is equal to αi +ωi, so the distributions of these two variables are symmetric.

From this random process it is possible to derive the probability that a branching time leads to

a cherry or to an outer branch: the first possible transition (5) leads to the creation of two cherry144

branches, while the second one (6) leads to the creation of an outer branch. The probability that

the coalescent event i results in a cherry is thus given by eq. 5 summed over all possible values of

αi weighted by their probabilities as derived above:147

N

∑
x=0

Pr(αi = x)
αi(αi−1)

2Ki
.

Similarly, the probability the same coalescent event results in an outer branch is given by eq. 6

summed over all possible values of αi and ωi:

N

∑
αi=0

N

∑
ωi=0

αiωi

Ki
.
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However, we do not have yet the distribution of the lengths of these two kinds of branches.150

For this we need the distribution of branching times. In population genetics, this distribution is

related to the mutation rate and the demographic structure and dynamics of the population

(Wakeley, 2009), but this cannot be applied to phylogenetic trees. Using the description of the153

coalescent process generating a phylogenetic tree in Stadler (2011a), it is possible to obtain this

distribution in a straightforward way. To use this approach, we have to assume that the

birth–death process is time-reversible which is a reasonable assumption if the probabilities of156

speciation and extinction are not affected by the past states of species (in other words, if the

diversification process is Markovian). The successive events considered here are speciations and

extinctions. When looking at the tree backwards in time (i.e., from present to the past), a159

speciation leads to the coalescence of two lineages, whereas an extinction leads to the appearance

of a lineage (which does not survive until present). Thus, at time t during this process, the clade

is constituted of some lineages surviving until present and some lineages that go extinct before162

present and which are not recorded in the observed phylogenetic tree. Let St and Et denote the

number of each type of lineages at time t. Note that, by contrast with the previous section, time is

now measured from present (t = 0). Under the assumption of independence of events (speciation,165

extinction and coalescence), the changes through time of these two variables can be modelled by

the following pair of differential equations:

dSt

dt
=−λ(t)nt

(
St

nt

)2

,

dEt

dt
= nt

[
µ(t)−λ(t)

2StEt

n2
t
−λ(t)

(
Et

nt

)2
]
,

with nt = St +Et . The initial state is given by S0 = N and E0 = 0. These equations are solved168

until St = 1. This can be done numerically after setting the value of N and the functions λ(t) and

µ(t), for instance with the package deSolve (Soetaert et al., 2010). The solutions give the

expected values of St and Et through time (Fig. 4). Thus, the value t for which St = N− i is the171

expected value of the ith coalescent time of the phylogenetic tree. We then just have to weight

these expected values with the probabilities obtained above to derive the expected mean cherry

and outer branch lengths.174
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Like we have seen in the previous section, the calculations for internal branches are more

complicated because we have to consider the times of two nodes in the tree. Let A j
i be the

probability that a node created during the coalescent at step j is available for coalescence at step i177

with j < i. Clearly, a node is created at each step of the coalescent so this node is available for

coalescence at the next step, thus we have A i
i+1 = 1. For a node created before step i, the

probability that it does not coalesce at step i is given by the ratio of the number of combinations180

excluding this node on the total number of combinations:(
N− i−1

2

)
(

N− i
2

) =
(N− i−1)(N− i−2)

2
× 2

(N− i)(N− i−1)
=

N− i−2
N− i

.

We may thus write how A j
i changes along the coalescent process:

A j
i+1 =


1 if j = i,

A j
i

N− i−2
N− i

otherwise.

We now use A j
i to derive the frequency distribution of node ages at all steps of the coalescent,183

and thus compute the expected length of an internal branch. The reasoning is the same than for

terminal branches: a recursive calculation is done for all coalescent events, computing the

probabilities of different types of events. The difference here is that instead of considering the186

branching times, we consider their difference weighted by the probabilities that an internal

branch is made for each interval.

3. Simulation Study189

3.1. METHOD

To validate the above predictions, some trees were simulated using three algorithms. The first

algorithm is described in Paradis (2011) and simulates a tree in continuous time where λ and µ

are allowed to vary with time under any user-specified model; this is a time-forward algorithm192

where T is fixed and N is a random variable. It is implemented in the R package ape (Paradis

et al., 2004) with the function rbdtree. The second algorithm is due to Stadler (2011b) and

simulates trees in continuous time using a time-backward method with both N and T fixed; it is195
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implemented in the R package TreeSim (Stadler, 2014) with the function sim.bd.taxa.age.

The third algorithm is similar to the second one except that T is random: the function rphylo in

ape was used. All algorithms require to specify the values of the parameters λ and µ. Different198

values of these parameters were used (see Table 1). For each set of values of λ and µ, 10,000

trees were simulated using each algorithm. For the second and third algorithms, N was fixed to

200 (this value did not influence significantly the results reported here).201

The agreement between the model predictions and the simulations were assessed by

comparing the predicted means with the observed means of each type of branch length.

Additionally for some simulated trees, the distribution of branch lengths was plotted and204

compared with the distribution inferred from eqs. 1 and 2.

3.2. RESULTS

The distribution of terminal branch lengths differed markedly between the two types of branch:

the cherry branches had an exponential-like distribution whereas the outer branches had a207

unimodal distribution (Figs. 5 and 6). The exact shape of these distributions depended on the

values of speciation and extinction rates. The histograms displayed on Figs. 5 and 6 show the

observed distributions for two trees simulated with the same net diversification rate (λ−µ = 0.1)210

but with different values of the rates λ and µ. The curves superimposed on the histograms are the

densities predicted from eqs. 1 and 2.

When the trees were simulated with fixed N and fixed T (package TreeSim), the observed213

mean branch lengths were well predicted by eqs. 3 and 4 when the value of µ was small relative

to the value of λ. However, the difference between the observed and the predicted values

increased when the values of µ increased (Table 1). Similarly, the predictions of the mean internal216

branch length were not very accurate except when µ was small; however, the predicted values

varied in the same way as the observed ones.

When the trees were simulated with random N (package ape), the predicted values for219

terminal branches were close to the observed ones. For both types of terminal branches, the

observed means were very close to the predicted values: the difference between both values was

less than 0.1 with one exception (the cherry branches with λ = 0.1 and µ = 0.09) where the222
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difference was less than 0.5 (Table 2). The prediction of mean internal branch lengths was not

accurate though, as before, the predicted and observed values varied in the same way.

When the trees were simulated with fixed N and random T , the observed mean cherry or225

outer branch length (Table 3) were slightly different from the predicted means not conditioned on

N (Table 1 or 2). However, when the prediction was conditioned on N = 200 (within parentheses

in Table 3), the predicted and observed means were in good agreement for all values of λ and µ.228

The same observation was made for internal branch lengths.

4. Application

The ability to predict the distribution of branch lengths may have several practical applications,231

such as predicting variation in phylogenetic diversity (Faith, 1992), or deriving likelihood

functions for estimation of diversification parameters. Another potential application could be in

specifying informative priors for Bayesian phylogenetic analyses: assuming distributions on234

speciation and extinction rates (for instance, obtained from data on species diversity), it may then

be possible to derive prior distributions on the different kinds of branch lengths to use as input for

a Bayesian approach on phylogenetic inference.237

4.1. AN EXAMPLE WITH GOODNESS-OF-FIT TESTS

Here, we detail an application of the above equations to assess the goodness of fit of

diversification models. Methods to assess the goodness-of-fit of a model must be distinguished

from methods that compare models (e.g., ratios of mean squares, likelihood-ratio tests,240

information criteria). The latter seek to test the adequacy of two or more models relatively to

each others. By contrast, goodness-of-fit methods assess the adequacy of a model in an absolute

manner by comparing the predictions of the model with the data. These methods may be243

graphical (e.g., plot of residuals in a regression analysis) or statistical (e.g., testing the null

hypothesis that the model does not fit the data).

The predicted distributions of branch lengths can be used in different ways to assess the246

adequacy of a specific birth–death model to a phylogeny. It is possible to draw a histogram of the

observed distribution of branch lengths and compare it to the expected density. We must be
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careful that the shape of the histogram can be influenced by the definition of the intervals.249

Another method, which avoids this problem, is to compare the observed and expected quantiles

of the distribution of branch lengths (a method known as the QQ-plot). Appendix A details a

statistical procedure based on this approach.252

Computer code written in R (R Core Team, 2014) is provided with this article to perform all

calculations described in this paper.

4.2. APPLICATION TO A CARNIVORA PHYLOGENY

Nyakatura and Bininda-Emonds (2012) published a dated phylogeny with 286 species of255

Carnivora and 8 other mammal species as outgroup which were removed from the tree before

analysis. The “best estimate” tree provided by Nyakatura and Bininda-Emonds was used. The

dated phylogeny was analysed with the method from Nee et al. (1994) to estimate λ and µ; the258

95% confidence intervals (CIs) were calculated with the method described in Paradis (2003).

From the above estimates, the expected distributions of terminal branch lengths were derived and

compared to the observed ones. Giving that the prediction of internal branch lengths is less261

precise than for terminal branches (see previous section), only the latter were considered.

The estimated speciation and extinction rates from the dated phylogeny were: λ̂ = 0.134

(95% CI: 0.097–0.182) and µ̂ = 0.032 (95% CI: 0.008–0.068). The distribution of terminal264

branch lengths showed a unimodal shape for both types (Fig. 7). For the cherry branches, there

were less short branches than expected as revealed by the histogram and the QQ-plot (Fig. 7A).

For the outer branches, the distribution of branches of length between 0 and 10 Ma seemed to267

agree with the expectation of the fitted constant-rate model; however, longer branches were more

frequent than expected (Fig. 7B).

5. Discussion270

The present paper proposes to infer the distributions of terminal branch lengths by distinguishing

two types: the cherry branches which lead to two sister-species, and the outer branches which

lead to a single species sister of a clade with at least two species. The simulations confirmed that273

these two kinds of terminal branches have distinct distributions. Besides, both types of terminal
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branches are not expected to be observed with the same frequencies. In a phylogenetic tree,

cherry branches are, on average, twice more frequent than outer ones; so, the mixture of both is276

dominated by the exponential nature of the distribution of the first type.

The simulation results were substantially different depending on the algorithm used to

simulate the trees. It is interesting to note that the mean length of cherry branches did not vary279

much with respect to the simulation algorithm used (first column in Tables 1–3), while a

substantial difference was observed for the outer (second column) and the internal branches (third

column). It is noteworthy that the predictions matched well the simulation results when the same282

conditioning (or lack of) was used. The only notable discrepancy relates to the mean internal

branch lengths with random N which were not well predicted when the extinction rate was high

(Table 2). On the other hand, the predictions conditioned on the value of N were particularly285

more accurate for all types of branches (Table 3). This shows the advantage of conditioning the

predictions when the number of species in the phylogeny is known.

Two approaches were used in this paper. The first one considers time-forward equations288

where tree size is a random variable. The second approach is based on time-backward equations

with known tree size. Both approaches have their respective advantages: the first one makes

possible to derive the complete distribution of branch lengths, while the second one gives more291

accurate predictions of mean branch lengths. It seems possible to use this second approach to

derive the complete distribution of branch lengths conditioned on N, but this has not been yet

worked out. This is currently under study. Nevertheless, it appeared here that the predicted294

distributions from the unconditioned case is already accurate for large trees (see Fig. 6). So it will

be particularly interesting to assess whether conditioning on N improves these predictions.

The equations presented in this paper may have several applications. The branch lengths of297

phylogenetic trees are often used to quantify the diversity of a clade because two distantly related

species (thus separated by a long path on a phylogeny) likely represent more biological diversity

than two closely related species (Faith, 1992). This question is still under current research300

(Volkmann et al., 2014). The probability density function of branch lengths with respect to

diversification parameters is thus likely to be helpful to predict the distribution of phylogenetic
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biodiversity when reconstructed phylogenetic trees are not available. For instance, speciation and303

extinction rates can be estimated from species diversity of clades (e.g., Magallón and Sanderson,

2001; Paradis et al., 2013; Stadler et al., 2014). These estimates could then be used together with

the eqs. 1 and 2 to predict the phylogenetic diversity of such groups even without phylogenies. In306

a recent paper, Crawford and Suchard (2013) derived expressions for the distributions of

phylogenetic diversity and of phenotypic disparity under the assumption of diversification under

a Yule model (so µ = 0 and λ constant) so that these quantities may be estimated event without a309

known phylogeny.

The application with the Carnivora phylogeny had mainly an illustrative purpose. It showed

how to use graphical tools to assess the excess or deficit of short and long branches within a tree.312

It should be kept in mind that such diagnostics of fit are done with respect to a fitted model. For

simplicity, a simple model was used in the present analyses, but it is straightforward to use more

complicated models. The results showed that the Carnivora tree has a deficit of short cherry315

branches compared to what is expected under a null model. It is clear that such deficit may result

in a an apparent decline of speciation rates close to present, a pattern that has been frequently

observed in real phylogenies (Moen and Morlon, 2014). The tools introduced here may thus318

contribute to investigate this widely debated issue.

In a previous work, Venditti et al. (2010) quantified the distribution of internal branch lengths

using standard statistical distributions and found that the exponential distribution was the best fit321

for the majority of phylogenies. They interpreted this result as evidence that speciations are the

results of single rare events leading to reproductive isolation. Interestingly for the present work,

they excluded all terminal branches under the motivation that these do not record information on324

waiting times between speciation events. The developments presented here may bring a new

perspective on such analyses by including all information from the phylogenies.

The possibility to derive separate distributions for cherry and outer terminal branches may327

have some implications for the study of tree shape and its balance (Tarver and Donoghue, 2011).

In particular, it seems possible to derive under which conditions unbalanced trees are generated.

It must be pointed out that the main objective of this paper was to set a framework to derive the330
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distributions of different types of branch lengths within a tree. For simplicity, it was implicitly

assumed in the above developments that diversification is homegeneous (λ and µ can vary

through time but they have the same values for all species at a given time). However, it is possible333

to generalise this approach to situations with heterogeneous rates (e.g., when some

contemporaneous clades do not diversify at the same rates). The fact that the above equations (1

and 2) can consider a single branch makes possible to derive distributions which consider336

heterogeneous rates. A possible application could be, for instance, with the coalescent approach

used with fixed tree size, to relate diversification parameters to ancestral character states, and thus

analyse a trait-dependent diversification model. This is currently under development.339
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Appendix A.

A statistical test of the fit of a birth–death model to a phylogenetic tree may be performed by

comparing the expected CDF with the empirical (i.e., observed) cumulative distribution function345

(ECDF). A traditional approach to perform such a comparison is to define discrete intervals over

the possible values of the observed variables (branch length in our situation), count the number of

observations falling within each interval, compute with the CDF the expected numbers for the348

same intervals, and compare the two tables of counts with a χ2-test. In practice, this approach

presents some difficulties when the counts may be small which is the case in phylogenetic trees

where typically long branches are less frequent than the short ones (see figures above). A more351

powerful approach is to use tests that compare directly the curves defined by the ECDF and the

CDF. One of these tests is the Kolmogorov–Smirnov test which considers the largest difference

between these two curves. Other tests use all information from both curves. Two of these tests354

have been used to assess the distribution of branching times (Paradis, 1998): the Cramér-von

Mises test and the Anderson–Darling test. Recently, some alternative new tests based on the same

principle have been developed (Zhang, 2002; Esteban et al., 2007; Zhao et al., 2009). The357
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difficulty with these ECDF-based tests is that their exact distributions are not known, and

therefore the critical values must be found by simulations of the null hypothesis (Stephens, 1974).

Here we consider two tests: the Cramér–von Mises test:360

W 2 =
n

∑
i=1

(
zi−

2i−1
2n

)2

+
1

12n
,

where n is the number of points considered for the test and zi is the predicted CDF for the ith

point. The second test was proposed by Zhang (2002):

ZC =
n

∑
i=1

{
log
[

1/zi−1
(n−0.5)/(i−0.75)−1

]}2

.

For both tests, the null distribution was determined by simulating a large number of trees363

(typically 104). The procedure is as follows.

1. Obtain the estimates λ̂ and µ̂ from the observed phylogeny using the maximum likelihood

method from Nee et al. (1994).366

2. Compute the expected CDF of branch lengths (zi’s) using either eq. 1 (for the cherry

branches) or eq. 2 (for the outer branches) with λ̂ and µ̂ as speciation and extinction rates

and T equal to the age of the root node of the observed phylogeny.369

3. Compute the observed statistics W 2 and ZC.

4. Generate 9999 trees using the algorithm from Stadler (2011b) with λ̂ and µ̂ as speciation

and extinction rates, and the number of species (N) and the age of the root node (T ) both372

from the observed phylogeny.

5. Compute the statistic (W 2 and ZC) for the 9999 trees. These give the null distributions of

these tests. The P-values are the numbers of these 9999 values which are greater than the375

observed values computed at step 3 divided by 10,000 (since the observed values are

considered as following the null hypothesis).

Note that in this procedure the tested model is that λ and µ are constant through time. If a378

time-dependent model were tested, it would be necessary to use the appropriate estimators of λ(t)

and µ(t) in step 2 and use them in the simulation in step 4.
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When applied to the Carnivora phylogeny, the goodness-of-fit tests rejected very strongly the381

null hypothesis that the distribution of cherry branch lengths followed the constant-rate model

(Table 4). For the outer branches, the Cramér–von Mises test was not significant (P = 0.055) and

Zhang’s ZC was slightly significant (P = 0.020). The plots of the predicted CDFs against the384

ECDFs show more clearly the contrast between the two types of branches: the two curves are

remarkably different for the cherry branches while they are more similar for the outer ones

(Fig. 8).387

Appendix B. Supplementary material

Supplementary data associated with this article can be found in the online version
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Fig. 1. (a) A tree with N = 7, (b) its branching times (or node times, or node depths, or node

heights) ordered in decreasing size, (c) its branching intervals (or coalescent intervals) ordered

through time, and (d) its branch lengths ordered with the seven terminal branches first (note the468

cherry ones which are duplicated) and then the five internal ones.

Fig. 2. A tree showing cherry and outer terminal branches.

Fig. 3. The probability densities of the number of singletons (α) and of clusters (ω) in a471

coalescent tree of size N = 10. All graphs are on the same scale. The column on the right-hand

side gives the different coalescent events (i).

Fig. 4. Expected numbers of surviving (St) and extinct (Et) lineages through time for a phylogeny474

with N = 200 species, speciation rate λ = 0.1 and extinction rate µ = 0.05.

Fig. 5. Distributions of cherry (left) and outer (right) terminal branch lengths. The histograms

show the observed distributions for two trees simulated with N = 200, T = 50, and (a) λ = 0.1,477

µ = 0, or (b) λ = 0.2, µ = 0.1. The curves show the predicted distributions for each type of

branch and each combination of parameters.

Fig. 6. Same as Fig. 5 except that N = 2000.480

Fig. 7. (a) Distribution of cherry branches (histogram), predicted density (curve) under a model

of constant speciation and extinction rates, and QQ-plot of the observed and expected quantiles

for the Carnivora phylogeny (Nyakatura and Bininda-Emonds, 2012). (b) Same thing for outer483

branches.

Fig. 8. Observed (empirical) and predicted CDFs for both types of terminal branches for the

Carnivora phylogeny (Nyakatura and Bininda-Emonds, 2012).486
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Table 1: Mean branch length of trees simulated with N = 200 and T = 50. The values within parentheses are the
predicted means using the equations presented in this paper. The simulations were replicated 10,000 times.

λ µ Terminal Internal
cherry outer

0.1 0 3.321 (3.333) 8.294 (8.327) 4.902 (4.934)
0.05 3.609 (3.859) 9.630 (10.422) 5.990 (6.469)
0.09 3.519 (4.486) 9.777 (12.248) 6.349 (7.302)

0.2 0.1 1.936 (1.931) 5.364 (5.341) 3.890 (3.501)
0.15 2.065 (2.137) 6.092 (6.407) 4.721 (4.004)
0.19 2.053 (2.375) 6.288 (7.477) 5.052 (4.244)

Table 2: Same as Table 1 except that N was random.

λ µ Terminal Internal
cherry outer

0.1 0 3.334 (3.333) 8.339 (8.327) 4.933 (4.934)
0.05 3.836 (3.859) 10.460 (10.422) 6.829 (6.469)
0.09 4.165 (4.486) 12.228 (12.248) 8.524 (7.302)

0.2 0.1 1.937 (1.931) 5.354 (5.341) 3.824 (3.501)
0.15 2.129 (2.137) 6.424 (6.407) 5.123 (4.004)
0.19 2.300 (2.375) 7.506 (7.477) 6.297 (4.244)

Table 3: Same as Table 1 except that T was random. The predicted values were calculated conditioned on the value of
N = 200.

λ µ Terminal Internal
cherry outer

0.1 0 3.334 (3.332) 8.337 (8.657) 5.008 (5.191)
0.05 3.862 (3.885) 10.697 (11.002) 7.683 (7.942)
0.09 4.640 (4.656) 15.511 (15.686) 17.046 (17.111)

0.2 0.1 1.930 (1.958) 5.347 (5.513) 3.854 (3.968)
0.15 2.141 (2.166) 6.482 (6.624) 5.610 (5.725)
0.19 2.393 (2.425) 8.506 (8.563) 11.016 (10.958)

Table 4: Results of the goodness-of-fit tests of the constant-rate model to the Carnivora data using two types of branches
(cherry and outer) from Nyakatura and Bininda-Emonds’s (2012) tree. W 2: Cramér–von Mises test; ZC: test from Zhang
(2002).

W 2 P ZC P

Cherry 18.85 0.0021 131.50 0.0014
Outer 9.15 0.0553 40.23 0.0204
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a)

b)

c)

d)

Figure 1: (a) A tree with N = 7, (b) its branching times (or node times, or node depths, or node heights) ordered in
decreasing size, (c) its branching intervals (or coalescent intervals) ordered through time, and (d) its branch lengths
ordered with the seven terminal branches first (note the cherry ones which are duplicated) and then the five internal
ones.

24



Cherry branches

Outer branches

Figure 2: A tree showing cherry and outer terminal branches.
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Figure 4: Expected numbers of surviving (St ) and extinct (Et ) lineages through time for a phylogeny with N = 200
species, speciation rate λ = 0.1 and extinction rate µ = 0.05.
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Figure 8: Observed (empirical) and predicted CDFs for both types of terminal branches for the Carnivora phylogeny
(Nyakatura and Bininda-Emonds, 2012).
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