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High-level phylogenies are very common in evolutionary analyses, though they are of-1

ten treated as incomplete data. Here we provide statistical tools to analyze what we2

name ‘clade data’, that are the ages of clades together with their numbers of species.3

We develop a general approach for the statistical modeling of variation in speciation4

and extinction rates, including temporal variation, unknown variation, and linear and5

nonlinear modeling. We show how this approach can be generalized to a wide range of6

situations, including testing the effects of life-history traits and environmental variables7

on diversification rates. We report the results of an extensive simulation study to assess8

the performance of some statistical tests presented here as well as of the estimators of9

speciation and extinction rates. These latter results suggest the possibility to estimate10

correctly extinction rate in the absence of fossils. An example with data on fish is11

presented.12

KEY WORDS: birth–death models, extinction, maximum likelihood, speciation, stem13

ages.14
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The study of the tempo and mode of evolution has experienced a new wave15

of interest from evolutionists using new mathematical and statistical tools16

to analyze molecular phylogenies (Sanderson and Donoghue 1996; Ricklefs17

2007). Following some initial breakthrough (e.g., Nee et al. 1992, 1994), sig-18

nificant progress has been achieved in biologically relevant statistical mod-19

eling of diversification, such as quantifying temporal variation in diversifi-20

cation (Paradis 2011; Hallinan 2012) or assessing the effects of biological21

traits on speciation and extinction rates (Maddison et al. 2007; FitzJohn22

et al. 2009; FitzJohn 2010). Recent advances have also been accomplished23

in integrating molecular and fossil data (e.g., Morlon et al. 2011; Didier et al.24

2012).25

Most of these recent statistical developments have focused on analyz-26

ing complete phylogenies. Incomplete phylogenies are often treated as a27

seperate case in order to take missing data into account (Pybus et al. 2002;28

FitzJohn et al. 2009; Stadler 2011). The most common form of such data is29

a phylogeny resolved at a high level accompanied by the number of species30

associated to each tip of the tree. On the other hand, the ages of clades31

together with the numbers of species (named here ‘clade data’) have been32

a neglected source of data in the analysis of diversification. Magallón and33

Sanderson (2001) provided some methods for the analysis of such data and34

applied them to angiosperms. They particularly developed various estima-35

tors of the (net) rate of diversification of a clade giving its age and number36

of species.37

The relative lack of interest towards clade data may come from the fact38

that, for a given clade, its complete phylogeny contains more information39

than the pair of values ‘age + number of species’. However, for a collection40

of clades, such data are a valuable source of information for several reasons.41
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First, clades defined by higher-level taxa (e.g., families, orders) are clearly42

identified for almost all groups of living beings and their numbers of species43

are in many cases already known. Second, phylogenetic relationships among44

higher-level taxa have been much more studied than within them, so it is45

more straightforward to date the age of a clade rather than the divergences46

among its species. Third, the fossil record is generally more informative on47

the origin of higher-level taxa compared to species or other low-level taxa.48

Fourth, it is easier to examine the impact of the species concept on the49

definition of clade data rather than on a phylogeny since, in the former the50

species concept will mostly affect the number of species while in the latter it51

will be often hard to infer different phylogenies under those distinct species52

definitions. Clade data have also some disadvantages: the inherent lack53

of temporal resolution within each clade makes it impossible to study the54

variation in diversification within them.55

In the present paper, we extend the approach presented by Magallón56

and Sanderson (2001) and present statistical tools for the inference of di-57

versification patterns and processes with clade data. Our approach assumes58

that each clade, instead of having its own speciation and extinction rates,59

comes from a ‘statistical population of clades’ so that maximum likelihood60

inference is straightforward. With this rationale, we show how to make61

inference on variation in diversification parameters among clades using dif-62

ferent modeling tools, including testing the effects of life-history traits and63

environmental variables and the case where variation is a priori unknown.64

We also present the results of a simulation study in order to assess the sta-65

tistical performance of several tests and estimators presented in this paper,66

and finally we apply our approach on a data set of fish.67
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Statistical Modeling Approach68

Throughout this paper we assume that diversification proceeds with speci-69

ation (λ) and extinction (µ) rates which are the probabilities that a species70

splits into two daughter-species or goes extinct during a very short time.71

We denote as Xt the number of species in a clade of age t where this may72

be either the stem age of the clade (divergence time of the clade from its73

sister-clade) or its crown age (time to the most common recent ancestor74

of the species belonging to the clade). Specifically, using equation 8 from75

Kendall (1948), we can write the probability that Xt takes a specific integer76

value x:77

Pr(Xt = x|θ,X0 = 1) = ηt(1− ηt)x−1 x ≥ 1, (1)

where θ is a vector of parameters specifying how speciation and extinction78

rates vary through time and ηt is a function of these parameters. The79

conditioning on X0 = 1 emphasizes that in this paper we consider stem80

groups. For the case of crown groups (X0 = 2), the probabilities must81

be summed on all possible combinations. In most applications, stem groups82

are considered because the origin of a group is inferred from its relationships83

with its sister-group. On the other hand, deriving the crown age of a group84

requires to estimate the age of the most recent common ancestor of its species85

which is usually more complicated because it requires to sample all species86

in the clade. On the other, inferring stem ages requires one species from the87

clade and one from its sister-clade.88

Various forms exist for these probabilities depending on the parameteri-89

zation of θ and whether we wish to condition them on survival of the lineage90

until present or not. For instance, if extinction rate is zero and speciation91

rate is constant, then ηt = e−λt. This is the Yule (1924) model. Models with92
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a non-null extinction rate are called birth–death models (Kendall 1948).93

The point of conditioning on no extinction is important when analyzing94

data on actual groups because total extinction of these groups did not occur.95

Thus the probabilities must be modified accordingly, otherwise this would96

result in underestimated extinction rates (Rabosky et al. 2007).97

Let us consider for the moment the simple Yule model. The expected98

number of species at time t is given by E(Xt) = eλt. From this expectation,99

a simple estimator of λ based on the method of moments is λ̂ = ln(x)/t100

(Magallón and Sanderson 2001). When considering a single clade, and in101

the absence of more detailed information, it does not seem possible to go102

further in the inference. When considering more than one group (e.g., the103

families within an order or a class), researchers usually estimate λ separately104

for each group, then proceed with standard statistics (e.g., McPeek 2008).105

This approach assumes that each clade is characterized by its own speciation106

rate. On the other extreme, one may assume that speciation rate is the same107

in all groups so that the observed data are independent outcomes of the108

same diversification process. Thus, it is possible to use maximum likelihood109

inference using equation 1. The likelihood function is:110

∏
i

Pr(xi|λ), (2)

where Pr(x|λ) is a simplified notation of equation 1. We may expect less111

bias in the estimates from this approach, but also the possibility to test112

hypotheses based on fitting alternative models.113

The assumption of equal speciation rates among clades is, certainly in114

most cases, unrealistic (Purvis et al. 1995; Paradis 2005; Alfaro et al. 2009).115

However, since we have several observations we may model the variation116

in this parameter with a statistical modeling approach. We explore several117
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such approaches below. Firstly, we consider approaches based on determin-118

istic variation between two or more groups of clades. Secondly, we consider119

how temporal variation in speciation and extinction rates can be modeled120

and assessed. Thirdly, we develop an approach handling unknown variation121

based on mixture modeling, including the combination of mixtures with a122

linear modeling of the speciation rate. Finally, we attack the problem of123

estimating extinction rates.124

Variation Among Clades125

A simple way to model variation in diversification among clades is to assume126

that there are two categories: some clades diversify with speciation rate λ1127

and the others with rate λ2. The data are made of n1 and n2 clades in each128

category, respectively. The likelihood function is:129

n1∏
i1=1

Pr(xi1 |λ1)
n2∏
i2=1

Pr(xi2 |λ2).

Note that each clade is assigned to a category a priori, although there is130

no assumption on whether λ1 is greater, or smaller, than λ2. The null131

hypothesis λ1 = λ2 can be tested by fitting this model and the null model132

whose likelihood is given by equation 2: the likelihood-ratio test (LRT)133

comparing these two models follows a χ2 distribution with df = 1. An134

alternative is to use the Akaike information criterion (Akaike 1973).135

The present approach is easily generalized to more than two categories:136

let us denote the number of categories as K, then the likelihood function137

would become the product of K products:138

K∏
j=1

nj∏
ij=1

Pr(xij |λj),
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where nj is the number of clades in the jth category. The LRT comparing139

this model with the null model of homogeneous diversification follows a χ2
140

with df = K − 1.141

These models assume, mostly for simplicity, that there is no extinction142

(µ = 0); however, variation in extinction rate can be incorporated in a143

straightforward way. For instance a model with two categories diversify-144

ing with the same λ but with different extinction rates has the following145

likelihood function:146

n1∏
Pr(xi1 |λ, µ1)

n2∏
Pr(xi2 |λ, µ2),

which could be compared with the null model with µ > 0 whose likelihood147

is:148

N∏
Pr(xi|λ, µ),

with N = n1 + n2. This test is related, but not identical, to the tests149

of equal diversification using sister-clades where the ages of clades are not150

needed (Paradis 2012b).151

The supplementary materials provide annotated R code explaining how152

to build and fit any model following the present approach.153

Linear Modeling154

Following the previous section, two extreme models can be defined: the sim-155

plest one where all clades diversify at the same rate, and the most complex156

one where each clade has its own parameter(s). This second model will be157

overparameterized for a likelihood approach. Nevertheless, it is possible to158

model variation in diversification parameters with linear models. For in-159
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stance, we may know a priori some variables that are likely to affect the160

value of speciation rate (e.g., body size), and a model that relates such ‘co-161

variates’ to speciation rate may be an appropriate candidate to model the162

variation in diversification among clades. We use here a standard strategy163

to model variation in a rate with respect to a covariate z:164

g(λi) = βzi + α,

where λi is the speciation rate in clade i, g is a function used to transform the165

rate in order to linearize the relationship, and β and α are two parameters.166

Here β controls the effect of z on λ: if β > 0 then species with large values167

of z will speciate faster than those with small values of z (and inversely if168

β < 0). It is possible to consider more than one predictor in which case169

the number of parameters is equal to the number of predictors plus one.170

Nonlinear models can also be considered. Each clade has its own speciation171

rate given by (with g−1 being the inverse transformation of g):172

λi = g−1(βzi + α), (3)

which is used to calculate the likelihood defined by equation 2: the likelihood173

function is then maximized to estimate β and α (see code in the Supplemen-174

tary Material). A common choice for g is the logit function, ln(λi/(1−λi)),175

so g−1 gives:176

λi =
1

1 + e−(ziβ+α)
,

The null model is defined by fixing β = 0 in which case λ = 1/(1 + e−α) for177

all clades. The logit function is well suited for parameters varying between178
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0 and 1 which is the case for speciation rates considered on geological time179

scales (million of years). However, speciation rates may be larger than one180

on shorter scales. Other transformations can be used such as the one used181

below.182

It must be noted that the variation among clades as modeled in the183

previous section is a special case of linear models where the membership of184

a clade to a category is coded with a discrete variable and this variable is185

entered as a predictor into the linear model after coding it into binary 0/1186

variable(s) (see appendix in Paradis 2005, for details). Therefore, continuous187

and categorical predictors can be combined in the linear model.188

Temporal Variation189

Kendall (1948) studied the birth–death model in a very general way, in-190

cluding the cases where λ and µ vary through time. Thus it is possible to191

derive the probability density of the distribution of the xi’s when diversifi-192

cation changed through time. The likelihood can be defined and fit in the193

same way as above. Such a temporal model can be compared with the null194

model of constant diversification with a χ2 test whose df will be equal to195

the number of additional parameters in the first model. As before, tempo-196

ral variation may reflect speciation and/or extinction rate(s). The simplest197

temporal model has two rates before and after a given time point in the past,198

so it has one additional parameter than the null model. Note that if the199

time point is unknown, it could be estimated from the data so there would200

be two additional parameters. However, a wide variety of temporal models201

can be defined in ape (Paradis et al. 2004) using the function dbdTime where202

the temporal variation is defined by the user with a standard R function.203
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Unknown Variation204

The above models assume that diversification parameters vary in relation205

to some known variables, either categorical or continuous. On the other206

hand, it is possible that these variables are not observable. Such unknown207

variation can be modeled with two approaches depending on whether we208

assume that the diversification parameters vary in a discrete or continuous209

manner.210

A mixture of distributions is based on the assumption that observations211

come from two or more categories each characterized by its own distribution,212

but the assignment of an observation to a particular category is unknown213

(see Flury et al. 1992, for a biological example). As a simple example,214

consider a mixture of two Yule processes, then the likelihood function will215

be:216

N∏
i=1

f Pr(xi|λ1) + (1− f) Pr(xi|λ2), (4)

where f is the proportion of clades in the first category. This model has217

three parameters (λ1, λ2 and f) and can be compared with the null model218

of homogeneous speciation with a LRT with df = 2. The idea is easily219

generalized to more than two mixtures: a mixture with K Yule models220

would have 2K−1 parameters. As above, the mixture may involve speciation221

and/or extinction rate(s). By contrast to the situation above where clades222

were assigned to categories a priori, there is here no assignment a priori.223

On the other hand, assignment a posteriori is possible by calculating the224

relative contributions to the likelihood function.225

The idea may even be further generalized to include mixtures of linear226

models. Suppose we know that one variable, say body size, has a significant227

effect on speciation rate but there is some other, unknown, variation in this228
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parameter that we want to model with a mixture. Then it is possible to229

calculate the λi’s with equation 3 and use them to compute the likelihood230

with eq. 4. Each category would have its own parameters β and α, so a231

model with K categories has 3K − 1 parameters.232

The second approach assumes that, in the case of a Yule model, λ varies233

continuously across clades following a specified distribution whose parame-234

ters are estimated from the data. A transformation of λ is useful so that it235

follows a normal distribution: g(λ) ∼ N (µλ, σ
2
λ). A useful transformation236

here is the complementary log-log transformation: g(λ) = ln(− ln(λ)). As237

above we do not know the value of λ for a given clade, but this time instead238

of a discrete sum we have to do a continuous integration. The likelihood239

function is thus:240

N∏
i=1

∫ ∞
−∞

fN (u|µλ, σ2λ) Pr(xi|g−1(u))du,

where fN is the density function of the normal distribution. A graphical241

representation of the variation in λ is obtained with the inverse transforma-242

tion g−1(u) = exp(−eu) with the dentity of u computed with the normal243

distribution and the estimates µ̂λ and σ̂2λ.244

Estimating Extinction Rates245

The estimation of extinction rates in the absence of fossil data has appeared246

to be a complicated issue (Paradis 2004, 2011; McPeek 2008; Aldous et al.247

2011; Morlon et al. 2011; Didier et al. 2012; Hallinan 2012). To try to tackle248

this problem, we implemented a procedure which fits a birth–death model249

estimating λ and µ simultaneously. These estimates are denoted as λ̂BD and250

µ̂BD.251
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Simulation Study252

The present statistical modeling approach offers many possibilities and it253

would take a large number of simulations to assess the statistical proper-254

ties of all of them. Instead, we focus on a few key questions. What is the255

statistical power to detect a difference in diversification between two groups256

of clades? How powerful is the test to detect temporal variation in diver-257

sification? What is the statistical power to detect unknown variation in258

diversification between two groups of clades using mixtures? Finally, what259

is the precision of the λ and µ estimators?260

To address these four questions, we ran four sets of simulations. First, we261

considered a simple two-category scenario with n1 and n2 clades simulated262

with rates λ1 and µ1 and λ2 and µ2, respectively. The times of evolution263

were drawn from a uniform distribution: ti ∼ U(10, 20). A phylogeny was264

simulated under a birth–death process during a time ti using ape starting265

from a single species. The number of species surviving at time ti, xi, was266

extracted and the pairs (xi, ti) were analyzed as described above using a Yule267

model. The LRT testing the null hypothesis of homogeneous diversification268

was computed, and the rejection rate was assessed under different sets of269

parameter values: n1 = n2 = {1, 3, 5, 10, 20}, λ1 = {0.1, 0.15, 0.2}, λ2 = 0.1,270

µ1 = {0, 0.05}, µ2 = {0, 0.05}.271

Second, we performed simulations under three scenarios with different272

values of diversification rates before and after 30 time units. We first gen-273

erated 100 values of t from a uniform distribution between 10 and 50. We274

then simulated clades with constant, increasing, or decreasing diversification275

rate. The number of species was extracted as before, and two models were276

fitted: the null Yule model of constant diversification, and an alternative277

model assuming different speciation rates before and after 30 time units (as278
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above µ = 0 was assumed). The rejection rates of the LRTs comparing both279

models were computed.280

Third, a scenario similar to the first one was considered: the difference281

is that the simulated clades were not identified to a particular category so282

the data were analyzed with a mixture of Yule models. We used K = 2,283

n1 = n2 = {10, 20, 50}, and ti ∼ U(10, 20). Four combinations of speciation284

and extinction rates were used: (i) the null hypothesis is true and there is285

no extinction: λ1 = λ2 = 0.1, µ1 = µ2 = 0; (ii) the null hypothesis is false286

and there is no extinction: λ1 = 0.1, λ2 = 0.2, µ1 = µ2 = 0; (iii) the null287

hypothesis is false but only µ varies: λ1 = λ2 = 0.2, µ1 = 0, µ2 = 0.1; and288

(iv) same than before with stronger variation in µ: λ1 = λ2 = 0.2, µ1 = 0,289

µ2 = 0.15.290

Finally, we performed an assessment of the precision of the estimators of291

speciation and extinction rates using five combinations of λ and µ: (0.1, 0),292

(0.1, 0.03), (0.1, 0.06), (0.2, 0.1), and (0.2, 0.15). Here ti ∼ U(10, 30) and293

n = 100.294

The simulations were replicated 1000 times. Annotated R (R Devel-295

opment Core Team 2012) code is available in the Supplementary Material296

with guidelines on how to run these simulations so that the readers can297

adapt them to their own problems. Besides, we did not attempt to compare298

our method with previous ones because some scenarios considered here can-299

not be analyzed by the latter (e.g., the third scenario does not seem to be300

tractable with Magallón and Sanderson’s method).301

Application to Fish Data302

We used the data from Vega and Wiens (2012) who compiled the number303

of species, stem age, and percentage of marine fish species for 22 orders and304
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super-orders and for 97 families. They also provided a phylogeny for the305

22 higher taxa which allowed to compare our estimates with those obtained306

from the combined analysis of phylogeny and species richness data (Paradis307

2003). All data were unmodified from the original publication and are avail-308

able at http://dx.doi.org/10.1098/rspb.2012.0075. With this data set, we309

explored the variation in diversification using different mixtures of Yule and310

birth–death models. We also tried to assess whether this variation is due to311

differences in the speciation or in the extinction rates.312

Results313

Simulation Study314

The first set of simulations showed that, overall, the LRT testing for dif-315

ferent diversification rates between two categories of clades had satisfactory316

statistical properties (Table 1). The type I error rate (rejection rate when317

the null hypothesis is true, i.e., λ1 = λ2 and µ1 = µ2) was, as expected,318

close to 5% (first and seventh lines in Table 1). However, when λ − µ was319

the same in both categories, the rejection rate was greater than 5% (eighth320

line in Table 1) showing that the present test does not test for equal di-321

versification rate. In the cases where the null hypothesis was not true, the322

rejection rate varied as expected: it was greater for larger sample sizes (n1)323

and for larger contrast in the speciation or extinction rate. Interestingly, if324

one category of clades had smaller µ while λ was the same, then the test was325

able to detect this difference; however, the statistical power was less than326

when the same contrast in diversification was due to different λ (compare327

the second and third lines in Table 1).328

In the second set of simulations, the test for temporal variation rejected329

the null hypothesis in more than 90% when µ = 0 and λ varied, whether this330
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was an increase or a decrease (third to sixth lines in Table 2). On the other331

hand, the results were contrasted when µ > 0. When there was no temporal332

variation in the parameters, the type I error rates were inflated in relation333

to the value of µ (seventh and eighth lines in Table 2). When µ varied334

through time, the test behaved very differently depending on the direction335

of this variation: it did not reject the null hypothesis in most cases when336

µ increased (nineth line in Table 2) while it rejected it in 68% of the cases337

when µ decreased (tenth line in Table 2). To further investigate this point,338

we repeated some of these simulations but this time the null model was a339

birth–death model with λ and µ constant through time, and the alternative340

model was with λ constant and µ allowed to vary before and after 30 time341

units. In this situation, the test behaved as expected: the rejection rate342

was less than 5% when µ was constant, whereas it varied between 8% and343

31% when the null hypothesis was false (Table 3). It is noteworthy that the344

present test to detect time-dependent extinction rate is not very powerful: it345

was necessary to simulate a strong contrast in µ to reach a statistical power346

greater than 0.2.347

The third set of simulations showed that the mixture-based LRT was348

able to detect heterogeneous diversification among two unknown categories349

of clades (Table 4). The test was more powerful when the contrast was350

due to different λ compared to different µ. Otherwise, the test showed351

satisfactory statistical performance: its power increased with sample size352

and/or contrast in the parameters.353

The distribution of the estimates of speciation rate under the Yule model,354

λ̂Yule, shows that this estimator appeared unbiased when µ = 0 (Fig. 1A).355

On the other hand, when µ > 0 it was negatively biased though it can be ob-356

served that λ̂Yule > λ−µ so this cannot be actually taken as an estimator of357
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the net diversification rate. The estimator based on the birth–death model,358

λ̂BD, appears less biased, even though the presence of extinctions seems359

to induce a slightly more dispersed distribution of the estimates (Fig. 1B).360

The estimates of extinction rate based on the birth–death model, µ̂BD, were361

almost unbiased (Fig. 1C).362

Application to Fish Data363

The fit of the Yule model to the fish data at the higher level (N = 22)364

resulted in a global estimate λ̂Yule = 0.058 (SE = 0.002; AIC = 456). We365

tried to fit a birth–death model which led to a much improved fit (AIC =366

376); however, the likelihood function had a pronounced ridge on the line367

λ = µ (not shown). The fit of mixtures of Yule models with increasing368

number of categories (K) showed that the best fit was with three categories369

(Table 5). The parameter estimates were: λ̂1 = 0.041, λ̂2 = 0.080, λ̂3 =370

0.013, f̂1 = 0.65, and f̂2 = 0.10. The analysis of the combined taxonomic371

and phylogenetic data (Paradis 2003) gave λ̂ = 0.056 and µ̂ = 1.83× 10−7.372

The analysis at the level of the families (N = 97) gave for the Yule373

model λ̂Yule = 0.0756 (SE = 0.0016; AIC = 1483). Like above, the fit of374

the birth–death model resulted in a likelihood surface with a ridge on the375

line λ = µ. The mixture of Yule models with the best fit had two categories376

(Table 5); the parameter estimates were: λ̂1 = 0.099, λ̂2 = 0.036, f̂ = 0.42.377

The analysis with a model assuming continuous variation in λ across378

clades gave close results for both taxonomic levels. In both cases, the model379

fitted well and the AIC values were smaller than for any of the previous380

models (Table 6). Figure 2 shows the distribution of λ inferred with the381

estimated parameters. Trying to introduce µ did not result in successful fits382

and the estimates of this parameter were close to zero.383
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Vega and Wiens (2012) reported the percentage of marine and freshwater384

species at both taxonomic levels. This was distributed very asymmetrically385

with most orders and families having only marine or freshwater species.386

Thus, we split the data into two groups whether they had more or less387

than 50% of marine species. A test of different speciation rates between388

these groups was performed. For orders, the difference was significant (LRT:389

χ2
1 = 28.09, P < 0.001) with a larger estimate for marine orders (λ̂ = 0.063,390

SE = 0.002) compared to the freshwater ones (λ̂ = 0.046, SE = 0.002).391

An examination of the data suggested that this result was dependent on392

Percomorpha which is one of the youngest clades in this data set and includes393

16,625 species (Fig. 3A). Removing this clade resulted in a non-significant394

test (χ2
1 = 2.10, P = 0.147, N = 21). For families, an analogous result395

was found with a significant test (LRT: χ2
1 = 5.58, P = 0.018) comparing396

marine families (λ̂ = 0.079, SE = 0.002) and freshwater ones (λ̂ = 0.071,397

SE = 0.002). This result was dependent on two families older than 200 Myr398

(Fig. 3B): the Amiidae (one species) and Polypteridae (12). Removing these399

two families led to a non-significant test: χ2
1 = 2.02, P = 0.155 (N = 95).400

Discussion401

The analysis of phylogenetic diversification with molecular data is enjoying402

a remarkable success in the literature. Some spectacular results have been403

accomplished using complete phylogenies (e.g., Goldberg et al. 2010; Hugall404

and Stuart-Fox 2012; Penney et al. 2012). Though complete phylogenies,405

possibly supplemented with fossil data, are probably the best way to inves-406

tigate evolutionary diversification, the goal of our study was to show the407

merit of an alternative approach based on the analysis of clade data.408

Our modeling approach is based on the assumption that each clade is409
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characterized by its diversification parameters and variation among these pa-410

rameters can be quantified in a statistical way. Bokma (2003) and Paradis411

(2003) developed a method to combine information from high-level phylo-412

genies with clade data: both authors considered the simple constant-rate413

birth–death model. Alfaro et al. (2009) used similar combined data to as-414

sess variation among clades of vertebrates using a stepwise procedure (see415

details in Paradis 2012a). Thus the approach in the present paper comple-416

ments previous methodological developments. The possibility to quantify417

variation among clades with linear models seems a fruitful way to avoid418

overparameterization. Future applications will reinforce the relative merits419

of this approach.420

Recently, Stadler and Bokma (2013) developed alternative likelihood421

functions with respect to the way higher taxa are defined. They showed422

that the estimation of speciation and extinction rates vary substantially de-423

pending on these definitions. While they considered only the constant-rate424

birth–death model, it seems possible and interesting to include their sam-425

pling scheme into the developments presented in the present paper.426

Our modeling approach ignores the background phylogeny of the clades,427

the set of branches that link the clades together to make a higher-level428

phylogeny. There are two reasons for this. First, using information from429

the background phylogeny is straightforward when the rates of speciation430

and extinction are constant and homogenous, but when this assumption431

is relaxed it is not simple how one must assume changes in rates in the432

background tree. It is clear that if a well-supported background phylogeny433

is available, this might give additional information which can be combined434

with clade data (e.g., Paradis 2003). However, this extra information will435

in most cases require its own model since it relates to older diversification436
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events compared to clade data. On the other hand, ignoring backbone phy-437

logeny and assuming that the clades are independent units simplifies the438

definition of alternative models as done in this paper. Second, though some439

higher-level phylogenies are available (mammals, birds), we believe these are440

still exceptions rather than the rule. For instance, the basal relationships441

of reptiles, amphibians, or fishes are still debated. Therefore, having the442

possibility to analyze their clade data without the need of a background443

phylogeny is of some general application. Furthermore, the present ap-444

proach can be used when analyzing sets of clades across different phyla, for445

instance arthropods, echinoderms, vertabrates, etc., where the background446

phylogeny would not be very informative since this would branch at the447

origin of Metazoa.448

The use of mixtures as an approach to analyze heterogeneity in diver-449

sification rates is not limited to clade data. For instance, one could model450

speciation and extinction rates on a fully-resolved phylogeny assuming that451

these parameters vary among its branches though we do not know a pri-452

ori which sections of the tree evolved fast and which others evolved slowly.453

Furthermore, the mixture approach can also be used to model variation in454

rates of trait evolution along a phylogeny. In that case, the variation may be455

among branches (as in the previous example), or among traits where some456

traits are assumed to evolve faster but we do not know which ones.457

Some subtle but important facts come from the results of the simulation458

study. Even though most of the tests considered here assumed µ = 0, they459

appeared not to be tests of equal diversification. If the net diversification460

rates (λ−µ) were equal among clades, the tests rejected the null hypothesis461

in more than 5% (see eighth row of Table 1). On the other hand, if λ was462

equal among clades, the tests detected differences in µ. It is clear that results463
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based only on the Yule model must be interpreted with caution.464

The tests of temporal variation showed some contrasted but interesting465

results. When the extinction rate was zero, these tests performed very well466

and were able to detect either a decrease or an increase in speciation rate.467

However, when extinction rate was not null, the tests based on the Yule468

model showed poor performance with an increased type I error rate and a469

high type II error rate (frequency of accepting the null hypothesis when it is470

false) when µ decreased through time. These poor performances were cor-471

rected if the assumtion µ = 0 was relaxed (i.e., if a null birth–death model472

was used in place of the Yule one), though the test had low power. Some473

of these results make sense: the increased type I error rate obtained with474

the Yule model is clearly due to the fact that a pattern of accelerated spe-475

ciation can be created under a diversification process with extinction, when476

old lineages are mostly extinct (e.g., Paradis 2011). On the other hand, the477

high type II error rate of the same model when extinction rate increased478

through time is somehow surprising considering the widely reported results479

of slowing-down diversification (Rabosky and Lovette 2008b,a; Morlon et al.480

2011; Etienne and Haegeman 2012, among others). Obviously, the same test481

was not used in these studies, so this clearly requires further investigation.482

Besides, the result that the test based on a birth–death model shows statis-483

tically consistent results (i.e., the null hypothesis was rejected in less than484

5% when µ was constant and in more than 5% when this parameter varied485

through time) is encouraging and will also be further investigated. Interest-486

ingly, this test was more powerful when the extinction rate increased through487

time.488

A particularly interesting result comes from the precision of the estimator489

of extinction rate, µ̂BD, which appears to have a very small bias, even when490
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the data were simulated with a relatively large value of µ. This contrasts491

with previous studies showing that the estimator of extinction rate based492

on complete phylogenies is, overall, inaccurate except if it is small compared493

to the speciation rate (Paradis 2004; Didier et al. 2012). This result is494

important because several authors have cast doubt on the possibility to495

estimate with some precision extinction rates without fossils (Paradis 2011;496

Aldous et al. 2011).497

The analysis with the fish data were essentially illustrative, but the re-498

sults call for several comments. The present method seems successful in499

quantifying variation in diversification rates from a sample of clades. The500

difference in the results from both taxonomic levels makes sense since we501

expect more variation among families than among orders. The AIC values502

evidence that the model assuming continuous variation in λ across clades503

fits better than a model with discrete variation in this parameter. Since504

similar tests have not been done with other data, this clearly calls for fur-505

ther analyses before concluding whether diversification varies continuously506

or discretely across clades.507

The apparent failure to estimate the extinction rate, µ, of fishes is disap-508

pointing since our simulation study showed that this parameter can be es-509

timated correctly with the present approach. The fossil record shows many510

episodes of radiations, extinctions, and turn-over during the evolutionary511

history of fishes (Friedman and Sallan 2012). So the reality is very differ-512

ent from the homogeneous scenario used in our simulations. Our results513

combined with previous studies (e.g., Aldous et al. 2011) suggest that the514

estimators of µ are far more complex when rate heterogeneity is present515

which is likely the case with most real data set.516

Vega and Wiens (2012) addressed the paradox of equivalent species di-517
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versity between marine and freshwater fishes despite the fact that freshwater518

environments occupy a considerably smaller fraction of the Earth’s surface519

than oceans. In particular they wondered whether this could be related to520

differences in diversification rates. Our results are in agreement with these521

authors’ who tested their hypothesis by correlating the proportion of marine522

species in a clade with the method-of-moment estimator from Magallón and523

Sanderson (2001). We found significant differences in λ between marine and524

freshwater clades from the raw data; however, the small difference in λ̂ be-525

tween both groups suggested the influence of one or two clades. Hopefully,526

the analysis of a more comprehensive data set with the statistical tools intro-527

duced in this paper will help to solve the paradox of less biological diversity528

in the ocean (Mora et al. 2011).529
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Table 1. Rejection rate for the test of equality of diversification rate between two categories
with n1 and n2 (= n1) clades.

λ1 µ1 λ2 µ2 n1
1 3 5 10 20

0.1 0 0.1 0 0.044 0.060 0.066 0.054 0.056
0.1 0 0.1 0.05 0.038 0.085 0.108 0.140 0.203
0.15 0 0.1 0 0.094 0.177 0.232 0.418 0.711
0.15 0 0.1 0.05 0.112 0.297 0.446 0.759 0.958
0.2 0 0.1 0 0.174 0.497 0.707 0.943 0.998
0.2 0 0.1 0.05 0.236 0.643 0.855 0.993 1.000
0.1 0.05 0.1 0.05 0.040 0.054 0.048 0.054 0.061
0.15 0.05 0.1 0 0.050 0.075 0.083 0.123 0.209
0.15 0.05 0.1 0.05 0.069 0.129 0.201 0.387 0.653
0.2 0.05 0.1 0 0.119 0.240 0.384 0.693 0.928
0.2 0.05 0.1 0.05 0.143 0.407 0.618 0.878 0.995

28



Table 2. Rejection rate for the test of temporal variation in diversification. The null model
was a Yule model with constant rate, and the alternative model was a Yule model with λ
allowed to take different values before and after 30 time units. The first two pairs of columns
give the parameter values used for the simulations (Ancient and Recent: values before and
after 30 time units).

Ancient Recent Rejection rate
λ µ λ µ

0.01 0 0.01 0 0.029
0.1 0 0.1 0 0.038
0.1 0 0.05 0 0.917
0.1 0 0.01 0 1.000
0.05 0 0.1 0 0.923
0.01 0 0.1 0 1.000
0.1 0.025 0.1 0.025 0.105
0.1 0.05 0.1 0.05 0.248
0.1 0.025 0.1 0.075 0.057
0.1 0.075 0.1 0.025 0.682
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Table 3. Same than in Table 2 but the null model was a birth–death model with constant
rates, and the alternative model was a model with λ constant and µ allowed to take different
values before and after 30 time units.

Ancient Recent Rejection rate
λ µ λ µ

0.1 0.05 0.1 0.05 0.019
0.1 0.075 0.1 0.025 0.080
0.1 0.025 0.1 0.075 0.121
0.1 0 0.1 0.08 0.313
0.1 0.08 0.1 0 0.211
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Table 4. Rejection rate for the test of equality of diversification rate between two unknown
categories using mixtures with n clades in each category.

λ µ n
10 20 50

0.1 0 0.011 0.006 0.011
(0.1, 0.2) 0 0.235 0.548 0.929
0.2 (0, 0.1) 0.057 0.143 0.369
0.2 (0, 0.15) 0.199 0.423 0.829
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Table 5. Results of fitting models to the fish data using mixtures of Yule processes with K
from two to seven.

K Orders Families
lnL AIC lnL AIC

2 −171.207 348.414 −599.846 1205.691
3 −158.381 326.763 −599.846 1209.691
4 −171.207 356.414 −599.846 1213.691
5 −171.207 360.414 −599.846 1217.691
6 −171.207 364.414 −599.846 1221.691
7 −171.207 368.414 −599.846 1225.691
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Table 6. Results of fitting a model of continuous variation in speciation rate across orders (N
= 22) and families (N = 97) of fish.

AIC µ̂λ (SE) σ̂λ (SE)

Orders 320.396 1.221 (0.039) 0.163 (0.032)
Families 1137.066 1.086 (0.026) 0.224 (0.022)

33



A)

λ̂Yule

P
er

ce
nt

ag
e

0

10

20

30

40

50

60

0.06 0.08 0.10 0.12 0.14

λ = 0.1, µ = 0

0.06 0.08 0.10 0.12 0.14

λ = 0.1, µ = 0.03

0.06 0.08 0.10 0.12 0.14

λ = 0.1, µ = 0.06

0.06 0.08 0.10 0.12 0.14

λ = 0.2, µ = 0.1

0.06 0.08 0.10 0.12 0.14

λ = 0.2, µ = 0.15

B)

λ̂BD

P
er

ce
nt

ag
e

0

20

40

60

80

0.1 0.2 0.3 0.4 0.5 0.6

λ = 0.1, µ = 0

0.1 0.2 0.3 0.4 0.5 0.6

λ = 0.1, µ = 0.03

0.1 0.2 0.3 0.4 0.5 0.6

λ = 0.1, µ = 0.06

0.1 0.2 0.3 0.4 0.5 0.6

λ = 0.2, µ = 0.1

0.1 0.2 0.3 0.4 0.5 0.6

λ = 0.2, µ = 0.15

C)

µ̂BD

P
er

ce
nt

ag
e

0

20

40

60

0.0 0.2 0.4 0.6

λ = 0.1, µ = 0

0.0 0.2 0.4 0.6

λ = 0.1, µ = 0.03

0.0 0.2 0.4 0.6

λ = 0.1, µ = 0.06

0.0 0.2 0.4 0.6

λ = 0.2, µ = 0.1

0.0 0.2 0.4 0.6

λ = 0.2, µ = 0.15

Figure 1. Distribution of the estimates of λ and µ with (A) the Yule model (λ̂Yule) and (B
and C) the birth–death model (λ̂BD and µ̂BD) under five sets of parameters (values are given
in the strips). Note the different scales of the x-axes. The vertical dotted lines indicate the
values of λ (A and B) or µ (C) used in the simulation (not visible if outside the range of the
x-axis). In all cases n = 100 clades.
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Figure 2. Inferred distribution of speciation rate among orders and families of fish.
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Figure 3. Number of species with respect to stem clade age for (A) orders and some super-
orders and (B) families of fish (the legend is the same for both plots).
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