J. Jouzel, Abrupt Climatic Change: Evidence and Implications, pp.235-245, 1987.

T. Blunier, increase with respect to the Younger Dryas Event, Geophysical Research Letters, vol.32, issue.21, pp.2683-2686, 1997.
DOI : 10.1029/96PA02640

J. B. Pedro, The last deglaciation: timing the bipolar seesaw, Climate of the Past, vol.7, issue.2, pp.671-683, 2011.
DOI : 10.5194/cp-7-671-2011

URL : https://hal.archives-ouvertes.fr/insu-00649687

F. Lamy, Modulation of the bipolar seesaw in the Southeast Pacific during Termination 1, Earth and Planetary Science Letters, vol.259, issue.3-4, pp.400-413, 2007.
DOI : 10.1016/j.epsl.2007.04.040

S. Barker, Interhemispheric Atlantic seesaw response during the last deglaciation, Nature, vol.3, issue.7233, pp.1097-1102, 2009.
DOI : 10.5194/cpd-3-1235-2007

A. E. Putnam, Glacier advance in southern middle-latitudes during the Antarctic Cold Reversal, Nature Geoscience, vol.328, issue.10, pp.700-704, 2010.
DOI : 10.1038/ngeo962

R. M. Newnham, Does the bipolar seesaw extend to the terrestrial southern mid-latitudes?, Quaternary Science Reviews, vol.36, pp.214-222, 2012.
DOI : 10.1016/j.quascirev.2011.04.013

Z. Liu, Transient Simulation of Last Deglaciation with a New Mechanism for Bolling-Allerod Warming, Science, vol.3, issue.23-24, pp.310-314, 2009.
DOI : 10.5194/cp-3-51-2007

F. He, Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation, Nature, vol.102, issue.7435, pp.81-85, 2013.
DOI : 10.1029/96JC03981

T. J. Crowley, North Atlantic Deep Water cools the southern hemisphere, Paleoceanography, vol.242, issue.4, pp.489-497, 1992.
DOI : 10.1126/science.242.4883.1275

T. F. Stocker and S. J. Johnsen, A minimum thermodynamic model for the bipolar seesaw, Paleoceanography, vol.22, issue.2, p.920, 2003.
DOI : 10.1016/S0277-3791(03)00152-5

J. C. Chiang and C. M. Bitz, Influence of high latitude ice cover on the marine Intertropical Convergence Zone, Climate Dynamics, vol.13, issue.5, pp.477-496, 2005.
DOI : 10.1034/j.1600-0870.1994.t01-1-00001.x

R. Zhang and T. L. Delworth, Simulated Tropical Response to a Substantial Weakening of the Atlantic Thermohaline Circulation, Journal of Climate, vol.18, issue.12, pp.1853-1860, 2005.
DOI : 10.1175/JCLI3460.1

C. Wunsch, Abstract, Quaternary Research, vol.393, issue.15, pp.191-203, 2006.
DOI : 10.1038/nature03365

R. Seager and D. S. Battisti, in The Global Circulation of the Atmosphere: Phenomena, Theory, Challenges, pp.331-371, 2007.

E. Calvo, C. Pelejero, P. De-deckker, and G. A. Logan, Antarctic deglacial pattern in a 30 kyr record of sea surface temperature offshore South Australia, Geophysical Research Letters, vol.31, issue.3, p.13707, 2007.
DOI : 10.1130/0091-7613(2003)031<0223:ACCBNZ>2.0.CO;2

P. I. Moreno, Renewed glacial activity during the Antarctic cold reversal and persistence of cold conditions until 11.5 ka in southwestern Patagonia, Geology, vol.230, issue.39, pp.375-378, 2009.
DOI : 10.1016/j.epsl.2004.10.024

M. J. Vandergoes, Cooling and changing seasonality in the Southern Alps, New Zealand during the Antarctic Cold Reversal, Quaternary Science Reviews, vol.27, issue.5-6, pp.589-601, 2008.
DOI : 10.1016/j.quascirev.2007.11.015

URL : http://uu.diva-portal.org/smash/get/diva2:132810/FULLTEXT01

R. F. Denniston, North Atlantic forcing of millennial-scale Indo-Australian monsoon dynamics during the Last Glacial period, Quaternary Science Reviews, vol.72, pp.159-168, 2013.
DOI : 10.1016/j.quascirev.2013.04.012

N. A. Mosblech, North Atlantic forcing of Amazonian precipitation during the last ice age, Nature Geoscience, vol.78, issue.11, pp.817-820, 2012.
DOI : 10.1029/2005JD005980

E. Schefuß, H. Kuhlmann, G. Mollenhauer, M. Prange, and J. Pätzold, Forcing of wet phases in southeast Africa over the past 17,000 years, Nature, vol.325, issue.7378, pp.509-512, 2011.
DOI : 10.1126/science.1173791

S. O. Rasmussen, A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy, Quaternary Science Reviews, vol.106, pp.14-28, 2014.
DOI : 10.1016/j.quascirev.2014.09.007

URL : https://doi.org/10.1016/j.quascirev.2014.09.007

F. He, Simulating Transient Climate Evolution of the Last Deglaciation with CCSM3 PhD thesis, 2011.

J. F. Mcmanus, Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes, Nature, vol.40, issue.6985, pp.834-837, 2004.
DOI : 10.1017/S0033822200019123

C. Buizert, Greenland temperature response to climate forcing during the last deglaciation, Science, vol.25, issue.23-24, pp.1177-1180, 2014.
DOI : 10.1016/j.quascirev.2006.08.003

N. R. Golledge, Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning, Nature Communications, vol.100, issue.1, p.5107, 2014.
DOI : 10.1126/science.1167441

URL : http://www.nature.com/articles/ncomms6107.pdf

M. J. Bentley, A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum, Quaternary Science Reviews, vol.100, pp.1-9, 2014.
DOI : 10.1016/j.quascirev.2014.06.025

URL : https://hal.archives-ouvertes.fr/hal-01496146

G. H. Denton, The role of seasonality in abrupt climate change, Quaternary Science Reviews, vol.24, issue.10-11, pp.1159-1182, 2005.
DOI : 10.1016/j.quascirev.2004.12.002

B. L. Otto-bliesner, Coherent changes of southeastern equatorial and northern African rainfall during the last deglaciation, Science, vol.295, issue.6214, pp.1223-1227, 2014.
DOI : 10.1016/j.quascirev.2009.12.006

M. G. , Southern Hemisphere Assessment of PalaeoEnvironments acknowledges support from the Joint Institute for the Study of the Atmosphere and Ocean (JISAO Contribution No. 2408) and from a Marie Curie International Incoming Fellowship. H.C.B. was funded by NIWA core funding (COPR) were supported by the New Zealand Government through the GNS Global Change through Time Program. C.M.B. received support from NSF PLR 1341497. F.H. is supported by the US NSF and the US NOAA Climate and Global Change Postdoctoral Fellowship Program, Acknowledgements This work is a contribution to INQUA PALCOMM project 1302 SHAPE This research used resources of the Oak Ridge Leadership Computing Facility, located in the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under contract DE-AC05-00OR22725

B. M. , was funded by the European Research Council (ERC) under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Starting Grant 'HYRAX' , grant agreement no. 258657. We thank, Mackintosh and M. Mudelsee for helpful discussions. We also thank the many researchers who provided data sets for this work

. Author, J. B. Study-design-by, M. J. , H. C. , H. C. et al., Proxy data contribution and compilation by Model data provided by F.H. Data-model comparison and figures by J.B.P. with assistance from all authors. Manuscript written by, with contributions from all authors. References 30. Hsu, Y.-H. et al. Land?ocean asymmetry of tropical precipitation changes in the Mid-Holocene, pp.4133-4151, 2010.

K. B. Ólafsdóttir and M. Mudelsee, More accurate, calibrated bootstrap confidence intervals for estimating the correlation between two time series, Mathematical Geosciences, vol.25, issue.3, pp.411-427, 2014.
DOI : 10.1017/CBO9780511612336