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Abstract. Several methods currently exist to quantitatively

reconstruct palaeoclimatic variables from fossil botanical

data. Of these, probability density function (PDF)-based

methods have proven valuable as they can be applied to a

wide range of plant assemblages. Most commonly applied to

fossil pollen data, their performance, however, can be lim-

ited by the taxonomic resolution of the pollen data, as many

species may belong to a given pollen type. Consequently, the

climate information associated with different species cannot

always be precisely identified, resulting in less-accurate re-

constructions. This can become particularly problematic in

regions of high biodiversity. In this paper, we propose a novel

PDF-based method that takes into account the different cli-

matic requirements of each species constituting the broader

pollen type. PDFs are fitted in two successive steps, with

parametric PDFs fitted first for each species and then a com-

bination of those individual species PDFs into a broader sin-

gle PDF to represent the pollen type as a unit. A climate value

for the pollen assemblage is estimated from the likelihood

function obtained after the multiplication of the pollen-type

PDFs, with each being weighted according to its pollen per-

centage.

To test its performance, we have applied the method to

southern Africa as a regional case study and reconstructed

a suite of climatic variables (e.g. winter and summer tem-

perature and precipitation, mean annual aridity, rainfall sea-

sonality). The reconstructions are shown to be accurate for

both temperature and precipitation. Predictable exceptions

were areas that experience conditions at the extremes of the

regional climatic spectra. Importantly, the accuracy of the

reconstructed values is independent of the vegetation type

where the method is applied or the number of species used.

The method used in this study is publicly available in a

software package entitled CREST (Climate REconstruction

SofTware) and will provide the opportunity to reconstruct

quantitative estimates of climatic variables even in areas with

high geographical and botanical diversity.

1 Introduction

Reconstructing past climates, while being an important ele-

ment in the global effort to understand climate system dy-

namics and their potential future structure and characteris-

tics, is often limited to qualitative assessments of past con-

ditions. This limits the potential for comparisons with the

general circulation model (GCM) simulations, and the in-

tegration of palaeoenvironmental information in modelling

initiatives (Braconnot et al., 2012). As a result, while incon-

sistencies exist both between GCM simulations and between

GCM simulations and fossil records, it is difficult to use the

bulk of the palaeodata available to evaluate GCM simulations

in an efficient and effective way.

Many techniques have been developed to quantitatively

reconstruct past climates from palaeobotanical data (Guiot

et al., 1993; Huntley et al., 1995; Overpeck, 1985; Kühl

et al., 2002). They rely on the fundamental hypothesis that

a causal relationship exists between the modern distributions

of plants and the associated climates (Jackson and Williams,

2004, and references therein). These techniques can be di-

vided into two types: (1) those based on plant assemblages –
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modern analogue technique (MAT) (Overpeck, 1985; Guiot,

1990), weighted averaging (WA) (ter Braak and Looman,

1986; ter Braak and van Dame, 1989; Birks et al., 1990),

weighted averaging–partial least-squares regressions (WA-

PLS) (ter Braak and Juggins, 1993), artificial neural networks

(ANNs) (Malmgren et al, 2001) or regression trees (Salonen

et al., 2012) – and (2) those based on plant distributions – mu-

tual climatic range (MCR) (Atkinson et al., 1987; Sinka and

Atkinson, 1999; Elias, 1997), the coexistence approach (CA)

(Mosbrugger and Utescher, 1997; Utescher et al., 2014) or

probability density functions (PDFs) (Kühl et al., 2002; Truc

et al., 2013). These methods are fully detailed in Birks et al.

(2010). Amongst these methods, MAT, WA and WA-PLS are

the most commonly used. To date, no consensus has been

reached as to which performs the best, and since the paper

of Telford and Birks (2005) the debate has been focussed on

the sensitivity of different methods to spatial autocorrelation

in the training data set, which can cause an overestimation of

the performance of a method (Telford and Birks, 2005, 2009,

2011b; Guiot and de Vernal, 2011a, b).

Beyond these conceptual issues, the calibration data set is

another key concern. Methods based on plant assemblages

need to be calibrated on robust modern data sets covering

various environmental and biotic conditions, data sets that

are not available from many parts of the world (e.g. drylands

where pollen is often poorly preserved in surface samples). In

such situations, the flexibility of methods based on plant dis-

tributions (MCR, CA, PDFs) becomes more evident, expand-

ing the range and scope of “reconstructible” environments.

They also offer the possibility to reconstruct climate from

non-analogue assemblages, provided that most species from

that palaeoassemblage still exist. Conceptually, PDF-based

methods evolved from MCR techniques as a way to model

the strength of the relationship between plants and climate.

Indeed, MCR (which considers a rectangular envelope de-

fined by minimum and maximum values for a given climate

variable) can be seen as the simplest PDF-based method.

These methods are based on the correlation between plants’

modern geographical distribution and climate gradients, with

the climate value that is the most common in the plant distri-

bution being its “optimum”. Among the approaches that have

already been proposed within the last decade (Kühl et al.,

2002; Gebhardt et al., 2007; Truc et al., 2013), a recurrent is-

sue concerns the assumptions made about the morphological

characteristics of the envelope (width, skewness, central ten-

dencies). Kühl et al. (2002) fitted a multidimensional Gaus-

sian surface that excluded both multimodality and asymme-

try, which are however common features when dealing with

botanical assemblages. Later, Gebhardt et al. (2007) pro-

posed to fit mixture models (combination of several Gaus-

sian surfaces) to relax the constraints of a unimodal Gaussian

shape, and more recently Truc et al. (2013) proposed the ap-

plication of non-parametric PDFs to improve the fit between

PDF and data.

In addition to the issue of the shape, the accuracy of such

models is also a function of the taxonomic resolution at

which pollen can be identified (usually family to generic

level) and the number of species making up a given pollen

type. Pollen types often become climatically non-informative

due to a saturation effect wherein too many species result

in the climatic information conveyed by each species being

averaged and lost. Contrary to the problem of the shape of

the climate envelope, the problem of low taxonomic resolu-

tion has rarely been discussed as its effects are usually not

significant when plant diversity is relatively low. However,

in areas where pollen types can comprise a high number of

plant species (> 30), it becomes increasingly significant and

can result in saturated PDFs. Truc et al. (2013) proposed a

species selection method (SSM) that recursively alters the

taxonomic composition of a pollen type by taking into ac-

count the coexistence with other pollen types. In order to

minimize PDF saturation, the SSM removes species that have

climate requirements that are different from that of the as-

semblage.

However, the SSM only removes species with optima at

the extremes of climatic gradients, leaving a certain number

of climatically undifferentiated species around the median

climate. We believe that the problems of PDF shape and plant

diversity are in fact intimately related to the strategy used for

fitting PDFs. A pollen type is not a homogeneous ecolog-

ical unit in the sense that many species with different cli-

mate requirements can be classified in the same pollen type.

From this point of view, fitting a density function directly

to a pollen type is questionable. On the basis that species

are the ecological units that respond to climate gradients, we

propose a two-step procedure to define the PDF of the pollen

types: (1) univariate and unimodal parametric PDFs are fitted

for the species (PDFsp’s), and (2) those parametric PDFsp are

combined to produce the PDF of the pollen-type (PDFpol).

The PDFpol reflects the diversity that exists among its species

by considering independently each species. To reconstruct

a climate value, we propose to combine the PDFpol with a

weighted geometric mean. The multiplication of PDFpol en-

sures the conservation of the mutual climatic range.

To quantify the method’s capability to reconstruct dif-

ferent variables in different environments, we have recon-

structed a set of modern climatic conditions (20 variables)

over a large area (3389 quarter-degree grid cells represent-

ing southern Africa). Southern Africa – composed of South

Africa, Botswana, Lesotho, Swaziland and Namibia – is well

suited for such a test as it is characterized by a strong topo-

graphic, geological and climatic heterogeneity (Tyson, 1986;

Partridge and Maud, 2000; Chase and Meadows, 2007), lead-

ing ultimately to a great diversity of plant species (Goldblatt

and Manning, 2002). Statistical tests were performed on cli-

mate anomalies (1) to analyse where and why the model was

reliable, and (2) to measure the effects of parameters, such

as the type of variable, the number of taxa used and/or the

vegetation type.
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The method presented here has been implemented in a

software package entitled CREST (Climate REconstruction

SofTware). CREST – presented in Appendix A – is intended

to make quantitative climate reconstructions more accessible

to the wider community. Our hope is that a proliferation of

quantitative reconstructions of past climate conditions will

facilitate the consideration of palaeoenvironmental data in

the assessment of GCM performance and ultimately allow

for an improved understanding of both past and potential fu-

ture climate change.

2 Methodology

The climate reconstruction method we propose is based on

univariate PDFs. Here, a PDF represents the probability of

a species existing along a climate gradient and is a surro-

gate for the species’ realized niche (see for example Kear-

ney, 2006). The process follows three general steps: (1) the

plant–climate relationship is quantified (i.e. PDFs are fitted),

(2) information conveyed by each taxon is combined and fi-

nally (3) a climate value from the resulting climate likelihood

function is extracted. This method relies on the assumption

that the plant–climate relationship has remained relatively

constant since the deposition of the fossil assemblage.

2.1 Fitting of the PDFs

This step is critical for all PDF-based methods. Many differ-

ent strategies have been proposed (Kühl et al., 2002; Geb-

hardt et al., 2007; Truc et al., 2013), all of them fitting a PDF

to the pollen types identified in the fossil record. This strat-

egy leads to a loss of certain information because (1) individ-

ual signals are mixed and (2) rare species are masked by the

most extended ones.

Here we propose a two-step procedure to fit PDFs that bet-

ter integrates the diversity that can exist within some pollen

types. First, we fit a PDF to each species (noted PDFsp), and

secondly we combine the PDFsp into PDFpol. The latter con-

siders more clearly the pollen type’s diversity.

2.1.1 Creating PDFsp

Based on observations, we propose that distributions of cli-

matic values where a species is found – its niche – can be

classified into two shapes: a log-normal shape (Fig. 1a) or a

normal shape (Fig. 1b) (Austin, 1987; Austin and Gaywood,

1994; Hirzel and Le Lay, 2008). The normal shape is sym-

metric, while the log-normal shape is markedly right-skewed

(left-skewed distributions have been observed but are uncom-

mon). In addition, the log-normal function is null for negative

values, which is of interest when modelling variables such as

rainfall amounts. Both curves are defined by two parameters:

the mean xsp (Eq. 1) and the variance s2
x,sp (Eq. 2) of the

species niche, with x being the studied climatic gradient.

The estimation of xsp and s2
x,sp can be biased if the abun-

dance of each climate value is not considered (Telford and

Birks, 2011a). Following the model of Kühl et al. (2002) on

that particular point, we propose dividing the climatic space

into bins of equal width. All the climate values (a total of N )

are sorted into J bins. The number and/or length of the bins is

variable and depends on the dispersion of the climate values.

A weight kj is defined for each bin as the ratio of N with the

number of pixels nj in the bin j (Eq. 3). Each climate value

from bin j will have the same weight kj .

xsp =
1∑N
i=1ki

N∑
i=1

kixi (1)

s2
x,sp =

1∑N
i=1ki

N∑
i=1

ki(xi − xsp)
2 (2)

kj =
N

nj
(3)

The shape and the position of the PDFsp along a gradient can

be calculated with Eqs. (4) and (5) representing the normal

law and the log-normal law (Fig. 1b and a), respectively.

PDFsp(x) =
1√

2πs2
x,sp

exp

(
−
(x− xsp)

2

2s2
x,sp

)
(4)

PDFsp(x) =
1

√
2πσ 2x2

exp

(
−
(ln(x)−µ)2

2σ 2

)
(5)

with


µ= ln(xsp)−

1
2

ln

(
1+

s2
x,sp

x2
sp

)
σ 2
= ln

(
1+

s2
x,sp

x2
sp

)
2.1.2 Creating PDFpol

To create the PDFpol, all the PDFsp’s are added with a weight

determined by their geographical extent (represented by the

number of grid cells occupied ni , Eq. 6). Due to the absence

of detailed, functional information regarding the pollen pro-

duction of the different plant species, we are forced to con-

sider that it is a constant among all the species of a pollen

type and thus that each species is likely to have equally con-

tributed to the observed pollen biomass. While PDFsp’s have

an imposed shape, PDFpol’s are not constrained since no as-

sumptions are being made. A PDFpol can thus be multimodal

when the diversity within the pollen type results in two or

more climatically separated groups of species. Figure 1c and

d highlight the advantage of that method: for instance, the cli-

matic signals conveyed by the three species Tribulus crista-

tus, T. pterophorus and T. zeyheri are not masked by the sig-

nals of the most extended one, T. terrestris.

PDFpol(x) =
1∑spN

sp1

√
nspi

spN∑
sp1

√
nspi

PDFspi
(x) (6)
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Figure 1. An example of PDF fitting for two variables (Prec dry Q and Tmean ann) for the pollen type Tribulus, which is composed of four

species in our database. Four PDFsp’s are then fitted for each variable (a and b) and combined to create the PDFpol (c and d). The dashed

lines on (c) and (d) are the PDFs obtained by Truc et al. (2013). The difference between the two methods is more marked for prec dry Q,

where (i) the PDFpol is null for negative precipitation values (more realistic) and (ii) the optimum is more marked and reflects the optima of

the different species.

2.2 Combination of the PDFpol to create the PDFvar

We propose the combination of different PDFpol’s with a

weighted geometrical mean (Eq. 7). The multiplication of

PDFpol’s ensures that the reconstructed climate value will be

in the mutual climate range of the taxa considered. In addi-

tion, since plants may pollinate more when they live close to

their climate optimum (Birks and Seppä, 2004; Jackson and

Williams, 2004), the PDFpol’s are weighted according to a

monotonically increasing function of their pollen percentage

ωpol(s), with s representing a sample (Eq. 8).

PDFvar(x,s) =

polN∏
pol1

PDFpoli
(x)ωpoli

(s)


(

polN∑
pol1

ωpoli
(s)

)−1

(7)

Using pollen percentages ppol(s) to weight taxa is problem-

atic, as it is with traditional interpretive techniques, because

pollen production can vary substantially from one plant to an-

other (Jackson and Williams, 2004). The pollen production is

unknown for the vast majority of plant species, and one can-

not effectively employ this information to fit the PDFpol’s. To

address this issue, we follow the method developed by Truc

et al. (2013), wherein percentages were rescaledbetween 0
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Figure 2. Calculation of a CI exemplified with a right-skewed

PDFvar. More values are rejected on the right-hand side of the cli-

mate gradient. The grey areas cover an area representing α%.

and 1, with 1 corresponding to the highest percentage ob-

served for the pollen type. This normalization is, however,

very sensitive to outliers. In CREST, percentages are rescaled

by the mean percentage of the pollen type when it is present

in a sample. In other words, to calculate the mean, only

strictly positive values are considered (Eq. 8). For a given

pollen type, our weights have a correlation of 1 with those of

Truc et al. (2013); the difference lies in the relative weights

between taxa.

ωpol(s) =
ppol(s)

mean(ppol(s))∀s,ppol(s)>0

(8)

2.3 Climate reconstruction

The reconstructed climate corresponds to the abscissa x̂(s)

of the optimum of PDFvar (Eq. 9). PDFvar describes the like-

lihood of any climatic value to be the target value when con-

sidering the presence of many pollen types.

x̂(s) = argmax(PDFvar(x,s)) (9)

2.4 Error estimations

PDFvar’s provide access to the complete distribution of er-

rors. They can be estimated at different thresholds (noted α).

The α% confidence interval (CI) is more appropriate than a

standard deviation because PDFvar’s are rarely symmetrical

(Fig. 2).

3 Validation

As a case study, we have used a modern botanical database

to reconstruct a set of contemporary climate values to high-

light and explore the strengths and weaknesses of the ap-

proach, and to quantify its accuracy and robustness. Using

southern Africa as a study area, we consider five countries:

Figure 3. Distribution of the southern African biomes and ecore-

gions (Olson et al., 2001): (1) deserts and xeric shrublands –

(1a) Kaokoveld Desert, (1b) Namib Desert, (1c) Namibian savanna

woodlands, (1d) Succulent Karoo, (1e) Nama Karoo, (1f) Kala-

hari xeric savanna; (2) montane grasslands and shrublands – (2a)

Drakensberg altimontane grasslands and woodlands, (2b) High-

veld grasslands, (2c) Drakensberg montane grasslands, woodlands

and forests, (2d) Maputaland–Pondoland bushland and thickets; (3)

Mediterranean forests, woodlands and scrub – (3a) Albany thick-

ets, (3b) montane fynbos and renosterveld, (3c) lowland fynbos

and renosterveld; (4) flooded grasslands and savannas – (4a) Zam-

bezian halophytics, (4b) Zambezian flooded grasslands, (4c) Etosha

Pan halophytics; (5) tropical and subtropical grasslands, savan-

nas and shrublands – (5a) southern Africa bushveld, (5b) Kalahari

Acacia-Baikiaea woodlands, (5c) Zambezian and Mopane wood-

lands, (5d) Angolan Mopane woodlands, (5e) Zambezian Baikiaea

woodlands; (6) tropical and subtropical moist broadleaf forests –

(6a) Maputaland coastal forest mosaic, (6b) KwaZulu–Cape coastal

forest mosaic, (6c) Knysna–Amatole montane forests; (7) man-

groves. The dashed white lines delineate the different rainfall zones

as defined by Chase and Meadows (2007): the winter rainfall zone

(WRZ; > 66 % winter rain), the summer rainfall zone (SRZ; <

33 % of winter rain) and the year-round rainfall zone (YRZ) in be-

tween.

South Africa, Namibia, Lesotho, Swaziland and Botswana

(from 17 to 34.5◦ S and from 12 to 32.5◦ E, Fig. 3). This

area is composed of 3913 quarter-degree grid cells. The

region provides an excellent case study as it is character-

ized by strong topographic, geologic and climatic hetero-

geneity (Tyson, 1986; Partridge and Maud, 2000; Chase

and Meadows, 2007), which has resulted in the existence

of many vegetation types, which often change rapidly over

short distances.

www.clim-past.net/10/2081/2014/ Clim. Past, 10, 2081–2098, 2014
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Figure 4. Distribution of the number of species (nsp) per grid

cell. The greener the grid cell is, the more species are available

to reconstruct climate. No botanical information is available in the

black grid cells. Species records are most abundant in South Africa,

Swaziland and Lesotho.

3.1 Climate system

Most of southern Africa is dominated by summer rain-

fall related to the seasonal dynamics of the Intertropical

Convergence Zone (ITCZ) and the advection of moist

tropical air masses off the Indian Ocean. Annual rainfall

is highest along the eastern escarpment (∼ 1200 mm yr−1;

Hijmans et al., 2005; Mitchell and Jones, 2005) and de-

creases westward. Conversely, in the Cape region (southern

tip of Africa), most of the rain falls during the winter months

as a result of frontal systems embedded in the southern

westerlies (Tyson, 1986) and can reach annual totals of more

than 900 mm yr−1. A complex mosaic of rainfall regimes

are found at the boundary between those two systems: from

year-round rainfall along the south coast of South Africa

(> 900 mm yr−1 distributed in more than 100 rain events

per year) to the super-arid Namib Desert (< 20 mm, < 10

rain events). The orographic effects of the Drakensberg

escarpment and the Cape Fold Belt are very marked, creating

a strong rain shadow effect in their lee.

The west coast is cooled by upwelling associated with the

northward-flowing Benguela Current, whereas the south and

east coasts are warmed by the southward-flowing Agulhas

and Mozambique currents, respectively. At a given latitude,

the difference in temperature between the two coasts can ex-

ceed 6◦ C. The greatest diurnal temperature ranges are found

in the interior, especially in the Kalahari and the Karoo re-

gion, where the altitude is greater than 1000 ma.s.l. in many

areas (Hijmans et al., 2005).

The study region currently supports four primary biomes:

deserts and xeric shrublands (54.7 %); montane grasslands

and shrublands (16.8 %); tropical and subtropical grass-

lands, savannas and shrublands (25.3 %); and Mediterranean

forests, woodlands and scrub (3.2 %) (Olson et al., 2001).

The latter is better known as the Cape Floristic Region, which

is dominated by the Fynbos Biome. Each biome is divided

into ecoregions (Fig. 3), which will be used to describe the

model’s properties.

3.2 Data

We have extracted botanical data for all grid cells where at

least one plant with more than 25 pixels in its distribution had

been recorded, leading to a total of 3389 “samples” (Fig. 4).

We have then selected 20 climatic variables of interest: 9

temperature-like and 11 moisture-like variables (Table 1). A

total of 4969 species distributions have been used.

3.2.1 Botanical data

Botanical data were extracted from a series of databases

held by the South African National Biodiversity Institute

(SANBI, 2003; Rutherford et al., 2003, 2012). The data from

these sources, which are derived mainly from herbarium col-

lections and documented observations, are most commonly

available as “presence” within a particular 0.25◦×0.25◦ grid

square. We have used this resolution for our analyses, upscal-

ing more precisely located data to this common resolution.

Data were obtained from field surveys performed during the

late twentieth century, between 1970 and 2000 with a peak

in the 1980s.

In this study, we only consider species with at least 25 oc-

currences, resulting in a number of species (nsp) available per

pixel between 1 and 1371 (median= 47). This strong het-

erogeneity is mainly due to both the range of environments

found in our study area (Fig. 3) and the strong difference that

exists between the different countries (Fig. 4), with South

Africa providing by far the most extensive data set.

3.2.2 Climatic data

To define PDFs, the species distributions have to be associ-

ated with climate data. For this study we have reconstructed

20 climate variables from our data set. While some of those

variables represent climatic features playing a strong role in a

plant life cycle (e.g. number of frost days or different precip-

itation variables), the impact of some others is much more

indirect (e.g. mean diurnal range or temp ann range). The

purpose of this strategy is to assess the extent to which dif-

ferent climate variables can be reliably reconstructed with

CREST.

Climate variables for this study were obtained from

WORLDCLIM1.4 (Hijmans et al., 2005), which, along with

monthly precipitation and temperature data, provides a data

set of 19 bioclimatic variables that are consideredimportant
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Table 1. List of the 20 climate variables reconstructed for southern Africa (name, description and original reference).

Variable’s name Description Reference

Temperature Tmean ann Mean annual temperature Hijmans et al. (2005)

Mean diurnal range Mean of monthly (max temp–min temp) Hijmans et al. (2005)

Temp seasonality Standard deviation of the annual temperature (×100) Hijmans et al. (2005)

Temp ann range Annual range of temperature (max–min) Hijmans et al. (2005)

Tmean wet Q Mean temperature of the wettest quarter Hijmans et al. (2005)

Tmean dry Q Mean temperature of the driest quarter Hijmans et al. (2005)

Tmean warm Q Mean temperature of the warmest quarter Hijmans et al. (2005)

Tmean cold Q Mean temperatures of the coldest quarter Hijmans et al. (2005)

Frost days Number of frost days per year Mitchell and Jones (2005)

Moisture Prec ann Annual precipitation Hijmans et al. (2005)

Prec seasonality Coefficient of variation of annual precipitation Hijmans et al. (2005)

Prec wet Q Precipitation of the wettest quarter Hijmans et al. (2005)

Prec dry Q Precipitation of the driest quarter Hijmans et al. (2005)

Prec warm Q Precipitation of the warmest quarter Hijmans et al. (2005)

Prec cold Q Precipitation of the coldest quarter Hijmans et al. (2005)

SWC winter Soil water content during winter Trabucco and Zomer (2010)

SWC summer Soil water content during summer Trabucco and Zomer (2010)

Aridity Mean annual aridity index (×10 000) Trabucco and Zomer (2009)

WRP Percentage of winter rainfall Derived from Hijmans et al. (2005)

Wet days Number of rain days per year Mitchell and Jones (2005)

elements in studying the eco-physiological tolerance of

plants species. These data were then upscaled to match the

resolution of the botanical data (0.25◦× 0.25◦). Additional

variables of interest have also been derived from WORLD-

CLIM’s data, including the soil water content (SWC; Tra-

bucco and Zomer, 2010) for both summer and winter, the

mean annual aridity (Trabucco and Zomer, 2009) and winter

rainfall percentage (WRP). We have also used two variables

from the CRU 2.10 (Climate Research Unit) data (Mitchell

and Jones, 2005): the number of frost and wet days during

the year. Those data (0.5◦×0.5◦ grid cells) were downscaled

to meet our resolution. All the climatic values used in this

study are representative of the period 1960–1990; the period

is extended to 1950–2000 in some situations.

The description of all variables as well as their original

reference is summarized in Table 1.

4 Results

4.1 Accuracy of the model

We have measured the climate anomalies δv(s) for each sam-

ple s and each variable v between the reconstructed climate

Reconv(s) and the instrumental value Instruv(s) according

to Eq. (10). A positive/negative anomaly is equivalent to an

under/overestimation of the targeted climate.

δv(s)= Instruv(s) − Reconv(s) (10)

The dispersion of the anomalies for each variable was cal-

culated with the R software (as all the statistics presented

here; R core team, 2014) and has been compiled in Table 2.

The distributions of anomalies are all centred around 0. Even

if all the median values are statistically different from 0

(sign test, p < 10−5), the relatively low value of these me-

dians indicates that the model is not subject to undue bias.

A major dichotomy can be observed between the two types

of variables (χ2
df=1 test with Yates’ continuity correction,

p = 1.8× 10−3): for the temperature-like variables, the me-

dian is positive for eight out of nine variables (general under-

estimation), while for moisture-like variables the opposite is

observed, with negative medians for 10 out of 11 variables

(general overestimation, Table 2). The different percentiles

we have calculated provide insight regarding the dispersion

of the reconstructed values, as do the histograms in Fig. 10.

The skewness is most often negative (for 14 variables), mean-

ing that when errors are negative (overestimation) their abso-

lute value is higher than when they are positive (75 and 95 %

percentiles respectively higher than the 25 and 5 %).

The root mean square deviation (RMSDv; Eq. 11) is an

index that reflects the mean error of a model, but it is sensitive

to outliers. It does, however, allow for a good evaluation of

the performance of the model. All the values are compiled in

Table 2.

RMSDv =

√√√√ 1

N

N∑
s=1

δv(s)2 (11)

The amplitude of δv(s) and RMSDv are functions of the

variable range. Direct comparisons between variables can-

not be performed – except for those with a similar range
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Table 2. Summary of the dispersion of the anomalies δv(s) (5, 25, 50, 75 and 95 % quantiles), skewness, RMSD and NRMSD of each

variable. The medians are statistically different from 0.

5 % 25 % 50 % 75 % 95 % Skewness RMSD NRMSD

Temperature Tmean ann −1.87 −0.22 0.62 1.37 2.65 −0.111 1.51 0.56

Mean diurnal range −2.63 −0.15 0.51 1.09 2.16 −1.568 1.58 0.75

Temp seasonality −1324.63 −294.97 77.49 345.97 765.66 −1.206 662.29 0.68

Temp ann range −6.07 −0.83 0.7 1.9 4.06 −1.42 3.25 0.72

Tmean wet Q −2.23 −0.29 0.71 1.61 3.36 0.455 1.99 0.56

Tmean dry Q −3.33 −0.76 0.24 1.33 3.02 −0.552 2.03 0.55

Tmean warm Q −2.74 −0.34 0.61 1.44 2.63 −0.576 1.69 0.65

Tmean cold Q −1.75 −0.22 0.6 1.51 3.24 0.392 1.7 0.55

Frost days −22.16 −9.37 −3.43 2.7 16.32 −0.157 12.7 0.52

Moisture Prec ann −243.67 −96.34 −39.21 0.14 81.11 −1.711 125.67 0.56

Prec seasonality −10.96 −0.1 5.8 17.89 36.02 1.02 17.83 0.7

Prec wet Q −102.53 −41.41 −14.3 9.26 59.73 −0.505 56.33 0.52

Prec dry Q −24.01 −10.51 −5.38 −0.27 13.19 1.046 14.42 0.57

Prec warm Q −143.6 −54.28 −18.97 0.66 41.49 −1.13 68.3 0.63

Prec cold Q −26.65 −9.27 −4.24 −0.19 12.55 0.954 19.51 0.48

SWC winter −53.89 −22.03 −11.89 −2.51 15.5 −0.975 26.87 0.63

SWC summer −49.24 −22.47 −9.82 −1.52 17.97 −0.89 25.77 0.51

Aridity −1718.68 −740.92 −354.43 −62.4 687.15 −0.592 929.24 0.53

WRP −12.84 −5.1 −1.75 0.47 4.46 −2.055 7.31 0.44

Wet days −22.31 −10.69 −5.68 0.13 10.74 −0.883 12.16 0.5

of variation, such as Tmean ann, Tmean cold Q and Tmean

warm Q. To remove this discrepancy, we have normalized

our RMSDs by the observed standard deviation of the in-

strumental values (NRMSDv; Eq. 12). NRMSDs are lower

for moisture-like variables, whilst they exhibit the highest

anomalies (in units of NRMSD; Figs. 6 and 7). Four vari-

ables present a high NRMSD: mean diurnal range (0.75),

temp ann range (0.72), prec seasonality (0.70) or temp sea-

sonality (0.68). The climatic signal of these four variables

does not seem to be well captured by the botanical data, and

plant distribution is apparently not directly driven by those

variables. They represent annual climatic variability, and a

range of climatic scenarios could result in the same values.

For example, the variable prec seasonality takes identical val-

ues for seasonal rainfalls whether they occur mainly in winter

or summer. This major difference is incorporated into WRP,

which has been reconstructed with a much better accuracy

(NRMSD= 0.44).

NRMSDv =
RMSDv

σInstru,v

(12)

4.2 Geographical analysis of the errors

Generally, southern African climates are accurately recon-

structed with CREST. The anomalies that do exist are not

randomly dispersed throughout the study area. On the con-

trary, regions of enhanced or diminished error are observed

for each variable (Figs. 5 and 6). On these figures, anomalies

have been normalized by the RMSD (Eq. 13) to make all the

maps comparable.

δnorm,v(s) =

∣∣∣∣ δv(s)RMSDv

∣∣∣∣ (13)

This observation is validated with the measure of the

spatial autocorrelation of the anomalies with Moran’s I

(Moran, 1950) (Eq. 14 and Fig. 7). This index measures the

(dis)similarity of nearby locations in space. To compute this

index, a neighbourhood matrix of weights w is defined. We

have measured the spatial autocorrelation at different dis-

tances: from a local perspective, where only adjacent grid

cells are neighbours, to the continental scale, where all the

grid cells are considered neighbours. Under the null hypoth-

esis (no spatial autocorrelation), Moran’s I is normally dis-

tributed. However, δv(s) is not, and mean and standard de-

viations were estimated empirically with 999 permutations

for this vector. We ran 50 tests for each variables (one for

each distance) and applied a Bonferroni correction α = 0.05
50

.

Most of the tests were highly significant (blue and red dots

in Fig. 7).

I =
N∑

i

∑
jwij

∑
i

∑
jwij (vi − v)(vj − v)∑

i(vi − v)
2

(14)

The main feature is that the anomalies are highly correlated at

local scales and that correlation decreases with distance. No

large-scale structure is observed in the data (Figs. 5, 6 and 7).

These results show that anomalies are spatially clustered: in

some areas the model performed very well, while it was less

reliable in others. Temperature anomalies are clustered more
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Table 3. Percentages of variance (R2) explained for the three different hypotheses we tested in this study to describe the distribution of δv(s),

namely the impact of (1) the number of species (nsp and nsp*1Alt), (2) the type of vegetation (biomes and ecoregions) and (3) the expected

climatic value (clim and poly(clim, 3)).

nsp nsp*1Alt Biomes Ecoregions Clim Poly(clim,3)

Tmean ann 2.13 14.44 14.68 24.19 48.76 49.85

Mean diurnal range 1.01 11.34 6.36 41.17 60.00 63.96

Temp seasonality 1.29 6.83 5.80 42.78 39.73 51.36

Temp ann range 0.02 9.62 8.40 45.13 43.89 53.06

Tmean wet Q 0.77 9.02 4.57 20.25 26.74 28.90

Tmean dry Q 1.95 6.35 11.01 21.63 29.01 29.42

Tmean warm Q 0.45 18.91 9.79 33.28 50.81 50.90

Tmean cold Q 1.63 4.00 7.97 23.86 44.56 46.06

Frost days 1.96 2.42 4.22 15.18 37.17 38.95

Prec ann 6.19 6.26 6.07 14.38 5.14 10.21

Prec seasonality 13.44 15.69 17.74 45.77 59.48 63.43

Prec wet Q 1.24 5.47 1.80 15.74 9.42 13.74

Prec dry Q 8.49 9.58 18.70 28.79 49.33 53.42

Prec warm Q 4.03 4.10 10.98 20.67 4.69 12.22

Prec cold Q 6.82 7.65 10.42 16.40 28.83 38.39

SWC winter 1.19 1.65 14.48 24.41 20.39 23.82

SWC summer 2.98 3.74 3.06 13.34 8.05 18.50

Aridity 4.68 5.62 7.99 16.76 18.31 28.85

WRP 4.18 4.52 6.51 16.63 8.23 12.06

Wet days 2.09 2.92 10.43 19.51 24.65 28.39

Mean 3.33 7.51 9.05 24.99 30.86 35.77

on the local scale than precipitation anomalies (higher values

at distances lower than seven–eight grid cells), but the corre-

lation decreases faster with distance (no distinction beyond

15 grid cells). Seasonality of temperature and precipitation

have a distinct pattern, being correlated at longer distances,

highlighting – in association with high NRMSDs (Table 2) –

that their errors are not limited to distinct regions.

Four areas present a group of outliers for several vari-

ables: (1) the Namibian coast (for temperature and precipi-

tation), (2) the high mountains of Lesotho (for temperature

and humidity variables), (3) the eastern part of the Great Es-

carpment (precipitation) and (4) the southern coast of South

Africa (precipitation) (Figs. 5 and 6).

4.3 Factors impacting the reconstructions

As the errors are spatially clustered, we have looked for fac-

tors that could explain this distribution. There is no clear lin-

ear relation between the anomalies absolute values and nsp.

The slopes of the linear models we fitted were statistically

significant at the 5 % threshold but the R2 were always low

(3.3 % of variance explained on average, Table 3). The mod-

els can, however, be biased by the uneven distribution of nsp;

half of the grid cells were reconstructed with 47 or fewer

species, while some others were reconstructed with more

than 1000 (Fig. 4). Some of our clusters of errors are found

in mountainous regions, and we have hypothesized that the

errors may arise from a mix of low- and high-altitude plants,

with the anomalies observed being proportional to the degree

of mixing. Thus, we have calculated the intra-pixel variation

of altitude (the standard deviation of all the 30 arc-second

altitude values in each quarter-degree grid cell, later called

1Alt). We fitted linear models to explain the anomalies as

a function of nsp and 1Alt. However, the gain of explained

variance was relatively small (+0.9 % on average). These re-

sults indicate that the anomalies are not a result of the number

of species used for the reconstruction.

We also considered the impact of vegetation type on the

anomalies. We used the Olson et al. (2001) classification to

assign a biome and an ecoregion to each grid cell (Fig. 3).

We used an ordination technique called between-groups prin-

cipal component analyses (PCAs) (Thioulouse et al., 1997),

available in the R package ade-4 (Dray and Dufour, 2007),

to reveal the differences that may exist between vegetation

types. With all the variables considered in the same analysis,

we measured whether the type of vegetation impacted the

reconstructions. At the biome level (seven levels; Fig. 8), the

between-groups variance only explained 9 % of the total vari-

ance, meaning that more than 90 % of the variance was not

explained by the differences between the biomes. The length

of the boxes in Fig. 8 highlights that there is more variance

within each group than between them.
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Figure 5. Geographical distributions of the normalized anomalies of the reconstructions of temperature-like variables (Eq. 13). The scale is

identical for all the maps, in units of RMSD. No vegetation information was available from the black pixels.

The between-groups PCA run on ecoregions explains 25 %

of the total variance, but this is low relative to the number

of groups (25). Again, more variance remained within the

groups than between them. Figure 9 summarizes the mean

dispersion of errors within each ecoregion. Some ecoregions

appear to concentrate outliers, but these are always composed

of 25 or fewer samples (low geographical extension and/or

low amount of botanical data). Thus, despite the high botan-

ical diversity that exists in southern Africa, we were not able

to demonstrate the type of vegetation (forests, grasslands, sa-

vannas, etc.) having any effect on the quality of the recon-

structions.

The only factor that explains a significant part of the dis-

persion is the distance of the expected value from the most

represented value of the variable over the study area (Ta-

ble 3). We fitted linear models to explain the anomalies as

a function of the expected value (Fig. 10). All were signifi-

cant (pvalue < 0.001) with positive slopes. A noticeable dif-

ference between temperature-like (R2
= 42 % on average)

and moisture-like variables (R2
= 22 % on average) is ob-

served, indicating that values that lie far from the most rep-

resented climate exhibit the highest anomalies (on the left

and/or right-hand side(s) on the x axes in Fig. 10).

5 Discussion

Our results indicate that the PDF-based method of CREST

performs well (Table 2, Figs. 5 and 6), even if some differ-

ences in terms of reconstruction quality exist between vari-

ables. The variables that were best reconstructed were those

that have a direct impact on the physiology of plants, and thus

strongly constrain their distribution (e.g. Tmean wet Q, Frost

days, Prec dry Q or Prec wet Q) (referred to as direct gradi-

ents by Guisan and Zimmermann, 2000). The impact of other
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Figure 6. Geographical distributions of the normalized anomalies of the reconstructions of moisture-like variables (Eq. 13). The scale is

identical for all the maps, in units of RMSD. No vegetation information was available from the black pixels.

variables such as mean diurnal range or temp seasonality on

the plant life cycle is indirect. Thus, they are less likely to be

accurately reconstructed from pollen data. Variables that are

surrogates for direct gradient may show strong ability to de-

scribe modern data but poor predictive power to describe past

conditions (see, e.g., the palaeolimnological example of Jug-

gins, 2013). Selection of variable(s) of interest should always

be conditioned to an appropriate analysis of the data. Statis-

tics could help in that process (Mac Nally, 2000; Telford and

Birks, 2011c), but the final decision about the variables to

reconstruct should always derive from an enlightened choice

based on both statistical and ecological/environmental con-

siderations. In the semi-arid to arid environments of southern

Africa, precipitation and/or water availability strongly con-

strain plants distributions, which probably explains why we

get lower NRMSDs for moisture-related variables in our case

study.

The method performed well regardless of vegetation type.

We were not able to show any differences in accuracy be-

tween the different biomes and/or ecoregions, provided that

the distribution of the biome and/or ecoregion was suffi-

ciently spatially extensive. Based on these results, we have

found that the method works best for vegetation types rep-

resented by at least ∼ 25 to 50 quarter-degree grid cells
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Figure 7. Moran’s I autocorrelogram. The spatial autocorrelation

is plotted for each variable against different distances (measured

in grid cells). Each grid cell is about 28km large/high. Grey sym-

bols represent non-significant values; α = 0.001 after the Bonfer-

roni correction. Only 17 out of 1000 tests are non-significant.

(estimation based on Fig. 9) in order to adequately determine

the plant–climate relationship.

While our expectation was that a high number of species

would result in more precise reconstructions, we were not

able to observe any relationship between anomalies and the

number of species. Anomalies do decrease when the number

of species begins to increase (from 1 to ∼ 20–30), but then

the tendency is reversed, and the large anomalies were ob-

served in samples with the largest number of species. This

may be related to a saturation problem, wherein more is not

necessarily better. As we used a presence/absence weight-

ing strategy, species far from their climate optimum have

the same importance as those living in their optimal climate.

The increase in the number of species could increase these

marginal elements, biasing the reconstructions. The role of

the number of taxa on the accuracy is not yet fully under-

stood and is the subject of ongoing studies.

Other studies (Kühl et al., 2002; Scott et al., 2003; Truc

et al., 2013) have shown that selecting a subset of the
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Figure 8. Box plots representing the dispersion of the normalized

anomalies (Eq. 13) for each biome. There is more dispersion within

each biome (length of the boxes) than between, confirming the re-

sults of the between-groups PCA (90 % of variance not explained

by the groups).

recorded taxa was sometimes more appropriate when at-

tempting to capture a given climate signal. In order to im-

prove the quality of the reconstructed variables, considera-

tion should be given to reconstructing each variable with a

different subset of the total of the available species list. Re-

ducing this list to a shorter list of responsive species reduces

the noise and consequently leads to better reconstructions.

These choices, however, are not wholly objective. A first ap-

proach consists in observing directly the PDFpol’s since flat

and multimodal PDFs may indicate insensitivity to a given

climate variable. Scott et al. (2003) made choices based on

considerations of the ecology of the given species, while

Kühl et al. (2002) opted for a more statistical approach. To

avoid using redundant information, only species that were

statistically different (based on the Mahalanobis distance be-

tween the PDFs) were conserved. Truc et al. (2013) com-

bined those two approaches and based their choices both

on niche-based modelling and ecological considerations. The

process of selection is thus not straightforward, and, while it

may improve reconstructions, care needs to be taken to avoid

undue bias in the results. The selection of the different sets

of pollen types probably lowers the impact of spatial autocor-

relation (Telford and Birks, 2005, 2009). However, it should

be kept in mind that the “supposed” reconstructed variable

may in fact be a composite of primary and secondary vari-

ables. Secondary variables have the power to strongly bias

reconstructions when spatially correlated with the variable
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Figure 9. Box plots representing the dispersion of the normalized anomalies (Eq. 13) for each ecoregion. There is globally more dispersion

within each ecoregion (length of the boxes) than between, confirming the results of the between-groups PCA (75 % of variance not explained

by the groups). ∗ means the ecoregion is composed of fewer than 50 grid cells; ∗∗ means fewer than 25. The numbers match those of Fig. 3.

of interest (Juggins, 2013), so that only part of the recon-

structed palaeovariability can be related directly to it. CREST

(Appendix 1) provides a range of outputs that indicate the

sensitivity of different taxa to given climatic parameters and

allow the user to assess the data being considered and make

informed choices in the selection of such subsets.

When plotted on a map (Figs. 5 and 6), the reconstruction

anomalies appear to be spatially clustered. Those patches of

large anomalies can be explained by the position of the local

climate along the climate gradients (Fig. 10) and are a direct

consequence of the hypotheses underlying the model. The

method is correlative, and consequently it is biased towards

the best-represented climate values. This uneven sampling of

the environmental gradients biases the estimation of plants’

optima by shifting the “real” optimum towards the portion of

the gradient with the most observations (Telford and Birks,

2011a). In most cases, lowest/highest values along the stud-

ied climate gradient are rare, but there are exceptions. For ex-

ample, low rainfall amounts are common in southern Africa,

and as a result they are well represented and the signal is

easily captured by the model.

To offset the impact of the climate distribution’s hetero-

geneity, we upweighted rare climate values as proposed by

Kühl et al. (2002) and Truc et al. (2013). This method shifts

PDF optima towards the rarest climate values. The climate

abundance weighting did decrease the errors for the extreme

climates but also increased them for the most common ones

(data not shown). The overall impact is nevertheless positive

since it decreased the RMSDs for all the variables. It also

reduced the clustering of errors. Despite its advantages, the

strategy has the drawback that artificial geographical limits

must be selected (e.g. mountain ranges or country borders;

Kühl et al., 2002) to compute the weights. A finite number of

grid cells must be selected and sorted into bins. Any change

in the boundaries would affect – potentially significantly –

the weights, and thus the reconstructions. It is also possible

that the climate abundance weighting may be the cause of

the small but significant bias observed between temperature

and moisture variables, which are, respectively, under- and

overestimated for rare climates in the region.

Even with the climate abundance weighting, it is apparent

that reconstructing the rarest climates is extremely compli-

cated with models such as those described here. This is why,

for example, the Cape region is poorly reconstructed for the

precipitation-like variables but not for the temperature-like

variables. The temperature of the area is common in south-

ern Africa – so its signal is well captured – but it is an outlier

in terms of quantity and seasonality of rainfall. Other areas of

notable climatic rarity in southern Africa include (1) the east-

ern portion of the Great Escarpment (high precipitation); (2)

www.clim-past.net/10/2081/2014/ Clim. Past, 10, 2081–2098, 2014
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Figure 10. Anomalies plotted against their expected values. The density of points is heterogeneous: being very dense around the median

climate and sparser at the extremes. This is illustrated by the histograms that represent the marginal distributions. The anomalies are smaller

for the best-represented climate values and increase with distance from the median climate. The blue line represents the linear model fitted,

with its associated R2.

the high mountains of Lesotho, where temperatures are very

low and precipitation is high; (3) the thin coastal band along

the southern coast of South Africa, where moist forests can

develop as a result of significant aseasonal rainfall; and (4)

along the Namibian coast (stable temperature and extremely

low precipitation). All these areas lie at an extreme (relative

to the study area) of one or several climatic gradients, giving

rise to clusters of high anomalies.

Clim. Past, 10, 2081–2098, 2014 www.clim-past.net/10/2081/2014/
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Figure 11. Scatterplot representing a 2-D projection of the cli-

matic space of southern Africa for the two variables Tmean ann

and prec ann. In green and red are the modern positions of two

fictious palaeoarchives. Those two points represent two very dif-

ferent situations relative to the climatic space: well-represented

(green) vs. rare (red) climate. Reconstructing climate changes for

the green palaeoarchive should be more accurate because it can

“move” in several directions around its modern climate. However,

the only major direction in which the red sample can move is to-

wards warmer and drier conditions. Colder temperatures should be

“reconstructible” but with an amplitude that may not reflect actual

variability.

In terms of reconstructing quantitatively long-term climate

variations it should be kept in mind that PDFsp is defined

by the modern climatic space. Climatic space varies over

time, and certain elements of some past climate regimes may

be more or less abundant and/or more or less accessible to

some species than in the modern climatic space (Veloz et al.,

2012). Depending on the location of the site vis-à-vis the cli-

matic space, the potential to estimate the amplitude of cli-

mate change varies. As shown schematically in Fig. 11, sam-

ples located in the mean climate space have greater potential

to “move” in several directions and with greater amplitude

than samples that are already at the margin of the climatic

space. In the latter case, the exact amplitude of change may

be underestimated, but the overall trends and direction of

change may still be accurate. It is expected that, even under

a different climate, the relative position of the different taxa

along a climatic gradient would stay the same, so that the

replacement in the past of a taxon by another that currently

lives in colder environments will effectively indicate colder

conditions with – possibly large – uncertainties regarding the

amplitude of change (Veloz et al., 2012).

6 Conclusions

The PDF-based method we have presented in this paper pro-

vides robust results across a range of climates and vegetation

types. We have demonstrated that the accuracy does not vary

significantly as a function of vegetation type or the number

of species considered, and it is thus a useful tool for recon-

structing climates in many regions and biomes. The accuracy

of the reconstructions is, however, strongly impacted by the

climate variable being reconstructed (direct or indirect gra-

dients) and primarily by the position of the targeted climate

on the climate gradient of the study area. To ensure a robust

reconstruction, one should

1. select climate variables that directly impact the distri-

bution of the species and, inversely, use only species

whose distributions are significantly defined by the cli-

matic variable;

2. where possible, work with samples collected in

widespread vegetation types to fit the most reliable

PDFs;

3. define a climatically coherent study area to take advan-

tage of the climate abundance weighting.

The results presented in this paper highlight our current un-

derstanding of the potential and limitations of the CREST

method for reconstructing climates from botanical data. Re-

cent work has shown the potential of the models upon which

CREST has been based, particularly in regards to long-term

climate reconstructions (Chase et al., 2015; Truc et al., 2013).

Our goal with CREST is to make these techniques more

accessible to the wider scientific community, and it is our

hope that this tool will be applied to study other areas where

long-term climate variations still need to be quantitatively de-

scribed.

CREST is freely available from the authors as well as at

www.hyrax.univ-montp2.fr.

www.clim-past.net/10/2081/2014/ Clim. Past, 10, 2081–2098, 2014

www.hyrax.univ-montp2.fr
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Appendix A: CREST: Climate REconstruction

SofTware

We have implemented our method into a software pack-

age entitled CREST (Climate REconstruction SofTware).

CREST is an integrated multiplatform open-source program

developed to facilitate climatic reconstructions. The advan-

tage of CREST is the opportunity to change easily a range

of parameters (e.g. the shape of the PDFsp, how to use the

pollen percentages, using the climate abundance weighting,

different set of pollen types for each variable). CREST can

also access different types of databases: MySQL, SQLite3

and Microsoft Access databases. Any user can then use his

or her own climatic and botanical data to perform climate

reconstructions.

Since the optimal reconstruction of palaeoclimatic vari-

ables is an iterative process (many runs are usually necessary

to interpret the reconstructed patterns), CREST can gener-

ate detailed outputs (both figures and text files) that offer the

possibility to have a detailed feedback on the reconstructed

values. We believe that understanding which pollen types are

important and why is of prime importance to ensure a reliable

reconstruction. Many tools have been implemented to avoid

the common “statistical black box” criticism and render the

process accessible for the wider community.

Finally, it should be stated that CREST has been written

so that options can easily be changed and/or added to the

software with little knowledge of Python coding (different

shapes for the PDFsp’s can be added, the default parameters

of CREST can be changed, the outputs can be tuned, etc.).

CREST is available for free from the authors as well as at

www.hyrax.univ-montp2.fr.

Clim. Past, 10, 2081–2098, 2014 www.clim-past.net/10/2081/2014/

www.hyrax.univ-montp2.fr
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