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Abstract This paper introduces a statistical procedure, to be applied after a
goodness-of-fit test has rejected a null model, that provides diagnostic infor-
mation to help the user decide on a better model. The procedure goes through
a list of departures, each being tested by a local smooth test. The list is or-
ganized into a hierarchy by seeking answers to the questions “Where is the
problem ? ” and “What is the problem there ?. This hierarchy allows to focus
on finer departures as the data becomes more abundant. The procedure con-
trols the family-wise Type 1 error rate. Simulations show that the procedure
can succeed in providing useful diagnostic information.

1 Introduction

Let X be a continuous random variable with unknown density f over support
X . We consider the problem of testing H0 : f = f0 where f0 is entirely
specified. There is no loss of generality in setting X = [0, 1] and f0 as the
uniform U(0, 1) density. A sample of independent copies E = {X1, ..., Xn} is
available to assess whether H0 holds.

This is accomplished by goodness-of-fit (GoF) tests. When a GoF test fails
to reject H0, with the risk of both types of error deemed adequate, the null
model f0 may be acted upon with some confidence. However if the GoF test
rejects, a better model, say f1, must be determined.

One problem with many GoF tests is that after rejection, they provide
little information as to what aspects of f0 are contradicted by the data. In
some cases, qualitative informations about the GoF test (e.g. “this tests is
good at detecting asymmetry”) or plots of an estimator of f can be exploited
to suggest some features f1 should possess.
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A GoF test that can provide solid (i.e. controls the risk of errors) and
valid (i.e. not misleading) information about the aspects of f0 contradicted
by the data is said to possess diagnostic (Dx) capabilities. One such test,
popular in the applied literature, is Pearson’s chi-square test which can help
in identifying the parts of X where the data contradict f0. Another test having
Dx capabilities is Neyman’s (Rayner & Best 1989) smooth test; after rescaling,
its components yield solid and valid Dx information about the moments of f
and thus clues about how its shape departs from f0.

The present work introduces a Diagnostic Extraction Procedure (DxEP) to
get solid, valid and more informative Dx information following the rejection of
H0. This DxEP goes further than the above existing approaches. It proceeds
by seeking answers to the questions : “Where (in X ) are the GoF problems
? ” and then “What causes the GoF problem there ? ”, i.e. localize and then
identify the nature of the local departures, to identify the aspects of f0 that
need repairing. It tests these departures using local versions of the smooth
test. To control the Type 1 family-wise error rate while reducing the resulting
power loss, it uses the closure principle and organizes the null hypotheses and
their test into a tree of trees hierarchical structure that can be adapted to
the available information : as the size of E increases, finer areas of X can be
explored and more subtle departures can be investigated. The DxEP can thus
provide information leading to a better choice for f1 while controlling the risk
of repairing features of f0 that do not need to be repaired.

The paper is organized as follows. In Section 2, the Dx information provided
by Pearson’s chi-square and Neyman’s smooth tests are reviewed. Section 3
introduces the local versions of the smooth test and explains how to derive valid
Dx information from the magnitude of its components. Section 4 presents the
tree of trees structure of null hypotheses and explains how to control the Type
1 family-wise error rate. Section 5 presents some simulations to understand
the behavior of the DxEP. It is seen that our procedure can provide solid,
valid and informative Dx information that help in suggesting a better f1. A
conclusion closes the paper.

2 Two existing diagnostic extraction procedures (DxEP)

Let 0 = a0 < a1 < · · · < aK = 1 generate the partition {Pk = (ak−1, ak), k =
1, ...,K} of X . Unless specified otherwise and to avoid notation problems,
intervals are noted in parenthesis, leaving the user decide whether they are
open, closed, etc. To test H0 : X ∼ f0 = U(0, 1), Pearson’s chi-square test
statistic takes the form

χ2 =

K∑
k=1

(Nk − npk)2

npk
=

K∑
k=1

C2
k , (2.1)

where Nk =
∑n
i=1 I {Xi ∈ Pk}, I{A} is the indicator of event A and pk =

PH0
[X ∈ Pk]. Under H0, χ2 is asymptotically χ2

K−1, the chi-square distribu-
tion with K − 1 degrees of freedom.
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The Dx capabilities of Pearson’s statistic are sometimes exploited in the
applied literature, e.g. von Eye & Bogat (2004). The component C2

k can help in
answering the question “Where is the GoF problem ? ” : a large C2

k indicates an
unexpected amount of data in Pk under H0. But it is difficult to extract more
Dx information. For instance, it is wrong to compare C2

k to a χ2
1. Controlling

Type 1 errors is impaired by the dependence between the C2
k . This points to

a subtle problem with a DxEP based on these C2
k : consider P1 = (0, 12 ), P2 =

( 1
2 , 1) and f(x) = (2− 8

3x)I{x ∈ P1} + 2
3 I{x ∈ P2}. If n is large enough, C2

1 and
C2

2 will lead to the Dx that the U(0, 1) fits the data nowhere. However, only
the part of f0 in P1 needs repairing, as on P2, f(x) = 2

3 6= 1 because a density
must integrate to one. This shows that a DxEP should aim at identifying the
Pk where the conditional density differs from uniformity on Pk.

Variants of C2
k solve some of these problems. Rayner and Best (1989) give

a decomposition of χ2 into
∑K−1
k=1 V 2

k , where the V 2
k are asymptotically inde-

pendent χ2
1 under H0. This allows control over the Type 1 errors, but being

linear combinations of the pk, the V 2
k detect departures from the moments of

the joint distribution of the Nk under H0. Thus, they provide answers to the
global question “What causes the GoF problem ? ”, as moments of a distribu-
tion are related to its global properties.

If moments are to produce Dx information, it seems better to use the raw
data in E instead of the categorizedNk. This leads to Neyman’s smooth test for
H0 : X ∼ U(0, 1) (for details and an explanation regarding the term “smooth”,
see Rayner and Best 1989). The test statistic takes the form

RM = L2
1 + L2

2 + ...+ L2
M (2.2)

and, under H0, RM is asymptotically χ2
M . In (2.2), Lm = n−1/2

∑n
i=1 Lm(Xi)

where Lm(·) is the orthonormalized on (0,1) Legendre polynomial of degree
m. In particular, L1 =

√
12n

(
X̄ − 1

2

)
so a large L2

1 contradicts H0 because
X̄ is far from the value 1

2 expected under H0. Likewise L2 = 6
√

5n
(
S2 − 1

12

)
,

where S2 = n−1
∑n
i=1(Xi − 1

2 )2. A large L2
2 does not support H0 because the

empirical variance departs from 1
12 . Similarly, L2

3 is related to the skewness
coefficient and thus carries Dx information about the asymmetry of f . Finally,
L2
4 is related to the kurtosis and allows detection of departures in the tails

of distributions. Thus, one heuristic is that large values of RM are indicative
of non-uniformity because some empirical moments differ significantly from
those expected under H0. We refer to such insights about the form of f as
moment-based Dx information. However using these L2

m to provide answers
to the question “What causes the GoF problem ?” is trickier. Henze & Klar
(1996), Henze (1997) and Klar (2000) have showed that to provides valid Dx
information, the L2

m must be rescaled; see Section 3.2.
Using the components of χ2 or RM in a DxEP involves multiple com-

parisons to reference distributions and this increases the Type 1 error rate.
Moreover, large components attract the attention but because they are iden-
tified after observing the data, the Type 1 error is distorted (see Henze 1997).
Thus a form of family-wise error rate must be kept under control.
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3 Dx information and the smooth test

3.1 Local smooth tests

A local version of Neyman’s smooth test drives our DxEP. Let Q = (a, b) ⊆ X .
Recall that X ∼ f with cumulative distribution function (CDF) F and write
F (Q) = F (b) − F (a). Let fQ(x) = f(x)/F (Q)I{x ∈ Q} be the density of
(X | X ∈ Q). Consider the problem of testing

HQ
0 : (X | X ∈ Q) ∼ U(Q), (3.1)

where U(Q) is the uniform distribution over Q. The data available for this
test are those in EQ = {Xi ∈ E

⋂
Q} with random sample size NQ. Our

test statistic is based on the Lm(·). Transform X into X∗ = FQ0 (X), where
FQ0 (·) is the CDF of the U(Q). Under HQ

0 , X
∗ has a mixed density over

[0,1] with masses F (a) at x = 0 and 1 − F (b) at x = 1. To get rid of these
unknown masses, introduce the version L∗m (x) = Lm(x)I {0 < x < 1} of the
orthonormalized Legendre polynomials and consider

LQm =
1√
NQ

∑
Xi∈EQ

L∗m(X∗i ). (3.2)

In some situations, it may be useful if the endpoints of Q can be defined by
some characteristics of the unknown f . For example, let 0 ≤ α1 < α2 ≤ 1 and
suppose that a = F−1(α1), b = F−1(α2). Because f is unknown, these need
to be estimated, e.g. by â = F̂−1n (α1) and b̂ = F̂−1n (α2) where F̂n(·) is the
empirical CDF from E , to yield Q̂ = (â, b̂). To test (3.1) consider

LQ̂m =
1√
N Q̂

∑
Xi∈EQ̂

L∗m(X̂∗i ), (3.3)

where X̂i
∗

= F Q̂0 (Xi) and F Q̂0 is defined as FQ0 with (a, b) replaced by (â, b̂).
This involves a two stage procedure where, from the data in E , â and b̂ are
first computed. Then EQ̂ = {Xi ∈ E

⋂
Q̂} of size N Q̂ is identified to get the

component LQ̂m. The following result, whose proof is differed to the Appendix,
gives the behavior of the local smooth test statistics based on the components
LQm and LQ̂m.

Theorem 1 Suppose that (â, b̂) = (a, b) + Op(n
−1/2). Under HQ

0 , RQM =∑M
m=1

(
LQm
)2

and RQ̂M =
∑M
m=1

(
LQ̂m
)2

are asymptotically X 2
M .

Remark 1 Taking Q = X gives back Neyman’s original RM and the argument
leading to the X 2

M is standard. RQM requires a slightly more involved argument
as the randomness ofNQ needs to be accommodated. The real difficulty is with
RQ̂M . Theorem 1 states that its asymptotic distribution is not affected by the
estimation of Q. This is reminiscent of the behavior of Pearson’s chi-square
test (2.1) using data-dependent cells (Pollard 1979).
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3.2 Dx Information from smooth tests

The L2
m in (2.2) must be rescaled to yield valid Dx information. To see this, let

µ = (µ1, ..., µM )T with components µm =
´ 1
0
Lm(x)f(x)dx. Dx informations

arising from the magnitude of L2
m indicate whether µm = or 6= 0. Define the

M ×M matrix Σ = (σmm′) where σmm′ =
´ 1
0
Lm(x)Lm′(x)f(x)dx− µmµm′ ,

with Λ = Diag{λ1, . . . , λM} being the diagonal matrix of its eigenvalues and
P the matrix of its orthonormalized eigenvectors. It is shown in Inglot et al.
(1994, Theorem 2.1 and eq. (5)) that the power of Neyman’s smooth test
can be uniformly approximated to within O(n−1/2) by the

∑M
m=1 λmχ

2
1(ν2m)

distribution, where the non-centrality parameters νm are the components of√
nΛ−1/2Pµ. Specializing, L2

m is approximately σmmχ2
1(nµ2

m/σmm).
When σmm is small, σmmχ2

1(nµ2
m/σmm) may be stochastically closer to 0

than the reference χ2
1 even if µm 6= 0. Thus a small L2

m may lead to the wrong
Dx that µm = 0. By contrast, if σmm is large but µm = 0, then L2

m will tend
to be large, possibly leading to the wrong Dx that µm 6= 0.

To correct this, Klar (2000) considers the rescaled test statistic :

KM = LTM Σ̂
−1LM , (3.4)

where LM = (L1,L2, . . .LM )T and Σ̂ is an estimator of Σ. The power of
KM is approximated by a χ2

M (nµTΣ−1µ). For the single component m, this
reduces to K{m} = L2

m/σ̂mm, which is approximately χ2
1(nµ2

m/σmm) and thus
provides valid Dx information about µm, as a χ2

1(nµ2
m/σmm) is stochastically

larger than a χ2
1.

With the local versions of the smooth test, similar Dx information about
fQ(·) can be extracted from the rescaled LQm. A large KQ{m} =

(
LQm/σ̂Qmm

)2,
where (σ̂Qmm)2 = 1

NQ

∑
Xi∈EQ

(
L∗m(X∗i )− L̄∗m

)2, indicates that the data do
not support µQm =

´
Q
L∗m(FQ0 (x))fQ(x)dx = 0 under HQ

0 (local moment-based
Dx).

From KQ{m}, one can also extract interesting Dx information about the
shape of fQ. Approximate

fQ(x) ≈ gQM (·;θ) =

(
1 +

M∑
m=1

θmL
∗
m(FQ0 (x))

)
(3.5)

and observe that µQm ' θm. If θm = 0 for all m > m∗, then fQ is nearly a
polynomial of degree m∗. If m∗ = 1, this gives the Dx information that fQ
roughly exhibits a linear trend. If m∗ = 2, fQ is close to a second degree
polynomial, etc. We refer to such Dx information about the shape of fQ as
being projection-based.

Note finally that, as the length ofQ decreases, approximation (3.5) becomes
more plausible, and the resulting Dx sharper, because the smoothness of f
induces fQ to behave locally as a low order polynomial. See the examples in
Subsection 5.2.
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4 A Tree of trees structured DxEP

4.1 Answering the question “Where is the problem ? ”

Suppose H0 : X ∼ U(0, 1) has been rejected. We proceed to answer the
question “Where is the problem ? ”. For this to be make sense, assume that
external information ensures that the true f can be segmented into locally ap-
proximately uniform and non-uniform parts, with the goal of identifying the
non-uniform intervals. Let the user-supplied partition {Pk = (ak−1, ak), k =
1, ...,K} of X be given, more or less corresponding to these parts (throughout
this section we refer to fixed Pk but the results hold for the estimated P̂k). We
proceed to test all local hypotheses HPk

0 : (X | X ∈ Pk) ∼ U(Pk) using local
smooth tests. Note that H0 ⊆

⋂K
k=1H

Pk
0 .

In testing this family of hypotheses, errors must be controlled. Our DxEP
focusses on the Type 1 family-wise error rate (T1-FWER) which is the prob-
ability of falsely rejecting at least one of the HPk

0 . Let K0 = {k | HPk
0 is true}

and denote by PK0
[A] the probability of event A computed under all null hy-

potheses in K0. This set being unknown, we require a strong control of the
T1-FWER : for any K0, PK0 [at least one HPk

0 is falsely rejected] < α. This
can be done via a number of approaches, e.g. the Bonferroni method which
tests eachHPk

0 at level α/K. However, two main sources of power dilution arise
in this family of local tests : one coming from the smaller sample sizes NPk

to test HPk
0 and the other, from the Bonferroni level α/K. Other item of our

DxEP that can affect power will be discussed when the theorems controlling
its behavior have been introduced.

To reduce power loss in a related context, Ehm, Kornmeier and Heinrich
(2010) have proposed to recursively partition X toward the Pk to create a tree
of parts of X . Their approach is a particular case of the closure principle (see
Finner and Strassburger 2002, for this and related tools; the problem of testing
tree-structured hypotheses have been much explored lately, see Goeman and
Finos 2012). Adapted to our context, H0 : X ∼ U(0, 1) is tested at the root
node while the HPk

0 are tested in the leaves. The nodes in between correspond
to tests of HQS

0 : (X | X ∈ QS) ∼ U (QS) where QS =
⋃
k∈S Pk and S are

subsets of {1, 2, . . . ,K}.
Let T be a set of subsets S of {1, 2, . . . ,K}. To form a tree, the nodes of

T must satisfy the condition : for any S, S′ ∈ T , either S ∩ S′ = ∅, S ⊆ S′

or S′ ⊆ S. We further require that all {k} be in T (the leaves) as well as
{1, 2, . . . ,K} (the root node). The nodes are arranged in decks or alternatively
as branches. We conveniently alternate between referring to the node S, the
corresponding interval QS and the null hypotheses HQS

0 . Moreover, we set
the following identifiability condition : for any S ∈ T , HQS

0 =
⋂
k∈S H

Pk
0 . This

imposes restrictions on T and f ; identifiability is achieved, notably, when f is
continuous and all QS are single intervals. It is crucial in ensuring that when
HQS

0 is true, all its child nodes are also true.
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Fig. 4.1 Examples of trees used in the DxEP. Panel a) : Tree T (X ) corresponding to the
dyadic partition of χ = [0,1]. Panel b) : Tree T Q(R4) corresponding to one decomposition
of the local smooth test statistic RQ4 .

A tree of hypotheses over X is noted T (X ). As an example, consider the
dyadic intervals Pk = ((k−1)/2J , k/2J), k = 1, . . . ,K = 2J . Deck 1 is the root
node : the test of H0 : X ∼ U(0, 1). Deck 2 pertains to the tests of H(0,1/2)

0

and H(1/2,1)
0 ; deck 3, to H(0,1/4)

0 , H(1/4,1/2)
0 , H(1/2,3/4)

0 and H(3/4,1)
0 , and so on

down to the leaves HPk
0 . This yields a binary tree but more complex trees can

be considered, within identifiability. A representation of this T (X ) for J = 2
appears in Panel a) of Figure 4.1.

Our DxEP enters T (X ) at the root node to test H0 via RM . If rejected, it
goes down each branch of the tree testing with RQM (M could vary) and stops
at a node when all tests in its child nodes do not reject, or upon rejecting in a
leaf. The process terminates when all branches have been explored. We refer
to this as “testing until acceptance”. It produces the various nodes QS of T (X )

where HQS

0 is the last rejected hypothesis along a branch.
Going down the tree, dilution of power progressively occurs because of the

decreasing sample sizes. One advantage of the tree structure is that even when
none of the HPK

0 gets rejected because of poor power, one can still hope that
some intermediaryHQS

0 will get rejected, allowing the extraction of less precise
but still useful Dx information.

Another advantage is that the T1-FWER for the hypotheses in T (X ) can
be strongly controlled while reducing the power dilution coming from the
smaller levels. For this, we adapt the procedure in Ehm, Kornmeier and Hein-
rich (2010) in the following way. For S ∈ T (X ), let πS be the p-value obtained
for the test of HQS

0 . Call C ∈ T the parent of S (C = pa(S)) if there does not
exist a C ′ ∈ T such that S  C ′  C. Then reject HQS

0 if

1. πS < αPH0
[QS ],
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2. HQpa(S)

0 has been previously rejected (with QS 6= X ).

As an example, consider the dyadic intervals Pk = ((k − 1)/2J , k/2J). The
root node H0 is tested at level α, H(0,1/2)

0 and H
(1/2,1)
0 are tested at level

α/2, H(0,1/4)
0 , H(1/4,1/2)

0 , H(1/2,3/4)
0 , H(3/4,1)

0 at level α/4 and so on with the
HPk

0 being tested at the Bonferroni level α/2J . Thus, intermediate nodes are
rejected at levels ∈

(
min{α/2J}, α

)
, limiting this source of power dilution.

Let Trej = {S ∈ T ;πS < αPH0
[QS ]} and T0 =

{
S ∈ T ;HQS

0 is true
}
. The

following theorem, whose proof is in the Appendix, shows that the above
procedure strongly controls the T1-FWER asymptotically.

Theorem 2 For any T0,

PT0 [Trej ∩ T0 = ∅] > 1− α+ o(1). (4.1)

A refinement that further reduces power dilution, comes from Shaffer’s correc-
tion (Meinshausen 2008), which is applicable when the tree is binary. Define
the sibling of S (= si(S)) as the children (= ch(C)) of C = pa(S) such that
si(S) = ch (pa(S)) \ S. Define the effective probability of QS :

PeffH0
[QS ] =

PH0 [QS ], if si(S) is a leaf,

PH0
[QS ] + PH0

[Qsi(S)], if si(S) is not a leaf.

Replace Rule 1. by the new rule 1∗. : Reject HQS

0 if πS < αPeffH0
[QS ]. Shaffer’s

correction acts by comparing some p-values to a higher threshold, which in-
creases power. For example, in the tree T (X ) with Pk = ((k−1)/2J , k/2J) and
J = 2, all H((k−1)/4,k/4)

0 are tested at level α/2 instead of α/4. The following
theorem, whose proof is in the Appendix, shows that with this correction the
T1-FWER is still strongly controlled.

Theorem 3 For Trej defined as above, but using the effective probabilities, we
have for any T0,

PT0 [Trej ∩ T0 = ∅] > 1− α+ o(1). (4.2)

4.2 Answering the question “What causes the problem there ? ”

The approach of the previous subsection identifies the nodes Q of T (X ) where
departures from local uniformity arise using RQM . Now we seek to understand
the nature of these departures and, for this, we use the Dx capabilities of
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the components of RQM . In view of the assumed smoothness of f and the
interpretability (moment and projection based) of these components, it makes
sense to choose M ≤ 4.

Near the root of T (X ) where data is abundant, we may take M = 4.
Consider one Q for which the corresponding HQ

0 has been rejected using RQ4 .
Partition the components {LQ1 , . . . ,L

Q
4 } into subsets and combine these to

form another tree, noted T Q(R4), whose root node is HQ
0 and whose leaves

correspond to the tests of HQ
0,m : µQm = 0. On deck 2, one meaningful partition

is
(
LQ1 ,L

Q
3

)
in the left node and

(
LQ2 ,L

Q
4

)
in the right. The first pair provides

Dx information regarding symmetry over Q (moment-based Dx), or fQ having
a cubic shape (projection-based Dx). The second pair detects departures from
the U(Q) in the “tails” of fQ (or quartic shape). In order for these to carry
valid Dx information, they must be rescaled as in Klar (2000). Thus we use
test statistics KQ{1,3} , KQ{2,4} of (3.4) based on the data Xi ∈ EQ. Each is

asymptotically χ2
2 under HQ

0,{1,3} : µQ1 = µQ3 = 0 (left node) and HQ
0,{2,4} :

µQ2 = µQ4 = 0 (right node). In the leaves, HQ
0,m are tested via the similarly

defined KQ{m}. The resulting tree, noted T Q(R4), appears in Panel b) of Figure
4.1.

As the procedure goes down T (X ), the smoothness of f makes fQ look
increasingly like a low-order polynomial. Hence a smaller M could be reason-
able near the leaves, and in the sequel we use M = 2 in the leaves of T (X )

leading to the tree T Q(R2) with two leaves pertaining to KQ{1} (linear) and

KQ{2} (quadratic).
Replacing each node QS of T (X ) in Panel a) of Figure 4.1 by the corre-

sponding T QS (RM ) creates a tree of trees structure as in Figure 4.2 that is
noted T (X ) ⊗ T Q(RM ). The structure is used as follows : a sample enters
at the root node where a test of H0 based on R4 is performed. If H0 is re-
jected, the sample goes in the nodes of T (X ) (the root nodes of the various
T QS (RM )) and the corresponding HQ

0 along each branch of T (X ) are tested
using the rule “test until acceptance”. We refer to P(X ) as the corresponding
tree of αPeffH0

[QS ] to which the p-values of the test statistics are compared.
Having identified, along each branch of T (X ), the shortest QS where lo-

cal uniformity has been rejected, the trees T QS (RM ) are entered by their
root nodes (which has been rejected) and again, testing until acceptance pro-
ceeds using KQ{...}. The thresholds to which their p-values are compared are

αPeffH0
[QS ]×Qeff [KQS

{...}] whereQ[KQS

{...}] =
1
M×(number of components in KQS

{...})

and Qeff is computed as PeffH0
but from the Q. The T1-FWER is strongly

controlled throughout all of T (X ) ⊗ T Q(RM ), as can be seen by recursively
applying Theorems 2 and 3 at the nodes of T Q(RM ).

In the end, the nodes of each tree T QS (RM ) where testing until acceptance
has stopped are singled out to provide the Dx information. As an example, in
Figure 4.2, a sample of size 200 from the density
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f(x) = 3xI{x ∈ (0, 14 )}+ 3
4 I{x ∈ ( 1

4 ,
1
2 )}

+ (3x− 3
4 )I{x ∈ ( 1

2 ,
3
4 )}+ 3

2 I{x ∈ ( 3
4 , 1)}, (4.3)

has been put through this DxEP (with α = 10%). The two black nodes indicate
the intervals, namely (0, 14 ) and ( 1

2 ,
3
4 ), where the DxEP has stopped in T (X ),

indicating non uniformity on those intervals (a correct statement). Within
the two corresponding T QS (R2), the gray nodes indicate where the DxEP
has stopped. In both cases, this is KQS

{1} indicating that the departure from
local uniformity is caused by fQS having a linear shape there, which again
is correct. No Dx information is obtained in the intervals ( 1

4 ,
1
2 ) and ( 3

4 , 1),
where the density is indeed flat. Note that the root tree of this structure has
leaves that correspond to the rescaled components of Henze & Klar (1996),
Henze (1997) and Klar (2000). Thus our DxEP encompasses their approach,
as a sample would have stopped in some nodes of this root tree. Here the
sample is allowed to do further down T (X )⊗T Q(RM ) to extract more precise
Dx information.

There are three ingredients on our DxEP that can affect the amount of
Dx information extracted. The first is partition’s choice. In (4.3), the dyadic
intervals coincide with the piecewise expression of f and power to identify
the non-uniform parts is maximized. When Pk covers both constant and non-
uniform parts of f , some power may be loss. To increase Dx information, the
user should attempt to match the Pk with the areas (center, tails etc.) where
departures may plausibly occur. To help implementing this, the use of an
estimated partition, as allowed by Theorem 1, may be useful; see Subsection
5.3.

A second ingredient is the PH0
[QS ] in Theorems 2 and 3. This choice ap-

pears reasonable as higher thresholds, and thus powers, are allotted to those
QS expected under H0 to contain larger sample sizes. This could be changed
without affecting the theorems : P[QS ] could be computed under some other
density.

A last ingredient is the choice of the initial α, from which derive all the
thresholds in T (X )⊗TQ(RM . To set this level properly, some attention must
be given to the goals pursued in performing GoF tests. The goal of our DxEP
is to provide information toward a better model f1, after f0 has been rejected.
Taking α too small may lead to little focussed Dx information, which negates
the goal of the procedure. Thus, a case can be made about selecting α at a
level higher than the sanctified 5%. A reasonable compromise could be to use
α = 10%.
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Fig. 4.2 The results of a tree of trees DxEP for a sample of size n = 200 from density (4.3)
with α = 10% : the black nodes indicate the intervals where the rule “test until acceptance”
applied to T (X ) has stopped. In those, the gray nodes point to the components of RQ2 where
the same rule has stopped.

5 Simulations

5.1 Levels of the DxEP

A first experiment was conducted to see if the tests using the asymptotic χ2

distribution hold their levels in the nodes of T (X ) ⊗ T Q(RM ) despite the
randomness of the sample sizes and the variation coming from an estimated
partition. Here T (X ) is the tree in Panel a) of Figure 4.1 with the dyadic Pk =
(q(k−1)/4, qk/4), where qβ = β is the β-th quantile of the U(0, 1), estimated by
q̂β = F̂−1n (β). Its decks 1 and 2 are T Q(R4), the trees of Panel b) while
its leaves are T Q(R2), to give the structure in Figure 4.2. Samples from the
U(0, 1) were generated and sent down this structure using α = 10%. Because
the interest lies here in the levels, the rule “testing until reaching the leaves”
was applied within both T (X ) and the T Q(RM ).

The actual levels of the tests (in %), approximated from 10000 replications,
are shown in the top entry of the circles of Figure 5.1 (for n = 200). The
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Fig. 5.1 Actual levels (top entry of each circle), approximated from 10000 replications with
sample size n = 200, of the various tests of our DxEP; italicized bottom entry : nominal
levels (with α = 10% in the root node). The partition of T (X ) is based on the quantiles qβ̂
estimated from the samples ; e.g. ( 1

4
, 1
2
) refers to (q̂1/4, q̂1/2).

italicized bottom entries are the nominal levels, computed from the formula in
Subsection 4.2. It can be seen that the actual levels are close to nominal and,
overall, rather accurate for the purpose at hand. It should be noted that the
results obtained using the true quantiles qβ closely resemble those obtained
with the q̂β and that other sample sizes as well as other tree of trees structures
were explored; the results were rather stable, as H0 prevails.

5.2 Power and T1-FWER of the DxEP

A second experiment was conducted to analyze the power of our DxEP in pro-
ducing useful diagnostic information. The general framework was the following
: 10000 samples from two alternative distributions having some uniform and
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nearly uniform parts were generated and the DxEP applied at level α = 10%
with Shaffer’s correction. We took the general structure of T (X ) � T Q(RM )
in Figures 4.2 and 5.1 so that the nominal levels used for the tests are those
of the italicized bottom entries in Figure 5.1.

There are several ways to report the results. We took the following because
of its similarity with standard power analyses of GoF tests. First, the nodes
(there could be several) of T (X ) where a sample was stopped by the “test
until acceptance” rule were recorded and counts from the 10000 samples were
obtained. Normalizing these counts by 10000 provides the empirical probability
that a sample yields Dx information regarding the question “Where is the
problem ? ” in the form of statements as : “This is the shortest interval of X
along this branch where the data does not support local uniformity”. On the
figures, these probabilities appear in the shaded circles (in %).

A sample stopped at node Q of T (X ) was rerouted into T Q(RM ) and its
nodes (again there may be several) where this sample had finally stopped were
recorded. The resulting counts (divided by 10000) provide empirical probabil-
ities that a sample stops in Q while providing some Dx information regarding
the question “What is the problem there ? in the form of statements as : “in
Q, the density seems to have a linear (quadratic etc.) shape”. On the figures,
these empirical probabilities appear in the white circles (in %).

Our first alternative density is (4.3). It was chosen 1) to understand the
behavior of the DxEp as n increases, 2) to check that strong control is exerted
and 3) to show that unexpected behavior can result from the complex rela-
tionships between the elements of the power function. Note that the partition
defining T (X ) is tailored to the piecewise form of (4.3). Empirical powers are
shown in Figure 5.2 for n = 250 and n = 500 (resp. upper and lower entries of
the circles). For both sample sizes, all samples rejected uniformity at the root
node and were sent down the structure to extract Dx information with a suc-
cess that we now comment. First concentrate on the upper numbers (n = 250).
The root node of T (X ) says that only 3.4% of the samples were unable to yield
any Dx information beyond the rejection of H0. In the left branch of T (X ),
18.0% of the samples rejected the local U(0, 12 ) but were unable to investigate
the smaller intervals. These samples were rerouted to T (0,1/2)(R4). In the end,
17.5 % provided the crudely correct diagnostic information : “in (0, 12 ), f (0,1/2)
seems to possess a linear component ”. The other samples went further down
and 73.3% were able to provide the correct Dx information that f (0,1/4) has a
linear trend.

The corresponding figures on the right branch gives similar Dx informa-
tion about ( 1

2 ,
3
4 ), but the empirical probabilities are noticeably smaller. This

unexpected behavior, in view of the shape of the density, is explained by the
values of the µQm and σQmm in the elements of the partition. Concentrating on
KQ{1}, in (0, 14 ) we have (µ1, σ11) = (0.58, 0.67) with average sample size 25
leading to a non-centrality parameter around 12.5 whereas in ( 1

2 ,
3
4 ), one gets

(0.19, 0.96) with average sample size 75 and non-centrality parameter about
2.9.
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Fig. 5.2 Empirical power ((based on 10000 samples) with n = 250 (upper numbers) and
n = 500 (lower) for alternative (4.3) with α= 10%.

In view of the strong control exerted by the procedure, at most 10% of
the samples should reject at least one of H(1/4,1/2)

0 and H(3/4,1)
0 . The figures

in these nodes (5.1 and 4.4) gives confirmation that Theorems 2 and 3 are
acting on T (X ). In the leaves of T (1/4,1/2)(R2) and T (3/4,1)(R2), the sum of
the entries are smaller than 5%, showing that again, strong control is exerted
within them.

The numbers in the bottom of the circles (n = 500) show the trend when
the sample size varies. When n is small, the DxEP tends to stop in the upper
nodes of T (X ) � T Q(RM ) and provide crude diagnostic information. As n
increases, the samples are pushed toward the various leaves of T (X )�T Q(RM )
where more focussed Dx information can be extracted. In the nodes where
uniformity hold, the empirical probabilities are around 2%, showing that wrong
Dx informations are rarely produced.

Note finally that the dyadic partition used here coincides with the piecewise
expression of this alternative, which results in optimal power. In general, such
precise information is unavailable and using, as a default, the dyadic partition
can result in less Dx information.
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The second alternative density was taken to explore how the use of RQ̂M in
Theorem 1 can be of some help toward getting a data-adapted partition, as
long as some pilot information is available to suggest a good partition, albeit
one that must be estimated. We show the gain in power that can be obtained
as compared to the use of the default, and here misadapted, dyadic partition
in T (X ) � T Q(RM ) of the previous figures.

This alternative arises from a realistic scenario where, after careful exami-
nation of the apparatus generating the data, a user is rather confident that its
distribution is locally well modeled by a N(0, 1) in its central part. The pilot
information is that the user is less confident about the upper and lower 10%
tails, where departures are plausible. Accordingly, after applying the probabil-
ity integral transformation (PIT) to the data, the user chooses the partition
(0, q1/10), (q1/10, q1/2), (q1/2, q9/10) and (q9/10, 1). We refer to the resulting tree
as T ∗(X ) � T Q(RM ). This partition is estimated via F̂−1n .

Suppose that the alternative density is a N(0, 1) contaminated at level
10% by a N(0, 100). After applying the PIT, the resulting density over [0,1] is
symmetric and nearly uniform over (0.07, 0.93) ≈ (q1/10, q9/10) but raises with
a faster than linear trend near both boundaries.

Samples (10000) of size n = 200 from this contaminated normal were gen-
erated. Each sample was submitted to both the dyadic-based and estimated
quantiles-based DxEP applied at level α = 10%. The results are shown in
Figure 5.3. Because of the symmetry, the left and right branch of each tree of
trees are the same, up to random fluctuations and after taking into account
the mirror effect at the boundaries caused by symmetry. Hence, to facilitate
comparison, only the left branch of T (X ) � T Q(RM ) and the right branch of
the estimated T ∗(X ) � T Q(RM ) are shown on this figure. Also the entries of
the root tree nearly coincide and have been removed.

One can see that the samples in the left branch (dyadic) have more diffi-
culty reaching the leaves than those on the right branch (estimated quantiles).
Moreover, as seen by the power of component K(q̂9/10,1)

{2} , the faster than linear
trend in the tails is better detected in T ∗(X ) � T Q(RM ). Thus the exploita-
tion of some pilot information to suggest a data-adapted partition can push a
sample toward the leaves, where more precise Dx information is extracted.

6 Conclusion

This paper considers the framework where the model f0 is entirely specified.
This case is important for theoretical reasons and covers some applied prob-
lems. It shows the main ideas behind our DxEP in a simplified context. An
important evolution of the present methodology would cover those cases where
the model depends on unknown parameters and using the above approach in
this extended context does not control the risks of errors. Here technical diffi-
culties appears that seem above the case considered here, particularly if these
parameters enter in the specification of T (X ). One issue regards the impact
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Fig. 5.3 Estimated power (based on 10000 replications with n = 200) for the contaminated
normal alternative with the tests performed at level α= 10%. The left side corresponds to
the dyadic partition in panel a) of Figure 4.1, the right side to the estimated partition
(q̂1/2, q̂9/10) and (q̂9/10, 1).

of their estimation on the asymptotic distribution of the RQ̂M . Another issue
is invariance, the lack of which could render the Dx information misleading.
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A Proof of Theorems

We prove Theorem 1and concentrate on the more complex RQ̂M . To avoid trivial problems,

assume that b̂− â > 0. With X̂∗i = F Q̂0 (Xi) and X∗i = FQ0 (Xi), consider

1√
NQ̂

∑
Xi∈EQ̂

Lm
(
X̂∗i

)
=

( √
n√
NQ̂

)
1
√
n

n∑
i=1

L∗m(X̂∗i ).

Now, L∗m(X̂∗i )−L∗m(X∗i ) = C(Xi)+D(Xi), where C(x) = I {x ∈ Q}
[
Lm

(
F Q̂0 (x)

)
− Lm(FQ0 (x))

]
and D(x) = Lm

(
F Q̂0 (x)

) [
I
{
x ∈ Q̂

}
− I {x ∈ Q}

]
. Hence,

1
√
n

n∑
i=1

L∗m(X̂∗i ) =
1
√
n

n∑
i=1

L∗m(X∗i ) +
1
√
n

n∑
i=1

C(Xi) +
1
√
n

n∑
i=1

D(Xi). (A.1)

Consider the second term on the right hand side of this equation. FQ0 (x) is differentiable in
a, b except at a = x et b = x. Because Xi 6= a, b with probability 1, we can Taylor expand
Lm

(
F Q̂0 (x)

)
− Lm

(
FQ0 (x)

)
about (a, b) for x ∈ (a, b) to get

1
√
n

n∑
i=1

C(Xi) =

 1

n

n∑
i=1

I {Xi ∈ Q}

 ∂
∂a
Lm

(
FQ0 (Xi)

)
∂
∂b
Lm

(
FQ0 (Xi)

) T √n( â− a
b̂− b

)
+ op (1) .

By the law of large numbers, the term in bracket converges to its expectation. Because
E
H

Q
0

(
I {Xi ∈ Q}Lm

(
FQ0 (Xi)

))
= 0, Leibniz’s integral rule yields

E
H

Q
0

I {Xi ∈ Q}
 ∂

∂a
Lm

(
FQ0 (Xi)

)
∂
∂b
Lm

(
FQ0 (Xi)

)  =

(
Lm(0)
−Lm(1)

)
.

Hence

1
√
n

n∑
i=1

C(Xi) =

(
Lm(0)
−Lm(1)

)T √
n

(
â− a
b̂− b

)
+ op(1). (A.2)

Now, regarding the term involving the D(Xi) in (A.1), it is easy to see that

1
√
n

n∑
i=1

D(Xi) = (Lm(0) + op(1)) sgn(a− â)
1
√
n

n∑
i=1

I {Xi ∈ 〈a, â〉}

+ (Lm(1) + op(1)) sgn(b̂− b)
1
√
n

n∑
i=1

I
{
Xi ∈

〈
b, b̂
〉}
,

where 〈a, â〉 = (min(a, â),max(a, â)) and similarly for
〈
b, b̂
〉
. Moreover

1
√
n

n∑
i=1

I {Xi ∈ 〈a, â〉} = sgn(â− a) (αn(â)− αn(a)) + sgn(â− a)
√
n (â− a) ,



18 Gilles R. Ducharme,Walid Al Akhras

where αn(·) is the stochastic process
√
n
(
F̂n(·)− ·

)
. From the Komlos-Major-Tusnady

(1976) strong approximation, there exists a sequence of Brownian bridges Bn(·) uniformly
approximating αn(·) to the order O

(
logn√
n

)
. Thus

sgn(a− â)
1
√
n

n∑
i=1

I {x ∈ 〈a, â〉} = (Bn(a)−Bn(â))−
√
n(â− a) +O

(
logn
√
n

)
.

The term Bn(a)−Bn(â) = op(1) by the continuity of Brownian bridges. Hence,

(Lm(0) + op(1)) sgn(a− â)
1
√
n

n∑
i=1

I {Xi ∈ 〈a, â〉} = −Lm(0)
√
n(â− a) + op(1),

(Lm(1) + op(1)) sgn(b̂− b)
1
√
n

n∑
i=1

I
{
Xi ∈

〈
b, b̂
〉}

= Lm(1)
√
n(b̂− b) + op(1).

Regrouping, we get :

1
√
n

n∑
i=1

D(Xi) =

(
−Lm(0)
Lm(1)

)T √
n

(
â− a
b̂− b

)
+ op(1), (A.3)

Going back to (A.1), we find after combining (A.2) and (A.3)

1
√
n

n∑
i=1

L∗m(X̂∗i ) =
1
√
n

n∑
i=1

L∗m (X∗i ) + op(1).

Finally, as a byproduct of the above, N
Q̂

n
= NQ

n
+ op(1) = F (Q) + op(1) because NQ has

the binomial distribution B (n, F (Q)) . Hence the asymptotic behavior of the LQ̂m are the
same as that of the LQm which are easily shown to independent χ2

1 . 2

Next, we prove Theorem 2. Suppose for simplicity that QS are single intervals. We
consider the more complex case where QS are estimated by Q̂S . Define the adjusted p-value
as π(adj)

S = 1
PH0

[Q̂S ]
πS , where πS pertains to RQ̂S

M . Let T0 be as in Theorem 2. Define the

hierarchical adjusted p-value as

π
(h,adj)
S = max

S⊆C∈T
π
(adj)
C . (A.4)

Let Trej =
{
S ∈ T ;HQS

0 is rejected by the rule : π(h,adj)
S < α

}
. It is easy to see that the

null hypotheses rejected using the hierarchical adjusted p-value coincide with those rejected
using the π(adj)

S . In particular, no null hypothesis gets rejected if its parent has not been
rejected because π(h,adj)

S ≥ π
(h,adj)
pa(S)

. The probability of a family-wise Type 1 error can be
written as

PT0 [Trej ∩ T0 6= ∅] = PT0
[
∃S ∈ T0 : π

(h,adj)
S < α

]
.

Let T̃0 be a subset of T maximal in the sense that T̃0 := {S ∈ T0 : @C ∈ T0 with S ⊂ C} .
Obviously T̃0 ⊆ T0. Also the definition of π(h,adj)

S implies that a falsely rejected S ∈ T0−T̃0,
implies a falsely rejected S′ ∈ T̃0, where S ⊂ S′. Thus, we need only to look at the probability
of committing a Type 1 error in T̃0. But because π(h,adj)

S > π
(adj)
S ,

PT0
[
∃S ∈ T0 : π

(h,adj)
S < α

]
≤
∑
S∈T̃0

PT0
[
π
(adj)
S < α

]
,
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by Bonferroni’s inequality. Notice that PH0 [Q̂S ] =EH0 (b̂− â) = PH0 [QS ]+o(1). Now writing

GSn(·) and GS∞(·) for the exact and asymptotic CDF under T̃0 of test statistic RQ̂S
M , we have

PT0
[
π
(adj)
S < α

]
= PT0

[
πS < αPH0

[QS ] + o(1)
]

= 1−GSn
(
GS
−1

∞ (1− αPH0 [QS ] + o(1))
)

= αPH0
[QS ] + o(1).

Hence,
∑
S∈T̃0

PT0
[
π
(adj)
S < α

]
< α

∑
S∈T̃0

PH0
[QS ] + o(1). It only remains to show that∑

S∈T̃0
PH0 [QS ] 6 1. But by the construction of T̃0 , ∀S 6= S′ ∈ T̃0 : S ∩ S′ = ∅. Hence⋃

S∈T̃0
S ⊆ {1, . . . ,K}. Because PH0

[QS ] = PH0

[
X ∈

⋃
k∈S Pk

]
, we have

∑
S∈T̃0

PH0
[QS ] 6 PH0

[
X ∈

K⋃
k=1

Pk

]
= 1,

and this completes the proof. 2

Finally, we prove Theorem 3 with given QS for simplicity. From the above, it suffices to
show that

∑
S∈T̃0 P

eff
H0

[QS ] ≤ 1. For simplicity, assume there exists only one S∗ ∈ T̃0 such
that PeffH0

[QS∗ ] > PH0 [QS∗ ]. Because the tree is binary,

∑
S∈T̃0

PeffH0
[QS ] =

∑
S∈T̃0\S∗

PH0
[QS ] + PH0

[QS∗ ] + PH0
[si(QS∗ )].

Now, identifiability along with the relation PeffH0
[S∗] > PH0

[S∗] imply that si(S∗) /∈ T̃0, for
otherwise pa(S∗) ∈ T̃0, which in turn implies S∗ /∈ T̃0. The conclusion follows from∑

S∈T̃0\S∗
PH0

[QS ] + PH0
[QS∗ ] ≤ 1− PH0

[si(QS∗ )]. 2


