T. Shoshani, A. Faerman, I. Mett, E. Zelin, T. Tenne et al., Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis, Mol Cell Biol, vol.22, issue.7, pp.2283-93, 2002.

L. W. Ellisen, K. D. Ramsayer, C. M. Johannessen, A. Yang, H. Beppu et al., REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species, Mol Cell, vol.10, issue.5, pp.995-1005, 2002.

T. Murakami, K. Hasegawa, and M. Yoshinaga, Rapid induction of REDD1 expression by endurance exercise in rat skeletal muscle, Biochem Biophys Res Commun, vol.405, issue.4, pp.615-624, 2011.

Z. Wang, M. H. Malone, M. J. Thomenius, F. Zhong, F. Xu et al., Dexamethasone-induced gene 2 (dig2) is a novel pro-survival stress gene induced rapidly by diverse apoptotic signals, J Biol Chem, vol.278, issue.29, pp.27053-27061, 2003.

M. L. Whitney, L. S. Jefferson, and S. R. Kimball, ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression, Biochem Biophys Res Commun, vol.379, issue.2, pp.451-456, 2009.

A. Brafman, I. Mett, M. Shafir, H. Gottlieb, G. Damari et al., Inhibition of oxygeninduced retinopathy in RTP801-deficient mice, Invest Ophthalmol Vis Sci, vol.45, issue.10, pp.3796-805, 2004.

T. Yoshida, I. Mett, A. K. Bhunia, J. Bowman, M. Perez et al., Rtp801, a suppressor of mTOR signaling, is an essential mediator of cigarette smoke-induced pulmonary injury and emphysema, Nat Med, vol.16, issue.7, pp.767-73, 2010.

C. Malagelada, E. J. Ryu, S. C. Biswas, J. , V. Greene et al., RTP801 is elevated in Parkinson brain substantia nigral neurons and mediates death in cellular models of Parkinson's disease by a mechanism involving mammalian target of rapamycin inactivation, J Neurosci, vol.26, issue.39, pp.9996-10005, 2006.

K. T. Ota, R. J. Liu, B. Voleti, J. G. Maldonado-aviles, V. Duric et al., REDD1 is essential for stress-induced synaptic loss and depressive behavior, Nat Med, vol.20, issue.5, pp.531-536, 2014.

C. Regazzetti, F. Bost, L. Marchand-brustel, Y. Tanti, J. F. Giorgetti-peraldi et al., Insulin induces REDD1 expression through hypoxia-inducible factor 1 activation in adipocytes, J Biol Chem, vol.285, issue.8, pp.5157-64, 2010.

P. Horak, A. R. Crawford, D. D. Vadysirisack, Z. M. Nash, M. P. Deyoung et al., Negative feedback control of HIF-1 through REDD1-regulated ROS suppresses tumorigenesis, Proc Natl Acad Sci, vol.107, issue.10, pp.4675-80, 2010.

W. Davidson, S. Ash, S. Capra, and J. Bauer, Weight stabilisation is associated with improved survival duration and quality of life in unresectable pancreatic cancer, Clin Nutr, vol.23, issue.2, pp.239-286, 2004.

E. J. Metter, L. A. Talbot, M. Schrager, and R. Conwit, Skeletal muscle strength as a predictor of all-cause mortality in healthy men. The journals of gerontology Series A, Biological sciences and medical sciences, vol.57, pp.359-65, 2002.

W. D. Dewys, C. Begg, P. T. Lavin, P. R. Band, J. M. Bennett et al., Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group, Am J Med, vol.69, issue.4, pp.491-498, 1980.

S. C. Bodine, T. N. Stitt, M. Gonzalez, W. O. Kline, G. L. Stover et al., Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo, Nat Cell Biol, vol.3, issue.11, pp.1014-1023, 2001.

T. Matsui, T. Nagoshi, E. G. Hong, I. Luptak, K. Hartil et al., Effects of chronic Akt activation on glucose uptake in the heart, Am J Physiol Endocrinol Metab, vol.290, issue.5, pp.789-97, 2006.

M. Sawitzky, A. Zeissler, M. Langhammer, M. Bielohuby, P. Stock et al., Phenotype selection reveals coevolution of muscle glycogen and protein and PTEN as a gate keeper for the accretion of muscle mass in adult female mice, PLoS One, vol.7, issue.6, p.39711, 2012.

C. F. Bentzinger, K. Romanino, D. Cloetta, S. Lin, J. B. Mascarenhas et al., Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy, Cell Metab, vol.8, issue.5, pp.411-435, 2008.

C. Betz, D. Stracka, C. Prescianotto-baschong, M. Frieden, N. Demaurex et al., Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology, Proc Natl Acad Sci, vol.110, issue.31, pp.12526-12560, 2013.

J. Rieusset, J. Fauconnier, M. Paillard, E. Belaidi, E. Tubbs et al., Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance, Diabetologia, vol.59, issue.3, pp.614-637, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01786231

C. Lopez-crisosto, R. Bravo-sagua, M. Rodriguez-pena, C. Mera, P. F. Castro et al., ER-to-mitochondria miscommunication and metabolic diseases, Biochim Biophys Acta, vol.1852, issue.10, pp.2096-105, 2015.

V. Hung, S. S. Lam, N. D. Udeshi, T. Svinkina, G. Guzman et al., Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation, vol.6, p.24463, 2017.

S. M. Schieke, D. Phillips, J. P. Mc, A. M. Aponte, R. F. Shen et al., The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity, J Biol Chem, vol.281, issue.37, pp.27643-52, 2006.

G. J. Cerniglia, S. Dey, S. M. Gallagher-colombo, N. A. Daurio, S. Tuttle et al., The PI3K/Akt Pathway Regulates Oxygen Metabolism via Pyruvate Dehydrogenase (PDH)-E1alpha Phosphorylation, Mol Cancer Ther, vol.14, issue.8, pp.1928-1966, 2015.

X. Zheng, L. Boyer, J. M. Kim, Y. Fan, W. Bardy et al., Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration, elife, vol.5, p.13378, 2016.

S. L. Cai, A. R. Tee, J. D. Short, J. M. Bergeron, J. Kim et al., Activity of TSC2 is inhibited by AKTmediated phosphorylation and membrane partitioning, J Cell Biol, vol.173, issue.2, pp.279-89, 2006.

Y. Sancak, C. C. Thoreen, T. R. Peterson, R. A. Lindquist, S. A. Kang et al., PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase, Mol Cell, vol.25, issue.6, pp.903-918, 2007.

P. Cohen, Identification of a protein kinase cascade of major importance in insulin signal transduction, Philos Trans R Soc Lond Ser B Biol Sci, vol.354, pp.485-95, 1382.

D. J. Roberts, V. P. Tan-sah, J. M. Smith, and S. Miyamoto, Akt phosphorylates HK-II at Thr-473 and increases mitochondrial HK-II association to protect cardiomyocytes, J Biol Chem, vol.288, issue.33, pp.23798-806, 2013.

M. P. Deyoung, P. Horak, A. Sofer, D. Sgroi, and L. W. Ellisen, Hypoxia regulates TSC1/ 2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling, Genes Dev, vol.22, issue.2, pp.239-51, 2008.

M. D. Dennis, C. S. Coleman, A. Berg, L. S. Jefferson, and S. R. Kimball, REDD1 enhances protein phosphatase 2A-mediated dephosphorylation of Akt to repress mTORC1 signaling, Sci Signal, vol.7, issue.335, p.68, 2014.

F. A. Britto, G. Begue, B. Rossano, A. Docquier, B. Vernus et al., REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy, Am J Physiol Endocrinol Metab, vol.307, issue.11, pp.983-93, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01837613

J. L. Steiner, K. T. Crowell, S. R. Kimball, and C. H. Lang, Disruption of REDD1 gene ameliorates sepsis-induced decrease in mTORC1 signaling but has divergent effects on proteolytic signaling in skeletal muscle, Am J Physiol Endocrinol Metab, vol.309, issue.12, pp.981-94, 2015.

B. S. Gordon, J. L. Steiner, C. H. Lang, L. S. Jefferson, and S. R. Kimball, Reduced REDD1 expression contributes to activation of mTORC1 following electrically induced muscle contraction, Am J Physiol Endocrinol Metab, vol.307, issue.8, pp.703-714, 2014.

F. B. Favier, F. Costes, A. Defour, R. Bonnefoy, E. Lefai et al., Downregulation of Akt/mammalian target of rapamycin pathway in skeletal muscle is associated with increased REDD1 expression in response to chronic hypoxia, Am J Physiol Regul Integr Comp Physiol, vol.298, issue.6, pp.1659-66, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00593929

J. D. Macdougall, H. J. Green, J. R. Sutton, G. Coates, A. Cymerman et al., Operation Everest II. structural adaptations in skeletal muscle in response to extreme simulated altitude, Acta Physiol Scand, vol.142, issue.3, pp.421-428, 1991.

A. L. Goldberg, Mechanisms of growth and atrophy of skeletal muscle, Muscle biology, vol.1, pp.89-118, 1972.

J. C. Lafarge, M. Pini, V. Pelloux, G. Orasanu, G. Hartmann et al., inhibition lowers blood glucose levels in mice, Diabetologia, vol.57, issue.8, pp.1674-83, 2014.

S. Qiao, M. Dennis, X. Song, D. D. Vadysirisack, D. Salunke et al., A REDD1/TXNIP pro-oxidant complex regulates ATG4B activity to control stress-induced autophagy and sustain exercise capacity, Nat Commun, vol.6, p.7014, 2015.

C. Lipina and H. S. Hundal, Is REDD1 a Metabolic Eminence Grise?, Trends Endocrinol Metab, vol.27, issue.12, pp.868-80, 2016.

B. S. Gordon, J. L. Steiner, D. L. Williamson, C. H. Lang, and S. R. Kimball, Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism, Am J Physiol Endocrinol Metab, vol.311, issue.1, pp.157-74, 2016.

N. K. Mcghee, L. S. Jefferson, and S. R. Kimball, Elevated corticosterone associated with food deprivation upregulates expression in rat skeletal muscle of the mTORC1 repressor, REDD1, J Nutr, vol.139, issue.5, pp.828-862, 2009.

N. S. Chandel, D. S. Mcclintock, C. E. Feliciano, T. M. Wood, J. A. Melendez et al., Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing, J Biol Chem, vol.275, issue.33, pp.25130-25138, 2000.

F. L. Muller, W. Song, Y. C. Jang, Y. Liu, M. Sabia et al., Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production, Am J Physiol Regul Integr Comp Physiol, vol.293, issue.3, pp.1159-68, 2007.

A. J. Morash, A. O. Kotwica, and A. J. Murray, Tissue-specific changes in fatty acid oxidation in hypoxic heart and skeletal muscle, Am J Physiol Regul Integr Comp Physiol, vol.305, issue.5, pp.534-575, 2013.

B. S. Gordon, D. L. Williamson, C. H. Lang, L. S. Jefferson, and S. R. Kimball, Nutrient-Induced Stimulation of Protein Synthesis in Mouse Skeletal Muscle Is Limited by the mTORC1 Repressor REDD1, J Nutr, vol.145, issue.4, pp.708-721, 2015.

B. S. Gordon, J. L. Steiner, M. L. Rossetti, S. Qiao, L. W. Ellisen et al., REDD1 induction regulates the skeletal muscle gene expression signature following acute aerobic exercise, Am J Physiol Endocrinol Metab, vol.313, issue.6, pp.737-784, 2017.

E. Tubbs, P. Theurey, G. Vial, N. Bendridi, A. Bravard et al., Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance, Diabetes, vol.63, issue.10, pp.3279-94, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01859367

M. Fujimoto and T. Hayashi, New insights into the role of mitochondriaassociated endoplasmic reticulum membrane, Int Rev Cell Mol Biol, vol.292, pp.73-117, 2011.

A. D. Kohn, S. A. Summers, M. J. Birnbaum, and R. A. Roth, Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation, J Biol Chem, vol.271, issue.49, pp.31372-31380, 1996.

D. J. Roberts, V. P. Tan-sah, E. Y. Ding, J. M. Smith, and S. Miyamoto, Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition, Mol Cell, vol.53, issue.4, pp.521-554, 2014.

V. Chandramouli and J. R. Carter, Metabolic effects of 2-deoxy-D-glucose in isolated fat cells, Biochim Biophys Acta, vol.496, issue.2, pp.278-91, 1977.

D. F. Rolfe and G. C. Brown, Cellular energy utilization and molecular origin of standard metabolic rate in mammals, Physiol Rev, vol.77, issue.3, pp.731-58, 1997.

D. L. Williamson, Z. Li, R. M. Tuder, E. Feinstein, S. R. Kimball et al., Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: Effect of obesity versus REDD1 deficiency, J Appl Physiol, vol.117, issue.3, pp.246-56, 1985.

M. Sanchez-alvarez, D. Pozo, M. A. Bakal, and C. , AKT-mTOR signaling modulates the dynamics of IRE1 RNAse activity by regulating ER-mitochondria contacts, Sci Rep, vol.7, issue.1, p.16497, 2017.

A. Albawardi, S. Almarzooqi, D. Saraswathiamma, H. M. Abdul-kader, A. K. Souid et al., The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration, International journal of physiology, vol.7, issue.1, pp.54-60, 2015.

Y. Fang, R. Westbrook, C. Hill, R. K. Boparai, O. Arum et al., Duration of rapamycin treatment has differential effects on metabolism in mice, Cell Metab, vol.17, issue.3, pp.456-62, 2013.

S. Melser, E. H. Chatelain, J. Lavie, W. Mahfouf, C. Jose et al., Rheb regulates mitophagy induced by mitochondrial energetic status, Cell Metab, vol.17, issue.5, pp.719-749, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00905845

O. Alvarez-garcia, T. Matsuzaki, M. Olmer, L. Plate, J. W. Kelly et al., REDD1 deficiency impairs autophagy and mitochondrial biogenesis in articular cartilage and increases the severity of experimental osteoarthritis, Arthritis Rheumatol, vol.69, issue.7, pp.1418-1446, 2017.

M. Guridi, L. A. Tintignac, S. Lin, B. Kupr, P. Castets et al., Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21, Sci Signal, vol.8, issue.402, p.113, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01837623

Y. Izumiya, T. Hopkins, C. Morris, K. Sato, L. Zeng et al., Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice, Cell Metab, vol.7, issue.2, pp.159-72, 2008.

J. H. Reiling and E. Hafen, The hypoxia-induced paralogs Scylla and Charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila, Genes Dev, vol.18, issue.23, pp.2879-92, 2004.

K. Nakashima and Y. Yakabe, AMPK activation stimulates myofibrillar protein degradation and expression of atrophy-related ubiquitin ligases by increasing FOXO transcription factors in C2C12 myotubes, Biosci Biotechnol Biochem, vol.71, issue.7, pp.1650-1656, 2007.

I. Dimauro, T. Pearson, D. Caporossi, and M. J. Jackson, A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue, BMC research notes, vol.5, p.513, 2012.

M. R. Wieckowski, C. Giorgi, M. Lebiedzinska, J. Duszynski, and P. Pinton, Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells, Nat Protoc, vol.4, issue.11, pp.1582-90, 2009.

C. Bertrand, E. Blanchet, L. Pessemesse, J. S. Annicotte, C. Feillet-coudray et al., Mice lacking the p43 mitochondrial T3 receptor become glucose intolerant and insulin resistant during aging, PLoS One, vol.8, issue.9, p.75111, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01189724

E. Haddad, M. , J. E. Turki, A. Hugon, G. Vernus et al., Glutathione peroxidase 3, a new retinoid target gene, is crucial for human skeletal muscle precursor cell survival, J Cell Sci, vol.125, pp.6147-56, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00939577