Incisor enamel microstructure of Paleogene caviomorph rodents from Contamana and Shapaja (Peruvian Amazonia)

Myriam Boivin, Laurent Marivaux, Rodolfo Salas-Gismondi, Emma Vieytes, Pierre-Olivier Antoine

To cite this version:

HAL Id: hal-01813140
https://hal.umontpellier.fr/hal-01813140
Submitted on 1 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Incisor enamel microstructure of Paleogene caviomorph rodents from Contamana and Shapaja (Peruvian Amazonia)

Myriam BOIVIN¹, Laurent MARIVAUX¹, Rodolfo SALAS-GISMONDI², Emma C. VIEYTES³ and Pierre-Olivier ANTOINE¹

¹ Laboratoire de Paléontologie, Institut des Sciences de l’Évolution de Montpellier, c.c. 064, Université de Montpellier, CNRS, IRD, EPHE, place Eugène Bataillon, F-34095 Montpellier Cedex 05, France; e-mails: myriam.boivin@umontpellier.fr, pierre-olivier.antoine@umontpellier.fr, laurent.marivaux@umontpellier.fr

² Departamento de Paleontología de Vertebrados, Museo de Historia Natural – Universidad Nacional Mayor San Marcos (MUSM), Av. Arenales 1256, Lima 11, Peru; e-mail: rsalasgismondi@gmail.com

³ División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo, UNLP, Paseo del Bosque s/n, 1900 La Plata, Argentina; CONICET. e-mail: cvieytes@fcnym.unlp.edu.ar
Abstract

We investigate the enamel microstructure of 37 isolated rodent incisors from several late middle Eocene and late Oligocene localities of Contamana (Loreto Department, Peruvian Amazonia), and from the early Oligocene TAR-01 locality (Shapaja, San Martín Department, Peruvian Amazonia). All incisors show an enamel internal portion with multiserial Hunter-Schreger Bands (HSB). The late middle Eocene localities of Contamana yield incisors with subtypes 1, 1–2, and 2 of multiserial HSB; TAR-01 yielded incisors with 1–2, 2, 2–3, and 3 of multiserial HSB; and the late Oligocene localities of Contamana, incisors with subtypes 1–2, 2, and 2–3 of multiserial HSB. Based on our current knowledge of the South American and African rodent fossil records and given the primitiveness of the Eocene caviomorph faunas, it may be expected that the hystricognath pioneer(s) who have colonized South America from Africa sometime during the middle Eocene, most probably had incisors that displayed a multiserial enamel with an interprismatic matrix arrangement characterizing the subtype 1 (or subtype 1 + the subtype 2 and/or the transitional 1–2) of multiserial HSB. In contrast, the derived subtypes 2–3 and 3 conditions were subsequently achieved but likely rapidly, as evidenced by its record as early as the late Eocene/early Oligocene (e.g., Santa Rosa, Shapaja, and La Cantera), and seemingly evolved iteratively but only in the Octodontoidea clade.

Keywords Caviomorpha, multiserial enamel, Hunter-Schreger Bands, South America, Peru, Eocene, Oligocene.
Introduction

The study of enamel microstructure has long been practiced, the first accurate works about this dental tissue dating from the late 18th to the early 19th centuries (e.g., Hunter 1771; Schreger 1800). As enamel is one of the most mineralized and hardest tissues in vertebrates, it is resistant and as such often preserved during fossilization process (Koenigswald et al. 1993; Boyde 1997). Thanks to these characteristics, study of enamel microstructure is therefore possible in fossil teeth. These enamel investigations have contributed to provide useful characters for mammal systematics and phylogenic reconstructions (e.g., Rensberger and Koenigswald 1980), notably in rodents (e.g., Korvenkontio 1934; Koenigswald 1980, 1985; Martin 1992, 1993, 1997; Marivaux et al. 2004). In mammals, enamel is composed of prisms, which are bundles of hydroxyapatite crystallites with the same orientation. Between the prisms, there is an enamel fraction also formed by parallelly-oriented hydroxyapatite crystallites, but that are not bundled into prisms. This fraction is termed interprismatic matrix (IPM). Two main prismatic enamel types are commonly distinguished: enamel with parallel-oriented and non-decussating prisms, and enamel with decussating prisms. These prism groups form layers in bands named Hunter-Schreger bands (HSB). Different enamel types often coexist in a same tooth, defining the schmelzmuster (Koenigswald 1980). In rodent incisors, the enamel is primarily formed by two layers, the Portio interna (PI), which includes the HSB, and the Portio externa (PE), which consists of radial enamel (Korvenkontio 1934). Three major types of HSB can be distinguished in rodent incisors, which were originally defined based on the number of prisms per HSB in the PI: uniserial -one prism wide-, pauciserial -two to six prisms wide (on average three)-, and multiserial -three to seven prism wide- (Korvenkontio 1934; Martin 1993). These three types roughly characterize major groups of rodents (e.g., Martin 1992, 1993, 1995, 2007; Kalthoff 2000, 2006; Marivaux et al.)
Owing to a wide overlap of the number of prisms between pauciserial and multiserial HSB, Martin (1992, 1993) defined new characters (e.g., configuration of the IPM with respect to the prisms, presence/absence of HSB transitional zones, inclination of HSB…) for clearly distinguishing the two types. Multiserial HSB was originally interpreted as a plesiomorphic condition, while the pauciserial and uniserial types counted as derived stages (Korvenkontio 1934; Koenigswald 1980, 1985). However, in studying a wide array of basal fossil rodents, Martin (1992, 1993) has demonstrated that the presence of pauciserial HSB is the most primitive condition, inasmuch as it is only found in early diverging fossil taxa. Concerning multiserial HSB, Martin (1992, 1993) distinguished three subtypes (considered here as subtypes 1, 2, and 3), on the basis of the angle of the IPM crystallites with respect to the prism long axes. In the subtype 1, IPM crystallites run parallel to those of the prisms, or they form a very low angle with them, but they do not surround totally each prism (thin and sheath-like IPM). In the subtype 2, they form an acute angle and anastomose regularly, whereas in the subtype 3, the IPM shows a few or no anastomoses, and its crystallites run at a right angle to those of the prisms, forming interrow sheets (plate-like IPM). From a biomechanical viewpoint, an increasing angulation of the IPM is considered as strengthening the enamel in all three dimensions (e.g., Martin 1992, 1993, 1994a,b, 1997). On the basis of this biomechanical consideration and the stratigraphic occurrences of taxa, the enamel characterized by multiserial HSB with rectangular IPM (subtype 3) is considered to be the most specialized and derived multiserial condition (Martin 1992, 1993, 1994a,b, 1997). Accordingly, considering the IPM arrangement, the subtype 1 would be the most primitive condition of multiserial HSB, and the subtype 2 would be intermediate, between the subtypes 1 and 3 (Martin 1993, 1994a). Within hystricognathous rodents, among caviomorphs, the subtype 3 primarily characterizes most octodontoids, with the exception of sub-fossil "heptaxodontids" (but see e.g., Wood 1959; Wood and Patterson 1959; Pascual et al. 1990).
regarding the superfamilial assignation of this family), and the extinct *Sallamys*, *Caviocricetus*, *Protadelphomys*, *Willidewu*, and *Plesiacarechimys* (see below). The "heptaxodontid" octodontoids (giant hutias) from the Caribbean islands display incisor enamel with multiserial HSB of subtype 2 (Martin 1992). In other caviomorph superfamilies, the IPM runs with an acute angle (subtype 2) or parallel (subtype 1) to the prisms (Martin 1992, 1993). However, distinction of subtypes is not always clear. Indeed, transitional subtypes (corresponding to the presence of two subtypes) can be found among caviomorphs, but also in other hystricognath groups (e.g., Bathyergidae and Thryonomyidae; Martin 1992). There is often a difference in the IPM orientation between upper and lower incisors, the latter being usually characterized by the most derived subtypes (Martin 1994a; Vucetich and Vieytes 2006). Among caviomorphs, some extinct and extant erethizontoids (*Steiromys*, *Chaetomys subspinous*, *Coendou prehensilis*, and *Erethizon dorsatum*) can show a transitional subtype 1–2 (Martin 1994a). This transitional subtype is also present in some incisors of early caviomorphs found at Santa Rosa (Peru, late Eocene/early Oligocene; Martin 2004, 2005) and La Cantera (Argentina, early Oligocene; Vucetich et al. 2010). A transitional subtype 2–3 has been also mentioned in *Sallamys* (Bolivia and Peru, late Oligocene; Martin 1994a), *Caviocricetus lucasi* (Argentina, early Miocene; Vieytes 2003; Vucetich et al. 2010, 2015; Arnal et al. 2014), *Plesiacarechimys koenigwaldi* (Argentina, middle Miocene; Vucetich and Vieytes 2006), *Protadelphomys* (Argentina, early Miocene; Vieytes 2003; Vucetich et al. 2010, 2015), *Willidewu* (Argentina, early Miocene; Vieytes 2003; Vucetich et al. 2015), and on some indeterminate incisors from La Cantera (Argentina, early Oligocene; Vucetich et al. 2010). In this transitional subtype 2–3, the angle between the IPM and the prisms can reach 90° but only in some portions of the lower incisors (between 60° and 90°), and it is comprised between 45° and 70° in the upper incisors (Vucetich et al. 2010). Accordingly, the transitional subtype 2–3 was interpreted by Vucetich and Vieytes...
as more primitive than the subtype 3. However, Arnal et al. (2014), based on a phylogenetic topology, have shown that the evolution of this character could be more complicated within caviomorphs. Indeed, they proposed that the transitional subtype 2–3 might be a plesiomorphic condition from which the subtype 2 and 3 would have been both derived. Besides, owing to the divergence of Caviocricetus lucasi and Plesiacarechimys koenigwaldi within their phylogeny of octodontoids, Arnal et al. (2014) hypothesized that the transitional subtype 2–3 of both taxa would correspond to a reversion from the subtype 3. However, these results may also be linked to lacking data (i.e., missing lineages), because a case of reversion seems difficult to conceive inasmuch as the selective pressure is towards strengthening the enamel of the highly stressed incisor. Therefore, considering this biomechanical constraint, the alternative hypothesis considering an iterative acquisition (i.e., convergent) of the subtype 3 from subtype 2–3, seems here to be more conceivable (Martin, Jan. 2017 com. pers., that we follow).

For several decades, our knowledge of the caviomorph Paleogene record had been limited to late Oligocene forms (i.e., Deseadan South American Land Mammal Age [SALMA]; Loomis 1914; Wood 1949; Wood and Patterson 1959; Patterson and Pascual 1968; Hoffstetter and Lavocat 1970; Hartenberger 1975; Lavocat 1976; Mones and Castiglioni 1979; Patterson and Wood 1982; Hartenberger et al. 1984; Vucetich 1989). It was only from the 1990s that several pre-Deseadan rodent faunas were discovered: Termas del Flaco (Tinguirirican SALMA; Wyss et al. 1993; Bertrand et al. 2012), Santa Rosa (Frailey and Campbell 2004) and La Cantera (Vucetich et al. 2010). One locality in the West Indies (west bank of Río Guatemala at Puerto Rico, Greater Antilles; early Oligocene) has yielded only one caviomorph incisor, the enamel of which displays the subtype 2 of multiserial HSB (Vélez-Juarbe et al. 2014). Recently, new Paleogene localities were found at Contamana (Loreto Department) and Shapaja (San Martín Department) in Peruvian Amazonia (Antoine et
al. 2012, 2016, 2017; Boivin et al. 2017a, 2017b, in press). Some of the Contamana localities (CTA-47, CTA-51, CTA-27, CTA-73, CTA-66, and CTA-29) have yielded the oldest known caviomorph assemblages from South America (late middle Eocene, Barrancan SALMA; Antoine et al. 2012, 2016, 2017; Boivin et al. 2017a). Regarding pre-Deseadan localities of South America, only incisor specimens from Santa Rosa (SR) and La Cantera (LC) have been subject to detailed analyses of the enamel microstructure (SR: Martin 2004, 2005; LC: Vucetich et al. 2010). The incisor enamel microstructure of the earliest known caviomorphs from CTA-27 was also briefly mentioned (multiserial subtype 1 to 2) but without detailed description and figuration (Antoine et al. 2012, p. 1321).

The present work provides an exhaustive analysis (description and figuration) of the enamel microstructure of incisors recovered at CTA-27, as well as those from other Paleogene localities of Contamana and Shapaja. This study contributes to further our understanding of the early evolutionary history of the enamel microstructure within caviomorphs.

Material and Methods

The material of this study corresponds to isolated fragments of caviomorph incisors from several Paleogene localities of Contamana (late middle Eocene: CTA-47, CTA-27, CTA-29; late Oligocene: CTA-32, CTA-61; Antoine et al. 2012, 2016, 2017; Boivin et al. 2017a, 2017b) and Shapaja (early Oligocene: TAR-01; Klaus et al. 2017; Boivin et al. in press) in Peruvian Amazonia. The taxonomic content of each studied locality is provided in Table 1. Unfortunately, we have no formal taxonomical identification of these incisors, because they were collected, as for molars and premolars, after wet screening (1 mm mesh) of the sediments (i.e., each tooth is an isolated specimen). We have used a criterion of size
compatibility between incisors and molars for orienting our assessment regarding taxonomic identification of incisors, but the latter remains only tentative. Of the hundreds of incisor fragments recovered in the Paleogene localities of Contamana, we have selected 25 specimens for enamel microstructure analyses (two at CTA-47, 15 at CTA-27, one at CTA-29, one at CTA-32, and six at CTA-61; Table 2–3). Twelve incisor fragments from TAR-01 were chosen over the ~650 dental specimens found at Shapaja (Table 4). For the analyses, we have selected well-preserved upper and lower incisor fragments of different sizes (Table 2–4).

We have measured the anteroposterior width of each studied incisor (Table 2–4), then followed the protocol of Tabuce et al. (2007) for sample preparation. All specimens were embedded in epoxy resin and polished longitudinally. We subsequently performed 37 % phosphoric acid etching of the samples 30 seconds to make microstructural details visible. After rinsing with distilled water and drying, samples were coated with conductive material (gold-palladium). They were observed and studied with two different scanning electron microscopes (SEM): HITACHI S 4000 and HITACHI S 4800. The datasets (SEM photographs) generated and analyzed during the current study are available from the corresponding author on reasonable request. In contrast, all prepared and analyzed specimens are permanently housed in the paleontological collections of the Museo de Historia Natural of the Universidad Nacional Mayor de San Marcos (MUSM) in Lima, Peru.

The nomenclature corresponding to enamel microstructure follows that of Koenigswald and Sander (1997) and Martin (1992, 1993). Many standard measures were realized (Tables 2–4) following Martin (1992). For enamel thickness, inclination of prisms in PE and inclination of HSB, ten repeated measures were made for each variable. The inclination of HSB corresponds to the angle between the HSB direction and the perpendicular to the EDJ plan (see Martin 2004: fig. 1). The angle between the IPM crystallites and the prism crystallites was measured at the level of the HSB, where the prism axis is the longest.
For an incisor, the identification of a subtype of multiserial HSB was based on the observation of the whole longitudinal section available of the specimen. However, it must be noted that the distinction between the main subtypes (1, 2, and 3), notably the transitional ones (1–2 and 2–3) is somewhat subtle, and as such sometimes arbitrary, especially between the subtype 3 and the transitional 2–3.

Results

All studied specimens present a configuration of the enamel microstructure typical of hystricognathous rodents: the enamel layer is divided into an external portion (PE) constituted of radial enamel and an internal portion (PI), thicker and essentially composed of multiserial HSB.

Contamana

CTA-47, late middle Eocene (Table 2)

The enamel microstructure was studied in two incisor fragments from CTA-47 (MUSM 2649 and 2650), the earliest rodent-yielding locality of the Contamana section. For both incisors, the transitional zone is well developed and the prism cross sections are flattened in PI.

The MUSM 2649 incisor is particularly damaged and likely exhibits numerous marks of digestion (corrosion due to etching by gastric fluids of a predator). Indeed, its enamel lacks PE (seemingly removed) and as such limited to PI. In this layer, the HSB are inclined by 36°, and each comprises two to three prisms. The IPM crystallites, arranged as thin sheets,
anastomose frequently and form acute angles with the prism crystallites (∼30°), thereby
typifying a subtype 2 of multisequential HSB.

The MUSM 2650 incisor has a total enamel thickness (PI + PE) of 155 µm, with PE
representing 16%. As in MUSM 2649, the IPM crystallites in PI form acute angles of ∼30°
with the prism crystallites. However, MUSM 2650 rather displays a transitional subtype 1–2
[i.e., subtype (1)–2; Table 2], with sheath-like/sheet-like IPM. Indeed, the anastomoses of the
IPM crystallites are very frequent. In PI, the HSB display two to four prisms and are inclined
by 23°. In PE, prisms are inclined by 69°.

CTA-27, late middle Eocene (Table 3)

The investigated sample of that locality comprised 14 incisor fragments: seven documenting
lower incisors, six documenting upper incisors, and one of indeterminate attribution. In this
sample, there is a noticeable disparity in the size of the incisors, but that is rather continuous,
ranging from 0.6 to 1.4 mm. The width of these incisor fragments is clearly smaller than that
of the cheek teeth of Cachiyacuy contamanensis and Eobranisamys javierpradoi, but
compatible to that of the teeth of Cachiyacuy kummeli, Canaanimys maquiensis and
Eoespina sp. (Antoine et al. 2012; Boivin et al. 2017a). The smallest incisors (MUSM 2814,
2815, 2816, and 2817) might belong to juveniles of these taxa, or to species so far not
documented by cheek teeth.

One upper incisor (MUSM 2803; Fig. 1a–b) has a very peculiar IPM arrangement,
which recalls to some extent that found in the primitive pauciserial enamel condition. Indeed,
in this sample the IPM crystallites anastomose very frequently and regularly, and tend to
surround each prism. The IPM crystallites run parallel to the prism direction or with a low
angle (up to 20°). Transitional zones are scarce and faintly visible. Finally, the HSB are only
slightly inclined (15°). However, compared with the pauciserial condition, this enamel
microstructure is clearly distinct in having flattened prisms, a thinner IPM that does not
completely surround prisms in PI, and a relatively thicker total enamel layer (181 µm,
superior to the inferior limit of the multiserial, i.e., 140 µm; Martin 1994b: table 1). There are
two to four prisms per HSB. The PE composes 17–26% of the entire enamel thickness.
Given these observations, the enamel condition of this incisor corresponds therefore to the
subtype 1 of multiserial HSB.

One lower incisor (MUSM 2817) has a transitional subtype 1–2 of multiserial HSB
[i.e., subtype 1–(2); Table 3]. The IPM appears as a moderately thin sheet, which anastomoses
very frequently, and the IPM crystallites run parallel or at a low-medium angle to the prism
direction (35°). This multiserial enamel subtype recalls the pauciserial condition, notably in
the relatively low inclination of the HSB in PI (26°), and in the rather thin total enamel layer
(93 µm). However, this multiserial enamel subtype is distinct from the pauciserial condition,
notably in the presence of flattened prisms, a thinner IPM that does not (or very rarely)
completely surround prisms in PI, the presence of transitional zones between HSB, and in
showing a strong inclination of the prisms in PE (85°). The HSB have three to four prisms.
The PE composes 18–25% of the entire enamel thickness.

Most other incisors from this locality (seven lower, five upper, and one indeterminate)
 exemities 2 of multiserial HSB, which is characterized by sheet-like IPM, and IPM
crystallites that form acute angles with the prism crystallites. Although sometimes elevated
(up to 79°), the average angles between crystallites of IPM and prisms of these incisors range
from 40° to 65°. Anastomoses of IPM sheets are rare in most of the incisors, but they can be
 frequent (MUSM 2805, 2806, and 2811) or very frequent (MUSM 2813) in some cases. The
transitional zones are well developed, except for three specimens (MUSM 2807, 2804, and
2816). In most cases, the HSB comprise four prisms, but punctually, two to five prisms per
band can be observed. In all incisors, prisms in PI are flattened in cross section. In PI, HSB are inclined from 22° to 45°, and in PE, prisms are inclined from 55° to 85°. Total enamel thickness is very variable, but it always exceeds 100 µm (averages ranging from 115 to 246 µm). The PE composes 17–23% of the total enamel thickness. MUSM 2805 tends to develop a thin prismless external layer (PLEX).

CTA-29, late Middle Eocene (Table 2)

The only studied specimen from CTA-29 (lower incisor, MUSM 2840; Fig. 2a–b) displays the subtype 2 of multiserial HSB, characterized by HSB with sheet-like IPM and IPM crystallites forming acute angles with the direction of the prism crystallites (from 32° to 58°). Anastomoses of the IPM are rare and transitional zones between two adjacent HSB are well marked. The HSB have between two and four prisms. The prism cross sections are flattened or round in PI. The HSB are inclined by 33° in PI and prisms by 84° in PE. Total enamel thickness is about 174 µm, with a PE representing 20%.

CTA-32, late Oligocene (Table 2)

Enamel of the lower incisor from CTA-32 (MUSM 2873) corresponds to the subtype 2 of multiserial HSB, characterized by sheet-like IPM and IPM crystallites that form acute angles with the direction of prism crystallites (between 40° and 52°). Anastomoses of the IPM sheets are rare. Transitional zones between adjacent HSB are scarce, and when present, they are weakly pronounced. The HSB comprise between two and four prisms, which are flattened in cross section. In PI, HSB are inclined by 37°, and in PE, prisms are inclined by 74°. Enamel is about 88 µm thick and the PE composes 27% of the total thickness.
CTA-61, Late Oligocene (Table 2)

One incisor (MUSM 2902) exhibits a transitional subtype 1–2 of multiserial HSB [i.e., subtype 1–(2); Table 2]. The PI of that enamel displays sheet-like IPM, the crystallites of which anastomose very frequently, running parallel or at a low-medium angle to the prism direction (up to 10°). This subtype of multiserial enamel somewhat recalls the pauciserial condition, notably in the IPM arrangement and in showing a relatively low inclination of the HSB (23°). However, this subtype of multiserial enamel differs specifically from the pauciserial condition in having flattened prisms, a thinner IPM that does not completely surround the prisms in PI, the presence of transitional zones between HSB, a strong inclination of the prisms in PE (83°), and in showing a relatively thicker total enamel layer (173 µm; cf. Martin 1994b: table 1). The HSB comprise three to five prisms. The PE composes 18% of the entire enamel thickness.

Most incisors (two lower, one upper and one indeterminate) display the subtype 2 of multiserial HSB, characterized by the presence of sheet-like IPM and with IPM crystallites that form acute angles with the direction of the prism crystallites (between 27° and 60°). Anastomoses of IPM crystallites can be rare (MUSM 2904 and 2905), frequent (MUSM 2906) or absent (MUSM 2907). Transitional zones are well marked. The HSB comprise between three and four prisms, except for MUSM 2907, in which there are two to four prisms per band. In all incisors, prisms in PI are flattened in cross section. The HSB are inclined from 27° to 37°. In MUSM 2907, prisms are less inclined in PE (57°) than in other incisors where they are inclined by 73° to 80°. Total enamel thickness is very variable but always exceeding 100 µm (between 139 and 284 µm). The PE composes 15–22% of entire enamel thickness.
One lower incisor (MUSM 2903; Fig. 1c–d) shows a transitional subtype 2–3 of multiserial HSB. The angle between the orientation of the IPM crystallites and that of prism crystallites is acute, and in some cases reaches up to 85° (almost right-angled). Anastomoses of the IPM are frequent. Transitional zones are well marked between two adjacent HSB. The latter comprise from three to four prisms. In PI, the HSB are strongly inclined (40°), and prisms are flattened or round in cross section. In PE, the prisms are very strongly inclined (83°). Total enamel thickness is 156 μm, with a PE representing 21%.

Shapaja (early Oligocene)

TAR-01 (Table 4)

The investigated sample comprises seven upper and five lower incisors, which show a noticeable disparity in size, ranging from 0.6–2.6 mm (continuous range). The MUSM 3342 incisor is clearly set apart from other incisors by its larger size (width = 2.6 mm), compatible with the size of cheek teeth of Eoincamys cf. E. pascuali and Shapajamys (recorded in TAR-01; Boivin et al., in press), thereby suggesting that this incisor could be referred to one of these two taxa. Like in CTA-27, the smallest incisors (MUSM 3351, 3352, and 3353) might either belong to juveniles of the smallest taxa (Mayomys and Tarapotomys) or to adults of even more tiny taxa still not documented by cheek teeth.

Two subtypes of multiserial HSB are clearly identified, the subtype 2 (acute IPM) and subtype 3 (rectangular IPM), but also few transitional subtypes (1–2 and 2–3).

Two upper incisors (MUSM 3344 and 3353; Fig. 1c–d) have a transitional subtype 1–2 [including subtype (1)–2; Table 4] of multiserial HSB. Both specimens are characterized by frequently anastomosed sheet-like IPM and by IPM crystallites that run parallel or at a low angle to the prism crystallites (up to 40–43°). This multiserial enamel subtype is distinct from
the pauciserial condition in showing PI bearing HSB with oval or flattened prisms, a thinner IPM that does not (or very rarely) completely surround the prisms, the presence of transitional zones between HSB, moderately inclined HSB (23–24°), and a strong inclination of the prisms in PE (62° and 80°). The HSB comprise three to four prisms. Compared with MUSM 3344, enamel microstructure of MUSM 3353 would be more similar to the pauciserial condition, notably in the noticeable strong IPM thickness, which nearly forms a sheath-like structure surrounding the prisms, and in showing a relatively thinner total enamel layer (cf. Martin 1994b: table 1).

Five incisors (three upper and two lower) have multiserial HSB with sheet-like IPM and with IPM crystallites that form acute angles with prism crystallites (subtype 2). Anastomoses of IPM sheets are rare, except for two incisors (MUSM 3350 and 3351) in which they are frequent. Transitional zones are well marked, except in one specimen (MUSM 3351). The two largest incisors (MUSM 3342 and 3345) can have up to five prisms per HSB, whereas others only display three to four prisms per band. In virtually all incisors, prism cross section is flattened in PI, except for two of them (MUSM 3342 and 3347), which can also show rounded prisms. The HSB are inclined from 17° to 40° in PI, and the prisms from 63° to 83° in PE. Total enamel thickness varies between 111 and 176 µm, with PE representing 13 to 23%. Three of the five considered incisors (MUSM 3345, 3347, and 3351) tend to develop a small prismless external layer (PLEX).

Two incisors (one lower and one upper) show a transitional subtype 2–3 of multiserial HSB [including subtype (2)–3; Table 4]. The angle between the orientation of the IPM crystallites and that of prism crystallites is acute to rectangular, but always higher than that found in the subtype 2 of multiserial HSB. Anastomoses of IPM sheets are rare (MUSM 3343) or not observed (MUSM 3348). Transitional zones between adjacent HSB are well marked. The HSB comprise three to four prisms in MUSM 3343, and two to three prisms in
MUSM 3348. In these two incisors, the prisms in PI are flattened in cross section. The HSB are inclined from 29° to 34°, and the prisms from 57° to 67° in PE. MUSM 3348 and MUSM 3343 have a distinct total enamel thickness: 133 and 301 µm, respectively, contrary to the percentage of PE, which is virtually similar in both incisors (13–16%).

Three incisors (two lower and one upper) have an IPM arrangement typifying a subtype 3 of multiserial HSB. Indeed, the angle between the orientation of IPM crystallites and that of prism crystallites is very close to 90° (between 70–90°). Besides, the IPM forms plates (interrow sheets) without any anastomose. Transitional zones between adjacent HSB are well marked, except in one specimen (MUSM 3349). There are three to four prisms per HSB. In MUSM 3346 (Fig. 3a–b) and MUSM 3349, the prisms in PI are flattened in cross section, whereas they can be more round in MUSM 3352 (Fig. 3c–d). Overall, the HSB are strongly inclined (34°–46°), as well as the prisms in PE (69° and 88°). MUSM 3346 and 3349 have a thicker enamel layer (224 and 215 µm, respectively) than that of MUSM 3352 (106 µm), but the latter displays a thicker PE (25% contra 12% for MUSM 3346 and 15% for MUSM 3349).

Discussion

Bearing of incisor enamel microstructure in phylogenetic relationships of hystricognathous rodents

During the 20th century, two main hypotheses surrounding the origin of caviomorph rodents were proposed and ardently debated. Some have advocated and long defended a North
American origin (“Framormph” [Ischyromyidae and Reithropamryidae] or Paramyidae or Sciuravidae; Wood 1949, 1950, 1959, 1962, 1965, 1972, 1973, 1974, 1975, 1980, 1983, 1984, 1985a,b; Wood and Patterson 1959, 1970; Patterson and Wood 1982), while others have strongly defended an African origin (Thryonomyoidea, Phiomorpha; Lavocat 1969, 1971, 1973, 1974a,b, 1980; Hoffstetter 1971, 1972, 1975; Hoffstetter and Lavocat 1970). On the basis of an increasing body of anatomical (e.g., Mossman and Luckett 1968; Dawson 1977; Korth 1984; Bugge 1985; Meng 1990; Luckett and Hartenberger 1993; Martin 1994b; Marivaux et al. 2002, 2004) and molecular (e.g., Nedbal et al. 1996; Huchon and Douzery 2001; Poux et al. 2006; Montgelard et al. 2008; Blanga-Kanfi et al. 2009; Churakov et al. 2010; Fabre et al. 2012) evidence, and also parasite studies (e.g., Durette-Desset 1971; Quentin 1973; Hugot 1982), the African origin of caviomorphs has gained strong support over the past two decades, and reached a well-accepted consensus. This African hypothesis has been substantially strengthened in recent years by the discovery in Peruvian Amazonia (Contamana) of very ancient fossil caviomorphs, dating from the late middle Eocene (Antoine et al. 2012), which exhibit strong morphological affinities with sub-coeval African hystricognathous rodents (i.e., stem hystricognaths and phiomorphs; see Barbière and Marivaux 2015).

In the 1990s, study of enamel microstructure has significantly contributed to substantiating the relationships between New World caviomorphs and Old World phiomorphs (Martin 1992, 1993, 1994b, 2004, 2005). Indeed, these two groups share the same incisor enamel microstructure (multiserial HSB), a condition which is also shared with ctenodactylids (gundis) and pedetids (springhares; e.g., Martin 1995; Marivaux et al. 2011). Subsequently, molecular and morpho-paleontological evidence has supported the existence of the Ctenohystrica, a clade which clusters ctenodactylids with hystricognathous rodents (phiomorphs + caviomorphs; e.g., George 1985; Huchon et al. 2000, 2002, 2007; Marivaux et
al. 2002, 2004), thereby underscoring the derived/shared multiserial enamel condition for all advanced stem and crown members of this clade (Martin 1994b; Marivaux et al. 2004).

Enamel microstructure was therefore a key morphological character for rejecting the hypothesis of a North American origin for caviomorphs. In fact, in being characterized by changes from the pauciserial to the uniserial condition, incisor enamel microstructure of Eocene rodents from North America (formerly involved into a possible ancestry of caviomorphs; sensu Wood) has proven to be entirely divergent from that of Ctenohystrica (e.g., Martin 1992, 1993, 1994b, Marivaux et al. 2004).

The early stages of multiserial HSB (subtypes 1, 1–2, and 2) in caviomorph incisors

Incisors of extinct or extant caviomorphs display a multiserial enamel microstructure, but with different degrees of IPM arrangement (i.e., presence of additive derived subtypes 1, 2, 3, including transitional stages 1–2 and 2–3; e.g., Martin 1992, 1993, 1994a, 2004, 2005; Vieytes, 2003; Vucetich and Vieytes 2006; Vucetich et al. 2010; Supplementary Table S1). The same is true for African hystricognaths, which display similar but convergent derived subtypes of multiserial HSB, as those observed in caviomorphs (Martin 1992, 1993, 1994b; Coster et al. 2010; Marivaux et al. 2012, 2014; Supplementary Table S1). Until recently, the incisor enamel microstructure of early caviomorphs was only documented by fossils dating from the Oligocene (La Cantera and Salla; e.g., Martin 1992; 1993; Vucetich et al. 2010; Supplementary Table S1) and from the ?latest Eocene/early Oligocene (Santa Rosa; Martin 2004, 2005). In analyzing enamel microstructure of incisors recovered from Contamana and Shapaja (in addition to the preliminary analysis mentioned but not figured in Antoine et al. 2012:1321), we then provide here new data regarding microstructural enamel pattern of
Oligocene forms, but also that of late middle Eocene forms, which represent the oldest caviomorphs to be known thus far.

It is worth noting that based on the set of incisor fragments analyzed from Contamana or Shapaja, no specimen displays the pauciserial condition characterizing the primitive enamel microstructure found in basal rodents (e.g., Martin 1993; Marivaux et al. 2004), notably in early ctenodactyloids, the group in which Ctenodactylidae and Hystricognathi are nested within (e.g., Marivaux et al. 2002, 2004). Nor are there incisors displaying an enamel transitional from the pauciserial to the multiserial condition. The most primitive subtype, the subtype 1 of multiserial HSB, is documented only for one incisor from CTA-27 (MUSM 2803; Fig. 1a–b). However, two other specimens, MUSM 2817 (lower incisor) and 2902 (indeterminate incisor) from CTA-27 and CTA-61, respectively, show a rather primitive enamel type close to the subtype 1 [i.e., transitional subtype 1–(2); the subtype 2 being dominant in both localities; see Tables 2–3 and discussion below]. CTA-27, late middle Eocene in age, record the most ancient and primitive caviomorphs (i.e., stem Caviomorpha: Cachiyacu and Canaanimys; Table 1) to be known in South America (Antoine et al. 2016; Boivin et al. 2017a). Given that the dental pattern of these rodents is strikingly reminiscent of that of their Paleogene African hystricognathous counterparts, Antoine et al. (2012) have suggested that these South American taxa could represent “the earliest stages of caviomorph evolution (i.e., their first adaptive radiation in South America).” Interestingly, the oldest known African hystricognathous rodent (Protophiomys tunisiensis; Marivaux et al. 2014), which was recently reported from Tunisia, in late middle Eocene deposits sub-coeval to those of CTA-47 and CTA-27, has incisors documenting a very similar subtype 1 of multiserial HSB (Supplementary Table S1). In North Africa, the subtype 2 of multiserial HSB is also recorded as early as the early late Eocene (Protophiomys algeriensis, Bir el Ater, Algeria; Martin 1993; Marivaux et al. 2014; Supplementary Table S1). The presence of similar incisor
enamel conditions (multiserial subtypes 1 and 2) shared by some representatives of the most ancient and sub-coeval Afro-Asian and South American hystricognaths (Marivaux et al. submitted), and given the close phylogenetic relationships between both groups, it might be expected that the subtype 1 of multiserial HSB (or the subtype 1 + subtype 2 and/or the transitional 1–2) characterized the incisor enamel microstructure of the caviomorph ancestor(s) that colonized South America (seemingly shortly before their first appearance in the South American fossil record). Based on enamel incisor microstructure observations on the ?late Eocene/early Oligocene rodents from Santa Rosa, Martin (2004) advocated a similar scenario regarding the multiserial enamel pattern of the earliest caviomorphs (see also Vucetich and Vieytes 2006).

Although it was not unexpected to record an enamel with multiserial HSB exhibiting a plesiomorphic IPM arrangement [i.e., subtype 1–(2)] in late middle Eocene localities, the presence of a similar microstructure in a late Oligocene taxon (CTA-61; MUSM 2902) could appear somewhat singular. However, pre-Deseadan and post-Barrancan localities (Santa Rosa and La Cantera; Martin 2004, 2005; Vucetich et al. 2010) have also yielded rodent incisors displaying the subtype 1/subtype 1–2 of multiserial HSB (Supplementary Table S1). Besides, several Miocene taxa (e.g., the chinchiloids *Perimys procerus* and *Cephalomys arcidens*, and the cavioid *Neoreomys australis*) and a wide array of extant taxa (e.g., the erethizontoid *Coendou mexicanus*, the chinchiloids *Chinchilla lanigera* and *Lagidium peruanum*, and several cavioids such as *Hydrochoeris hydrochoeris* and *Cavia porcellus*) harbor this primitive subtype 1 condition of multiserial HSB (Martin 1992, 1994a, 1997; Supplementary Table S1), a large taxonomic and temporal distribution which then underscores the evolutionary conservative pattern of that enamel subtype. In contrast, in the Shapaja section that yields the TAR-01 locality dating from the earliest Oligocene, incisors displaying the subtype 1 [or subtype 1–(2)] of multiserial HSB are surprisingly not recorded, although this
kind of multiserial enamel subtype is well documented in the stratigraphically close Santa
Rosa locality (Martin 2004, 2005; Supplementary Table S1). Considering that cavioids,
chinchilloids, and erethizontoids include both species with incisors displaying subtype 1 of
multiserial HSB and species having incisors with subtype 2 (Martin 1992, 1993, 1994a;
Supplementary Table S1), the possibility exists that we would not have processed incisors
with subtype 1 in our TAR-01 sample (i.e., 12 out of 650 available incisors), whereas these
superfamilies are documented by cheek teeth in this locality (Boivin et al., in press; Table 1).
Some extant and extinct erethizontoids (Steironmys, Chaetomys, Coendou, and Erethizon) also
have incisors with transitional subtype 1–2 (Martin 1992, 1994a; Supplementary Table S1).
Incisors displaying the subtype 2 of multiserial HSB are common in TAR-01 and two upper
incisors (MUSM 3344 and 3353) from that locality have transitional subtype 1–2/(1)–2 (Table
4). All these incisors likely belonged to representatives of these aforementioned superfamilies
(the erethizontoid Shapajamys labocensis; the cavioid or chinchilloid Eoincamys cf. E.
pascuali; an unidentified chinchilloid; plus a taxon of indeterminate superfamilial affinities
[Tarapotomys mayoensis]). The MUSM 3342 incisor, which is clearly set apart from other
incisors by its large size, could be referred to Eoincamys cf. E. pascuali or Shapajamys (see
Results).

The subtype 2 of multiserial HSB is also well represented by incisors from the
Oligocene localities of Contamana (CTA-61 and CTA-32; Table 2), which record
representatives of erethizontoids (Plesiosteironmys newelli and Paleosteironmys amazonensis),
chinchilloids (Scleromys praecursor and Ucayalimys crassidens), octodontoids (Deseadomys
cf. arambourgi, Adelphomyinae indet. 1 and 2, Loretomys minutus), and a taxon of
indeterminate superfamily (Chambiramys; Boivin et al. 2017b; Table 1). As for the earliest
stratigraphic interval considered here (late middle Eocene, Contamana; CTA-47 + CTA-27 +
CTA-29; Antoine et al. 2012; Boivin et al. 2017a), except the few specimens showing the
subtype 1 (or transitional subtypes 1–2), there are primarily incisors displaying the subtype 2 of multiserial HSB (as mentioned above; Tables 2–3). In these Eocene localities, most recorded taxa are not formally identified as representatives of extant superfamilies (Table 1), and are considered as basal caviomorphs (stem Caviomorpha: Cachiyacuy and Canaanimys). The absence of a direct association between incisors and molars precludes a formal assignation of the multiserial incisor enamel subtypes 1 and 2 [or 1–(2) or (1)–2] to either of these stem taxa. In the Eocene localities of Contamana, the alleged cavioid Eobranisamys and the octodontoid Eoespina are also recorded (Antoine et al. 2012; Boivin et al. 2017a; Table 1). They might have displayed incisors with an enamel characterized by the subtype 2 of multiserial HSB.

Subtypes 2–3 and 3 of multiserial HSB

Noteworthy is the lack of incisors displaying the subtype 3 of multiserial HSB in Eocene localities of Contamana (Tables 2–3). Among extinct and extant caviomorphs, the subtype 3 is otherwise found only in octodontoid incisors (Supplementary Table S1). This microstructural arrangement is considered to be the most derived multiserial condition on the basis of stratigraphic occurrence of taxa and biomechanical considerations (i.e., better resistance to crack propagation; Martin 1992, 1993, 1994a,b, 1997). In this context, given that other pre-Deseadan faunas in South America (Santa Rosa, La Cantera, and Shapaja TAR-01) record incisors documenting the subtype 3 of multiserial HSB (in addition to subtypes 1 and 2; Martin 2004, 2005; Vucetich et al. 2010; this paper), the absence of the subtype 3 in Eocene localities of Contamana (CTA-47, CTA-27, and CTA-29) is consistent with the primitiveness of incisor enamel microstructures recorded for rodents in these older localities.
This is also congruent with less advanced cheek tooth pattern of recorded taxa (Antoine et al., 2012, 2016, 2017; Boivin et al., 2017a).

In the early Oligocene locality of Shapaja (TAR-01), the subtype 3 plus transitional 2–3 [included the transitional subtype (2)–3] are frequent (Table 4). The subtype 3 is found in three sampled incisors of TAR-01 [MUSM 3346 (upper incisor), 3349 (lower incisor), and 3352 (lower incisor); Fig. 3]. In addition to having the IPM perpendicular to prism direction, enamel of these incisors displays a strong inclination of the HSB, as well as of prisms in PE, despite the fact that some incisors with a subtype 2 or transitional subtype 2–3 have also high values for these variables (e.g., MUSM 3347, 3348, and 3351). These three microstructural features (i.e., subtype 3 of multiserial HSB, high inclination of the HSB and of the prisms in PE) are characteristic of octodontoid incisors (Martin 1992, 1993, 1994a,b, 1997, 2004). The only octodontoid described at TAR-01 is Mayomys confluens Boivin et al., in press (Table 1), the numerous cheek teeth of which have a size compatible with MUSM 3346, 3349, and 3352. The latter incisors likely could document this taxon. At TAR-01, two incisors display a transitional subtypes 2–3/(2)–3 [MUSM 3343 (lower incisor) and 3348 (upper incisor)]. This transitional subtype is also only found in octodontoids (Martin 1994a; Vieytes 2003; Vucetich and Vieytes 2006; Vucetich et al., 2010, 2015; Supplementary Table S1). At TAR-01, the presence of the transitional subtype 2–3 in addition to the subtype 3 could indicate the presence of another undocumented octodontoid. Tarapotomys mayoensis from TAR-01, of uncertain suprafamiliar assignment (Cavioidae, Chinchilloidea, or Octodontoidea; Boivin et al., in press; Table 1), could be a possible candidate for either of multiserial subtypes (2–3 and 3). Indeed, the molars of the latter are compatible in size with the MUSM 3343, 3346, 3348, 3349, and 3352 incisors (Boivin et al., in press). Interestingly, in caviomorphs, the same individual can show differences in IPM orientation between upper and lower incisors, the latter being usually characterized by the most derived subtype (Martin 1994a; Vucetich and
Given that MUSM 3348 is an upper incisor, similar in size to the lower incisors displaying a subtype 3 (MUSM 3349 and 3352), so this upper incisor could also document *Mayomys confluens*. In this context, *Mayomys* would have hence displayed upper and lower incisors with the transitional subtype 2–3 and the subtype 3, respectively. But this assumption of association required further morphological support (i.e., articulated craniodental elements) than current data allow.

Like for Eocene localities of Contamana, late Oligocene localities of this section (CTA-32 and CTA-61; Table 2) have not yielded incisors displaying the subtype 3 of multiserial HSB, although many octodontoids are identified at CTA-61 (Adelphomyinae gen. et sp. indet.1, *Deseadomys* cf. *D. arambourgi*, and octodontoid indet. 1) and CTA-32 (*Loretomys minutas*, aff. *Eosallamys* sp., Adelphomyinae gen. et sp. indet. 2, and octodontoid indet. 2) (Boivin et al. 2017b; Table 1). Only one specimen (MUSM 2903) from CTA-61 displays a transitional subtype 2–3 of multiserial HSB. Two hypotheses can be advocated for explaining the absence of incisors with the subtype 3 in these localities. Firstly, taxa with incisors exhibiting the subtype 3 of multiserial HSB were perhaps present at CTA-61 and CTA-32, but their incisors would not have been sampled for enamel microstructure analyses. Indeed, only a few incisors were analyzed from these two late Oligocene localities (seven contra 18 for the Eocene CTA localities, with notably only one incisor at CTA-32). Secondly, the numerous octodontoid taxa found at CTA-61 and CTA-32 had incisors that eventually displayed a less advanced enamel microstructure, in having multiserial HSB with the IPM characterizing the transitional subtype 2–3 rather than the subtype 3. The MUSM 2903 incisor from CTA-61 exhibits such a condition. No data are available for incisor enamel microstructure in *Eosallamys* and most adelphomyines (including *Deseadomys*). For Adelphomyinae, enamel microstructure was only studied on incisors of early Miocene
Adelphomys and Stichomys, which display the subtype 3 of multiserial HSB (Martin 1992, 1994a; Supplementary Table S1).

Conclusions

Most of the oldest caviomorph-bearing localities (i.e., Eocene localities of Contamana, Santa Rosa, Shapaja localities, and La Cantera) have primarily yielded isolated teeth documenting plurispecific rodent assemblages. The absence of incisor-molar formal associations does not allow for any incisor accurate enamel microstructure/taxon pairings, thereby limiting drastically our comprehension of the evolution of incisor enamel microstructure in a specific group. Despite this lack, analysis of incisor enamel microstructure in a temporal context provides substantial pieces of information regarding the setting and timing of different multiserial enamel subtypes. From our current knowledge of the South American rodent fossil record, it must be underscored that the oldest localities (late middle Eocene) yield incisors displaying multiserial enamel conditions with IPM arrangements primarily typifying the subtypes 1, 1–2, and 2 of multiserial HSB. In contrast, the most crack-resistant subtype 3 of multiserial HSB is only recorded from the late Eocene/early Oligocene localities onward. Given the primitiveness of the Eocene caviomorph faunas, it may be expected that hystricognath pioneer(s) who colonized South America from Africa sometime during the middle Eocene, most probably had incisors that displayed a multiserial enamel with an IPM arrangement characterizing subtype 1 (or subtype 1 + the subtype 2 and/or the transitional 1–2) of multiserial HSB. Based on incisor enamel microstructure observed in subsequent extinct and extant taxa, subtypes 1, 1–2, and 2 were maintained in most caviomorph superfamilies through time. In contrast, derived subtypes 2–3 and 3 condition were subsequently achieved.
but likely rapidly, as evidenced by their record as early as the late Eocene/early Oligocene (Santa Rosa) and early Oligocene (Shapaja and La Cantera), and they seemingly evolved iteratively, yet only in the octodontoid clade (see also Vucetich and Vieytes 2006; Vucetich et al. 2010). Continuing the analysis of incisor enamel in fossil taxa for which microstructure is undocumented and performing a cladistic assessment of morphological evidence, including a large set of morphological characters (plus those describing incisor enamel microstructure) through a comprehensive taxonomic sampling (with several phiomorphs as branching group (sensu Antoine 2003), and a wide array of caviomorphs including a maximum of Paleogene taxa, several Neogene taxa, and extant ones) would allow for a better understanding of the evolutionary pattern of different subtypes of multiserial enamel within caviomorphs. It would also be useful to point out external (ecological and paleoenvironmental) and internal (genetic and developmental) drivers for the setting of different multiserial enamel subtypes through time. Given these stimulating macroevolutionary issues, the study of enamel microstructure of incisors – and molars – should attract much more attention. When fossils are abundant and available, we then encourage scientists to systematically carry out these kinds of analyses.

Acknowledgments

We especially thank the Canaan Shipibo Native Community in the Contamana region for their help during the field seasons. Many thanks to Sylvain Adnet (ISEM, Montpellier, France), Ali J. Altamirano-Sierra (MUSM, Lima, Peru), Guillaume Billet (MNHN, Paris, France), Maëva J. Orliac (ISEM), Francis Duranthon (Muséum de Toulouse, France), Alba Boada-SAña (Spain), François Pujos (IANIGLA, Mendoza, Argentina), Rafael M. Varas-Malca (MUSM, Lima, Peru), Julia V. Tejada-Lara (Columbia University, USA and MUSM, Lima, Peru), and
whoever helped us in the field and in the lab. We thank Léanie Alloing-Séguier (ISEM) and Sébastien Enault (ISEM) for their advices regarding enamel microstructure protocol and taking images. We warmly thank Chantal Cazevieille (Montpellier RIO Imaging, Institut des Neurosciences de Montpellier, France) and Didier Cot (Institut Européen des Membranes [IEM], Montpellier, France) for granting access to a scanning electron microscope facility. We are much indebted to Léanie Alloing-Séguier and Thomas Martin (Steinmann-Institut, Bereich Paläontologie, Universität Bonn, Germany) for useful discussions on enamel microstructure. This work was supported from the National Geographic Society (grant 9679-15), the Doctoral School SIBAGHE/Gaïa of the Université de Montpellier to MB, from the Institut des Sciences de l’Evolution, and from the Leakey Foundation to LM. This work was further supported by an “Investissements d’Avenir” grant managed by the “Agence Nationale de la Recherche” (CEBA, ANR-10-LABX-0025-01), and by the COOPINTEER CNRS/CONICET and the ECOS-SUD/FONCyT (A14-U01) international collaboration programs, in the frame of the ongoing cooperation agreement between the Museo de Historia Natural de la Universidad Nacional Mayor San Marcos (Lima, Peru) and the Institut des Sciences de l’Evolution of the Université de Montpellier. This is ISEM publication n°2017-311-Sud.

References

Coster P, Benammi M, Lazzari V, Billet G, Martin T, Salem M, Bilal AA, Chaimanee Y,
Schuster M, Valentin X, Brunet M, Jaeger J-J (2010) Gaudeamus lavocati sp. nov. (Rodentia,
Hystricognathi) from the early Oligocene of Zallah, Libya: first African caviomorph?
Naturwissenschaften 97:697–706

Mém Spéc 1:195–209

local fauna. In: Campbell KE (ed) The Palaeogene Mammalian Fauna of Santa Rosa,

George W (1985) Reproductive and chromosomal characters of ctenodactylids as a key to
their evolutionary relationships. In: Luckett WP, Hartenberger J-L (eds) Evolutionary

Mossman HW, Luckett WP (1968) Phylogenetic relationship of the African mole rat (Bathyergus janetta) as indicated by the fetal membranes. Am Zool 8:806

Schreger BNG (1800) Beitrag zur Geschichte der Zähne. Beitr Zerglied 1:1–7

Figure captions:

Fig. 1 Scanning electron micrographs of caviomorph incisors from Paleogene localities of Peruvian Amazonia. **a–b.** lower incisor enamel (MUSM 2803) from CTA-27 with a subtype 1 multiserial HSB; **c–d.** upper incisor enamel (MUSM 3353) from TAR-01 with an intermediate subtype 1–2 multiserial HSB. **a, c.** overview of longitudinal section; **b, d.** detail of PI in longitudinal section. PI, Portio interna; PE, Portio externa; HSB, Hunter-Schreger Bands; P, prism; IPM, interprismatic matrix; D, dentine. Scale bar equals 10μm.
Fig. 2 Scanning electron micrographs of caviomorph incisors from Paleogene localities of Peruvian Amazonia. a–b. upper incisor enamel (MUSM 2840) from CTA-29 with a subtype 2 multiserial HSB; c–d. lower incisor enamel (MUSM 2903) from CTA-61 with an intermediate subtype 2–3 multiserial HSB. a, c. overview of longitudinal section; b, d. detail of PI in longitudinal section. For abbreviations, see caption of the Figure 1. Scale bar equals 10μm.

Fig. 3 Scanning electron micrographs of caviomorph incisors from Paleogene localities of Peruvian Amazonia. a–b. upper incisor enamel (MUSM 3346) from TAR-01; c–d. lower incisor enamel (MUSM 3352) from TAR-01 with a subtype 3 multiserial HSB. a, c. overview of longitudinal section; b, d. detail of PI in longitudinal section. For abbreviations, see caption of the Figure 1. Scale bar equals 10μm.

Table captions:

Table 1 List of taxa found at Contamana (CTA-47, CTA-27, CTA-29, CTA-61, and CTA-32) and Shapaja (TAR-01) localities.

Table 2 Incisor enamel microstructure characters of the studied specimens from CTA-47, CTA-29, CTA-32 and CTA-61.

Table 3 Incisor enamel microstructure characters of the studied specimens from CTA-27.

Table 4 Incisor enamel microstructure characters of the studied specimens from TAR-01.
<table>
<thead>
<tr>
<th>Taxa</th>
<th>Locality</th>
<th>Age</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERETHIZONTOIDEA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shapajamyx labocensis</td>
<td>TAR-01</td>
<td>Early Oligocene</td>
<td>Boivin et al., in press</td>
</tr>
<tr>
<td>Paleosteiromys amazonensis</td>
<td>CTA-32</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>?ERETHIZONTOIDEA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plesiosteirornys newelli</td>
<td>CTA-61</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>?Erethizontoidea indet.</td>
<td>CTA-61</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>OCTODONTOIDEA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cf. Eoespina sp.*</td>
<td>CTA-27</td>
<td>late Middle Eocene</td>
<td>Antoine et al., 2012; Boivin et al., 2017a</td>
</tr>
<tr>
<td>Mayomys confiuens</td>
<td>TAR-01</td>
<td>Early Oligocene</td>
<td>Boivin et al., in press</td>
</tr>
<tr>
<td>Loretomys minutus</td>
<td>CTA-32</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>aff. Eosallamys sp.*</td>
<td>CTA-32</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>aff. Mayomys sp. (Octodonotoidea indet.)</td>
<td>CTA-61</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b; Boivin et al., in press</td>
</tr>
<tr>
<td>Octodontoida indet. 2</td>
<td>CTA-32</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>ECHIMYIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adelphomyinae indet. 1</td>
<td>CTA-61</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>Adelphomyinae indet. 2</td>
<td>CTA-32</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>Deseadomyx cf. arambourgi*</td>
<td>CTA-61</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>CAVIOIDEA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eobranisamys javierpradoi</td>
<td>CTA-27</td>
<td>late Middle Eocene</td>
<td>Antoine et al., 2012; Boivin et al., 2017a</td>
</tr>
<tr>
<td>CHINCHILLOIDEA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinchiloida indet.</td>
<td>TAR-01</td>
<td>Early Oligocene</td>
<td>Boivin et al., in press</td>
</tr>
<tr>
<td>DINOMYIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scleromys praecursor</td>
<td>CTA-61</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>?CHINCHILLOIDEA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eoincamys cf. pascuali*</td>
<td>TAR-01</td>
<td>Early Oligocene</td>
<td>Boivin et al., in press</td>
</tr>
<tr>
<td>Ucayalimys crassidens</td>
<td>CTA-32</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>CAVIOIDEA or CHINCHILLOIDEA</td>
<td>CTA-29</td>
<td>late Middle Eocene</td>
<td>Boivin et al., 2017a</td>
</tr>
<tr>
<td>Cavioidea or Chinchiloida indet.</td>
<td>CTA-29</td>
<td>late Middle Eocene</td>
<td>Boivin et al., 2017a</td>
</tr>
<tr>
<td>SUPERFAMILY INDETERMINATE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cachiyacuy contamanensis</td>
<td>CTA-27</td>
<td>late Middle Eocene</td>
<td>Antoine et al., 2012; Boivin et al., 2017a</td>
</tr>
<tr>
<td>Cachiyacuy cf. contamanensis* 2</td>
<td>CTA-29</td>
<td>late Middle Eocene</td>
<td>Boivin et al., 2017a</td>
</tr>
<tr>
<td>Cachiyacuy kummeli</td>
<td>CTA-27</td>
<td>late Middle Eocene</td>
<td>Antoine et al., 2012; Boivin et al., 2017a</td>
</tr>
<tr>
<td>?Cachiyacuy kummeli</td>
<td>CTA-47</td>
<td>late Middle Eocene</td>
<td>Boivin et al., 2017a</td>
</tr>
<tr>
<td>Canaanymys maquienia</td>
<td>CTA-27</td>
<td>late Middle Eocene</td>
<td>Antoine et al., 2012; Boivin et al., 2017a</td>
</tr>
<tr>
<td>?Canaanymys sp.*</td>
<td>CTA-47</td>
<td>late Middle Eocene</td>
<td>Boivin et al., 2017a</td>
</tr>
<tr>
<td>Pozomys ucayaliensis</td>
<td>CTA-29</td>
<td>late Middle Eocene</td>
<td>Boivin et al., 2017a</td>
</tr>
<tr>
<td>Tarapotomys mayoensis*</td>
<td>TAR-01</td>
<td>Early Oligocene</td>
<td>Boivin et al., in press</td>
</tr>
<tr>
<td>Chambiramyx sylvaticus*</td>
<td>CTA-61</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>Chambiramyx shipiborum*</td>
<td>CTA-32</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>Caviomorpha indet. 1</td>
<td>CTA-47</td>
<td>late Middle Eocene</td>
<td>Boivin et al., 2017a</td>
</tr>
<tr>
<td>Caviomorpha indet. 5</td>
<td>CTA-29</td>
<td>late Middle Eocene</td>
<td>Boivin et al., 2017a</td>
</tr>
<tr>
<td>Caviomorpha indet. 6</td>
<td>CTA-29</td>
<td>late Middle Eocene</td>
<td>Boivin et al., 2017a</td>
</tr>
<tr>
<td>Caviomorpha indet. 1</td>
<td>CTA-61</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>Caviomorpha indet. 2</td>
<td>CTA-61</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>Caviomorpha indet. 3</td>
<td>CTA-61</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>Caviomorpha indet. 4</td>
<td>CTA-61</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>Caviomorpha indet. 5</td>
<td>CTA-32</td>
<td>Late Oligocene</td>
<td>Boivin et al., 2017b</td>
</tr>
<tr>
<td>Locality</td>
<td>Specimen number</td>
<td>Incisor</td>
<td>Incisor width (mm)</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Mean</td>
<td>1.0</td>
<td>62</td>
<td>79</td>
</tr>
<tr>
<td>Mean</td>
<td>1.2</td>
<td>151</td>
<td>79</td>
</tr>
<tr>
<td>Mean</td>
<td>1.1</td>
<td>160</td>
<td>21</td>
</tr>
<tr>
<td>Mean</td>
<td>1.0</td>
<td>88</td>
<td>27</td>
</tr>
<tr>
<td>Mean</td>
<td>2.7</td>
<td>173</td>
<td>18</td>
</tr>
<tr>
<td>Mean</td>
<td>1.6</td>
<td>150</td>
<td>18</td>
</tr>
<tr>
<td>Mean</td>
<td>1.6</td>
<td>162</td>
<td>20</td>
</tr>
<tr>
<td>Mean</td>
<td>1.6</td>
<td>208</td>
<td>16</td>
</tr>
<tr>
<td>Mean</td>
<td>1.6</td>
<td>160</td>
<td>15</td>
</tr>
<tr>
<td>Mean</td>
<td>1.6</td>
<td>149</td>
<td>15</td>
</tr>
<tr>
<td>Mean</td>
<td>1.6</td>
<td>152</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 2

Click here to download Table Tab2.xlsx
<table>
<thead>
<tr>
<th>Locality</th>
<th>Specimen number</th>
<th>In situ</th>
<th>Enamel thickness (µm)</th>
<th>Percentage of PC</th>
<th>Percentage of PE</th>
<th>Inclination of PE (°)</th>
<th>Inclination of PC (°)</th>
<th>Presence of HSB</th>
<th>Presence of transitional zone</th>
<th>Division HSB</th>
<th>Anatomone</th>
<th>Angle crystallites of IPM and prism in PE</th>
<th>IPM configuration in PE</th>
<th>Multiserial subtype (sbt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTA-27</td>
<td>MUSM 2803</td>
<td>upper</td>
<td>1.4</td>
<td>176</td>
<td>27</td>
<td>66</td>
<td>59</td>
<td>0</td>
<td>yes</td>
<td>2-4</td>
<td>yes</td>
<td>flat</td>
<td>parallel to acute (0-20°)</td>
<td>sheet-like / sheet-like</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2804</td>
<td>upper</td>
<td>1.4</td>
<td>169</td>
<td>22</td>
<td>70</td>
<td>58</td>
<td>0</td>
<td>yes</td>
<td>3-4</td>
<td>yes</td>
<td>flattened</td>
<td>rare</td>
<td>Multiserial subtype 1</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2805</td>
<td>upper</td>
<td>1.3</td>
<td>182</td>
<td>26</td>
<td>72</td>
<td>66</td>
<td>0</td>
<td>yes</td>
<td>4</td>
<td>yes</td>
<td>flattened</td>
<td>acute (18-79°)</td>
<td>sheet-like / sheet-like</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2806</td>
<td>upper</td>
<td>1.3</td>
<td>155</td>
<td>21</td>
<td>61</td>
<td>53</td>
<td>0</td>
<td>yes</td>
<td>3-4</td>
<td>yes</td>
<td>flattened</td>
<td>acute (23-46°)</td>
<td>sheet-like / sheet-like</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2807</td>
<td>lower</td>
<td>1.2</td>
<td>246</td>
<td>18</td>
<td>78</td>
<td>56</td>
<td>0</td>
<td>yes</td>
<td>2-4</td>
<td>yes</td>
<td>flattened</td>
<td>rare</td>
<td>Multiserial subtype 2</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2808</td>
<td>upper</td>
<td>1.1</td>
<td>182</td>
<td>17</td>
<td>80</td>
<td>58</td>
<td>0</td>
<td>yes</td>
<td>3-4</td>
<td>yes</td>
<td>flattened</td>
<td>acute (17-60°)</td>
<td>sheet-like / sheet-like</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2809</td>
<td>lower</td>
<td>1.1</td>
<td>174</td>
<td>17</td>
<td>77</td>
<td>64</td>
<td>0</td>
<td>yes</td>
<td>4</td>
<td>yes</td>
<td>flat</td>
<td>acute (50-79°)</td>
<td>sheet-like / sheet-like</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2810</td>
<td>lower</td>
<td>1.0</td>
<td>181</td>
<td>17</td>
<td>80</td>
<td>55</td>
<td>0</td>
<td>yes</td>
<td>4</td>
<td>yes</td>
<td>flat</td>
<td>acute (34-47°)</td>
<td>sheet-like / sheet-like</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2811</td>
<td>upper</td>
<td>1.0</td>
<td>126</td>
<td>23</td>
<td>76</td>
<td>65</td>
<td>0</td>
<td>yes</td>
<td>4</td>
<td>yes</td>
<td>flat</td>
<td>acute (17-46°)</td>
<td>sheet-like / sheet-like</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2812</td>
<td>lower</td>
<td>0.9</td>
<td>148</td>
<td>20</td>
<td>78</td>
<td>57</td>
<td>0</td>
<td>yes</td>
<td>3-5</td>
<td>yes</td>
<td>flat</td>
<td>acute (20-65°)</td>
<td>Multiserial subtype 2</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2813</td>
<td>upper</td>
<td>0.8</td>
<td>121</td>
<td>23</td>
<td>75</td>
<td>71</td>
<td>0</td>
<td>yes</td>
<td>2-3</td>
<td>yes</td>
<td>flat</td>
<td>very frequent</td>
<td>Multiserial subtype 2</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2814</td>
<td>lower</td>
<td>0.7</td>
<td>119</td>
<td>20</td>
<td>79</td>
<td>73</td>
<td>0</td>
<td>yes</td>
<td>2-4</td>
<td>yes</td>
<td>flat</td>
<td>acute (26-67°)</td>
<td>Multiserial subtype 2</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2815</td>
<td>lower</td>
<td>0.6</td>
<td>115</td>
<td>20</td>
<td>77</td>
<td>83</td>
<td>0</td>
<td>yes</td>
<td>3-4</td>
<td>yes</td>
<td>flat</td>
<td>acute (25-68°)</td>
<td>Multiserial subtype 2</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2816</td>
<td>lower</td>
<td>0.6</td>
<td>127</td>
<td>19</td>
<td>79</td>
<td>79</td>
<td>0</td>
<td>yes</td>
<td>4</td>
<td>yes</td>
<td>flat</td>
<td>acute (23-73°)</td>
<td>Multiserial subtype 2</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2817</td>
<td>lower</td>
<td>0.6</td>
<td>93</td>
<td>22</td>
<td>77</td>
<td>85</td>
<td>0</td>
<td>yes</td>
<td>3-4</td>
<td>yes</td>
<td>flat</td>
<td>very frequent</td>
<td>Multiserial subtype 2</td>
</tr>
<tr>
<td>CTA-27</td>
<td>MUSM 2818</td>
<td>lower</td>
<td>0.6</td>
<td>91</td>
<td>18</td>
<td>75</td>
<td>80</td>
<td>0</td>
<td>yes</td>
<td>3-4</td>
<td>yes</td>
<td>flat</td>
<td>very frequent</td>
<td>Multiserial subtype 2</td>
</tr>
</tbody>
</table>

Table 3: Click here to download Table Tab3.xlsx
<table>
<thead>
<tr>
<th>Locality</th>
<th>Specimen number</th>
<th>Incisor</th>
<th>Incisor width (mm)</th>
<th>Enamel thickness (µm)</th>
<th>Percentage of PG</th>
<th>Percentage of HSB</th>
<th>Percentage of PE</th>
<th>Percentage of PI</th>
<th>Inclination of prisms in PG (°)</th>
<th>Inclination of HSB (°)</th>
<th>Prisms per HSB</th>
<th>Prisms of transitional zone</th>
<th>Division HSB</th>
<th>Prisms cross sections</th>
<th>Anastronism of PM</th>
<th>Prisms of transitional zone</th>
<th>Right-rotational of PM and size in PM</th>
<th>PM configuration in PM</th>
<th>Multiserial subtype (sbt)</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3362</td>
<td>lower</td>
<td>1.6</td>
<td>152</td>
<td>52</td>
<td>76</td>
<td>62</td>
<td>47</td>
<td>10–5</td>
<td>well-marked</td>
<td>no</td>
<td>rounded</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 2</td>
<td>408</td>
<td>rare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3363</td>
<td>lower</td>
<td>1.8</td>
<td>201</td>
<td>16</td>
<td>136</td>
<td>57</td>
<td>29</td>
<td>4–6</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Acute to rectangular (70°–84°)</td>
<td>sheet-like / interrow sheet-like</td>
<td>Multiserial sbt (2)–3</td>
<td>482</td>
<td>interrow sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3364</td>
<td>upper</td>
<td>1.5</td>
<td>171</td>
<td>16</td>
<td>80</td>
<td>62</td>
<td>29</td>
<td>3–4</td>
<td>well-marked</td>
<td>yes</td>
<td>rounded / flattened</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 2–3</td>
<td>489</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3365</td>
<td>upper</td>
<td>1.3</td>
<td>176</td>
<td>16</td>
<td>84</td>
<td>68</td>
<td>17</td>
<td>3–4</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 1</td>
<td>408</td>
<td>rare</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3366</td>
<td>lower</td>
<td>1.2</td>
<td>131</td>
<td>14</td>
<td>81</td>
<td>67</td>
<td>34</td>
<td>2–3</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Rectangular (70°–84°)</td>
<td>interrow sheet-like</td>
<td>Multiserial sbt 2</td>
<td>408</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3367</td>
<td>upper</td>
<td>1.2</td>
<td>131</td>
<td>14</td>
<td>81</td>
<td>67</td>
<td>34</td>
<td>2–3</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 2–3</td>
<td>408</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3368</td>
<td>lower</td>
<td>1.0</td>
<td>224</td>
<td>12</td>
<td>77</td>
<td>61</td>
<td>34</td>
<td>2–3</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Rectangular (70°–84°)</td>
<td>interrow sheet-like</td>
<td>Multiserial sbt 2</td>
<td>408</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3369</td>
<td>upper</td>
<td>1.0</td>
<td>224</td>
<td>12</td>
<td>79</td>
<td>60</td>
<td>34</td>
<td>2–3</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 2–3</td>
<td>408</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3370</td>
<td>lower</td>
<td>1.0</td>
<td>232</td>
<td>12</td>
<td>87</td>
<td>69</td>
<td>34</td>
<td>2–3</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 2–3</td>
<td>408</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3371</td>
<td>lower</td>
<td>1.0</td>
<td>232</td>
<td>12</td>
<td>87</td>
<td>69</td>
<td>34</td>
<td>2–3</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 2–3</td>
<td>408</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3372</td>
<td>upper</td>
<td>1.0</td>
<td>232</td>
<td>12</td>
<td>87</td>
<td>69</td>
<td>34</td>
<td>2–3</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 2–3</td>
<td>408</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3373</td>
<td>lower</td>
<td>1.0</td>
<td>232</td>
<td>12</td>
<td>87</td>
<td>69</td>
<td>34</td>
<td>2–3</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 2–3</td>
<td>408</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3374</td>
<td>upper</td>
<td>1.0</td>
<td>232</td>
<td>12</td>
<td>87</td>
<td>69</td>
<td>34</td>
<td>2–3</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 2–3</td>
<td>408</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3375</td>
<td>lower</td>
<td>1.0</td>
<td>111</td>
<td>17</td>
<td>83</td>
<td>62</td>
<td>34</td>
<td>2–3</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 2–3</td>
<td>408</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3376</td>
<td>upper</td>
<td>1.0</td>
<td>111</td>
<td>17</td>
<td>83</td>
<td>62</td>
<td>34</td>
<td>2–3</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 2–3</td>
<td>408</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3377</td>
<td>lower</td>
<td>1.0</td>
<td>106</td>
<td>15</td>
<td>71</td>
<td>58</td>
<td>26</td>
<td>3–4</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 2–3</td>
<td>408</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mio</td>
<td>TAR-01 MUSM 3378</td>
<td>upper</td>
<td>1.0</td>
<td>106</td>
<td>15</td>
<td>71</td>
<td>58</td>
<td>26</td>
<td>3–4</td>
<td>well-marked</td>
<td>yes</td>
<td>Eutherian</td>
<td>rare</td>
<td>Acute (29°–69°)</td>
<td>sheet-like</td>
<td>Multiserial sbt 2–3</td>
<td>408</td>
<td>sheet-like</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Click here to download Table Tab4.xlsx