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Model Analysis
Joint Convergence Stability of Choosiness

We first determined the equilibrium choosiness, defined as the choosiness values where the selection gradients vanish in
each sex. Since the population is of constant size, the lifetime fecundity is an appropriate measure of fitness (e.g., Caswell
2001). Furthermore, the selection gradients are independent of mutant allele frequency and can be deduced from the
fecundities of each sex (see Rousset 2004, p. 80) as the joint solution of
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where Fx,m is the expected lifetime fecundity of a mutant representative of a mutant lineage in sex x, hereafter called the
mutant of sex x as defined in equation (10), and Fy,m is the expected lifetime fecundity of a mutant representative of a
mutant lineage in sex y, hereafter called the mutant of sex y, which can be obtained from exchanging x and y in Fx,m.
The joint solution (f*

x ,f*
y) of this system, if it exists, corresponds to a joint equilibrium for choosiness.

From equations (12) and (14), we deduced that the fecundity is computed differently according to whether mutant
choosiness is lower or higher than resident choosiness. However, we show in box 1 (eqq. [A2]–[A6]) that left and right
derivatives cancel at the same point. This implies that we can always use a single partial derivative in the following
computations. We chose the right one, which we denote ∂1Fx,m=∂fx,m and assessed the existence of the equilibrium in each
sex numerically.

Box A1

Demonstration of Differentiability of Fx,m

The fecundity is computed differently according to whether focal choosiness is lower or higher than resident
choosiness (eqq. [12] and [14]). We thus have to ensure that if an equilibrium exists, fecundity is derivable at this
equilibrium. To that aim, we distinguished the left and right derivatives at fx,m p fx,p, respectively denoted by ∂2
and ∂1. For either derivative, at this point, we have ∂  logFx,m=∂fx,m p r0x,m=rx,m 1 b0

x,m=bx,m p 0 (from eq. [18]). We
then found that the right derivative ∂1Fx,m=∂fx,m vanishes when
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and that the left derivative ∂2Fx,m=∂fx,m vanishes when
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Thus, the condition for both derivatives to vanish simultaneously is
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We now show that this condition is always satisfied. The right derivative is that of bx,m as given by the first equation
in expression (15). Only the last fraction therein depends on fx,m. It can be written as u1=v1, where v1 p 12 fx,m p
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Ð 1
qy(fx,m) f y(q) dq. The standard expression for the derivative of a ratio, (u=v)0 p (vu0 2 uv0)=v2, reduces here to
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because u1=v1jfx,mpfx,p
p �qy .

Likewise, the left derivative is that of bx,m as given by the second equation in expression (15). Again, only the last
fraction therein depends on fx,m. It can be written as u2=v2, where u2=v2jfx,mpfx,p

p �qy so that in fx,m p fx,p,
(u2=v2)

0 p (u0
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1, both being the derivative of

Ð 1
qy(fx,m)qf y(q) dq. Likewise, v

0
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being the derivative of 2fx,m. Moreover, in fx,m p fx,p, v2 p ax,mv1. Hence,
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We conclude that the left and right derivatives of Fx,m vanish at the same value of fx,m p fx,p. The same proof holds
for the other sex y. Fx,m and Fy,m are thus derivable at equilibrium—if an equilibrium exists.

For a given parameter setting, we first computed the value of focal-sex mutant choosiness fx,m that satisfies the
following condition for any fixed value of other-sex choosiness:
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This gave us the value of focal-sex choosiness at the singular point for each value of other-sex choosiness, which
graphically corresponds to a curve (fig. A1). Then we computed the same curve for other-sex choosiness. If the two curves
cross, then equation (A1) is satisfied and there is an equilibrium. We repeated this as well as other numerical analyses for
3:2# 106 different parameter sets representing the whole range of parameters (see “Numerical Analysis” in the main
text). We also checked that there is always one single equilibrium for each parameter set considered.

Second, we tested, also numerically, whether the equilibrium obtained is convergence stable (see Eshel 1996).
Convergence stability was examined by checking that the gradients for each choosiness are positive below and negative
above the equilibrium value in each sex.

Third, we evaluated the joint convergence stability of the joint equilibrium for choosiness. To accomplish this step, we
have to assume that the mutational effects on each choosiness are independent. Under this assumption, the joint
convergence stability is determined by the Jacobian matrix of the selection gradients (see Leimar 2009).

Finally, in the case of a null choosiness in sex y at equilibrium, it is possible to determine the evolutionary stability by
checking that the following equation is true at equilibrium (e.g., see Metz et al. 1996):
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The joint evolutionary stability is determined by the Hessian matrix of the fecundities of both sexes (see Leimar 2009).
If the equilibria are convergence and evolutionarily stable, the only allele favored by selection in sex x ( y) is the one
coding for the choosiness f*

x (f*
y). We numerically checked the joint evolutionary stability and the joint convergence stable

equilibria.

Effect of Ecological Variables on the Joint Equilibrium for Choosiness

The expected fecundity of the mutant of sex x (i.e., Fx,m) is expressed as the product of the mating rate rx,m, the expected
benefits per mating bx,m, and the expected lifetime (see eq. [10]). Because lifetime is not related to choosiness, at
equilibrium we have
2
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where R*
x represents the relative change in mating rate in sex x at equilibrium and B*

x the relative change in expected
benefits per mating at equilibrium. We obtain from the previous equation

R*
x p 2B*

x : ðA10Þ
To understand how a change in a given biological or ecological variable influences the joint equilibrium for choosiness,
one has therefore to analyze how a change in an individual’s choosiness fx,m influences its mating rate and/or the
expected benefits per mating near the joint equilibrium choosiness.

Effect of Variables Influencing the Mating Rate of the Mutant of Sex x

Let us consider zr, a given biological or ecological variable affecting the mating rate rx,m of the mutant of sex x without
affecting its expected benefits per mating bx,m. To study the effect of a change in zr on the evolution of choosiness, we
relied on a graphical method (Maynard Smith 1982, p. 46). We first need to represent the trade-off between the decrease
in mating rate and the increase in expected benefits per mating (i.e., the fundamental trade-off of mate choice; see the
introduction in the main text). We do so by plotting the curve T (fx,m,fx,p,fy,p) ≡ [bx,m(fx,m,fx,p,fy,p), rx,m(fx,m,fx,p,fy,p)] for
all possible levels of mutant choosiness fx,m and for given resident values in each sex (fig. A2). Because of the trade-off
between rx,m and bx,m, the slope of T is always negative. Moreover, we have numerically found that choosiness in a given
sex always admits a single convergence stable strategy regardless of choosiness in the other sex (see result 1 in the main
text), which implies that T is concave (Maynard Smith 1982). The slope of T is thus increasingly negative when fx,m

increases.
Then we plotted T when the variable zr takes value zr1 and when it takes value zr2 (with zr1 ( zr2). Let us denote these

curves T1 and T2, respectively. Precisely, in the curve T 1 ≡ T (fx,m,f*
x(zr1),f*

y(zr1)), resident choosiness is fixed to the
convergence stable strategy in both sexes (fx,p p f*

x(zr1) and fy,p p f*
y(zr1)). In the curve T 2 ≡ T (fx,m,f*

x(zr2),f*
y(zr1)),

the focal-sex resident choosiness is fixed to its new convergence stable strategy (fx,p p f*
x(zr2)) after a change in zr

from zr1 to zr2, but choosiness remains unchanged in the other sex (fy,p p f*
y(zr1)). Because the curves are represented on a

log-log scale, the equilibrium for focal choosiness corresponds to the point where the slope of the curves equals21, that is,
when R*

x p 2B*
x (eq. [A10]).

Note that zr affects rx,m but not bx,m and that bx,m is not a function of fx,p (and thus of f*
x) when fx,m is higher than or equal

to fx,p (which is the case here because we consider the right derivatives in eq. [A9]). Thus, for a small change of z from
zr1 to zr2, each point of the T1 curve moves (for fixed fx,m and fy,p) along the rx,m axis but not along the bx,m axis. Hence,
the change in the slope of T with respect to fx,m is entirely determined by the change in slope of ln(rx,m), which can be
written
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Here R*
x is the notation introduced in equation (A9), and all derivatives of ln rx,m are evaluated in zr p zr1, fx,m p f*

x(zr1),
and fx,p p f*

x(zr1). The total variation encompasses two effects on the slope of the trade-off curve. The first effect
corresponds to the partial variation in the slope of the trade-off curve due to a change in zr while resident choosiness remains
fixed at the equilibrium value for zr1 (f*

x(zr1) in sex x and f*
y(zr1) in sex y); therefore, it represents only the change in

the functional relationship of T to each choosiness. The second effect corresponds to the partial variation in the slope of the
trade-off curve due to a change in focal-sex resident choosiness around fx,p p f*

x while other-sex resident choosiness
remains fixed.

If the slope of T2 at fx,m p f*
x(zr1) is higher than 21 on the log-log scale, as in figure A2, then the value of fx,m where

the slope of T2 equals 21 is higher than f*
x(zr1), that is, f*

x(zr2) 1 f*
x(zr1). Conversely, if the slope of T2 at fx,m p f*

x(zr1)
were lower than 21, f*

x(zr2) would be lower than f*
x(zr1). This means that we can deduce the sign of the effect of zr on
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the value of choosiness at equilibrium in sex x by studying its effect on the slope of the trade-off curve on the log-log scale.
Hence,
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If for some real numbers A (where A ( 0), B, and C, sgn(A) p sgn(B1 AC) and C ! 0, then sgn(B) p sgn(A). Hence,
the signs of A p ∂f*
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From the fact that the mixed derivative of the product (12 fx,m)ay,p vanishes, the mixed derivative of ln rx,m depends only
on the mixed derivative of the denominator in the first expression for rx,m in equation (12), which reduces to
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When fx,p increases, the availability ay,p of other-sex individuals that are of sufficient quality to mate decreases. As a
consequence, the partial derivative in the right-hand side of the previous equation is positive, which proves equation
(A13), and then
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This shows that to study the variation in choosiness at equilibrium in a given sex following a change in the mating rate
of this sex, we can simply study the variation in the relative change in the mating rate computed in this sex while
holding the other-sex choosiness fixed.

Effect of a Variable Influencing the Expected Benefits per Mating of the Mutant

Let us now consider the biological or ecological variable zb to affect the expected benefits per mating bx,m of the mutant of
sex x without affecting its mating rate rx,m. By considering graphs of T 0(fx,p,fy,p) ≡ (rx,m(fx,m,fx,p,fy,p), bx,m(fx,m,fx,p,fy,p)),
where the axes have been swapped relative to T (fig. A3), we can repeat the argument of the previous section and
conclude that
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Variation in Choosiness at Equilibrium and the Sensitivity of RST

The mating rate rx,m of the mutant in sex x equals 1/tx,m, where tx,m is the mean time of one reproductive event performed
by a mutant. The variable tx,m equals the expected time spent searching for a mate (denoted tx,m) plus the expected time
spent in latency after a mating. The partial derivative of the logarithm of rx,m with respect to fx,m at equilibrium (i.e., R*

x in
eq. [A9]) can therefore be rewritten as
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Because we assume that the time spent in one latency period is not related to choosiness, the above equation becomes
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The mean time spent searching for a mate tx,m can be written as the inverse of the probability that a mutant mates given
that it is available for mating, which equals the inverse of sxg(12 fx,m)ay,p (from eq. [1]). Then equation (A18) takes
the form

R*
x p 2

1

12 fx,m

tx,m

tx,m
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where the ratio tx,m=tx,m corresponds to the relative searching time (RST, following Etienne et al. 2014; i.e., the proportion
of one reproductive event [or lifetime] that is devoted to searching for mates). The partial derivative of the previous
equation with respect to zr (a given biological or ecological variable affecting the mating rate of the mutant of sex x but
not its mating benefit) is
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From equation (A15) and fx,m ≤ 1, this yields
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We have seen before that the term ∂f*
x=∂zr, the partial variation in choosiness, represents the variation in choosiness

in sex x caused by a change in zr while choosiness remains fixed in the other sex. Likewise, the term ∂RST*
x=∂zr (which

is more compactly denoted ∂RST) corresponds to the sensitivity of RST of sex x with respect to zr, that is, the variation
in the RST caused by the change in zr while choosiness remains fixed in both sexes.
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Figure A1: Computation of the values of choosiness at equilibrium. The red (blue) curve gives the value of focal-sex (other-sex)
choosiness at the singular point for all possible values of fixed other-sex (focal-sex) choosiness. The point where both curves cross is
the equilibrium, at which choosiness equals f*

x in the focal sex and f*
y in the other sex. The parameter setting used to draw this plot is g p

sx p sy p ly p 0:99, lx p 0:999, and ax p bx p ay p by p 1.
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Expected benefits per mating  (b x ,m)
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Figure A2: Graphical representation of the effect of z on the fundamental trade-off between direct benefits per mating and lower mating
rate. The mating rate of the mutant of sex x (rx,m, left axis) is plotted against its expected benefits per mating (bx,m, lower axis) for all
possible values of its choosiness fx,m (upper axis). The curve T1 corresponds to the case zr p zr1, fx,p p f*

x(zr1), and fy,p p f*
y(zr1),

whereas the curve T2 corresponds to the case zr p zr2, fx,p p f*
x(zr2), and fy,p p f*

y(zr1). The representation is logarithmic; thus, the
equilibrium corresponds to the point on each curve (indicated in blue) where its slope equals 21 (indicated by a red line that is parallel
to the dotted gray lines), that is, when R*

x p 2B*
x (see eq. [A10]). Here lx1 p 0:9 and lx2 p 0:99. Other parameters are fixed between the

curves: g p 0:5, sx p sy p 0:99, ly p 0, and ax p bx p ay p by p 1. As ly p 0, ay,p p 1 and thus bx,m is not a function of fx,p

anymore (see eq. [15]), which allows us to represent the variation in fx,m on the same axis for the two curves T1 and T2. Considering
ly p 0 thus makes the geometrical argument described in the text easier to represent, but this argument remains true regardless of the
values of the parameters.
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Expected mating rate  (rx ,m)
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Figure A3: Graphical representation of the effect of zb on the fundamental trade-off between direct mating benefits and lower mating
rate. See the legend of figure A2 for details. Here ay1 p 1 and ay2 p 10. Other parameters are fixed between the curves: g p 0:5, sx p
sy p lx p 0:99, ly p 0, and ax p bx p by p 1.
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