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1 Title:
2 Predicting population viability of the narrow endemic Mediterranean plant Centaurea corymbosa 

3 under climate change.

4

5 Abstract

6 Climate change is a growing threat for global biodiversity, in particular for narrow endemic 

7 species. The Mediterranean region, which harbors an exceptional biodiversity, has been identified 

8 as one of the most sensitive regions to climate change. Based on a 22-year monitoring period, we 

9 analyzed the dynamic and viability of the six extant populations of a narrow endemic plant species 

10 of the Mediterranean area, Centaurea corymbosa, to predict their fate under two climatic scenarios. 

11 We constructed matrix projection models to calculate current asymptotic growth rates and to 

12 perform stochastic projections including both demographic and environmental stochasticity. Neither 

13 asymptotic growth rates nor their temporal variance were linked to population size and age at 

14 flowering. Randomization tests showed that asymptotic growth rates were significantly different 

15 among years but not among populations. An increase in temperature and a decrease in the number 

16 of wet days had a negative impact on the whole life-cycle, particularly in the summer period, and 

17 thus reduced asymptotic growth rates. Stochastic projections showed that an increased frequency of 

18 extreme climatic events increased population extinction risk and decreased mean time to extinction. 

19 The warm scenario had a more dramatic impact on population viability than the dry scenario. 

20 Management recommendations are proposed to increase population viability of endangered plant 

21 species such as C. corymbosa that face climate change.

22 Keywords:

23 Centaurea corymbosa; Climate change; Conservation; Extinction risk; Long-term survey; Matrix 

24 projection models; Stochastic projections.



2

25 1. Introduction

26 Ongoing climate change is expected to result in increase in drought and warm periods in 

27 several regions due to both an increasing frequency of extreme climatic events and long-term 

28 gradual changes (IPCC, 2007). Compared to some other taxonomic groups, plants are more 

29 vulnerable to climate change since they have relatively low migration capacity (Malcolm et al., 

30 2006; Thomas et al., 2004). Gradual climate change and extreme events have already caused range 

31 shifts for some plant species (Chen et al., 2011), including range contraction with long-term 

32 population declines and extinctions (Lennartsson and Oostermeijer, 2001; Doak and Morris, 2010; 

33 Selwood et al., 2015, Wiens, 2016), or range expansion (Meer et al., 2016; Williams et al., 2015). 

34 This change is expected to become an even more important driver of global biodiversity loss over 

35 the next century (Heller and Zavaleta, 2009). Thus, population dynamics of many plant species are 

36 expected to be significantly affected by such changes (Breda et al., 2006; Meer et al., 2016; Nicolè 

37 et al., 2011; Ulrey et al. 2016). For conservation purposes, identifying climatic factors that impact 

38 population dynamics and predicting the consequences of climate change on species persistence have 

39 therefore become an important prerequisite to develop effective conservation strategies aimed at 

40 limiting population decline and extinction risk (Cotto et al., 2017; Malcolm et al., 2006; Thomas et 

41 al., 2004).

42 Climate change can either positively or negatively affect population dynamics (Lawson et 

43 al., 2015; Marrero-Gómez et al., 2007). For instance, climate change proved beneficial to 

44 populations of the widespread orchid species (Orchis purpurea) and is predicted to induce range 

45 expansion in the near future (Meer et al., 2016; Williams et al., 2015). In contrast, several studies 

46 have documented negative effects of summer temperature on growth rates for other plant species 

47 (Aragón-Gastélum et al., 2017; Riba et al., 2002; Shryock et al., 2014). In some cases, a given 

48 climatic variable has been shown to have diverging effects on separate vital rates within a species 

49 life-history (Csergő et al., 2017; Jolls et al., 2015; Nicolè et al., 2011; Peñuelas et al., 2004; 

50 Treurnicht et al., 2016). For example, a warm summer increased the flowering probability of 

51 Dracocephalum austriacum, whereas it decreased plant survival, leading to reduced effects of 

52 climate on population growth rates (Nicolè et al., 2011). Such opposite effects on population 

53 dynamics and demographic processes make it difficult to predict the net consequences of climate 

54 change on population viability (Meer et al., 2016; Nicolè et al., 2011).
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55 The Mediterranean region has been identified as one of the most sensitive regions to 

56 climate change (Ducrocq, 2016). Climate model projections indicate that warming and drying will 

57 likely continue (AllEnvi, 2016). At the end of the century (2080-2099 period), annual mean 

58 temperature is predicted to increase (+3.5°C) with more extreme dry event frequency (+46%) in this 

59 region (Christensen et al., 2007). Moreover, in most areas of the Mediterranean region, precipitation 

60 is predicted to decrease (-12%), particularly in summer (-24%, Christensen et al., 2007). The 

61 Mediterranean region harbors an exceptional biodiversity, including a large number of rare and 

62 endemic plant species. Among them, 36% are narrow endemics, i.e., they grow only in a single area 

63 or have a narrow geographic range (Thompson et al., 2005). Most of these species occur in rocky 

64 habitats, on steep slopes and in open vegetation with low species richness (Lavergne et al., 2004; 

65 Thompson et al., 2005). Such habitats are characterized by their stability both in relation to 

66 vegetation succession and human disturbance (Lavergne et al., 2005). Narrow endemic species are 

67 expected to be particularly sensitive to environmental shifts, as several of these species are 

68 extremely specialized and have evolved low dispersal ability (Isik, 2011; Lavergne et al., 2004, 

69 2005; Thuiller et al., 2005).

70 Projection models that incorporate temporal environmental stochasticity are a powerful tool 

71 for predicting long-term population dynamics under climate change (Andrello et al., 2012; Crone et 

72 al., 2011, 2013; Garcı́a et al., 2002). An increase in variability in vital rates due to climatic 

73 variations will usually decrease the long-term population growth (Morris et al., 2008). Thus, 

74 temporal variations may amplify population fluctuations and thus increase extinction risk, an effect 

75 being more pronounced for small populations (Isik et al., 2011; Lande et al., 2003; Morris and Doak, 

76 2002). Species life-histories can however buffer the effects of climate variation. For instance, long 

77 duration of the life-cycle has been shown to decrease the impact of environmental stochasticity, 

78 making long-lived species facing climate change less prone to extinction (Morris et al., 2008). 

79 Demographic stochasticity can also be an important driver of population dynamics, whenever 

80 populations are of a small size (Lande et al., 2003). Such processes refer to chance events of 

81 individual survival and reproduction causing random variations in population growth rates (Caswell, 

82 2001; Lande et al., 2003). These variations are expected to be more pronounced in small 

83 populations and thus lead to random fluctuations in population size that increase extinction risks 

84 (Lande et al., 2003; Zeigler, 2013). Including both environmental and demographic stochasticity in 

85 population viability analyses is thus crucial to forecast the fate of populations under climate change 

86 (Crone et al., 2011, 2013; Kaye and Pyke, 2003; Lande et al., 2003).
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87 Demographic studies investigating the long-term effect of climate change on narrow 

88 endemic Mediterranean plants remain rare. Such studies have mostly relied on short-term surveys, 

89 thus exploring limited year-to-year climatic variations (Crone et al., 2011) and consider only a 

90 subset of extant populations (e.g. Centaurea hyssopifolia; Matesanz et al., 2009, Brassica insularis; 

91 Noel et al., 2010, Ramonda myconi; Riba et al., 2002), making it difficult to predict species 

92 responses to climate change (Crone et al., 2011; Ehrlén et al., 2016). Long-term demographic 

93 surveys are needed to understand how past climatic variations have affected population dynamics, 

94 and to predict population viability under climate change (Andrello et al., 2012; Franklin et al., 2017; 

95 Hunter et al., 2010; Menges, 2000). Typically, at least 15–20 years of observations are necessary to 

96 predict population growth rate or extinction risk adequately (Zeigler, 2013). This is particularly true 

97 for perennial species, which may have a stage in their life-cycle that allows for species persistence 

98 under unfavorable conditions (Blume-Werry et al., 2016; Huelber et al., 2016; Morris et al., 2008).

99 Centaurea corymbosa is a narrow monocarpic short-lived species endemic to the 

100 Mediterranean region. The species grows in the Massif de la Clape in Southern France, on the top 

101 of cliffs and in nearby rocky areas of open vegetation (Colas et al., 1997). Only six populations are 

102 known, which have been surveyed since June 1994 using permanent plots. In this paper, we used 

103 this unique demographic dataset collected during a 22-year period (totaling 6112 individual life-

104 histories) to predict species dynamics under different climate scenarios. To do so, using matrix 

105 population models, we estimated asymptotic growth rates and vital rates for each population and 

106 each pair-of-years over the 22-year period. First, we tested for spatial and temporal variations in 

107 population dynamics and also tested whether small populations had lower asymptotic growth rate 

108 and showed higher variance in asymptotic growth rate than large populations. In addition, we tested 

109 whether age at flowering could buffer the effects of environmental stochasticity. Next, we assessed 

110 the relationship of climatic variables with demographic parameters over the 22-year period. More 

111 specifically, we tested whether any climatic situation contributing to drought negatively affected 

112 asymptotic growth rates and vital rates, since water availability is essential for the establishment of 

113 newly recruited plants and the survival of vegetative plants. Moreover, because flowering is closely 

114 linked with size and thus with plant growth in monocarpic plants (Meer et al., 2016; Metcalf et al., 

115 2003; Williams et al., 2015), we tested whether probability of flowering depended on climatic 

116 conditions prevailing only the months before flowering or varied according to a cumulative multi-

117 year climate effect. Finally, by incorporating both environmental and demographic stochasticity, we 

118 simulated the fate of populations under two climatic scenarios, a warm scenario reflecting an 

119 increase in the frequency of hot years, and a dry scenario corresponding to an increase in the 
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120 frequency of drought events, and thus tested which of the two scenarios would have the largest 

121 impact on population persistence.

122 2. Materials & Methods

123 2.1. Biological model, demographic and climatic datasets

124 2.1.1. Study species

125 Centaurea corymbosa Pourret (Asteraceae) is a narrow Mediterranean species endemic to 

126 the Massif de la Clape near Narbonne (southern France, 43°13 N, 3°08 E). It is listed in the French 

127 Red Book of endangered species and in the European Habitat Directive list of priority species, thus 

128 precise coordinates of the populations are not given. C. corymbosa has been extensively studied 

129 since 1994 and several papers have already reported on its ecological characteristics (Colas et al., 

130 1996; Imbert, 2006; Imbert et al., 2012; Kirchner et al., 2005), population dynamics (Fréville et al., 

131 2004; Kirchner et al., 2006) and population genetics (Colas et al., 1997, 2001; Fréville et al., 2001; 

132 Fréville et al., 1998; Hardy et al., 2004; Riba et al., 2005). Here, we only summarize the most 

133 important features and results related to the current study. C. corymbosa is restricted to a 3-km2 area 

134 and is known from only six populations found on different cliffs 0.3-2.3 km apart (mean elevation 

135 132 m, SD = 37.4, n=41 permanent plots, see below). Individuals grow on the top of cliffs and in 

136 rocky areas. These populations are currently not directly threatened by human activities. However, 

137 habitat closure due to the abandonment of grazing contributes to the isolation of open and suitable 

138 habitats, and thus increased fragmentation among patches. The species has a monocarpic perennial 

139 life-cycle. Individuals stay as a rosette for 2 to 13 years before flowering. The flowering period 

140 extends from May to mid-August, and most of the seeds germinate between September and 

141 December. Seeds are dispersed over short distances by wind and ants. Despite suitable habitats in 

142 the vicinity of the six populations, it has been shown that C. corymbosa is very unlikely to colonize 

143 new sites (Colas et al., 1997; Olivieri et al., 2016; Riba et al., 2005).

144 2.1.2. Demographic dataset

145 Data have been collected since June 1994 in the six populations. However, in the first 

146 census, the status of non-flowering plants (seedling or rosette) could not be assessed. Thus, matrix 

147 population models were based on 22 years of demographic survey (1995-2016), except for one 

148 population (Portes, 1996-2016). Data collection is described in details in Fréville et al. (2004). 

149 Every 3 months (June, September, December and March), we recorded the presence and the status 



6

150 of each individual within 41 permanent plots and new seedlings were added to the datasets (see 

151 Appendix A1). During the flowering period (mid-June), we also surveyed the whole distribution 

152 area of the species to count the total number of flowering plants per population (exhaustive count, 

153 Table 1 and Appendix A2). A total of 6112 individual life-histories were used to construct 

154 population projection models (Table 1 and Appendix A1).

155 2.1.3. Climatic dataset

156 Climatic data were obtained from the closest meteorological station located at INRA Pech 

157 Rouge (43°1444 N, 3°1338 E, elevation = 40 m) less than 5 km from the populations of C. 

158 corymbosa. We used daily mean temperature, daily minimum and maximum temperatures and daily 

159 precipitation. Over the 22 years of this study, the Massif de la Clape experienced a classical warm 

160 Mediterranean climate (average mean temperature 15.1 ± 0.6 °C from June t to May t+1, Fig. 1) 

161 with a warm summer period. Precipitation regime was also characteristic of the Mediterranean 

162 climate with an average of 540.8 mm per year from June t to May t+1 with large inter-annual 

163 variation (SD = 175.46, Fig. 1). The number of days with precipitation > 1 mm ranged from 35 days 

164 to 68 days with an average of 48.5 days per pair-of-years (SD = 8.9, Fig. 1).

165 2.2. Deterministic analyses

166 2.2.1. Matrix projection models

167 As described in Fréville et al. (2004), the life-cycle is based on a prebreeding census 

168 performed before the germination pulse, with a one-year interval from June t to May t+1. Three 

169 stages were defined: seedlings (individuals less than 1 year old), rosettes (vegetative plants older 

170 than 1 year), and flowering plants. We estimated lower-level vital rates (survival si, flowering 

171 probability αi conditional to survival and fecundity f) to construct a stage structured Matrix 

172 Projection Model (MPM). For each population and each pair-of-years, the projection matrix 

173 representing the life-cycle is given by:

   

















332211

332211

0

11)1(
00


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174 From the 22 years of demographic survey, we constructed 21 matrices per population (see 

175 appendix B for projection matrices per population). The probabilities of a flowering plant to survive 

176 (s3) and to reproduce the year after (α3) were very low, in agreement with the monocarpy of the 
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177 species, and had negligible effects on population dynamics (see appendix B). Using a deterministic 

178 MPM (linear, time-invariant), we calculated the asymptotic growth rate λa as the dominant 

179 eigenvalue of the matrix A of the corresponding pair-of-years. The model did not include seed bank 

180 and migration. Indeed, less than 5% of seeds may remain dormant for one year and seed dispersal 

181 among populations is highly limited (Colas et al., 1997; Fréville et al., 2004; Imbert, 2006). The net 

182 fecundity fs0 was estimated as the ratio of the number of seedlings observed in June of a given year 

183 over the number of flowering plants observed within permanent plots in June of the previous year. 

184 Our three-month survey made it possible to decompose the net fecundity fs0 into a fecundity term f 

185 (number of just-emerged seedlings assessed every three months over number of flowering plants in 

186 June t-1) and survival of just-emerged seedlings s0 (number of seedlings observed in June t over 

187 total number of just-emerged seedlings observed from June t-1 to May t, Colas et al., 2008; Fréville 

188 et al., 2004). We obtained four null values in asymptotic growth rates (three for Cruzade and one for 

189 Peyral), which corresponded to years with no flowering plant within plots and null values in rosette 

190 survival s2. In such case, the persistence of the plot depended on new rosettes coming from the 

191 seedling stage (s1 never equaled zero), and seed dispersal from the closest flowering plants outside 

192 plots. When calculating the geometric mean of asymptotic growth rates over years for each 

193 population, we excluded these null values.

194 2.2.2. Patterns of spatio-temporal variations in asymptotic growth rates

195 To test for temporal and spatial variation in asymptotic growth rates, we used non-

196 parametric randomisation tests (Caswell, 2001). Temporal variation was tested by randomly 

197 permuting individual life-histories (status at t and fate at t+1) among pair-of-years when 

198 considering all data as a single population. For spatial variation, we permuted the whole individual 

199 life-history (from germination to death) between populations (see Fréville et al., 2004). Each life-

200 history appeared exactly once in each randomized dataset, maintaining the original sample sizes. 

201 For each set of permuted data, we calculated asymptotic growth rate for each group (year or 

202 population) and then computed the standard deviation of λa between groups. The probability that 

203 σ(λa) ≥ σobs under the null hypothesis H0 (no group effect) was computed based on 2000 random 

204 permutations. We rejected H0 when this probability was smaller than 0.05 (Caswell, 2001). We used 

205 linear models to test for the effect of population size on asymptotic growth rates and their temporal 

206 variance, using the total number of flowering plants obtained by the exhaustive survey as a proxy of 

207 population size (Table 1). We used also a linear model to test for the effect of mean age at flowering 

208 (Table 1) on the variance in population growth rate.
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209 2.2.3. Retrospective and prospective analyses 

210 We performed a life-table response analysis (LTRE) with a random design to assess how 

211 lower-level vital rates contributed to the variance in asymptotic growth rates var(λa) observed 

212 among years. This analysis was performed on the pooled data over populations, provided that we 

213 did not detect significant spatial variation in population growth rates. The decomposition of var(λa) 

214 in term of lower-level vital rates p is expressed as:

𝑣𝑎𝑟(𝜆𝑎) ≈ ∑
𝑖,𝑗

𝑐𝑜𝑣(𝑝𝑖,𝑝𝑗)
∂𝜆𝑎

∂𝑝𝑖

∂𝜆𝑎

∂𝑝𝑗

215 where  is the covariance of pi and pj (Caswell, 2001). A prospective analysis was also 𝑐𝑜𝑣(𝑝𝑖,𝑝𝑗)

216 conducted to assess the population dynamic response to changes in lower-level vital rates. We 

217 calculated the elasticity of λa to lower-level vital rates p as:  

218 𝑒 =
𝑝
𝜆𝑎

∂𝜆𝑎

∂𝑝

219 2.3. Relationships between demographic parameters and climate

220 From the raw climatic dataset, we extracted seven relevant variables assumed to have an 

221 influence on demographic parameters, given the existing literature (Fréville et al., 2004; Riba et al., 

222 2002) and our knowledge of Mediterranean plant species. We thus calculated the average of daily 

223 mean temperature and daily maximum temperature, the number of days with mean T° > 25°C 

224 (corresponding to mean + SD) and the number of freezing days (minimum T° < 0°C). In addition, 

225 we calculated both the average cumulative precipitation and the number of days with precipitation > 

226 1 mm that hereafter will be referred as the number of wet days. We also calculated the number of 

227 days with precipitation > 20 mm. This threshold value was equal to mean + SD. We thus considered 

228 this variable as reflecting the number of heavy precipitation events in the Massif de la Clape.

229 We tested for the effect of climate on demographic parameters using generalized linear 

230 models with identity link for asymptotic growth rates and fecundity f (both log-transformed), and 

231 logit link for survival and flowering probabilities with the binomial distribution. First, we tested for 

232 relationships between annual averages of each climatic variable calculated from June t to May t+1 

233 and asymptotic growth rates λa, and also tested for quadratic effects and multiyear cumulative effect 

234 with a time lag of one year of each climatic variable (Appendix E.1). We then tested for the effect 

235 of the variables that we found significant in the single-variable GLMs, using a forward stepwise 
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236 selection approach. Starting from the null model, we added at each step the variable having the 

237 highest R2 value in the single-variable models (Appendix E.1). For logistic models, we used R2
LR, 

238 the pseudo-coefficient of determination based on the likelihood-ratio test and given by R2
LR = 1- 

239 (Lnull /Lfull)2/n where Lnull and Lfull are the likelihoods of the null and the fitted models, respectively 

240 (Shinichi Nakagawa et al., 2013). The significance of each added variable in the model was tested 

241 using an analysis of deviance (Appendix E.2). From the best model, we reported the estimated 

242 coefficient (β) and its significance for each variable in the model after scaling climatic variables. 

243 Second, to understand biological processes at a finer scale, we tested for the impact of the seasonal 

244 climate on lower-level vital rates by considering only climatic variables that significantly impacted 

245 asymptotic growth rates, using the same approach as described above. We included the seasonality 

246 effect in GLMs by averaging variables over three-month periods separating two successive censuses 

247 (Appendix E.3). GLMs were fitted using R Stats-package (version 3.3.1). The R2
LR was calculated 

248 using the R-command ‘r.squaredLR’ from the MuMIn-package (version 1.15.6).

249 2.4. Stochastic projections under climate change

250 Based on the IPCC Fourth Assessment Report, the frequency of extreme warm and dry 

251 events is expected to increase (Christensen et al., 2007). We thus built stochastic matrix models to 

252 simulate the fate of C. corymbosa populations under two scenarios of climatic variations, 

253 representing an increased frequency of extreme events either for temperature or precipitation 

254 (Bucharovà et al., 2012; Shryock et al., 2014). To simulate the fate of populations, we incorporated 

255 environmental stochasticity by drawing an entire matrix at each time step (sampling with 

256 replacement) among the 21 available matrices (Crone et al., 2011, 2013; Kaye and Pyke, 2003). 

257 Because C. corymbosa has small population sizes, we also incorporated demographic stochasticity 

258 in the models. Such stochasticity is due to the independent chance of transition and reproduction 

259 among individuals (Engen et al., 1998; Lande, 1993; Melbourne and Hasting, 2008). From the 

260 existing individuals at year t, we drew the number of individuals making each transition from stage 

261 j to stage i including death at each time step in a multinomial distribution characterized by the aij 

262 transition probabilities of the matrix that we randomly drew (Andrieu et al., 2017; Caswell, 2001; 

263 Melbourne and Hasting, 2008; Morris and Doak, 2002). The number of recruited seedlings was 

264 drawn in a Poisson distribution with mean equal to the fs0 value of the drawn matrix. In the case of 

265 C. corymbosa, demographic stochasticity indeed increased fluctuations in population size over time 

266 and thus increased extinction risk (see Appendix F), in agreement with both theoretical studies (e.g. 

267 Engen et al., 2005; Lande, 1993; Lande, 2003) and empirical ones (e.g. Fujiwara and Caswell, 2001; 
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268 Melbourne and Hasting, 2008; Jepsonn and Forslund, 2012). Therefore, we combined both 

269 demographic and environmental stochasticity to simulate the fate of populations under climate 

270 scenarios.

271 The initial population size N0 used to start our simulations was calculated from the stable 

272 stage distribution obtained from the arithmetic mean of the total number of flowering plants 

273 recorded in the population (exhaustive survey) from 2010 to 2016, and the scaled eigenvector W 

274 from the arithmetic mean matrix over years (2010-2016) when pooling data over populations. N0 is 

275 given by  where w3, the third element of the scaled eigenvector, represents the 𝑁0 = 𝑊
𝑁𝑓𝑟
𝑤3

276 proportion of the number of flowering plants. We simulated population dynamics using 1000 

277 stochastic iterations, each iteration representing a trajectory of population size over 100 years. For a 

278 given trajectory we calculated the growth rate λj as:

𝜆𝑗 = 𝑒𝑥𝑝[𝑙𝑛(𝑛𝑗(𝑇)) ‒ 𝑙𝑛(𝑛𝑗(0))
𝑇 ]

279 where nj(T) and nj(0) were the population size of the jth trajectory at t = T and t = 0, respectively, 

280 and T being the last year at which population size was non-null. The stochastic growth rate λs was 

281 obtained as the median of λj over 1000 trajectories. Extinction probability at a given time t 

282 corresponds to the number of trajectories for which N(t) = 0 over the total number of trajectories; 

283 we calculated extinction probability at t = 50 years (P50), t = 100 years (P100) and the mean time to 

284 extinction (Text) based on 100 trajectories over 100 years. We carried out 1000 such simulations, 

285 each of 100 trajectories, to obtain a sampling distribution of P50, P100 and Text. We calculated mean 

286 value of those parameters over the 1000 simulations and 95% confidence intervals by taking the 

287 2.5th and the 97.5th percentile of the simulated distribution (Shryock et al., 2014). All stochastic 

288 analyses were implemented using the R popbio-package, version 2.4.3 (Stubben and Milligan, 

289 2007).

290 Climatic scenarios were first simulated by increasing the frequency of drawing matrices 

291 corresponding to extreme warm and extreme dry years (Andrello et al. 2012; Hunter et al., 2010; 

292 Shryock et al., 2014) from the observed frequency over the 22-year period q* to q = 0.8, that 

293 represent, respectively, the warm and the dry scenario. Based on the results of the GLM analyses 

294 testing for the effects of climatic variables on asymptotic growth rates, we used the daily mean 

295 temperature and the number of wet days to characterize warm and dry scenarios, respectively. 
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296 Following Williams et al. (2015), extreme years corresponded to years with climate values larger 

297 than one standard deviation above the daily mean for temperature and lower than one standard 

298 deviation below the mean for precipitation. In the warm scenario, warm years were represented by 

299 pair-of-years with high daily mean temperature (2006-2007, 2013-2014, 2014-2015 and 2015-2016, 

300 Fig. 1, q*=4/21=0.19). In the dry scenario, dry years were represented by pair-of-years with low 

301 numbers of wet days (2001-2002, 2006-2007 and 2010-2011, Fig. 1, q*=3/21=0.14). 

302 Second, following the approach described in Salguero-Gomez et al. (2012), we focused on 

303 a particular climate scenario resulting from the Regional Climate Model (RCM) proposed by the 

304 Euro-Cordex 2014 project (Jacob et al., 2014). We used the RCP4.5 scenario representing an 

305 intermediate scenario of increasing CO2 concentration until 2060. The regional climate model 

306 simulations provided predicted values of daily precipitation and mean temperature. We then 

307 extracted these data for the closest geographic location, which is less than 1 km apart from the 

308 centroid of the species distribution (43.13710 N, 3.07327 E) and less than 6 km apart from the 

309 meteorological station we used to get observed climatic data. Overestimation of precipitation in 

310 RCMs is a well-known problem, in particular in areas close to the Mediterranean Sea (Gao et al., 

311 2008; Ruffault et al., 2014). Therefore, to estimate the frequency of extreme years in the future 

312 (2020-2099), we used threshold values from the back-projected model values (Salguero-Gomez et 

313 al., 2012). Using the back-projected data from the reference period (1971-2005), we defined warm 

314 years as those with mean temperature from May t to June t+1 greater than 14.5 + 1.23 (mean + SD) 

315 and dry years as those with number of wet days lower than 68.6 - 14.8 (mean - SD). Comparing the 

316 observed data and the back-projected data for the overlapping period 1995-2005, we indeed 

317 document an overestimation of the number of wet days predicted by the regional model compared 

318 to the observed one (paired t-test = 4.57, df = 8, p < 0.002). In contrast, predicted and observed 

319 daily mean temperatures and total precipitation were not significantly different (p > 0.10). 

320 Simulated data are available on the Drias platform (www.drias-climat.fr).

321 3. Results

322 3.1. Patterns of spatio-temporal variations in asymptotic growth rates

323 Asymptotic growth rates λa calculated per population and per pair-of-years showed a 

324 decreasing trend over time (β = - 0.01, p = 0.02, Fig. 2A). The slope of the trend for each population 

325 separately was significant only for the smallest population (Cruzade: β = -0.04; p = 0.01, Fig. 2D). 

326 When pooling populations within each pair-of-years, the geometric mean of asymptotic growth 
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327 rates over years was 0.880 (Table 1), with λa ranging from 0.432 (2006-2007) to 1.815 (2012-2013). 

328 Geometric means of λa over years per population were all lower than 1 and varied between 0.710 

329 (Peyral) and 0.836 (Enferret1, Table 1). No significant relationship was detected between 

330 asymptotic growth rate and population size (β = 0.0003; p = 0.46). Randomization tests showed that 

331 the difference in λa among years was highly significant (p < 0.001, see appendix C). In contrast, 

332 asymptotic growth rates λa were not significantly different among populations (p = 0.16, see 

333 appendix C). The variance in λa per population was not significantly correlated with mean age at 

334 flowering (β = -0.02; p = 0.68) nor with population size (β = 0.0003; p = 0.55).

335 3.2. Retrospective and prospective analyses

336 As λa did not differ significantly among populations, retrospective and prospective analyses 

337 were performed after pooling individuals across populations. The observed variance in asymptotic 

338 growth rates among years was equal to 0.083, and was mainly explained by the variation in both the 

339 fecundity term (f), the survival of seedlings (s1) and the survival of rosettes (s2) having the highest 

340 contributions (0.025, 0.023 and 0.021, respectively, Fig. 3), followed by the survival of just-

341 emerged seedling (s0) and the flowering probability of rosettes (α2) having a similar contribution 

342 (0.008, Fig. 3). Rare events in the life-cycle (flowering probabilities α1 and α3, and survival of 

343 flowering plants s3) had negligible contributions (sum to 0.0009, Fig. 3 and appendix D). The 

344 largest elasticity of asymptotic growth rate was associated with rosette survival (s2) followed by the 

345 fecundity term f (mean number of just-emerged seedlings per flowering plant), the survival of just-

346 emerged seedling (s0), seedling survival (s1) and the flowering probability of rosettes (α2, Fig. 3). 

347 Elasticity of λa to the remaining lower-level vital rates representing rare events (s3, α1and α3) 

348 summed only to 1% (Fig. 3). These latter rates were thus not considered for the GLMs investigating 

349 the relationship between lower-level vital rates and climatic variables. 

350 3.3. Relationship between asymptotic growth rates and climate

351 Asymptotic growth rate, when pooling populations, was best explained by a model 

352 including only two climatic variables (R2 = 0.58, Appendix E.2), with a high positive effect of the 

353 annual number of wet days (β = 0.15, p = 0.004) and a negative effect of the annual average daily 

354 mean temperature (β = -0.11, p = 0.03). The number of freezing days, the cumulative precipitation 

355 and the number of days with precipitation > 20 mm proved non-significant (p>0.05, Appendix E.1). 

356 No multiyear cumulative effect and no quadratic effect of climatic variables were significant (p > 

357 0.05, Appendices E.1).
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358 3.4. Relationships between lower-level vital rates and climate

359 Overall, warming and drought negatively affected vital rates. The mean number of just-

360 emerged seedlings per flowering plants f was negatively impacted by the daily mean temperature 

361 during both summer and fall periods (Table 2). The survival of just-emerged seedlings s0 was 

362 positively impacted by the number of wet days during the germination period (both fall and the 

363 winter periods), and negatively impacted by the daily mean temperature during both summer and 

364 fall periods (Table 2). Seedling survival s1 was negatively affected by an increase in the daily mean 

365 temperature during the summer and fall periods, and positively affected by an increase in the 

366 number of wet days during the same periods (Table 2). Rosette survival s2 decreased with 

367 increasing summer daily mean temperature (Table 2). Finally, the flowering probability of rosettes 

368 α2 was negatively impacted by the summer daily mean temperature and positively impacted by the 

369 number of wet days during the fall period (Table 2).

370 3.5. Stochastic projections under climate change

371 In absence of climate change, when randomly drawing each matrix with equal probability 

372 (1/21), stochastic growth rates λs were significantly lower than 1 when pooling populations (λs = 

373 0.881, CI = [0.877, 0.889], Table 1). Stochastic growth rates were also lower than 1 in each 

374 population, ranging from 0.742 for the smallest population Cruzade (CI = [0.732, 0.770]) to 0.836 

375 for the largest one Enferret2 (CI = [0.829, 0.851], Table 1).

376 To assess the combined effect of environmental and demographic stochasticity on 

377 population viability, we compared the fate of the smallest population Cruzade and the largest one 

378 Enferret2, using their respective population size at t = 0 (see details above and Fig. 4). As we did 

379 not detect any significant variation in asymptotic growth rates among populations, we pooled data 

380 across population for each pair-of-years to obtain the 21 matrices used to simulate climate change. 

381 In the warm scenario, when increasing the frequency of extreme years from q* (4/21 = 0.19) to 0.8, 

382 stochastic growth rates decreased from 0.882 to 0.761 for the largest population (Enferret2, Fig. 4A) 

383 and from 0.879 to 0.765 for the smallest one (Cruzade, Fig. 4C). Under the RCP4.5 scenario, the 

384 predicted frequency of warm year qpred characterized by a daily mean temperature > 15.63 °C for 

385 the period 2020-2099 equaled 0.78 and led to the extinction of both populations at 100 years in 

386 most simulations (Figs. 4A and 4C, solid black lines). Comparing this scenario with those of no 

387 climate change (Figs. 4A and 4C, dashed green lines), extinction probability at 50 years (P50) 

388 increased from 0.37 to 0.99 for Enferret2 and from 0.82 to 0.99 for Cruzade, while extinction 
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389 probabilities at 100 years (P100) were close or equal to 1 for both populations. The mean time to 

390 extinction decreased from 57 to 26.4 years for Enferret2, and from 32 to 16 for Cruzade.

391 The dry scenario had less dramatic consequences on the viability of populations than the 

392 warm scenario (Fig. 4B and 4D). The increase in dry year frequency from q* (3/21=0.14) to 0.8 led 

393 to a small reduction in λs from 0.882 to 0.855 for Enferret2 and from 0.879 to 0.851 for Cruzade 

394 (Figs. 4B and 4D, respectively). The RCP4.5 scenario predicted a frequency of dry years qpred, 

395 corresponding to a number of wet days lower than 53.8 days, equaled to 0.15, a value very close to 

396 the one observed during the 22-year period of our demographic survey. The RCP4.5 scenario did 

397 not result in any significant change in extinction probabilities and mean time to extinction compared 

398 to the scenario of no climate change, whatever the size of populations (Figs. 4B and 4D, solid black 

399 lines).

400 4. Discussion

401 4.1 Long term population dynamics of Centaurea corymbosa

402 Our results demonstrate the need for long-term demographic surveys to better understand 

403 the spatio-temporal demographic variability on plants (Blume-Werry et al., 2016; Compagnoni et 

404 al., 2016; Crone et al., 2011; Huelber et al., 2016). Indeed, our study based on 22 years of data 

405 provided a more accurate picture of the determinants of population dynamics in C. corymbosa than 

406 the study of Fréville et al. (2004) based on 8 years of data. In Fréville et al. (2004), the standard 

407 deviation in asymptotic growth rates σ(λ) was 0.116 among years and 0.099 among populations, 

408 with significant differences among years and populations. In the current study, variation among 

409 populations became non-significant and temporal variation in asymptotic growth rates was rather 

410 synchronized among populations (Fig. 2). This pattern is not surprising given the narrow 

411 distribution of C. corymbosa and is largely consistent with studies of other narrowly distributed 

412 species (Buckley et al., 2010; Kiviniemi and Löfgren, 2009; Ramula et al., 2008). More importantly, 

413 the standard deviation σ(λ) observed over the 22-year period was much larger (0.230) than the one 

414 (0.116) reported in Fréville et al. (2004). In agreement with the results of the permutation tests, we 

415 did not find any significant correlation between population dynamics and population size. Indeed, 

416 we did not find any evidence that small populations had lower population growth rates. Moreover, 

417 the variance in asymptotic growth rates among years did not increase with decreasing population 

418 size. In contrast to other demographic studies (Lande et al., 2003; Zeigler, 2013), we thus did not 

419 find any evidence of a greater sensitivity of the smallest populations to both environmental and 
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420 demographic stochasticity in our species. In addition, the variance in asymptotic growth rate was 

421 not correlated with mean age at flowering per population. We thus did not find evidence for 

422 demographic buffering in populations with greater longevity, in contrast to what has been found at 

423 an inter-specific scale in Morris et al. (2008). Population dynamics of C. corymbosa is thus mainly 

424 affected by environmental factors that vary over time rather than by spatial factors.

425 Average and most of the yearly asymptotic growth rates were lower than 1 for each 

426 population and when pooling individuals across populations. Overall, we observed a declining trend 

427 in yearly asymptotic growth rates over the 22-year period (Fig. 2), this trend being significant for 

428 the smallest population and when considering all populations (Figs. 2A and 2D, respectively). 

429 Asymptotic growth rates were negatively impacted by an increase in temperature and positively 

430 impacted by the number of wet days. Consistent with these results, asymptotic growth rates attained 

431 extreme values in years corresponding to extreme climatic events. Indeed, when pooling all 

432 individuals in a single population, the lowest value (0.432, Fig. 2A) was observed in 2006-2007 

433 when the mean temperature was the highest (16.3° C, Fig. 1) and the number of wet days was the 

434 lowest (34 days, Fig. 1). The highest growth rate (1.815, Fig. 2A) corresponded to 2012-2013, when 

435 we observed the second lowest mean temperature (14.2° C, Fig. 1) and the highest number of wet 

436 days (66 days, Fig. 1). Thus, population dynamics of C. corymbosa was mainly affected by extreme 

437 climatic events, which are predicted to increase in the future. Climatic variables investigated here 

438 did not show any marked temporal trend over the 22-year period of our demographic survey (Fig.1), 

439 which could explain the weak temporal trend observed in asymptotic growth rates. Overall, our 

440 study confirms that extreme climatic events are an important driver of plant population dynamics as 

441 reported in other studies (Andrello et al., 2012; Davison et al., 2010; McDowell et al., 2008; 

442 Shryock et al., 2014; Ulrey et al., 2016).

443 In contrast to some studies reporting both negative and positive effects of climate change 

444 on vital rates (Meer et al., 2016; Meisner et al., 2014; Nicolè et al., 2011), our study documents a 

445 consistent negative effect of increased temperature and drought on lower-level vital rates in C. 

446 corymbosa. Regarding temperature, the most critical season that impacted lower-level vital rates 

447 was the summer period, since increasing summer daily mean temperature negatively affected both 

448 fecundity, survival probability and flowering probability. In contrast to our study, flowering 

449 probability was found to be positively impacted by high temperature in some temperate plant 

450 species (e.g. Himantoglossum hircinum, Meer et al., 2016; Dracocephalum austriacum, Nicolè et 

451 al., 2011). While a negative effect of increasing temperature on flowering probability was also 
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452 reported in Peñuelas et al. (2004), this pattern was only observed in the southern Mediterranean 

453 sites but not in the northern ones. A likely explanation of this negative effect is that warm summers 

454 increase evapo-transpiration and decrease soil moisture (Christensen et al., 2004; Peñuelas et al., 

455 2004). This could lead to a decrease in plant biomass as a consequence of rosette shrinking that in 

456 turn reduces the amount of resources that a plant can allocate to reproduction (Manders and Smith, 

457 1992). This is particularly true for monocarpic perennial species, where flowering probability has 

458 been shown to increase with plant size (Metcalf et al., 2003). Regarding precipitation, the youngest 

459 plants were the most impacted by the number of wet days. This factor had a positive effect on both 

460 survival of just-emerged seedlings (s0) during the germination period (fall and winter) and seedling 

461 survival (s1) during the summer and fall periods, which is consistent with several studies showing a 

462 positive impact of the frequency of wet days (Riba et al., 2002; Shriver, 2016). Both temperature 

463 and precipitation effects may be explained by the fact that recurrent warm and dry days can induce 

464 a seasonal water deficit, which may negatively impact the whole life-cycle (Manders and Smith, 

465 1992; Peñuelas et al., 2004; Ruffault et al., 2014). Species growing in rocky habitats, such as C. 

466 corymbosa, are likely to be the most affected, since these soils have a very low water capacity 

467 (Ruiz-Sinoga et al., 2012; Silva et al., 2015). Moreover, herbaceous species such as C. corymbosa 

468 do not have a deep root system ensuring access to water over dry periods in such rocky habitats.

469 4.2 Predictions from climate scenarios

470 Both demographic and environmental stochasticity are important factors in determining the 

471 viability of species with small population sizes (Caswell, 2001; Crone et al., 2013; Garcı́a et al., 

472 2002). We here showed that climate variation explained a large amount of variation in vital rates 

473 and growth rates in C. corymbosa. We thus used stochastic models to predict the fate of C. 

474 corymbosa populations with both environmental stochasticity arising from climate change and 

475 demographic stochasticity. We did not include density-dependence in our model, which could make 

476 quantitative predictions overly pessimistic (Dahlgren et al., 2016). Population viability analyses are 

477 acknowledged to be relevant tools to quantitatively compare the impact of different scenarios rather 

478 than quantitatively predict the future status of populations (Coulson et al., 2001). We thus used 

479 population viability analyses to compare how the warm and the dry scenarios impacted population 

480 viability of C. corymbosa rather than attempting to explicitly predict future population size.

481 Stochastic projections predicted population declines (λs < 1) under no climate change. 

482 Populations were predicted to decline even faster in the future in response to an increased frequency 

483 of extreme years in both the warm and dry scenarios. Such results are consistent with the GLMs 
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484 showing negative impacts of warming and drought, and several studies investigating population 

485 viability in response to climate change (Andrello et al., 2012; Lawson et al., 2015; Marrero-Gómez 

486 et al., 2007; Shryock et al., 2014). More importantly, the warm scenario had more severe 

487 consequences on population viability than the dry scenario whatever the initial population size. 

488 However in our simulations, the initial population size impacted both extinction probability and the 

489 mean time to extinction, a pattern consistent with theoretical studies since small populations are 

490 more vulnerable to extinction than largest ones (Groom et al., 2005; Lande et al., 2003). Using the 

491 RCP4.5 scenario, the change in temperature projected for the period 2071-2099 was of the same 

492 order of magnitude than the one predicted by other regional climatic models (Christensen et al., 

493 2007; Ruffault et al., 2014). In contrast, our dry scenario predicted an annual mean number of wet 

494 days equal to 66.41 (-3.2%), while other models predicted a much severe decrease (-19.6%, 

495 Ruffault et al., 2014). This suggests that uncertainty in climate models should be carefully 

496 considered in management plans and when evaluating extinction risk. Such uncertainty is 

497 particularly pronounced for the Mediterranean region (Gao et al., 2008; Ruffault et al., 2014).

498 Faced with climate change, populations can either migrate or adapt by microevolution or 

499 phenotypic plasticity to avoid extinction (Groom et al., 2005; Lande et al., 2003). In the 

500 Mediterranean region, many narrow endemic species are characterized by a low ability to colonize 

501 existing suitable habitats due to several biological traits such as low dispersal ability (Colas et al. 

502 1997; Lavergne et al., 2004; Thompson et al. 2005). In C. corymbosa, self-incompatibility and 

503 monocarpy make successful colonization even less likely (Colas et al., 1997). Thus, for such species, 

504 persistence mainly depends upon their ability to respond plastically to climate change or to become 

505 locally adapted to new environmental conditions (Cotto et al., 2017; Knight et al. 2008; Menges, 

506 2000). Theoretical work suggests that perennial species should display slower evolutionary 

507 responses than annual plants, since higher adult survival limits the adaptive capacity of local 

508 populations (Cotto et al., 2017). Moreover, small populations have a lower evolutionary potential, 

509 since they become genetically impoverished due to the impact of genetic drift. Using a shorter 

510 survey (1995-2001), Fréville et al. (2001) showed that demographic rates were not correlated with 

511 intra-population genetic diversity in Centaurea corymbosa (Fréville et al., 2001). Using the same 

512 genetic data (Table 1 in Fréville et al., 2001), we likewise confirmed that genetic diversity was 

513 correlated with neither λs (Spearman correlation rho = 0.26, p = 0.61) nor the slope of regression in 

514 asymptotic growth rates over years (rho = 0.09, p = 0.89). Thus, our results do not support evidence 

515 for accumulation of deleterious mutations (Lynch et al., 1995), nor a loss of standing variation due 

516 to genetic drift in small populations of C. corymbosa.
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517 4.3 Management recommendations

518 Persistence of narrow endemic species in the Mediterranean region may have been favored 

519 by the capacity of those species to grow in rocky habitats (Thompson et al., 2005), since these 

520 remote habitats do not face direct threats due to human activities. Demographic studies of cliff-

521 dwelling species have shown unusual demographic stability and resilience of these plants (García, 

522 2003; Lavergne et al., 2005; Picó and Riba, 2002; Thompson et al., 2005), likely arising from much 

523 higher importance of rosette survival than recruitment for the maintenance of populations (Cotto et 

524 al., 2017; Larson et al., 2000; Silva et al., 2015). In a scenario of no climate change, rosette survival 

525 (that had the highest elasticity on growth rates) should be increased from 0.71 to 0.92 to ensure the 

526 persistence of C. corymbosa in a deterministic model (Appendix G). However, management actions 

527 aimed at increasing specific vital rates, such as watering plants are not feasible in such rocky 

528 habitats. Implementing management actions that reduce the negative effects of demographic, 

529 genetic and environmental stochasticity by manipulating population size and population number 

530 appear much more promising.

531 Previous studies have shown the importance of biological features such as self-

532 incompatibility and low dispersal ability on the population persistence of C. corymbosa (Colas et al. 

533 1997). Two new populations were introduced in 1994 on the top of unoccupied cliffs thus 

534 confirming the existence of suitable but empty habitats nearby existing natural populations (Colas et 

535 al., 2008; Kirchner et al., 2006). Introduced populations exhibited on average higher plant survival 

536 than natural populations, mainly because seeds had been introduced manually in a priori suitable 

537 microsites (Colas et al. 2008). However, fecundity in introduced populations was lower than in 

538 natural ones, likely as a consequence of low local density of flowering plants, leading to strong 

539 pollen limitation (Colas et al. 2008). One introduced population has been extinct for 5 years, while 

540 the other population only harbored 35 plants in the last census performed in December 2017. In the 

541 future, protocols should be carefully designed to ensure successful introductions. For instance, 

542 introducing a large number of seeds (>1000) distributed over a few sites and at yearly intervals 

543 should allow population persistence on the short term (Colas et al., 2008; Kirchner et al., 2006).

544 Faced with accelerated climate change, conservation policies for endangered species, such 

545 as C. corymbosa, should be reconsidered. As our study demonstrated the importance of climate on 

546 the fate of populations, introductions in distant habitats should be considered, although such 

547 assisted colonization event requires suitable and available habitats at a larger scale. At present, 

548 prioritization actions of conservation rely on the climatic niche of the species (Jones et al., 2016; 
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549 Oliver et al., 2016), and depend on our ability to define new protected areas in Northern localities 

550 (Araújo et al., 2011; Bellard et al., 2012) or microrefugia (i.e. location with a low impact of climate 

551 change, Jones et al., 2016; Ulrey et al. 2016). Recently, an increasing amount of empirical evidence 

552 has been gathered to document that organisms, including plants, can show microevolutionary 

553 responses in natural populations (Franks et al., 2014; Thomann et al., 2013), suggesting plants can 

554 adapt to new environmental conditions (Thompson et al., 2005). Therefore, reinforcement, which 

555 allows increasing population size and thus reducing extinction risk arising mainly from 

556 demographic and genetic stochasticity, is also potentially an efficient and reasonable management 

557 strategy for species facing climate change.
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571 Tables

572 Table 1: Demographic characteristics of each of the six populations of Centaurea corymbosa, and the pooled population after pooling data across 
573 populations: number of individual life-histories recorded over 22 years (see also Appendix A1), number of surviving plants older than 1 year, mean 
574 life-time of individuals that reached the rosette stage, mean age at flowering, geometric mean of asymptotic growth rates (λa) over 22 years, minimum 
575 and maximum of λa, stochastic growth rate (λs) when including both demographic and environmental stochasticity (uniform frequency, see text) with 

576 the confidence intervals (2.5th and 97.5th percentiles of the simulated distributions) and the rounded mean of total numbers of flowering plants (Nb.FP) 
577 recorded by the exhaustive count over the 22 years (see appendix A2). Populations are ranked by decreasing order of total number of flowering plants.

Population Nb. 
individuals

Nb. one 
year plants

Mean longevity
of the rosettes 

(years)

Mean age at 
flowering 

(years)

Mean λa [λamin, λamax] λs CI(λs) Nb.FP

Pooled pop. 6112 1579 3.5 5.0 0.880 [0.432, 1.815] 0.881 [0.877, 0.889] 478

Enferret2 1712 286 3.3 4.5 0.749 [0.240, 1.585] 0.836 [0.829, 0.851] 173

Enferret1 1165 324 3.6 5.1 0.836 [0.425, 2.325] 0.824 [0.819, 0.837] 147

Auzils 1175 415 3.5 5.7 0.783 [0.331, 1.391] 0.792 [0.786, 0.807] 81

Portes 1064 268 3.7 6.2 0.819 [0.364, 1.610] 0.824 [0.818, 0.842] 34

Peyral 540 192 3.2 4.7 0.710 [0.00(a), 1.264] 0.804 [0.799, 0.827] 28

Cruzade 456 94 3.4 4.2 0.720 [0.00(a), 1.444] 0.742 [0.732, 0.770] 13
578 (a) The null values of asymptotic growth rates corresponded to pair-of-years with no flowering plant within plots and null values for rosette survival s2.

579
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580 Table 2: Summary of GLMs explaining the effect of two climatic variables (averaged over three-month periods) on lower-level vital rates. Only 

581 climatic variables affecting population growth rate were included in the GLMs. From the best model explaining a given lower-level vital rate, we 

582 report the estimated coefficient (β) and its significance (t-test) after scaling the climatic variables. ‘ns’ indicates that the variable tested was not 

583 significant in the model, based on a forward stepwise selection approach (see text and appendix E.3 for details).

Daily mean temperature No. wet days

Summer
[Jun-Aug]

Fall
[Sep-Nov]

Winter
[Dec-Fev]

Spring
[Mar-May]

Summer
[Jun-Aug]

Fall
[Sep-Nov]

Winter
[Dec-Fev]

Spring
[Mar-May]

Fecundity termlog(f+1) -0.28 ** -0.22 * ns ns ns ns ns ns

Survival of just emerged seedling s0 -0.17 *** -0.08* ns ns ns 0.24 *** 0.14 *** ns

Seedling survival s1 -0.28 *** -0.12+ ns ns 0.34 *** 0.04 + ns ns

Rosette survival s2 -0.45 *** ns ns ns ns ns ns ns

Flowering probability of rosette α2 -0.23 *** ns ns ns ns 0.19 * ns ns

584 +P <0.08, *P < 0.05, **P < 0.01, ***P < 0.001.
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585 Figure legends 

586 Figure 1: Climatic variation observed in the Massif de la Clape between 1995 and 2016. Climatic 

587 variables were calculated per pair-of-years from June(t) to May(t+1). The solid line represents the 

588 average daily mean temperature (C°), and the dashed line represents the number of wet days. 

589 Values in the vertical bars indicate the cumulative precipitation per pair-of-years. Year on the x-axis 

590 corresponds to June(t). Data were obtained from INRA Pech Rouge.

591 Figure 2: Asymptotic growth rates (λa) per pair-of-years. Panel A represents yearly λa values 

592 (circles) with their trend over years (dashed line) calculated from 125 matrices. The solid line 

593 represents the values of λa (triangles) pooling individuals in a single population. Panels B, C and D 

594 represent the trend in λa over years for the largest populations (E2 and E1), the medium size 

595 populations (Au and Po) and the smallest ones (Pe and Cr). R2 corresponds to the r-squared value 

596 obtained from the linear regression and “ns” indicates that the slope was not significantly different 

597 from 0. Year on the x-axis corresponds to June (t).

598 Figure 3: Contribution of lower-level vital rates to the variance of λa observed among years, and 

599 elasticity of growth rates to these vital rates calculated on the arithmetic mean matrix calculated 

600 over 21 pair-of-years matrices.

601 Figure 4: Predicted consequences of the warm and dry scenarios on the viability of populations 

602 using two different initial population sizes representing the largest (Enferret2) and the smallest 

603 (Cruzade) populations when incorporating both demographic and environmental stochasticity (see 

604 text for details). Panels (A) and (C) represent the warm scenario for the largest population size (N0 = 

605 {685 796 118}, Enferret2), and the smallest one (N0 = {41 47 7}, Cruzade). Panels (B) and (D) 

606 represent the dry scenario for Enferret2 and Cruzade, respectively. The warm scenario consisted of 

607 an increase in the frequency of years with extremely high temperatures (4 extreme years out of 21: 

608 2006-2007, 2013-2014, 2014-2015), and the dry scenario an increase in the frequency of years with 

609 an extremely low number of wet days (3 extreme years out of 21: 2001-2002, 2006-2007 and 2010-

610 2011). ‘q’ indicates the frequency of extreme years with q* the observed frequency over the 22-year 

611 of our demographic survey and qpred the frequency predicted by the RCP4.5 climatic model for the 

612 warm and dry scenarios (qpred are 0.78 and 0.15, respectively, see text). The initial population size 

613 was estimated as the stable stage distribution predicted by the mean matrix over years after pooling 

614 data across populations, using the mean total number of flowering plants recorded from 2010 to 

615 2016 in Enferret2 and Cruzade, respectively.
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Appendices:
Appendix A1: Number of individuals recorded within the 41 permanent plots over the 22-year 

period. Number of new seedlings represents all new plants recorded in the permanent plots every 3 

months during year t to t+1, out of which some did not survive until June t+1 with a probability 1-s0, 

and thus did not reach the seedling stage. The number of individuals recorded in June (t) in each 

life-stage of the life-cycle used to construct population projection models, is given for: Seedling, the 

one-year plants that survive until June (t), Rosette, vegetative plants older than one year, and 

Flowering plants that represent reproductive plants. The total number of individuals per year did not 

include the new seedlings. The total individual life-histories (6112) corresponds to the sum of 

number of new seedlings (5779) and number of rosettes and flowering plants at the first census 

(315+18).

Year New seedlings Seedling
stage

Rosette
stage

Flowering plant
stage

Total

1994  NA  NA 315 18 333
1995 467 234 161 35 430
1996 258 145 184 48 377
1997 608 181 160 48 389
1998 427 165 195 28 388
1999 349 204 178 37 419
2000 284 164 218 41 423
2001 1097 475 204 30 709
2002 466 356 250 17 623
2003 167 115 357 30 502
2004 299 197 144 12 353
2005 73 45 137 17 199
2006 262 30 97 22 149
2007 72 42 40 9 91
2008 182 47 45 9 101
2009 368 102 43 6 151
2010 67 29 36 3 68
2011 29 15 44 3 62
2012 50 8 20 6 34
2013 116 93 19 7 119
2014 89 45 41 4 90
2015 31 10 48 5 63
2016 18 9 35 2 46
Total 5779 2711 2971 437
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Appendix A2: Total number of flowering plants per year recorded by the exhaustive count per 

population. The dashed line corresponds to the trend of the number of flowering plants over time (β 

= -2.21, p = 0.02). The growth rate calculated from the number of flowering plants was equal to 

0.92.

Appendix B: Projections matrices per population. The fecundity term fs0 was estimated as the 

geometric mean of fs0 obtained per pair-of-years, other parameters are obtained by pooling data 

over years.

Population a13
fs0

a21
s1 (1-α1)

a22
s2 (1-α2)

a23
s3 (1-α3)

a31
s1 α1

a32
s2 α2

a33
s3 α3

Pooled pop. 5.104 0.351 0.586 0.024 0.011 0.120 0.038
Enferret2 4.267 0.345 0.509 0.029 0.029 0.165 0.029
Enferret1 3.834 0.347 0.595 0.000 0.009 0.119 0.035

Auzils 4.549 0.379 0.598 0.026 0.000 0.094 0.026
Portes 4.283 0.294 0.640 0.017 0.011 0.113 0.017
Peyral 3.601 0.404 0.573 0.067 0.000 0.108 0.067

Cruzade 2.819 0.361 0.593 0.020 0.016 0.174 0.082
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Appendix C: Distribution of the standard deviation of asymptotic growth rates under the null 

hypothesis of: (A) no difference among years and (B) no difference among populations. The x-axis 

represents the standard deviation of λa
 calculated (A) over the 21 year values, (B) over the 6 

population values. The y-axis represents the number of observations. The dashed vertical lines 

indicate the observed value. Randomization tests were based on 2000 permutations. 

Appendix D: Arithmetic mean and coefficient of variation of lower-level vital rates over years after 

pooling data over populations, sensitivity and elasticity of growth rates to these vital rates 

calculated at the arithmetic mean matrix over 21 matrices, and contributions of lower-level vital 

rates to the variation of growth rates among years. 

f s0 s1 s2 s3 α1 α2 α3

Mean 13.235 0.484 0.363 0.732 0.059 0.016 0.181 0.217
CV 0.644 0.395 0.505 0.184 1.046 2.598 0.386 1.352
Sensitivity 0.017 0.457 0.55 0.721 0.117 0.31 0.648  0.008
Elasticity 0.170 0.170 0.155 0.405 0.005 0.004 0.090 0.001
Contribution 0.025 0.008 0.023 0.021 <0.001 <0.001 0.008 <0.001 
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Appendix E.1: Single-variable log-linear models showing the relationship between asymptotic 

growth rates and each climatic variable. R² corresponds to the coefficient of determination for the 

tested model.

Climatic variable in year t R² Estimate p-value

Daily mean T° 0.31 -0.320 0.011 
Daily maximal T° 0.30 -0.250 0.009 
Precipitation 0.01 -0.001 0.672
No. days with T°>25 0.18 -0.013 0.052
No. freezing days 0.03 0.008 0.451
No. wet days 0.46 0.021 0.001 
No. days with precip.>20mm 0.04 -0.021 0.381

Climatic variables in year t-1
Daily mean T° 0.003 0.031 0.251
Daily maximal T° 0.006 0.032 0.233
Precipitation 0.058 -0.001 0.452
No. days with T°>25 0.005 -0.002 0.253
No. freezing days 0.001 0.001 0.360
No. wet days 0.012 -0.004 0.250
No. days with precip.>20mm 0.010 -0.009 0.141

Quadratic effect

Daily mean T° 0.30 -0.011 0.010 
Daily maximal T° 0.30 -0.006 0.009 
Precipitation 0.01 0.000 0.631
No. days with T°>25 0.18 -0.001 0.052
No. freezing days 0.02 0.000 0.540
No. wet days 0.43 0.003 0.002 
No. days with precip.>20mm 0.04 -0.001 0.411



5

Appendix E.2: Selection models for assessing the relevance of climatic variables to explain 
variations in asymptotic growth rates based on a forward stepwise selection approach. The 
significance of each added variable in the model was tested using an analysis of deviance. The null 
model included only the intercept.

Model Compared models p-value 
M0: Null model
M1: No. wet days M0, M1 0.001
M2: No. wet days + (No. wet days)2 M1, M2 0.311
M3: No. wet days + Daily mean T° M1, M3 0.031
M4: No. wet days + Daily mean T°+ (Daily mean T°)2 M3, M4 0.292

M5: No. wet days + Daily mean T°+ Daily maximal T° M3, M5 0.890
M6: No. wet days + Daily mean T°+ (Daily maximal T°)2 M3, M6 0.843
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Appendix E.3: Selection models for assessing the relevance of climatic variables to explain 
variations in lower-level vital rates based on a forward stepwise selection approach. P-values 
correspond to the F-test for the log-linear models and to Chi-test for the generalized linear models 
with binomial error. The null model included only the intercept. We denoted the number of days 
with Precipitation > 1mm by “P” and the mean daily temperature by “T”. The seasons are denoted 
by 1, 2, 3 and 4 to indicate summer, fall, winter and spring, respectively (see the main text and 
Table 2)

Lower-level 
vital rate

 Model Compared 
models

p-value 

M0: Null model
M1: T1 M0, M1 0.012
M2: T1+T2 M1, M2 0.031
M3: T1+T2+T3 M2, M3 0.165
M4: T1+T2+T4 M2, M4 0.583
M5: T1+T2+P1 M2, M5 0.794
M6: T1+T2+P2 M2, M6 0.222
M7: T1+T2+P3 M2, M7 0.806
M8: T1+T2+P4 M2, M8 0.236

log(f+1)

Selected model: log (f+1) ~ T1+T2

M0: Null model
M1: P2 M0, M1 <0.001
M2: P2+P3 M1, M2 <0.001
M3: P2+P3+T2 M2, M3 0.006
M4: P2+P3+T2+T1 M3, M4 <0.001

M5: P2+P3+T2+T1+P1 M4, M5 0.082
M6: P2+P3+T2+T1+T3 M4, M6 0.087
M7: P2+P3+T2+T1 +T4 M4, M7 0.120
M8: P2+P3+T2+T1 +P4 M4, M8 0.091

S0

Selected model: S0 ~ T1+T2+ P2+P3

M0: Null model
M1: T1 M0, M1 <0.001
M2: T1+P1 M1, M2 <0.001
M3: T1+P1+P2 M2, M3 0.002S1

M4: T1+P1+P2+T4 M3, M4 0.974
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M5: T1+P1+P2+P3 M3, M5 0.352
M6: T1+P1+P2+P4 M3, M6 0.072
M7: T1+P1+P2+T3 M3, M7 0.316
M8: T1+P1+P2+T2 M3, M8 0.030

Selected model: S1 ~ T1 +T2+ P1+ P2

M0: Null model

M1: T1 M0, M1 <0.001

M2: T1 + P1 M1, M2 0.692

M3: T1+P2 M1, M3 0.115

M4: T1+P3 M1, M4 0.174

M5: T1+ P4 M1, M5 0.092

M6: T1+ T2 M1, M6 0.163

M7: T1+T3 M1, M7 0.662

M8: T1+T4 M1, M8 0.365

S2

Selected model: S2 ~ T1

M0: Null model  

M1: T1 M0, M1 0.005

M2: T1+ T4 M1, M2 0.122

M3: T1+P1 M1, M3 0.251

M4: T1+P4 M1, M4 0.071

M5: T1+P2 M1, M5 0.020

M6: T1+P2+P3 M5, M6 0.415

M7:T1+P2+T2 M5, M7 0.868

M8:T1+P2+T3 M5, M8 0.976

α2 

Selected model: α2 ~ T1+P2
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Appendix F: Relative effect of demographic stochasticity and environmental stochasticity on the 

viability of C. corymbosa populations. Simulations were performed either by incorporating only 

environmental stochasticity through whole matrix selection (see text), or both environmental 

stochasticity and demographic stochasticity introduced through multinomial sampling of the stable 

stage distribution (see text). Projections were simulated using 1000 stochastic iterations, each 

iteration representing a trajectory of population size over 100 years. The initial population size, N0 = 

{2148, 2497, 370}, used to start our simulations was calculated from the stable stage distribution 

obtained from the arithmetic mean of the total number of flowering plants recorded in the 

population (exhaustive survey, Appendix A2) from 2010 to 2016, and the scaled eigenvector W 

from the arithmetic mean matrix over years (2010-2016) when pooling data over populations (see 

text for details). Extinction probability at a given time t corresponds to the number of trajectories 

for which N(t) < 1 over the total number of trajectories. T0.5 represents the time corresponding to an 

extinction probability equal to P = 0.5.
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Appendix G: Required values of lower-level vital rates for achieving population persistence in a 

deterministic model (λ
a
=1), using two different methods: lower-level vital rates values were either 

predicted from the elasticity values, or directly from the global mean matrix after pooling 

individuals over populations and years to obtain a single population. For both methods, we varied 

only one vital rate at a time, while keeping others at their observed value in the mean matrix.

Required value
Vital rates Observed 

value Elasticity 
prediction

Prediction from the 
global matrix

Survival of just-emerged seedling s0 0.477 0.811 0.790
Rosette survival s2 0.707 0.918 0.937
Fecundity term f 11.16 18.98 18.50


