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de Inmunologı́a de Colombia (FIDIC), Bogotá D.C., Colombia, 5 Universidad de Ciencias Aplicadas y

Ambientales (UDCA), Bogotá D.C., Colombia, 6 Basic Sciences Department, School of Medicine and Health
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Abstract

Recurrent pregnancy loss is a frequently occurring human infertility-related disease affect-

ing ~1% of women. It has been estimated that the cause remains unexplained in >50%

cases which strongly suggests that genetic factors may contribute towards the phenotype.

Concerning its molecular aetiology numerous studies have had limited success in identifying

the disease’s genetic causes. This might have been due to the fact that hundreds of genes

are involved in each physiological step necessary for guaranteeing reproductive success in

mammals. In such scenario, next generation sequencing provides a potentially interesting

tool for research into recurrent pregnancy loss causative mutations.

The present study involved whole-exome sequencing and an innovative bioinformatics

analysis, for the first time, in 49 unrelated women affected by recurrent pregnancy loss.

We identified 27 coding variants (22 genes) potentially related to the phenotype (41% of

patients). The affected genes, which were enriched by potentially deleterious sequence vari-

ants, belonged to distinct molecular cascades playing key roles in implantation/pregnancy

biology.

Using a quantum chemical approach method we established that mutations in MMP-10

and FGA proteins led to substantial energetic modifications suggesting an impact on their

functions and/or stability.

The next generation sequencing and bioinformatics approaches presented here repre-

sent an efficient way to find mutations, having potentially moderate/strong functional effects,

associated with recurrent pregnancy loss aetiology. We consider that some of these variants

(and genes) represent probable future biomarkers for recurrent pregnancy loss.
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Introduction

Recurrent pregnancy loss (RPL), defined as at least two/three pregnancy losses before the 20th

week of gestation, is a frequently occurring human infertility-related disease affecting ~0.8% to

1.4% of women in the general population [1] (and references therein). Several aetiologies and condi-

tions have been associated with RPL, such as parental and embryo chromosomal abnormalities,

prothrombotic states, uterine structural diseases, endocrinological dysfunctions, infections and

immunological factors [2]. However, despite significant advances in the clinical and biochemi-

cal diagnosis of human infertility, it has been estimated that the cause remains unexplained in

35% to 60% of RPL women, thereby strongly suggesting that genetic, epigenetic and environ-

mental factors may contribute towards the RPL phenotype [2,3].

Concerning the molecular aetiology of RPL, several studies have had limited success in

identifying the disease’s genetic causes. Numerous genes (e.g. AMN, THBD, PROCR, VEGF,

TP53, NOS3, JAK2) coding regions have been studied, in a significant number of patients,

but causative mutations have rarely been described [4–7] (and references therein). Due to the nat-

ural molecular complexity of each physiological step necessary for guaranteeing reproduc-

tive success in mammals accurately targeting of the genomic regions responsible for

complex traits has been challenging. Indeed, it has been shown that oocyte fecundation in

mammals, as well as embryo pre-implantation, implantation and early post-implantation

molecular pathways are controlled by hundreds of molecules which are finely regulated in

terms of gene expression [8–11].

It has been particularly difficult to determine a priority strategy in such scenario for

selecting coherent RPL candidate genes for direct sequencing. Alternative approaches, such

as genome-wide association studies (GWAS) and quantitative trait loci (QTL) mapping,

have been proposed for mapping loci related to the disease’s aetiology. GWAS, extensively

used during the past ten years for locating chromosomal regions and SNPs associated with

frequent diseases, has also been used in RPL research but it has not led to report consistent

molecular markers of the disease [12–14]. Some studies using a particular congenic mouse

model (the interspecific recombinant congenic strains-IRCS model), leading to QTL identi-

fication, have reported small chromosomal loci containing a limited number of candidate

genes related to embryonic resorption, a phenotype analogous to human RPL [15–18].

More recently, a functional association between FOXD1 mutations and RPL has been

described [19].

In such scenario, next generation sequencing (NGS) provides a potentially interesting

tool for research into RPL causative mutations. At present, NGS is a reliable technique

allowing simultaneous analysis of large genomic regions in numerous patients with afford-

able costs.

The present study thus involved whole-exome sequencing, for the first time, in unrelated

women affected by RPL. Innovative bioinformatics analysis was mainly based on studying

non-synonymous sequence variants in a subset of 234 RPL candidate genes.

27 coding variants in 22 genes potentially related to the phenotype were identified in 20 out

of 49 patients (41%). Using a quantum chemical approach method, we established that muta-

tions in MMP-10 and FGA led to substantial energetic modifications suggesting an impact on

protein function and/or stability. The NGS and bioinformatics approaches presented here rep-

resent an efficient way to find mutations, having potentially moderate/strong functional

effects, associated with RPL aetiology. We consider that some of these variants (and genes) rep-

resent potential future biomarkers for RPL.
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Materials and methods

Women affected by RPL

Forty-three Caucasian RPL-affected patients (Pt-1 through Pt-43) formed part of a previously-

established group (the Nı̂mes Obstetricians and Haematologists patient cohort) of women

suffering pregnancy loss [20]. Six additional Caucasian RPL patients (Pt-44 through Pt49)

attended the Rosario University’s Genetics and Genomics Centre (Bogotá, Colombia). All

patients displayed idiopathic RPL. They presented normal karyotypes and did not display uter-

ine malformations, antecedents of autoimmune, coagulation and/or metabolic disorders. All

cases lack familial antecedents of RPL. RPL women did not reported history of consanguinity.

Patients´ average age was 34 years old. Patients had experienced 2 to 7 primary idiopathic

pregnancy losses prior to the 20th week of gestation. Miscarriages occurring before 10 weeks of

gestation were considered embryonic (EL) while those recorded after such gestation age were

classified as foetal (FL). 40 women (82%) had suffered EL and 6 FL (12%). Three patients had

suffered both EL and FL (6%). S1 Table summarises the RPL group’s clinical characteristics.

All this study’s clinical and experimental steps were approved by the Institutional Ethics Com-

mittee of the Universidad del Rosario (Bogotá, Colombia) and the University of Montpellier

(France) (number: ABN026-000155). The clinical investigation was performed according to

the Helsinki Declaration of 1975, as revised in 1996. All the women had given their informed

consent to participate.

NGS, Sanger sequencing and bioinformatics analysis

Total DNA was extracted from patients’ blood leucocytes by conventional salting-out proce-

dure. Experimental details of library preparation, sequencing and bioinformatics analysis have

been included as S1 Methods. S2 Table includes the subset of 234 RPL (RPL-234) candidate

genes used for bioinformatics analysis. The S1 Fig describes the methodological pipeline for

creating the 234-RPL subset.

Structure preparation/modelling and Fragment Molecular Orbital (FMO)

calculations

Experimental details of protein structural analysis have been included as S1 Methods.

Statistical analyses

Comparisons between the RPL-234 subset of genes and the rest of the genome were performed

using a contingency χ2 test.

Results

Sequencing and bioinformatics analysis

All samples’ alignment ranged from 85%–98%. Almost 98% of the target at 1X depth was cov-

ered for all samples and more than 85% of the target was covered at 30X depth. Exome data

was uploaded to the NIH Short Read Archive repository (https://www.ncbi.nlm.nih.gov/sra)

(BioProject accession number: PRJNA325830; Short Read Archive- SRA accession number:

SRP114508).

RPL-234 data analysis revealed 15944 sequence variants (Fig 1). 249 of these were novel

(24685 when all the genes/exons were considered throughout the genome). One splice-site var-

iant was found which was not confirmed by direct sequencing (false positive). Among novel

RPL-234, 128 variants (51%) induced a protein change while 7839 (31.7%) affected the rest of
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the genome (All-Ex). The statistical comparative analysis of these proportions revealed that the

RPL-234 list is strongly enriched by this kind of variants (128 variants observed with 99

expected, p = 0.0005).

One hundred and twenty-seven heterozygous missense mutations were detected; 39 of them

had led to changes in residues which had been conserved during evolution (C+). Twenty-seven

C+ variants, affecting 20 patients, were positively verified via Sanger sequencing and considered

strong candidates related to RPL molecular aetiology (Fig 1, Table 1). Sixteen (80%) out 20 RPL

patients carrying aetiological candidate mutations were affected by EL while 10% (2/20) dis-

played FL. The rest of patients (10%) was affected by EL and FL.

Score values of potential deleterious effects calculated by 4 computational prediction pro-

grams are summarized in Table 2.

It is worth mentioning that mutations identified in F5 had originally been reported by

our bioinformatics analysis as F5 p.Glu1540Ala and F5 p.Thr1978Pro (compared to the F5

NP_000121.2 sequence). However, most studies published to date have reported F5 amino

acid positions following the original description by Jenny et al., in which signal peptide resi-

dues (Met1 through Ala28) are not considered for consecutive numbering. The first amino acid

(+1) in their sequence is Ala29 [21]. We have thus used the numbering reported by Jenny et al.,

in the present study to enable comparing our results with other studies. F5 p.Glu1540Ala and

F5 p.Thr1978Pro mutations (NP_000121.2 sequence) in the present work have thus been

described as F5 p.Glu1512Ala and F5 p.Thr1950Pro, respectively.

Fragment Molecular Orbital (FMO) analysis

The FMO method was used for studying FGA (fibrinogen alpha chain) (Fig 2) and MMP-10

(matrix metallopeptidase 10) (Fig 3) WT and MT structures regarding the effect of amino acid

Fig 1. Bioinformatics filtering of exome sequencing data. All-ex: Complete exome sequencing data excluding RPL-234 results. RPL-234:

group of RPL candidate genes. C+: sequence variants involving residues strictly conserved during evolution.

https://doi.org/10.1371/journal.pone.0186149.g001
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substitutions. We have selected these proteins for structural analysis because regions carrying

putative deleterious mutations were previously crystallized. We have found significant changes

in protein stability secondary to FGA- p.Phe685Cys and MMP10-p.Asp199Asn mutations,

which strongly suggest a deleterious effect leading to RPL.

Figs 2A and 3A show the calculated values for FGA and MMP-10 models, respectively.

Detailed information on results from FMO analysis has been included as S1 Results.

Discussion

The present work involved whole-exome sequencing in 49 non-related patients affected by

RPL. To increase the chances to find potential RPL causative mutations our attention was

focused on a subset of 234 candidate genes (RPL-234). The list included genes participating in

molecular cascades involved in the distinct stages of pregnancy (S2 Table). Since our patients

were unrelated, stringent filters (e.g. novel, non-synonymous, C+) were used in putative aetio-

logical mutation research, enabling the selection of rare variants having (hypothetically) mod-

erate/strong functional effects. This approach led us to identify 39 heterozygous sequence

variants, 27 of which (affecting 22 genes) were definitely validated by Sanger sequencing

(Table 1, Fig 1). These variants affected 41% of patients, thereby highlighting the fact that

Table 1. Sequence variants identified in RPL patients.

Patient ID Gene Mutation Biological process

CDS position Protein position

Pt-37 TRO c.2909G>A p.Gly970Asp Cell adhesion-trophoblast endometrium interaction

Pt-39 CDH11 c.1355C>G p.Ala452Gly

Pt-20 CDH1 c.164T>G p.Val55Gly

Pt-46 THBD c.457T>G p.Trp153Gly Coagulation

Pt-22 F5 c.4619A>C p.Glu1540Ala (p.Glu1512Ala)

Pt-22 F5 c.5932A>C p.Thr1978Pro

(p.Thr1950Pro)

Pt-16 FGA c.2054T>G p.Phe685Cys

Pt-45 MMP10 c.595G>A p. Asp199Asn Extracellular matrix remodeling

Pt-26 MMP9 c.17C>T p.Pro6Leu

Pt-28 COL6A3 c.6859C>T p.Arg2287Trp

Pt-29 ADAMTS1 c.2068G>C p.Val690Leu

Pt-45 TNC c.4063G>A p.Val1355Met

Pt-35 FLT1 c.953C>T p.Ser318Leu Angiogenesis

Pt-31 FLT1 c.2435G>A p. Arg812Gln

Pt-5 EPAS1 c.1510C>G p.Leu504Val

Pt-11 / Pt-17 EPAS1 c.1463A>G p.Tyr488Cys

Pt-4 LIFR c.2338C>T p.Arg780Cys Cell proliferation, differentiation, migration, apoptosis

Pt-36 FGFR2 c.1088C>T p.Ala363Val

Pt-19 BMP7 c.448C>T p.Arg150Cys

Pt-19 AMN c.207G>A p.Met69Ile Metabolism

Pt-5 IDO2 c.539T>G p.Phe180Cys Immunological function modulation

Pt-48 IDO2 c.749T>C p.Phe250Ser

Pt-26 CR1 c.4501A>G p.Thr1501Ala

Pt-28 TLR3 c.2384C>T p.Ala795Val

Pt-20 TRAF3IP1 c.415C>T p.Arg139Trp

Pt-14 NCOA1 c.2011T>G p.Ser671Ala Steroidal nuclear receptors activation

https://doi.org/10.1371/journal.pone.0186149.t001
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NGS is an efficient tool for screening the genetic causes of complex reproductive disorders.

Our statistical analysis revealed that the RPL-234 subgroup of genes was enriched (p = 0.0005)

by variants underlying potential functional effects (mutations leading to protein sequence

alteration). These findings corroborated that the analysis of a well selected group of genes

might be a powerful approach for dissecting complex diseases´ molecular aetiology (see

below). In a recent work Fonseca et al. reported using of custom target sequencing microar-

rays, in unrelated patients affected by premature ovarian failure, for identifying the genetic ori-

gin of this disorder [22]. In that study, which was performed on 70 candidate genes, 25% of

patients presented potential deleterious mutations.

The present study determined that genes carrying C+ mutations were involved in the fol-

lowing biological processes: cell adhesion (e.g. trophoblast/endometrium interaction), coagu-

lation, angiogenesis, immunological function response/modulation, metabolism (e.g. B12

vitamin), extracellular matrix remodelling, steroidal nuclear receptor activation and specific

cell function regulation (proliferation, differentiation, migration and apoptosis) (Table 1).

Concerning cell adhesion molecules, TRO (trophinin) holds particular interest since it has been

demonstrated to perform key functions during embryo implantation [23,24] (and references therein).

Pt-37 displayed the TRO p.Gly970Asp mutation in our present study which affected an evolution-

ary conserved amino acid located in the decapeptide tandem repeat domain. Due to natural

Table 2. Pathogenicity predictions.

Gene Protein position SIFT Polyphen Mutation taster Mutpred Total

PhyloP PhastCons Prediction

TRO p.Gly970Asp Tolerated (0.07) Probably damaging (0.999) 1.224 0.019 Polymorphism 0.379 1/4

CDH11 p.Ala452Gly Tolerated (0.38) Benign (0.197) 3.39 0.999 Disease causing 0.322 1/4

CDH1 p.Val55Gly Deleterious (0) Probably damaging (1) 3.938 1 Disease causing 0.821 4/4

THBD p.Trp153Gly Deleterious (0) Probably damaging (0.976) 3.847 0.987 Disease causing 0.716 4/4

F5 p.Thr1978Pro Deleterious (0) Benign (0.388) 3.052 1 Disease causing 0.889 3/4

p.Glu1540Ala Deleterious (0.02) Benign (0.185) 2.084 0.221 Polymorphism 0.455 1/4

FGA p.Phe685Cys Deleterious (0) Probably damaging (1) 5.158 1 Disease causing 0.960 4/4

MMP10 p. Asp199Asn Deleterious (0) Probably damaging (0.992) 5.238 1 Disease causing 0.711 4/4

MMP9 p.Pro6Leu Tolerated (0.4) Possibly damaging (0.824) 0.878 0.366 Polymorphism 0.461 1/4

COL6A3 p.Arg2287Trp Deleterious (0.02) Probably damaging (0.985) 1.479 0.003 Polymorphism 0.517 3/4

ADAMTS1 p.Val690Leu Tolerated (0.1) Benign (0.113) 4.077 1 Disease causing 0.547 2/4

TNC p.Val1355Met Tolerated (0.06) Benign (0.316) 1.239 0.843 Disease causing 0.674 2/4

FLT1 p.Ser318Leu Tolerated (0.16) Possibly damaging (0.794) 2.463 0.019 Polymorphism 0.472 1/4

p.Arg812Gln Tolerated (0.16) Benign (0.407) 6.18 1 Disease causing 0.334 1/4

EPAS1 p.Tyr488Cys Tolerated (0.08) Possibly damaging (0.687) 3.174 1 Disease causing 0.254 2/4

p.Leu504Val Deleterious (0) Probably damaging (0.979) 5.684 1 Disease causing 0.456 3/4

LIFR p.Arg780Cys Tolerated (0.07) Possibly damaging (0.542) 1.265 0.899 Polymorphism 0.577 2/4

FGFR2 p.Ala363Val Tolerated (0.34) Possibly damaging (0.492) 4.295 1 Disease causing 0.258 2/4

BMP7 p.Arg150Cys Deleterious (0) Probably damaging (0.952) 2.863 0.998 Disease causing 0.658 4/4

AMN p.Met69Ile Tolerated (0.05) Benign (0.016) 2.147 0.98 Disease causing 0.614 2/4

IDO2 p.Phe180Cys Deleterious (0) Probably damaging (1) 3.591 0.978 Disease causing 0.936 4/4

p.Phe250Ser Deleterious (0) Probably damaging (0.994) 2.707 1 Disease causing 0.795 4/4

CR1 p.Thr1501Ala Tolerated (0.3) Benign (0.076) -0.206 0 Polymorphism 0.540 1/4

TLR3 p.Ala795Val Tolerated (0.14) Probably damaging (0.961) 4.188 1 Disease causing 0.716 3/4

TRAF3IP1 p.Arg139Trp Tolerated (0.07) Probably damaging (0.928) 0.261 0.006 Polymorphism 0.603 2/4

NCOA1 p.Ser671Ala Tolerated (0.64) Benign (0.041) 0.447 0.997 Polymorphism 0.270 0/4

https://doi.org/10.1371/journal.pone.0186149.t002
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Fig 2. FMO results for FGA WT vs. MT. (A) Pair interaction decomposition analysis (PIEDA) contributions of amino acids interacting with position

199. Conserved interactions between WT and MT are shadowed in gray (energies are expressed in kcal/mol). (B) WT and (C) MT. Bar plots

describe the PIEDA of energy interaction terms: electrostatics (green), exchange-repulsion (red), charge-transfer (blue), dispersion (yellow), and

solvation (cyan). Positive values are considered destabilising and negative stabilising. (D) Overall view of the analysed system. In the red box a

detail of the mutation zone. (E) Detail of the amino acids interacting with Phe666 in FGA WT. (F) Detail of the amino acids interacting with Cys666 in

Novel mutations in women affected by recurrent pregnancy loss
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physicochemical differences between Gly and Asp residues, the p.Gly970Asp mutation might

modify the protein’s local or global properties (e.g. folding and binding) which might perturb tas-

tin/trophinin/bystin complex formation leading to embryo implantation disturbances and RPL.

NGS and filtering analysis led to identifying four mutations in three genes involved in coagulation

molecular pathways: coagulation factor V-F5 c.4619A>C (p.Glu1512Ala), F5 c.5932A>C (p.

Thr1950Pro), thrombomodulin-THBD c.457T>G (p.Trp153Gly) and fibrinogen alpha chain-

FGA c.2054T>G (p.Phe685Cys).

Although controversial results have been published to date regarding F5 and RPL origin,

it can be considered a coherent candidate due to its inherent function during coagulation

[25,26] (and references therein). The F5-p.Glu1512Ala mutation (Pt-22) is located in the B protein

domain which encompasses amino acids Ser710–Arg1545 [27] (considerations regarding F5 res-

idue numbering have been included in the results section). It has been shown that the residue

Arg1545 has a large impact on F5-F10 interaction which is necessary for generating fully-acti-

vated F5, probably during late coagulation stages (e.g. when thrombin levels are still low)

[27,28]. Furthermore, the B domain contains an acidic region (AR) between the Thr1493 and

Asp1537 residues interacting with a basic region to keep F5 as an inactive form (procofactor)

[29]. It has been shown that the Asp1508-Tyr1515 region is necessary for procofactor cleavage by

thrombin and light chain formation [30]. It can thus be assumed that the C-terminal region of

the B domain (e.g. AR and Arg1545) is crucial for protein activation/inactivation and guaran-

teeing proper equilibrium between F5 procoagulant and anticoagulant properties in normal

conditions. The second mutation, also carried by Pt-22, which we have identified in F5 (p.

Thr1950Pro), is located in the protein’s C1 domain near to functionally-relevant amino acids

(Tyr1956, Leu1957) necessary for prothrombinase complex (PC) assembly on phosphatidylserine

membranes and thrombin production regulation [31]. The p.Thr1950Pro mutation could

interfere with normal PC function, leading to changes in thrombin bioavailability and coagula-

tion imbalance. As already described for further F5 missense mutations, p.Glu1512Ala and p.

Thr1950Pro might also be related to abnormal cytoplasmic retention, thereby contributing

towards the phenotype [27].

THBD is a cell plasma membrane glycoprotein which is mainly expressed in blood vessels

and placental syncytiotrophoblast participating in distinct biological processes, such as coagula-

tion, complement activation, fibrinolysis, inflammation and cell proliferation [32–34]. THBD

has been described as an anticoagulant factor by enhancing protein C activation and decreasing

thrombin specificity [35]. Mice lacking Thbd die secondary to developmental failure of placenta

associated with abnormal activation of blood coagulation cascade at the foetal-maternal inter-

face [36,37]. The THBD-p.Trp153Gly mutation that we have identified in Pt-46 is located at the

end of the C-type lectin-like module (the protein’s N-terminal region) which has mainly been

linked with anti-inflammatory activity and cell adhesion [33] (and references therein). The THBD-p.

Trp153Gly mutant protein might therefore contribute to placental endothelial dysfunction and/

or coagulation imbalance.

FGA encodes the fibrinogen alpha subunit, a glycoprotein having several functions during

coagulation physiology, such as fibrin clot formation, non-substrate thrombin binding, platelet

aggregation and fibrinolysis. FGA mutations, especially drastic biallelic variants, have been

associated with afibrinogenemia, a rare bleeding disorder [38,39]. FGA heterozygous missense

mutations have been identified in patients affected by dysfibrinogenemia, a blood disorder

having an unpredictable clinical phenotype due to abnormal fibrinogen quality [39,40].

FGA WT. The phenylalanine mutated residue located at position 685 corresponds, into the crystallographic structure, to the amino acid located at

position 666. Therefore, for FMO approach we have used Phe666 instead Phe685.

https://doi.org/10.1371/journal.pone.0186149.g002
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Fig 3. FMO results for MMP-10 WT vs. MT. (A) PIEDA contributions of amino acids interacting with position 199, conserved interactions between

WT and MT are shadowed in gray (energies are expressed in kcal/mol). (B) WT and (C) MT. Bar plots describe the PIEDA of energy interaction

terms: electrostatics (green), exchange-repulsion (red), charge-transfer (blue), dispersion (yellow), and solvation (cyan). Positive values are

considered destabilising and negative stabilizing. (D) Overall view of the analysed system. In the red box, a detail of the mutation zone. (E) Detail of

the amino acids and ions interacting with the Asp199 in MMP-10 WT. (F) Detail of the amino acids and ions interacting with the Asn199 in MMP-10.

https://doi.org/10.1371/journal.pone.0186149.g003
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Similarly to the variants described above affecting coagulation physiology, FGA-p.Phe685Cys

mutation in Pt-16 may affect protein folding, thus leading to functional disturbances. In this

case, substituting a phenylalanine for a cysteine in position 685 implies a particularly drastic

change in terms of physicochemical properties.

Regarding the FMO analysis, it is important to note that we used FGA and MMP-10 pro-

teins for structural analysis because previous studies of the affected regions (based on cristalli-

zation assays) revealed reliable/exploitable data. The FGA modelled mutation (Phe to Cys in

position 666) involved changes in stabilising interactions (Fig 2). The mutation resulted in a

major change in total interaction energy from -39.67 (WT) to -2.38 (MT) kcal/mol (almost

20-fold). The loss of three non-classical H-bonds (CH-π interactions) contributed to FGA MT

protein destabilisation.

Similarly, further analyses revealed changes of one order of magnitude concerning stabilis-

ing interactions between wild-type (MMP-10 WT) and mutant (MMP-10 MT) forms of matrix

metallopeptidase 10 (MMP-10) in total interaction energies (-108.45 kcal/mol WT vs. -11.98

kcal/mol MT). MMP-10 Asn199 MT lost all but one stabilising interaction, including strong

interactions, such as a salt bridge (Lys165) and the block containing structural Zn2+ (Fig 3).

These findings strongly suggested a significant change in protein stability. Interestingly, Pt-45

displayed 3 early losses which is coherent with the key role of MMP-10 during the invasive

process of implantation [41,42]. In conclusion, our computational chemistry calculations of

MMP-10 and FGA mutations thus argued strongly in favour of pathogenic effects.

Regarding variants belonging to additional biological processes IDO2-p.Phe180Cys,

IDO2-p.Phe250Ser, LIFR-p.Arg780Cys, TLR3-p.Ala795Val, EPAS1-p.Tyr488Cys and EPAS1-

p.Leu504Val are particularly interesting because they affected factors (indoleamine 2,3-dioxy-

genase–IDO2, leukemia inhibitory factor receptor alpha-LIFR, toll like receptor 3-TLR3, endo-

thelial PAS domain protein 1-EPAS1) playing key roles during pregnancy and/or due to the

mutations’ molecular nature. Although screening large cohorts of RPL individuals is necessary,

the EPAS-p.Tyr488Cys mutation might represent a mutational hotspot as it was present in two

unrelated patients.

In the present study, we have used 4 bioinformatic tools to predict pathogenicity caused by

C+ mutations. We have chosen these programs as they have demonstrated high levels of posi-

tive prediction values [43,44]. Seven out 26 (27%) mutations displayed scores compatible with

deleterious effects in all tested programs: CDH1-p.Val55Gly, THBD-p.Trp153Gly, FGA-p.

Phe685Cys, BMP7-p.Arg150Cys, IDO2-p.Phe180Cys, IDO2-p.Phe250Ser and MMP-10-p.

Asp199Asn (Table 2).

Interestingly, 35% of patients (Pt-5, Pt-19, Pt-20, Pt-22, Pt-26, Pt-28 and Pt-45) had two

direct sequencing confirmed C+ sequence variants. The genes affected by these mutations in

Pt-5, Pt-19 and Pt-20 are known to have functions in distinct biological processes. However,

both mutations carried by Pt-22 or Pt-45 involved genes participating in common biological

processes: Pt-22 had two variants in F5 (coagulation) while Pt-45 presented variants in MMP-

10 and TNC (extracellular matrix remodelling). Furthermore, Pt-26 and Pt-28 were carriers of

mutations present in genes (Pt-26: MMP-9 and CR1; Pt-28: COL6A3 and TLR3) affecting the

same biological processes (extracellular matrix remodelling and immunological function mod-

ulation). These findings thus suggest that distinct variants’ additive/epistatic effects contribute

towards RPL aetiology. Indeed, physiological (and pathological) reproductive phenotypes can

be considered quantitative traits resulting from the subtle interaction of hundreds of genes.

This scenario, as well as the fact that infertility genetic causative variants are under strong neg-

ative selection, evokes that reproductive biological processes are modulated by functionally-

redundant molecular cascades.
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Concerning segregation analysis of potentially functional variants we did propose to most

of our RPL patients the idea of contacting their parents regarding their participation in our

study but, unfortunately, they decided not to involve their families.

Taken together, our findings add valuable information regarding the maternal molecular

origin of RPL and must be the starting point for further functional in vitro and in vivo studies.

To note, RPL has to be considered as the result of a complex combination of maternal/paternal

factors, thereby molecular exploration of potential paternal dysfunctions is needed [45]. The

bioinformatics analysis presented here represents an efficient approach of identifying muta-

tions (having potentially moderate/strong functional effects) associated with RPL aetiology.

We hope that some of these variants (and genes) will be used, after their definitive functional

validation, as RPL biomarkers.
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royo, Daniel Vaiman, Jean-Christophe Gris, Paul Laissue.

Funding acquisition: Paul Laissue.

Investigation: Paula Quintero-Ronderos, Eric Mercier, Michiko Fukuda, Ronald González,
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Resources: Eric Mercier, Ronald González, Manuel Alfonso Patarroyo, Jean-Christophe Gris,

Paul Laissue.
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