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ARTICLE

A phase transformable ultrastable titanium-
carboxylate framework for photoconduction
Sujing Wang1,2, Takashi Kitao3,4,11,12, Nathalie Guillou2, Mohammad Wahiduzzaman 5,

Charlotte Martineau-Corcos2,6, Farid Nouar1,2, Antoine Tissot1,2, Laurent Binet7, Naseem Ramsahye5,

Sabine Devautour-Vinot5, Susumu Kitagawa3,8, Shu Seki 9, Yusuke Tsutsui9, Valérie Briois10,

Nathalie Steunou2, Guillaume Maurin5, Takashi Uemura3,4,11,12 & Christian Serre1,2

Porous titanium oxide materials are attractive for energy-related applications. However, many

suffer from poor stability and crystallinity. Here we present a robust nanoporous

metal–organic framework (MOF), comprising a Ti12O15 oxocluster and a tetracarboxylate

ligand, achieved through a scalable synthesis. This material undergoes an unusual irreversible

thermally induced phase transformation that generates a highly crystalline porous product

with an infinite inorganic moiety of a very high condensation degree. Preliminary photo-

physical experiments indicate that the product after phase transformation exhibits photo-

conductive behavior, highlighting the impact of inorganic unit dimensionality on the alteration

of physical properties. Introduction of a conductive polymer into its pores leads to a sig-

nificant increase of the charge separation lifetime under irradiation. Additionally, the inor-

ganic unit of this Ti-MOF can be easily modified via doping with other metal elements. The

combined advantages of this compound make it a promising functional scaffold for practical

applications.
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T itanium oxide (Ti–O) compounds represent a well-known
family of materials that are widely involved in current
human life. Titanium dioxide (TiO2), the most recognized

member of this family, which features low toxicity, high natural
abundance, and remarkable stability not only plays an essential
role as a common component in everyday items (toothpaste,
paint, sun cream, food pigment, plastic, rubber, etc.), but also has
significant potential to contribute to the advanced fields related to
energy systems (photocatalysis and solar cells)1–3 owing to its
promising electrochemical properties4, 5. Introduction of porosity
into the TiO2 structure is an efficient way to tune or improve its
current performance by increasing accessible active sites and the
diffusion of reactants and products, while opening the new pos-
sibility of its application in other domains6. Unfortunately, the
recently discovered porous TiO2 is limited by a decrease in the
crystallinity and stability of the resulting materials, which strongly
reduces the utility of its favorable properties7. Similarly, other
porous crystalline Ti–O solids, such as Ti-silicates and Ti-phos-
phates, suffer from insufficient Ti content8 and a low accessible
porosity9. Therefore, the discovery of novel porous Ti–O-based
materials with highly ordered crystalline structures, integrating
the properties of existing Ti–O compounds with those of ordered
porous materials, opens new horizons in health and sustainable
applications.

In this context, the field of metal–organic frameworks (MOFs)
may be able to offer a tentative solution to the aforementioned
limitations. MOFs are three-dimensional (3D) hybrid solids
composed of metal ions or clusters interlinked by organic
molecules10. The unprecedented chemical and structural diversity
displayed by MOFs has led to the development of highly porous
architectures, paving the way toward potential applications such
as separation, gas storage, and catalysis11–13. However, the field of
Ti-MOFs is still in the early stage of its development, mainly due
to the challenge of controlling titanium chemistry in solution.
Very few examples of crystalline Ti-MOFs obtained from direct
synthesis have been reported14 since the first example was dis-
covered in 2006 (MIL-91)15. None of the porous Ti-MOFs could
meet the practical application requirements owing to several
drawbacks, such as costly precursors, complex syntheses, toxic
non-scalable reaction conditions, poor chemical stability, and
limited porosity16–24. In addition, as the inorganic building
blocks of Ti-MOFs are either discrete Ti ions, Ti-oxoclusters, or
corner-sharing chains of Ti octahedra, the corresponding struc-
tures tend to show a low ratio of oxo-groups to Ti(IV) ions (oxo/
Ti ≤ 1). In titanium chemistry, the oxo/Ti ratio of a Ti–O com-
pound (also known as the condensation degree) is a critical
parameter for the evaluation of its properties compared to those
of TiO2

25. The higher this ratio, the closer the behavior of the
material is to that of TiO2. The focus is thus on the discovery of
new Ti-MOFs that feature a highly ordered, crystalline, porous
structure whose constituents are Ti–O-based inorganic units with
a high condensation degree (>1) and long-term stability. For
practical applications, these materials should also be prepared
under scalable conditions using simple and less harmful starting
regents.

We report herein a porous 3D mdip-based Ti-MOF, namely
MIL-177-LT (MIL stands for Materials from Institut Lavoisier,
LT for low temperature form and mdip for 3,3′,5,5′-tetra-
carboxydiphenylmethane), also denoted MIP-177-LT (MIP
stands for Materials from Institute of Porous Materials of Paris).
MIL-177-LT, with the formula Ti12O15(mdip)3(formate)6, was
prepared under mild, scalable reaction conditions by simply
refluxing a mixture of Ti(iPrO)4, H4mdip and formic acid. Its
honeycomb crystal structure, which features nano-sized pores, is
composed of a Ti12O15 cluster secondary building unit (SBU)
with a high condensation degree of 1.25, surpassing that of all

previously reported Ti-MOFs. Furthermore, MIL-177-LT can
survive under extremely acidic conditions, including aqua regia
and concentrated H3PO4. One can also introduce, through a
direct synthesis, significant amounts of iron(III) into this struc-
ture with adjustable ratios and homogeneous distributions, in
order to tune the electrical conductive behavior of the solid. It is
worth noting that a thermally induced phase transformation of
MIL-177-LT to its high-temperature (HT) form, MIL-177-HT,
leads to the formation of a one-dimensional (1D) infinite Ti–O
subunit (Ti6O9)n with an even higher condensation degree of 1.5,
while maintaining its highly crystalline porous architecture. This
high-temperature form displays a strongly enhanced photo-
responsive ability, as compared to MIL-177-LT, and far exceeds
the performance of other discrete SBU-based Ti-MOFs, such as
MIL-12516. In addition, the introduction of conductive poly-
thiophene into its pores gives rise to an enhanced charge
separation lifetime upon irradiation. To the best of our knowl-
edge, this serves as the first example in porous materials, MOFs or
otherwise, that demonstrates the alteration of the dimensionality
of the inorganic building unit as an efficient way of tuning the
physical properties.

Results
Overview. Essential features of this work are described in Fig. 1,
including the thermally induced structural transformation from
the MIL-177-LT structure to the MIL-177-HT one with the
corresponding increase of the condensation degree (oxo/Ti ratio)
from 1.25 to 1.5, the fabrication of MOF/polymer composite to
enhance the photoconductive properties of MIL-177-HT and the
doping with other metal species into the inorganic unit of MIL-
177 to modify its physical and chemical properties.

Synthesis and characterization. MIL-177-LT was synthesized by
refluxing a mixture of Ti(iPrO)4 and H4mdip in formic acid
under ambient pressure (Supplementary Methods), generating
hexagonal rod product particles with a uniform size distribution
(Fig. 2a). Activation was achieved through a simple wash with
ethanol at room temperature. The preparation and activation
steps involve simple processes and less harmful chemicals than
those used for the syntheses of other reported Ti-MOFs,
allowing for facile scale-up. For instance, 100 g of MOF
product can be obtained from a single reaction in a 2L round
bottom flask. The structure of MIL-177-LT, determined by
combining high-resolution powder X-ray diffraction (PXRD)
data (Fig. 2b, Supplementary Table 1, and Supplementary
Note 1) and density functional theory (DFT) calculations (Fig. 2c,
Supplementary Table 2, and Supplementary Note 2), crystallizes
in a hexagonal space group P6/mmm with unit cell parameters of
a= b= 22.5943(4) Å, c= 12.3060(3) Å, and V= 5440.6(2) Å3. Its
Ti12O15 cluster SBU consists of a central cyclic hexamer of Ti
octahedra capped above and below by corner-sharing
trimers of Ti octahedra (Fig. 2d). It is strongly related to a pre-
viously reported molecular Ti-oxocluster26 with a condensation
degree of 1.25, which is higher than that of all other
reported Ti-MOFs. Adjacent SBUs are linked by both formate
ions and mdip linkers. Each mdip ligand connects four Ti-
oxoclusters. Formates play two roles: the first is to bridge
pairs of adjacent Ti ions in the cyclic hexamer, pointing toward
the pore interspace; the second is to ensure the linkage of SBUs
along the c-axis (Fig. 2e). The resulting 3D pore system features
large (ca. 1.1 nm) accessible hexagonal channels running along
the c-axis, as well as very narrow (ca. 0.3 nm) channels
along the a–b plane, characteristic of a typical bnn topological
network (Fig. 2f–i). Nitrogen porosimetry gives a Brunauer-
Emmett-Teller (BET) area of 730(10) m2 g−1 and a free pore
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volume of 0.47(8) cm3 g−1 (Supplementary Fig. 6), consistent
with the theoretical values of 700 m2 g−1 and 0.47 cm3 g−1,
respectively. The other characterization results, such as thermo-
gravimetric analysis (TGA), temperature-dependent PXRD, ele-
mental analysis, were included in the Supplementary Information
(Supplementary Fig. 1–9, Supplementary Table 3, and Supple-
mentary Note 3).

Chemical stability. MIL-177-LT remains intact in water at room
temperature for months (Supplementary Fig. 10). However,
exposure to boiling water leads to a progressive decrease of
crystallinity during the first 12 h but does not further
damage the structure afterward, possibly due to the formation of
a very thin amorphous titanium oxide layer over the MOF sur-
face, which could efficiently slow down the hydrolysis of MIL-
177-LT particles. A similar trend was noticed under moderately
basic aqueous conditions. Like other water-stable MOFs based on
group IV metals, the framework of MIL-177-LT is easily
destroyed by strong bases, such as NH4OH vapor. Nevertheless,
MIL-177-LT possesses an excellent stability against extremely
acidic conditions at room temperature, easily tolerating con-
centrated HCl (37%), HNO3 (65%), and H2SO4 (98%); even aqua
regia and concentrated H3PO4 (6M) did not induce
significant deterioration of the structure. Notably, no MOF
compound that survives in such a high concentration of H3PO4

has been reported so far, since H3PO4 is extraordinarily
destructive to MOF materials. As a result, only stability tests on
MOFs at low concentrations of H3PO4 could be found27, 28. NH2-
MIL-125 shows a good water stability and was thus selected for
comparison. In contrast to MIL-177-LT, NH2-MIL-125 under-
goes a much more rapid degradation under all the conditions
tested.

Analysis by PXRD of MIL-177-LT samples, before and after
treatment with acid, indicates that the crystal structure is largely
unaffected despite slight changes in the relative intensities of
some peaks (Fig. 3a). Spectra obtained from solid-state NMR
demonstrated no substantial difference before and after the acid
treatments, verifying that the coordination and connection of
mdip linkers to the SBU remain unchanged (Supplementary
Fig. 11). The porosity is also retained, although a slight reduction
of nitrogen uptake is observed in some cases (Fig. 3b). This is
likely due to the presence of residual acidic species trapped inside

the pores, as evidenced by SEM-EDX and FT-IR (Supplementary
Table 4 and Supplementary Fig. 12). Interestingly, the sample
exhibits even higher porosity after treatment with aqua regia
compared to the as-synthesized compound. As previously
observed for other metal(IV)-based MOFs, this could be due to
a thorough cleaning of the initially inaccessible porosity upon this
acidic treatment29.

To the best of our knowledge, MIL-177-LT represents the first
example of a carboxylate-based MOF that is resistant to the
aforementioned extremely acidic conditions, especially aqua regia
and concentrated H3PO4. This is clearly a leap forward in terms
of chemical stability, not only for Ti-MOFs, but also for the entire
carboxylate-based MOF subclass.

Modification of the inorganic moiety in the MIL-177-LT
structure. It is worth noting that the MIL-177-LT structure
possesses a large potential for further modification to the inor-
ganic Ti12O15 cluster moiety. The first possibility involves the
terminal formates that are pointing toward the nano-sized
channel. These groups can either generate unsaturated metal
sites upon the departure of the terminal species, or undergo
exchange reactions with functional groups or molecules, such as
hydroxyls, water, carboxylic acids, sulfonic acids, and phos-
phorous acid derivatives, as reported previously for the other
metal-oxocluster-based MOFs30–32. A second possibility arises
from the introduction of metal elements, including transition
metals (V, Cr, Mn, Fe, Co, Ni, Cu, Ru, Nb…) and main group
metals (Sn, In…), that can easily replace Ti atoms in the SBU.
This can be achieved by direct synthesis with the intended metal,
with adjustable ratios and homogeneous distributions. To that
end, an iron-doped MIL-177-LT sample was prepared (Supple-
mentary Methods) and the homogeneous introduction of ca. 11%
Fe(III) (atomic ratio based on Ti) was confirmed through a
combination of advanced characterizations, namely energy-
dispersed X-ray spectroscopy, magnetic measurements, electron
paramagnetic resonance, and extended X-ray absorption fine
structure (Supplementary Figs. 26–34, Supplementary Tables 5–8,
and Supplementary Notes 5 and 6). This is of particular impor-
tance in the tuning of the chemical and physical properties of
MIL-177-LT as it is well documented that doping with other
elements is a powerful strategy to enhance or modify the func-
tionalities of bulk TiO2

33, 34.

Donor polymer

Perfectly alternating
donor–acceptor architecture

Thermally induced structural transformation

Metal ion

Metal doping

Infinite Ti–O network

Oxo/Ti=1.5

Discrete Ti–O clusters

Oxo/Ti=1.25

h+

e–

Fig. 1 Structural transformation of and modification to MIL-177 MOFs. A thermally induced structural transformation of the discrete Ti12O15 cluster SBUs
linked by bridging formates in MIL-177-LT structure (left) to 1D infinite (Ti6O9)n nanowires in MIL-177-HT structure (middle) is observed with an increase
of the condensation degree from 1.25 to 1.5. Introduction of conductive polythiophene into the pores of MIL-177-HT gives rise to a perfectly alternating
donor–acceptor architecture for photoconduction application (right top). Other metal species can be doped into the inorganic unit of MIL-177 to introduce
modification to its properties (right bottom)
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A thermally induced irreversible phase transformation. When
MIL-177-LT is calcined at 280 °C for 12 h, it transforms irre-
versibly into MIL-177-HT (Fig. 4a). The structure has been
determined and refined through PXRD (Fig. 4b) and DFT cal-
culations (Fig. 4c). Remarkably, the terminal and bridging for-
mates in the LT structure were removed, resulting in an unusual
rearrangement of Ti–O bond connections: the discrete Ti12O15

clusters in MIL-177-LT were transformed into a 1D infinite
(Ti6O9)n nanowire (Fig. 4d) with a condensation degree of 1.5,
unprecedented among all Ti-MOFs. The nanowire is composed of
edge-sharing trigonal pyramidal Ti6O9 clusters. The same hex-
amer is found in the TiO2 anatase structure and a recently dis-
covered bimetallic Ti–Cu-MOF35. The mdip linker adopts a
similar coordination geometry as in the MIL-177-LT structure,
connecting neighboring nanowires together to complete the 3D
framework (Fig. 4e, f). These ultrathin Ti–O nanowires with a
diameter of only ca. 1.0 nm are inaccessible using conventional
inorganic syntheses, including sol-gel synthesis, thermal and

chemical bath deposition36, 37. Another detail worth mentioning
is that the large hexagonal channels are retained in the MIL-177-
HT structure with a slightly contracted diameter of ca. 0.9 nm,
associated with a BET area of 690(10) m2 g−1 and a free pore
volume of 0.45(5) cm3 g−1 (Supplementary Fig. 6). This is con-
sistent with the theoretical nitrogen-accessible surface area of 800
m2 g−1 and free pore volume of 0.40 cm3 g−1, respectively.

To the best of our knowledge, an increase in the dimensionality
of the inorganic building unit during structural phase transfor-
mation, such as connecting 0D clusters into 1D infinite chains or
1D chains into 2D layers through coordination bonds, is a
universal observation for solid-state materials. Typically, however,
the poor crystallinity of the corresponding product and the lack
of efficient analytical methods result in difficulty with character-
ization. Consequently, very few examples have been reported,
particularly for MOFs compounds38–40. In light of this, MIL-177-
LT and HT represent an appropriate system of fundamental
interest. MIL-177-HT can be obtained when doped with different
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Fig. 2 Structural characterization and detail of MIL-177-LT. a SEM image of MIL-177-LT particles with a hexagonal rod morphology and a uniform size
distribution. b Final Rietveld plot of MIL-177-LT structure. c Comparison of the PXRD patterns obtained from experimental data, theoretically derived
minimum energy structure and refined structure model of MIL-177-LT. d A Ti12O15 cluster SBU with 12 carboxylate groups from mdip linkers (in gray) and
terminal formate groups (in red). e Adjacent Ti12O15 cluster SBUs with terminal and bridging formates (in red) connected by mdip linkers (in gray). f Nano-
sized channels with a free diameter of 1.1 nm when viewed along the c-axis. g Small channels of 0.3 nm windows when viewed along the b-axis. h Overall
pore shape of MIL-177-LT framework. i bnn topological network of MIL-177-LT
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metals, leading to a family of HT compounds that comprise the
doped Ti–O nanowire array in their structures. As a typical
illustration, the electrical conductive performance recorded at 1
Hz and 373 K shows an increase of 5.2 × 10−14 S cm−1 to 1.5 × 10
−10 S cm−1 upon Fe doping, nearly four orders of magnitude
(Supplementary Figs. 26–34, Supplementary Tables 5–8, and
Supplementary Notes 5 and 6). This change is most probably due

to the fact that the iron doping is expected not only to inject free
charge carriers, but also to facilitate charge carrier movement.

Photoconductivity. To analyze the impact of the dimensionality
change of the SBU in MIL-177 (LT: 0D; HT: 1D), the physical
properties were studied from both experimental and theoretical
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Fig. 4 Structural characterization and detail of MIL-177-HT. a PXRD comparison between MIL-177-LT and HT compounds. b. Final Rietveld plot of
MIL-177-HT structure. c Comparison of the PXRD patterns obtained from experimental data, theoretically derived minimum energy structure and refined
structure model of MIL-177-HT. d Adjacent infinite ultrathin (Ti6O9)n nanowires with a thickness of ca. 1 nm connected by mdip linkers (in gray). e
Channels between the (Ti6O9)n nanowires array running along the c-axis with a diameter of ca. 0.9 nm. f Small channels of 0.3 nm windows retained when
viewed along the b-axis of the MIL-177-HT crystal structure
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points of view. First, the diffuse reflectance spectra collected at
300 K revealed an experimental band gap of 3.67 eV for MIL-177-
HT (Supplementary Fig. 14). This value is comparable to that of
bulk anatase (3.2 eV)41, nano-sized anatase (3.4–3.9 eV)42, and
other reported Ti-oxocluster-based MOFs such as MIL-125 (3.7
eV)43 and COK-69 (3.8 eV)21. DFT calculations using the HSE06
hybrid functional confirmed these values: 3.5 eV for MIL-177-HT
and 3.3 eV for anatase. In addition, further information on the
electronic structures of both anatase and MIL-177-HT were
obtained from the analysis of the projected density of states
(PDOS) calculated using the PBEsol functional. For MIL-177-HT,
the valence band mainly consists of states from the oxygen atoms,
as well as a small contribution from the carbon atoms; the tita-
nium atoms contribute more heavily to the conduction band,
rather than the valence, as in the case of anatase (Fig. 5a and
Supplementary Figs. 15 and 16).

Next, photophysical properties were analyzed through flash
photolysis time-resolved microwave conductivity
(FP-TRMC) measurements and compared with TiO2 and another
Ti-oxocluster-based MOF, MIL-12544 (Fig. 5b). As expected,
MIL-177-LT and MIL-125, both composed of discrete
Ti–O cluster SBUs, generate extremely weak photoconductivity
signals upon ultraviolet (UV) laser irradiation (λ= 266 nm) due
to the lack of conduction pathways in their frameworks. In sharp
contrast, a pronounced photoconductivity signal is observed for

MIL-177-HT under the same condition. The carrier mobility in
MIL-177-HT was calculated to be at least 4 × 10−4 cm2 s−1 V−1

(Supplementary Fig. 17), which is comparable to those of well-
known nano-sized TiO2 materials45, 46. Recently, conductive
MOFs have attracted considerable attention; however, this
research field had mainly focused on the electrically conductive
materials47–51. Until now, very few photoconductive MOFs have
been documented and their photoconductivity mainly comes
from photoactive organic linkers52, 53. Therefore, to the best of
our knowledge, MIL-177-HT is the first MOF whose photo-
conductivity arises mainly from the inorganic infinite Ti–O
building unit. This also strongly suggests that the photoconduc-
tivity of a coordination polymer can be tuned by increasing the
dimensionality of its inorganic building unit.

In order to decrease the band gap of MIL-177-HT, thereby
improving its photoactivity, one can follow the conventional
strategy of combining TiO2 and conjugated polymers54. As
reported previously for other large pore MOFs, the nano-sized
channel in MIL-177-HT makes it an ideal host system to
accommodate polymer chains55–57. This could lead to a perfectly
alternating donor/acceptor architecture at the molecular level
between the accommodated polymer and MOF host, forming a
large interface for charge separation and providing ambipolar
pathways. To that end, the pores of MIL-177-LT (MIL-177-
LT⊃PTh) and MIL-177-HT (MIL-177-HT⊃PTh) were filled with
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polythiophene (PTh) to form composites (Supplementary
Figs. 19–25) and the photoconductive performances of the
materials were investigated (see “Methods” for details). In
contrast to the original host, MIL-177-HT⊃PTh displays
a clear photoconductivity signal when excited with a 355 nm
laser beam due to the visible light sensitization with PTh (Fig. 5c).
However, the photoconductivity of MIL-177-LT⊃PTh was found
to be much lower than that of MIL-177-HT⊃PTh, highlighting
the key role that the infinite Ti–O sub-network in MIL-177-HT
plays in the facilitation of effective charge migration. An even
more striking result was obtained from the analysis of the charge
carrier lifetime. The charge carriers generated in MIL-177-
HT⊃PTh under photoexcitation were extremely long lived.
Individually, the host (MIL-177-HT) and neat PTh exhibited
photoconductivity signals with a rapid decay; the half
lifetimes (τ1/2) of the charge carriers in MIL-177-HT and neat
PTh were calculated to be 2.2 μs and 0.7 μs, respectively (Fig. 5c).
However, the lifetime for MIL-177-HT⊃PTh was remarkably
extended into the millisecond range (τ1/2= 1.0 ms). The forma-
tion of the infinite Ti–O network in MIL-177-HT enabled the
prolonged charge carrier lifetime, as revealed through the
comparison with MIL-177-LT (τ1/2= 100 μs) and the electro-
inactive MOF MIL-103(La)58 (τ1/2= 2.1 μs) as host matrices
(Fig. 5d). The observed carrier lifetime in MIL-177-HT⊃PTh is
among the longest observed for solid-state dye-sensitized Ti–O
systems59. These results suggest that the aligned bicontinuous
conduction pathway accounts for the long-distance charge
delocalization and the exceptional long-term charge retention.
Our findings reveal that the hybridization of donor polymer and
acceptor MOF provides the ideal architecture for charge
separation, which appears to be a very promising model system
for the understanding and further development of efficient
photoenergy conversion devices. Nevertheless, due to the
complexity of the MOF and composite system, more information
about its photoconductive behavior, optimization of its perfor-
mance, and detailed investigation are still needed to fully
understand the mechanisms in play.

MIL-177-LT, a novel nanoporous titanium–carboxylate frame-
work material, has been successfully prepared via an easily
scalable synthesis using less harmful chemicals. The material
features robust nano-sized porosity, a high condensation degree,
and excellent chemical stability in extremely acidic conditions, as
well as a platform for further functionalization through the
inorganic building unit. Upon heating, an unusual irreversible
phase transformation occurs forming MIL-177-HT, a porous
crystalline Ti-MOF based on ultrathin Ti–O nanowires separated
by mdip linkers. MIL-177-HT possesses the highest condensation
degree in Ti-MOFs reported so far. Preliminary photoconductiv-
ity tests demonstrate the utility of the 1D infinite Ti–O nanowire
SBU in MIL-177-HT, in comparison with the discrete SBU-based
Ti-MOFs, producing a photoresponsive behavior comparable to
that of bulk TiO2. Finally, a MOF-conductive polymer composite
MIL-177-HT⊃PTh displays considerable photoconductivity with
a notably long lifetime as a result of its efficient alternating donor/
acceptor architecture. MIL-177 not only outperforms all the other
reported Ti-MOFs (e.g., NH2-MIL-125, MOF-901, PCN-22, and
COK-69) in terms of its simpler synthesis and excellent stability
with considerable porosity, but also displays photoresponsive
behavior close to that of TiO2. Considering all the aforemen-
tioned characteristics, MIL-177 reveals itself to be a promising
functional scaffold, paving the way for Ti-MOFs toward practical
applications.

Methods
Typical synthesis of MIL-177-LT. To a 25 mL round bottom flask, H4mdip (200
mg, 0.58 mmol) and formic acid (10 mL) were added and stirred at room

temperature until the solid dispersed uniformly. Then Ti(iPrO)4 (400 µL, 1.32
mmol) was added dropwise, to avoid formation of large pieces of white precipitate.
Afterward, the reaction mixture was heated under reflux for 24 h. After cooling to
room temperature, the white solid product was filtered under reduced pressure and
washed with ethanol. Large-scale synthesis (such as 10 or 100 g scales) can easily be
achieved with this method.

Typical preparation of MIL-177-HT. The solid MIL-177-LT compound (200 mg)
was ground into a fine powder, transferred to a Petri dish and dispersed uniformly,
forming a thin layer. The MIL-177-LT powder was then heated to 280 °C for 12 h,
forming the MIL-177-HT structure as a dark yellow powder.

Preparation of MIL-177⊃PTh composites. After drying the host MIL-177 com-
pound (150 mg) by evacuation (<0.3 kPa) at 120 °C for 5 h in a Pyrex reaction tube,
MIL-177 was immersed in a chloroform solution (1 mL) of terthiophene (17 mg) at
room temperature. To incorporate terthiophene into the nanochannels, chloroform
was completely removed by evacuation at 100 °C for 3 h to obtain MIL-177-
terthiophene composites (MIL-177⊃TTh). MIL-177⊃TTh was mixed with iodine
(43 mg), and then heated at 120 °C for 48 h to facilitate the oxidation poly-
merization and afford MIL-177-polythiophene composites (MIL-177⊃PTh). Upon
cooling, the solids were dispersed in methanol (50 mL) and collected by cen-
trifugation and subsequently washed with 5% v/v hydrazine monohydrate in
ethanol (20 mL) for dedoping. The solids were then collected by centrifugation and
washed with ethanol (20 mL) and water (20 mL) prior to drying under vacuum at
120 °C overnight.

Data availability. Further experimental and computational details can be found in
the Supplementary Information. X-ray crystallographic data for the structures of
MIL-177-LT and MIL-177-HT can be found in Supplementary Data 1 and 2. All
relevant data supporting the findings in this work are available from the corre-
sponding authors on request.
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