
TREE BIOMECHANICS AND THE 
TRANSITION FROM JUVENILE TO 

MATURE WOOD  
Bernard Thibaut, CNRS 

IAWS ANNUAL CONFERENCE 

PARIS, 2016, 1-3 JUNE 

Wood Science for the Future 

1 



Juvenility in tree construction 

• Juvenility regards the beginning of tree construction, when the tree is still 
young 
– Architectural juvenility for tree geometry 

– Xylem juvenility for wood as building material  
• Two kind of juvenile behaviour are possible: 

– Ontogenetic juvenility depending only on the ageing of buds and cambium 
– Environmental juvenility depending on the evolution of external constraints on tree 

growth during the first ages 

• Main aspects for structural tree biomechanics: 
– Flexure and buckling due to wind and self weight  
– Geometry of the structure and building material  

• Growth and xylem maturation 
– Xylem growth = cell division + cell expansion (until the end of primary wall making). 

Xylem growth contributes to tree geometry 

– Xylem maturation = fibre cell wall thickening (until the end of secondary wall making). 
Xylem maturation contributes to properties of the building material 
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Geometry of the tree structure 
(result of xylem growth: cell division + cell expansion) 
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Heuret et al 2003 

2 – 3 – 4: Setting of the architectural model during juvenile phase 

Geometrical parameters: - Height (H), Diameter at breast height (DBH) 
             - Slenderness: H/DBH, taper, form factor 
             - Crown height and diameter 3 
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Huge variations in observed slenderness 
associated with wind surface area (Aw) changes 
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A simple model for trunk cylindrical growth 
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Model H(D)=a*(1-exp(-b*D) 
 

a=6600 (asymptotic height in cm)  
Super gambler: b=0,054; H(6,7cm)=20m 
Gambler: b=0,036; H(10cm)=20m 
Slender: b=0,018; H(20cm)=20m 
Quiet: b=0,012; H(30cm)=20m 
Super: quiet b=0,006; H(60cm)=20m 

2 parameters: a (Maximum height) and H(0)/D(0) (slenderness value at origin = a*b) 
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Data for Douglas Fir: N. Décourt 1967 
Data for Bagassa: ONF Guyane 2016 



Properties of tree building material  
(result of xylem maturation: fibre cell wall thickening) 
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Growth stresses & fibre maturation process 

Step 1 Cell division 
creates a very soft new 

xylem layer 

Step 2 Maturation of fibres 
induces layer shrinkage 
(maturation strain) in L 

direction while it stiffens  

Step 3 Tensile forces  created 
in the new layer are 

equilibrated by compression 
in the core xylem 
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Tensile stress in the new xylem layer depends on maturation 
strain, density and specific modulus   
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Maturation strain is depending on MFA 
and chemistry (strongly different in reaction wood) 
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Juvenility in xylem properties 
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Simple models for xylem properties 
(excluding reaction wood) 

from different data bases: CTFT (Sallenave), Wood handbook (Kretschmann), 
Bridge project (Beauchêne), Reaction wood project (Gril) and papers on 

growth stresses (Yamamoto and others) 

• Compressive strength proportional to basic density 

• Green density proportional to the power 0,52 of basic density 

• MOE proportional to both basic density and specific modulus 

• Maturation strain: linear variation with specific modulus 

• Maximum flexure strain in flexion: linear variation with specific modulus 

• Pre-stressing at trunk periphery proportional to maturation strain, basic 
density and specific modulus 
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Basic growth simulation 

• 5 different types of geometrical growth (H/DBH varying from 33 to 330 for 
H=20m) 

• Constant xylem properties (basic density and specific modulus)  

• 3 different values of basic density from 300 to 900 Kg/m3 

• 3 different values of specific modulus from 15 to 30 106*m2/s2 

• Radial increment of 5mm  

• Inclusion of tensile pre-stressing in the compressive strength limit 

• Buckling safety factor using Greenhill theory 

• Calculus of: 
– Dry biomass (DBM) 

– Maximum flexure resistance (RCM) 

– Ratio of resistance on biomass (RCM/DBM) 

– Buckling safety factor (BSF) 
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Evolution of buckling security factor with diameter 

There is a critical diameter at minimum buckling security factor (Sterk & Bongers 1998) 
This diameter is lower for very slender trees and BSF is higher for strong wood (high MOE) 

For slender trees there is a rather large zone in juvenile phase with a security factor above 2 
13 

Q: quiet; S: Slender; G: Gambler; SG: Super gambler  
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Slenderness (Q to G type) is by far the most 
influencing factor (reg. coeff. > 90%) 

Within a type: 
-Dry biomass depends only on basic density 
-Resistance to wind relative to dry biomass 
  depends only on specific modulus 
-Buckling security factor depends mainly on 
specific modulus but also on basic density 

Main results from simulation on structural behaviour 
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Impact of typical radial pattern (TRP) 

Buckling safety factor keeps close to 2 in the juvenile phase, with an improvement in other responses 
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FC: correction using tree flexibility (maximum elastic deflexion before damage  



Growth stress results and impact of TRP 

Compression failure index: ratio between growth stress and compressive strength at the centre. 
- Growth stress level depends both on radius, basic density and specific modulus.  
- The risk of compression failure grows both with diameter and specific modulus. 

- TRP lowers the risk of compression failure 
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Conclusion 

• Mechanical juvenility seems to be mainly adaptive 

• The most important parameters in mechanical adaption are geometrical 

• Slenderness (total height/diameter at breast height) of the young tree is a good 
indicator for adaption, its range is high, from 30 to 300 

• Physical and mechanical properties are second order parameters  

• Basic density combined to slenderness is the key for dry biomass at a given tree height 

• Specific modulus (square of sound speed in dry wood) combined to slenderness is the 
key for wind resistance relative to dry biomass 

• Both specific modulus and basic density combined to slenderness are keys for buckling 
security 

• There is a critical diameter (minimum BSF), rather low for very slender trees which 
needs rather high values of basic density and specific modulus (Sterk & Bongers 1998) 

• For usual slender forest trees, buckling risk is low in the juvenile phase 

• Gradients in basic density and specific modulus in the juvenile phase: 

– keeps buckling risk at reasonable value 

– lowers dry biomass,  

– Improves the resistance to wind relative to dry biomass 

– Lowers growth stresses at heart and thus the risk of compression failure in trunk centre 
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Thanks for your attention 
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H/D=200 
H=0,2*H 
L=0,1*H 

S=0,02pi*H2 
1 

Hv=0,9*h 
Mv=0,018*H3 

1 

H/D=100 
H=0,4*H 
L=0,2*H 

S=0,08pi*H2 
4 

Hv=0,8*h 
Mv=0,064*H3 

3,55 

H/D=70 
H=0,6*H 
L=0,4*H 

S=0,24pi*H2 
12 

Hv=0,7*h 
Mv=0,172*H3 

9,55 

H/D=36 
H=0,85*H 
L=1,0*H 

S=0,85pi*H2 
42,5 

Hv=0,575*h 
Mv= 0,489 *H3 

27,15 20 


