Effect of rapid response systems on hospital mortality: a systematic review and meta-analysis

Audrey De Jong1, Boris Jung1,2,1, Aurelien Daurat1, Gerald Chanques1,2, Martin Mahul1, Marion Monnin1, Nicolas Molinari3 and Samir Jaber1,2*

Dear Editor,
This article reports a meta-analysis and systematic review of studies of rapid response system (RRS) compared to no RRS including the recent study by Jung et al. [1].
We made a quantitative synthesis selecting the following study designs: randomized controlled trials, prospective observational studies (before and after treatment), and retrospective observational studies [see also Electronic Supplemental Material (ESM) 1 for selection criteria and data collection and analysis] [2]. The primary endpoint of this meta-analysis was the incidence of overall hospital mortality. The secondary endpoint was the incidence of unexpected mortality.

Data were extracted as they were reported in the original paper or based on the authors’ answers to our queries (see ESM for further details). Odds ratios (ORs) were used as the summary measure for dichotomous outcomes. Statistical heterogeneity was quantified by the Q-Cochrane heterogeneity test [Q statistic with degree of freedom (df)] and the I² statistic [3]. In case of heterogeneity, a random effect model was performed. Predefined subgroups analysis and exclusion of outlying studies were performed to reduce heterogeneity for the primary outcome [4, 5]. To assess the effect of potential confounding factors we performed a meta-regression (see also ESM). A funnel plot (plot of treatment effect against trial precision) was created to determine the presence of publication bias, true heterogeneity, data irregularities, and choice of effect measure in the meta-analysis.

The updated literature search provided a total of 32 studies and 10,563,083 patients (see ESM Fig. S1). Of those, nine studies (1,045,364 patients) provided data on unexpected mortality and 32 studies (9,517,719 patients) reported overall mortality rate. The meta-regression did not reveal any significant effect of potential confounding factors (see ESM) for overall hospital mortality.

RRSs were associated with a significant decrease in both overall hospital mortality [OR 0.89; 95 % CI 0.85–0.93]) (Fig. 1a) and unexpected mortality [OR 0.51; 95 % CI (0.35–0.76)] (Fig. 1b). Funnel plots did not reveal publication bias for overall mortality or unexpected mortality (see ESM Figs. S2 and S3). Subgroups analysis performed according to the multiple center or single center design (Fig. S4), the prospective or retrospective design (Fig. S5), and the location of the studies (Fig. S6) showed consistent results, with a significant decrease of overall hospital mortality. After exclusion of outlying studies (Fig. S7), heterogeneity became low and a fixed model could be applied, showing identical results with a decreased incidence of overall hospital mortality [OR 0.92; 95 % CI (0.90–0.94)].

In this updated systematic review and meta-analysis, medical emergency team (MET) implementation was associated with a significant decrease in overall and unexpected mortality of hospitalized patients. One limitation was the large amount of statistical heterogeneity. Nevertheless, we considered that to combine data using a random effect meta-analysis would allow a more useful result than to include a small number of homogeneous studies as presented in Fig. S7 [5]. Moreover, subgroups analysis and exclusion of outlying studies allowing

*Correspondence: s-jaber@chu-montpellier.fr
1 A. De Jong and B. Jung contributed equally to this work.
1 Intensive Care Unit, Department of Anesthesia and Critical Care Medicine, University of Montpellier, Saint Eloi Teaching Hospital, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5, France
Full author information is available at the end of the article
Fig. 1 Forests plots of a overall mortality and b unexpected hospital mortality. Study-specific odd ratios (95% CI) are denoted by black boxes (black lines) for unexpected mortality. The combined odd ratios estimate for all studies is represented by a black diamond. Overall diamond width corresponds to 95% CI bounds. Heights of boxes and diamonds are inversely proportional to the precision of the odd ratios. The p value for heterogeneity of the odd ratio by study is shown (Q statistic with degree of freedom) and I² statistic.
reduced heterogeneity showed similar results. The present updated meta-analysis strongly suggests a positive effect of RRS on overall and unexpected mortality.

Author details

1. Intensive Care Unit, Department of Anesthesia and Critical Care Medicine, University of Montpellier, Saint Eloi Teaching Hospital, 80 Avenue Augustin Fliche, 34295 Montpellier Cedex 5, France. 2. Centre National de la Recherche Scientifique (CNRS 9214), Institut National de la Santé et de la Recherche Medecale (INSERM U-1046), Montpellier University, Montpellier, France. 3. Department of Statistics, University of Montpellier Lapeyronie Hospital, UMR 729 MISTEA, Montpellier, France.

Compliance with ethical standards

Conflicts of interest

Boris Jung reports personal fees from Merck (Whitehouse Station, NJ) and Astellas (Tokyo, Japan) not related to the present study. Aurelien Daurat, Nicolas Molinari, Audrey De Jong, Martin Mahul, Marion Monnin, and Gerald Chanques have nothing to disclose. Samir Jaber reports personal fees from Maquet, Draeger, Hamilton Medical, Fisher Paykel, and Abbott not related to the present study.

Source of funding

This study was supported by the University Hospital of Montpellier.

References