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ASYMPTOTIC ANALYSIS OF STRATIFIED ELASTIC MEDIA IN
THE SPACE OF FUNCTIONS WITH BOUNDED DEFORMATION.

MICHEL BELLIEUD * AND SHANE COOPER

Abstract. We consider a heterogeneous elastic structure which is stratified in one direction.
We derive the limit problem under the sole assumption that the Lamé coefficients and their inverses
weakly* converge to some Radon measures.

Key words. Homogenization, Singular perturbations, Elasticity

AMS subject classifications. 35B25, 49Q20, 74B05, 74Q05

1. Introduction. In this paper, we study the asymptotic behavior of the
three-dimensional isotropic linear elasticity problem

—div (A tr(e(u) I + 2uce(w)) = f  inQ, we Hj(QR?),

(L) e(u) == 3(Vu+V7u),

when the Lamé coefficients ., . and their inverses are bounded in L () and weakly*
converge to some measures. We determine the limit problem in terms of these mea-
sures in the case when A, and u. only depend on one variable. Our results have been
announced in [13].

It is well known that, when the Lamé coefficients are uniformly bounded from above
and below by positive constants, the sequence of the solutions to (1.1) converges, up
to a subsequence, to the solution of a problem of the form —diva®//e(u) = f (see
[37, p. 374, 4°]). Under suitable periodicity assumptions, the effective tensor a®/f can
be characterized by means of the theory of homogenization [16], [29], [37], [44], [53].
Diverse asymptotic analyses of (1.1) and of the associated vibration problem have been
performed under various hypotheses related to geometry and periodicity when the last
mentioned boundedness assumptions fail [1], [7], [8], [9], [12], [14], [15], [20], [23], [40],
[45], [46], [47], [48]. In this context, stratified media have recently been investigated
in [11], where a two-phase medium comprising a distribution of possibly very stiff
homothetical layers alternating with much softer ones is considered. An interesting
aspect of this study resides in the possible emergence of higher order derivatives
(resp. non local terms) in the effective equations when the Lamé coefficients (resp.
their inverses) fail to be bounded in L!. Let us also notice that spectral properties of
high contrast stratified media have been studied in [21, 22], where, in the presence of
a defect, unusual phenomena of ‘super-exponential’ localisation of eigenmodes to the
vicinity of the defect are demonstrated.

In this paper, both the elasticity coefficients and their inverses are supposed to be
bounded in L'. Apart from these boundedness conditions, we make no assumption
relating to the oscillatory behavior of these coefficients. In this respect, our analy-
sis is much more far-reaching than that developed in [11]. Unlike [11], its range of
application includes both homogenization and singular perturbations problems (see
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Remark 3.6). Indeed, most of our results do not fall within the scope of [11] (see
Remark 3.5). We show that the last mentioned boundedness assumptions in L' pre-
clude the appearance of higher order derivatives in the limit equations, and, in most
cases, of non local effects. The sequence of the solutions to (1.1) is not, in general,
bounded in H'(2;R3). The natural functional space is the space of functions with
bounded deformation, that is the set of elements u of L!(Q; R?) whose distributional
symmetrized gradient Fu is a matrix-valued measure with finite total variation. This
space, introduced in [39], [49] (see also [41]), has been intensively investigated in the
literature [2], [4], [34], [38], [50], [54], [55]. A marking feature of our results is that the
effective problem only depends on the limit measures of the elasticity coefficients and
of their inverses, not on the sequences themselves, provided these measures have no
common atom. Otherwise, the arbitrary choice of the converging sequences leads to
infinitely many distinct limit problems, some exhibiting non-local terms (see Remark
3.7). Similar properties were already known for diffusion problems in stratified media
[17] (see Remark 3.12). The generalization of such results to elasticity is anything but
straightforward, because effective problems may take a much more complicated form.
More precisely, the limit energy associated to a sequence of linear diffusion problems
is always a Dirichlet form [41]. By contrast, the limit energy associated to a sequence
of linear elasticity problems can be any non-negative lower semi-continuous quadratic
form on L?(Q;R?) taking vanishing values on the set of rigid motions [18].

We now present our results in more details. For a given cylindrical bounded open
subset Q = (0, L) x Q' of R? with Lipschitz boundary, we consider the problem (1.1).
The Lamé coefficients are assumed to depend only on the variable z;. We suppose
that A\. = lu. for some non negative real [ and that the following convergences hold

(1.2) e = m, (pe)™t 2 v weakly* in M([0, L]).

Under (1.2), we prove that the solution u. to (1.1) weakly* converges in BD(Q2) to
some function u with bounded deformation. This effective displacement is character-
ized by the emergence of jumps u™ 1™~ at the interfaces ¥; = {t} x Q' corresponding
to atoms {t} of v, giving rise, if m and v have no common atom, to the following
concentrations of elastic energy

(13) [ ) A )

where A is given by (3.13). Concentrations of elastic energy also appear on the
planes X; corresponding to atoms of m. These extra terms are similar to membrane
stretching energy and take the form

%m({t})/z aley (u*) : ey (w*)dH?,

where the operator e, and the fourth order tensor all are given by (2.6) and (3.10),
and u* stands for the precise representative of u (see (2.1)). A concentration of elastic
energy also emerges on a set of fractal Hausdorf dimension comprised between 2 and
3. It is given in terms of the Cantor parts v and m¢ of the measures v and m by

%/ at V%%Q : V%"ZQ dv’ @ L + %/ aley (u*) : ey (u*)dm® @ L2,
Q Q
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the tensor @’ being given by (3.10). The effective displacement wu is a function with
bounded deformation, hence is approximately differentiable £3-almost everywhere in
Q (see Remark 3.4). The bulk effective energy takes the form of a classical linear
elastic energy defined in terms of its approximate symmetric gradient e(u) by

;/Qa,e(u):e(u)dac7

the effective tensor a being given by (3.13). The total elastic energy F'(u) is the sum
of the terms mentioned above, which can be synthetized as follows:

Fu) = %/Q‘“ Bt v £+ /Qa'ewf (u") - e (u)dm @ L.

The effective displacement is the unique solution to the problem ming DY) F(u)—
Jo f - udx, where BDg™ (2) is defined by (4.26). When the Cantor parts v° and m*
vanish and v and m have a finite number of atoms, this limit problem is equivalent
to the system of equations (3.14).

The paper is organised as follows: the notations are specified in Section 2 and the
main results stated in Section 3. Section 4 is devoted to the analysis of the asymptotic
behavior of the solution to (3.2), and Section 5 to technical results relating to partial
mollification. The proof of the main result (Theorem 3.1) is situated in Section 6.

2. Notations. In this article, {ej, e, e3} stands for the canonical basis of R3.
Points in R3 and real-valued functions are represented by symbols beginning with a
lightface lowercase (example z,14,tr A,...) while vectors and vector-valued functions
by symbols beginning in boldface lowercase (examples: u, f, dive,, ...). Matri-
ces and matrix-valued functions are represented by symbols beginning in boldface
uppercase with the following exceptions: Vu (displacement gradient), e(w) (lin-
earized strain tensor). We denote by wu; or (u); the components of a vector u
and by A;; or (A);; those of a matrix A (that is u = S5, uie; = S0 (u)e;;
A= Z?,j:l Ajjei®e; = Z?’jzl(A)ijei ®e;, where @ stands for the tensor product).
For any two vectors a, b in R?, the symmetric product a ® b is the symmetric 3 x 3
matrix defined by @ © b := $(a ® b+ b ® a). We do not employ the usual repeated
index convention for summation. We denote by A: B = Z?,jzl A;;B;; the inner
product of two matrices, by S? the set of all real symmetric matrices of order 3, by I
the 3 x 3 identity matrix. We denote by £" the Lebesgue measure in R™ and by H*
the k-dimensional Hausdorff measure. The letter C' denotes constants whose precise
values may vary from line to line. Let Q := (0,L) x ' be a connected cylindrical
open Lipschitz subset of R3. For any ¢ € L, (©;R?), we denote by ¢* its precise
representative, that is

N lim ][ e(y) dy if this limit exists,
(21) %2} (:L') = r—0 B, (2)

0 otherwise,

(y) d
where B,.(x) is the open ball of radius 7 centered at 2, and-f (I)go(y) dy = %
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We also set

lim ][ e(y) dy if this limit exists,
(2.2) ©* () = r=0J B*(2)

0 otherwise,
where

(2.3) B (z) := By(z) N ((z1,L) x @), By (x):= By(z) N ((0,21) x Q).

r

The fields ¢* and ¢* are Borel-measurable and take the same values on the Lebesgue
points of ¢, thus

(2.4) et =p*=¢ Lae in Q.
We denote by ¢’ the element of L}, (Q;R?) defined by
(2:5) PL=0,  ¢o=¢a Vae{23}

and by @ the extension of ¢ by 0 into R3. If (9, @3 admit weak derivatives with
respect to xq, x3, we set

3

_ 1 (9¢a %)
(26) ex/(so) - Q;Z 2 (8535 * 8xa Ca @ e

The symbol D¢ represents the distributional gradient of ¢ and E¢ := 1 (D¢ + D¢™)
the symmetric distributional gradient of ¢o. The space of functions with bounded de-
formation on  is defined by

(2.7) BD(Q) := {p € L'((:R*) : Ep € M(Q;S%)},

where M(Q; S?) stands for the space of S*-valued Radon measures on 2 with bounded

total variation. For any ¢ € ED(Q), we denote by E’cp the extension of Ey by 0 to
Q, that is the element of M (£2;S?) defined by

(2.8) Ecp(A) = Ep(ANQ) for all Borel subset A of Q.
For any z; € [0, L], we set
(2.9) Y ={z} x Q.

The symbol % represents the Radon-Nikodym density of a (finite) vector valued Radon
measure A on ) with respect to a positive Radon measure 6 on 2. For any Borel subset
E of Q, we denote by A| g the Radon measure defined by A\|g(A4) = A(AN E).

3. Setting of the problem and results. Let Q2 := (0,L) x Q" be a bounded
cylindrical Lipschitz domain of R?, let (\.), (i) be two sequences in L>(0, L; RT)
such that u-1 € L>°(0,L; RT), and let

(31) Ve 1= M;lﬁh(LL]; me 1= MEElHO,L]’
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We are interested in the asymptotic analysis of the sequence of linear elasticity prob-
lems

—div(o.(u.))=f inQQ,
1
(3.2) (Pe):4 oc(us)=Atr(e(u)) I+ 2p-e(u.), e(u.)= §(Vu5 +V7Tu,),
u. € Hy(;R?),  f e L®(Q,R?),
under the hypotheses (see Remark 3.3)
Ae =l1lpe (1 >0), su ell 1 + 5—1 1 < 00,
s pe 020, s (lnellgs oy + 182 | ago 1)

*.

me — m, ve = v weakly* in M([0, L]).

We emphasize that A; and p. only depend on ;. We suppose that ¥ and m have no
common atom (see Remark 3.7), that is

(3.4)  A,NA,=0, A,:={t€l0, L];v({t})>0}, A,:= {t€ [0, L];m({t})>0},
and do not charge the boundary of [0, L] (see Remark 3.8), namely
(3.5) m({0}) =m({L})=v({0})=v({L})=

Under these assumptions, we prove that the sequence of the solutions to (3.2) weakly™
converges in BD(Q) to the unique solution to

. min La(e, 7/ - pdx,
(36) L XD A

where BDy™" () is the Hilbert space defined by (see (2.1))

Ep<r® J. sotr € Lo (S?)
v,m
(3.7)  BDg"(Q) = ¢ € BD(Q)|u* € L2,(0,L; HY()) ac{2,3} -
=0 on 09

1

38 lellpprm : /|V®£2|2 dv®/j2 /|eL |dm®/jz) ’

and a(-,-) is the continuous coercive symmetric bilinear form on BDg"™ () given by

(3.9)  a(y,p) ::/ at Vg’é’z : V®£2du®£2 /a”ez,('zp*) s ey (@*)dm @ L2,
Q Q

in terms of the fourth order tensors a* and all defined by
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[tr= + 2511 2512 2513
e = P o=y 2=
a == 2._12 112 tr= + T+2—11 2 0 l s
= o= 2=
(3.10) 2513 0 e R+ EEn

a”r = lfQZrﬂﬁzea®ea+2 Z F(xﬁe(x®eﬁ
a,Bf=2

Notice that
(3.11) (at +ahE=1tr=I 422,

Equivalently, we have (see Remark 3.4)

a4, )= / ae(w)e(p)dz +3 v({t}) ! / (=) - At — o )dH?

teA,

(3.12) Z {thH) / aley (V*) : ep (p*)dH?

teAnm

+/ at V%ﬁz : VL®£2dV ® L%+ /a”em/(dz*) : ez’(‘P*)dmc(@EQ’
Q Q

where %, 3 are defined by (2.2), (2.9), v¢ (resp. m€) stands for the Cantor part of
v (resp. m), e(p) for the approximate symmetric differential of ¢, and

142

(3.13) a:= (%)—1 at + Zal, A=

o o+

0 0
1 0
0 1

THEOREM 3.1. The space BDy™ () defined by (3.7), endowed with the norm (3.8), is
a Hilbert space. Under the assumptions (3.3), (3.4), and (3.5), the symmetric bilinear
form a(-,-) defined by (3.9), or (3.12), is coercive and continuous on BD;™(Q). The
sequence of the solutions to (3.2) weakly* converges in BD(§2) to the unique solution
to (3.6).

We can derive the PDE system associated with (3.6) when v and m have vanishing
Cantor parts and a finite number of atoms.

COROLLARY 3.2. If v = m¢ = 0 and A,, A, are finite, the problem (3.6) is
equivalent to

—divae(u) = f in Q\X, we BD;"(Q),
(3.14) v({t) A(ut—u") = (ae(u)e;)” = (ae(u)ey)™ on Xy, YVt € A,,
(ae(u)e)) —(ae(u)ey) = m({t})divyaley, (w*) =0 on %y, Vt e An,

where (ae(u)e;)™ (resp. (ae(u)e;)™) denotes the trace of ae(u)e; on the right (resp.
left) face of 3, and
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(3.15) Y:=3,U%,,, ¥, = U Y, D= U .
teA, teEAm,

REMARK 3.3. The conclusions of Theorem 3.1 are unchanged if the assumption
Ae = lue in (3.3) is replaced by A\e = l-pe, where (I2) is a sequence of positive real
numbers converging to some | € [0, 4+00).

REMARK 3.4. The equivalence between (3.9) and (3.12) derives from fine properties
of functions with bounded deformations. More precisely, the symmetric distributional
derivative Eg of any ¢ € BD() can be decomposed into an absolutely continuous
part E%p with respect to £, a jump part E@ and a Cantor part E°p. The Cantor
part vanishes on any Borel set which is o-finite with respect to H?. Any element @ of
BD(RQ) is approzimately differentiable L3-almost everywhere in Q [2, Theorem 7.4],
[34]. This means that, for L3-a.e x € Q, there exists a 3 x 3 matriz V(z) such that

lim le(y) — p(z) = V() (y — )|
=0t J B, (z) r

dy = 0.

The absolutely continuous part of Eg with respect to L3 is given in terms of the
approzimate symmetric differential e(p) = £(Ve + V7T ) by

(3.16) E%p = e(p)L3.

When Ep < L3, e(p) is the weak symmetric gradient of ¢. The jump part takes
the form E’ @ = Ee);,, where the "jump set” J, is a countably H2-rectifiable subset
of Q (i.e. there exists countably many Lipschitz functions f; : R? — Q such that
H? (Jo \ Ui fi(R?)) = 0, see [3, Definition 2.57]). For any countably H?-rectifiable
Borel set M C Q, the following holds (see [5/, Chapter II], [2, p.209 (3.2)])

(3.17) Ep|mu= (@3 — ear) © narHiy,

where ny () is a unit normal to M at x and @+, is deduced from (2.2) by substituting
BE(z,ny) :={y € B.(2),£(y — ) - nar(x) > 0} for BE(x). In particular, we have

(3.18) Elp=(p; —¥; ) 0nsHi,, .

Due to its absolute continuity with respect to v ® L2, the symmetric distributional
gradient of an element of BDy™ () enjoys a specific decomposition. The measure v
(resp. m) can be split into an absolutely continuous part v® (resp. m®) with respect
to the Lebesgque measure, a singular part without atoms or Cantor part v¢ (resp. mc),
and a purely atomic part v°t:

v=rvt i v = (e, vt = &L
teA,

m=m*+mc+m*, m= Z m({t})6, m*=HL"
teAn,

(3.19)
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We have v* @ L2 < L3 and v @ L? < ’HLE , where ¥, is given by (3.15). The

measures v° @ L2 and L3 are mutually singular. If A is a Borel subset of Q that
is o-finite with respect to H?, then by Fubini’s theorem v¢ @ L2(A f(o L) H2(AN

Yy, )dve = 0 because {1 € (0,L),H*(ANX,,) > 0} is at most countable thus v°-
negligible. Accordingly, there exists a Borel partition of Q, Q = Q% U Q¢ U Q with
O =3, (see (3.15)) such that

Va®£2:]/®£%9a:%£?[ﬂa’ VC®£2:V®£2LQ‘H

(3.20) vie Lt =veLlly =Y v{thHy,.
teA,

The condition E(p) < (v*+v°+1") @ L?, satisfied by any element ¢ of BDy™ (),
implies E°p < 1* @ L2, Ep < 1° @ L2, Bl p < Hiy, . and

FE Ep FE- FE’ 2 .
V®Z2 = l,a@ﬁzllm L®f2]lgc Vat®"22]l s, V®L-ae. in €,

(321) E* Y= §®L2ﬂQ“V ®£2 V?®£21Q“£1£3 ECQD_ }E®52]lgrl/ ®£2

Elp= y§®c2]12 v e L% = u§®ﬁ2]12t ({t})HLZt

te A,

In particular we have J, C X, therefore, by (3.15), (3.18),

(3.22) Elp=Epx, =) (¢'—¢)oeh,
teA,

Taking (3.16) into account, we infer

(3.23) Ep=e(@)*+ 2o+ Y (¢ ) © erHly,.
teA,
We deduce from (3.16), (3.21) and (3.22) that VGE®£2 = (%)71 e(p) L3-a.e. in Q,

and %;‘ZZ = w{t}) Yot — 9 ) ©er H:-ae in ¥, YVt € Ay, and then from
(3.21) that

E v -1 —
e = (%) e(p)las + VC®LQ11W + ) w{th)” —p7 ) Oels,
(3.24) teA,

v® L%-a.e in Q, Vo€ BDy™(Q).

By (3.20), (3.24) and the formula a*(b® e;1) : (c® e1) = c- Ab, Vb,c € R? (see
(3.10) and (3.13)), the following holds for ¢, € BDy™ (2):

v\l FEyp
(3.25) :/a (%) aie(¢):e(<p)d£3+/c LBy B g

+ Z/ ({th)~ —Y7) - ApT — T )dH
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On the other hand we have, by (3.19),

/ ales (¥") : ew(p")dm @ L?
Q

(3.26) = /Q 2l e, (4 )en (9*)da + /Q ale, (%) : ey (0*)dm® © L
m aHeI, * D ey * 2.
+ 3 o) / e () el )aH

Combining (3.9), (3.25) and (3.26), noticing that, by (2.4) and (3.10),

%a“ez/ (Y*):en (@*)dx :/ %a”e(dz} ce(p)dr,
Q Q
taking (3.13) into account, we obtain (3.12). Notice that when v° vanishes, the space
BDy ™ () is a subspace of the space of special functions with bounded deformation
defined by SBD(QY) := {¢ € BD(QY), Ep =0} (see [2], [5], [6], [19]).
REMARK 3.5 (Comparison with the results of [11]). The paper [11] investigates the
linear elastodynamic equations associated with (3.2) when u. is given by

pe = procLo,o\c. (71) + picle. (71), C. = U atre(—3:3),
ac€A.

where A. is a finite subset of (0,L), r. is a small parameter satisfying re < € :=
inf, pea. azn |b — al, and (pos), (1) are two sequences of positive reals. Except in
one case (see [11, Section 3.1, case 0 < k < +00]), this paper studies instances when
one of the sequences (uz) or (uz') is unbounded in L'(0,L). This case corresponds
to peo = po > 0, 7e K €, and lime_o "= 1. =: k € (0,+00). Then, the conclusions of
Theorem 3.1 can be obtained in the context of [11]. More precisely, the sequence (fic)
(resp. (uz')) weakly* converges in M([0, L]) tom = (uo+nk)L (resp. v = ﬁﬁl)for
some function n € L>°(0, L), defined by [11, Formula (3.16)], which characterizes the
rescaled effective number of sections of stiff layers per unit length in the e; direction.
By (3.4), (3.7) and (3.15), the following holds: A, = A, =0, ¥ =0, BD;™(Q2) =
H} (3 R3). The sequence of the solutions to (3.2) is bounded in H}(Q;R?) and weakly
converges to the solution to the problem given, in accordance with (3.14), by

—divae(u) = f in Q, we Hj(QR?),
a = po(a® +al) + nkal.

Taking (3.11) into account, setting Ao := Lo, oo(w) := po(at+al)e(u) = X tr(e(u)) I+
2upe(u), oy (u) = ale(u), this effective problem can be rewritten under the form

—divoy(u) — nkdivey (u')=f  inQ,
u € Hy (O R%),

which corresponds to the stationary version of the limit problem obtained in [11, Equa-

tion (3.18)].

REMARK 3.6 (Some applications). (i) Our result can be applied to various problems
of homogenization with high contrast which do not fall into the scope of [11]. As an
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example, let us fix two small parameters € and re such that r. < €, and consider a two-
phase e-periodic composite comprising an alternation of possibly very soft elastic layers
of thickness r. and of Lamé coefficients of order =, with stiffer layers of thickness of
order € and Lamé coefficients of order 1. More precisely, let us assume that

(3.27) pe = polo,opnc. + Fmle., Ae=lp., Cec:= U (ei+rel).
{i€Z,(ei+r.I)C(0,L)}

Then, the assumptions and convergences (3.3) hold withm = gL' andv = (710 + i) L.

By (3.4) and (3.7), we have A, = A,, = 0, and BDy™(Q) = Hi(Q;R3), and the
limit problem as € — 0, deduced from (3.14), takes the form

{ —divo(u)=f  in Q ueH(QGRY),
(3.28)

o) = (#a” + poal ) e(u),
where a* and all are defined by (3.10).

(ii) Besides homogenization, our result can be applied to various singular perturba-
tion problems. By way of illustration, let us consider the case of an elastic homo-
geneous isotropic body reinforced by a single stiff layer of thickness € and of Lamé

coefficients of order =. More precisely, let us assume that the Lamé coefficients take
the form
(3.29) pe = poloopne. + zmle, Co=(5-55+5), A=l

Under these hypotheses, the assumptions and convergences (3.3) hold withm = puo L'+
pidn and v = #—10£1, By (3.4) and (3.7), we have A, =0, A, = {L/2}, and
2

BDy™(Q) = {¢ € HY (% R?), ¢5(L/2,.) € Hy (@) Va € {2;3}}.

Setting
oo(u) =lugtre(u)I + 2upe(u),
(3'30) 4 *\/ 21 *\/ ! *\/ / 000
oy ((u")) = 5 tr(ea (W) )N +2mer ((w')), I':={0 1 0
0 0 1
the limit problem as e — 0, deduced from (3.14), takes the form
—divoy(u) = in Q\ X,
331 { (oo(wer) (o <>> ~diveol(W)) =0  onZpp

we Hy(UR),  ug(L/2,.) € Hy(?) (o € {2:3}).

The field (o(u)e1)™ (resp. (o(u)ey)t) represents the supercicial density of forces
exerted by the material occupying Q\ X1, /o on the left (resp. right) face of £, /5.
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(i) Assume now that the last-mentioned single layer is filled by a soft (instead of
stiff ) material of Lamé coefficients of order €. More precisely, assume that p. is
defined by substituting epy for %ul in (3.29). Then the assumptions and convergences
(3.3) hold with m = poLt and v = %ﬁl + i(Sé In this case, by (3.4) and (3.7),
Al/ = {L/Q}; Am = ®7 and

BDy™(Q) ={p € H'(Q\ Z1/2;R?), ¢ =0 on 9Q}.

By (3.14), the limit problem as € — 0 takes the form

—divog(u) = f in Q\ X9,
A’ —u")=(oo(u)er)” =(oo(u)er)”

ue H' (Q\ X, R?), uw=0 onoQ,
where A (resp. oo(u)) is defined by (3.13) (resp. (3.30)).
REMARK 3.7. Assumption (3.4) is needed in the proof of Lemma 4.6 and in the proof
of (4.42). This assumption is equivalent to (see [26, p. 300, Lemma 6.2]):

on X, /2,

V?? > 0, 36 > 0, deg>0, Ve< €0,
(3.32)

/ Ma_l(sl)ug(tl)dsldtl <E.
{(s1,t1)€(0,L)2, |s1—t1|<d}

When v and m do not satisfy (3.4), the effective problem does not only depend on
the couple (v,m), but also on the choice of the sequence (ue) satisfying (3.3). By
way of illustration, let us choose two sequences of positive reals (rél)), (r§2)) such

e e Ne) (2
that rl" < ¥ < 1, set I == (g— R ) Iy = (é— 5+ 5 )ﬁw
¢ € {—1,1}, and consider the sequence (p1c) defined by
¢ —¢
(3.33) te =L, L\1e + (7‘52)) o, + (Tﬁl)) L

The convergences (3.3) are satisfied with v = m = §p + L'. By adapting to the

2
framework of elasticity the argument developed in [10, Chapter 4] in the context of
the heat equation, one can prove that, under these assumptions, the solution u. to
(3.2) strongly converges in L?(Q;R3) to the unique solution to

PO): wt {FO)- [ f-pds. peD),
(3.34) &
Dim{p e HR\S10) p=00n 00, ()% () € HIELR)).

If ¢ = —1, the effective energy is given by

- [+2 -
FOD(p) = %/ o(p):e(p)dr + —— o1 — 1 [PdH?
Q\Xp /2

2 32
1
=y
32

[, e -

oo (97) e )dH? + %/ . (o) ew(ph)dH?
3r)2
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If ( =1, the effective energy is is the non-local functional defined by

FW(p) = inf  ®(p, ),
(3.35) () - (,v')
where
[+2 _
b=t [ ale)ielpot bE [ ot —or Pan?
Q\XL /2 Xr)2
+ %/ oo (V) : ey (v)dH?
X2
F [ @) - ) P
X2
Substituting M for v' in (3.35) and applying the two-dimensional Korn in-

equality in H} (EL/Q,R ), we find

_ N+ N —
Jat 1>(9‘,):¢(%<¢> +e) )+%/

3r/2

oy ((%)*g(%)*) .y ((tﬂ)*;(tp’)’) dH2
> ¢( ()4 (e') ) L ‘(sa’ﬁ;(sa’)* ‘2de_
3r/2

Therefore, by (3.35), F=V () > FM (), and the equality Y (@) = FM(p) can
only hold if
1 (@)t = (¢')” on Xp o, which means that ¢*(L/2,2") = (¢/)T(L/2,2) =
() (L/2.2"),
2. v = p™*(L/2,2") is the solution to the infimum problem (3.35), which implies
that @™ = ()" = (¢')” =0 in Xp .
Such an occurence seems not likely to happen, in general, for the solution ¢ to (3.34):
for instance, if we choose f = es in (3.34), we intuitively expect that projections
(@)T(L/2,2"), (@) (L/2,2") of the traces on X, 5 of the solution ¢ to (3.34) do not
vanish. Indeed, when (3.4) is not satisfied, one can prove the existence of infinitely
many different limit problems associated to some sequence (u.) satisfying (3.3).
REMARK 3.8. Ifv({0}) > 0, the effective displacement may fail to vanish on Xo, and
the following concentration of elastic energy may appear on ¥g:

(3.36) éu({o})—l/E ut - AutdH?

The extra term (3.36) is obtained by substituting (0,0) for (t,u™) in (1.3). A similar
contribution emerges on Xy, if v({L}) > 0. This phenomenon is related to the fact
that the trace application is not weakly* continuous on BD(2).

REMARK 3.9. Our method applies to the study of second-order elliptic systems of
partial differential equations of the type

(3.37)  (P.): —div(uCVu)=Ff inQ, u.€ Hj(QR"), feL>(Q;R"),
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where Q := (0, L) x ' is a cylindrical domain in R? and C is a second order tensor
on R"% satisfying the following assumptions of symmetry and ellipticity:

(3.38) Cijpg = Cpgij  V((5,5), (p,q)) € (R™ x RY)?,

CE:E>E? VEecR"™ for some ¢ > 0.
We suppose that
n
(3.39) T:= Z Ciipre; @ €, s invertible.
i,p=1

We denote by BV (Q;R™) the space of R™-valued functions on Q with bounded varia-
tion, that is

(3.40) BV(Q;R") := {p € L' (4 R") : Dy € M(Q;R™T4)}.

Under these assumptions, the solution to (3.37) weakly* converges in BV (;R™) to
the unique solution to the problem

m L | £ ud
(3.41) ueBrg(}gn(Q)za(u,U) /Qf udz

where BV () is the Hilbert space defined by

Do <v@L¥™l ©=0 on 9Q

BVY™() :={ ¢ € BV(Q;R™) % € L% pa s (LR ,

(3.42) @ € L2,(0,L; H} (Q;R™))
1 1
D -1)? « -1);
||<P||Bv0"*”’<9):(/Q|uep231|2d”®£d 1> +(/Q Ve p")dm  £° 1)’

and, setting

n d
(3.43) V= Z Z g;%ei R €q,

i=1 a=2

a is the continuous coercive symmetric bilinear form on BVy ™ () given by

(3.44) a(u, cp)::/aJ‘ Vggg:ygﬁ dv@ L7+ / a'V, (u*): V0 (*)dm @ L7}
Q Q

with
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n

1 o —1

i =Y Cijpr(T™")prCran,
p,r=1

(3.45)

n

Al =Y (Cijpt (T )prCrapa + Cijua) (1 = 5;2)(1 = 61

p,r=1

PROPOSITION 3.10. The normed space BV () defined by (3.42) is a Hilbert space.
Under the assumptions (3.3), (3.38), (3.39), the symmetric bilinear form a(-,-) de-
fined by (3.44) is coercive and continuous on BVy"" (), and the sequence (u.) of
the solutions to (3.37) weakly* converges in BV (;R™) to the unique solution w to
(3.41).

The proof of Proposition 3.10 is sketched in Section 6.4.

REMARK 3.11. The particular case of the heat equation in a three-dimensional domain
corresponds to the choice (n,d) = (1,3) in (3.37). Setting Ajq := Cij14, we deduce
from Proposition 3.10 that under the assumption (3.3), if A is definite positive and
A1 # 0 (see (3.39)), the solution u. to

(3.46) (P.): —div(uAVu.) = f inQ, wu. <€ Hy(Q), fecL®9),

weakly* converges in BV (Q;R) to the unique solution to

min
u€BDY™ ()

éa(mu)—/gfudw,

where a is defined on BVy ™ (Q)? by

a(u, 30) ::% AAL VQZQ.VQZ% dv @ L2 + % A A”VI/ (U*) ’ le(go*)dm ® ‘627

in terms of AL, Al given by

A=At Al = (A0S A (1 - 80)(1 - 85).

Linear diffusion problems in stratified media with high contrast have also been studied
in [25, 26, 27, 28, 30, 31, 52, 33, 35].

REMARK 3.12. Let X, Y be separable reflexive Banach spaces such that X C Y
with dense and compact embedding, f : [0,L] x X — [0,400), g : [0,L] XY —
[0,4+00) be convex mappings with respect to the second variable with growth conditions
of order strictly larger than 1, and (ac¢), (be) be sequences in L*°(0,L) such that
a% X v oand be = m weakly* in M([0,L]) for some couple (v,m) satisfying (3.4),
(3.5). Denoting by u' the distributional derivative of u, we set WH(0,L;Y, X) :=
{u € LY0,L;Y),v € LY0,L;X)} and BV(0,L;Y,X) := {u € L'(0,L;Y),u €
M(0, L; X)}, where M(0, L; X) is the set of X -valued measures on (0, L) with bounded
total variation. Bouchitté and Picard have established in [17] the I'-convergence (see
[2/]) with respect to the strong topology of L*(0,L; X) of the sequence of functional
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L L
/ éf(tva'au/g)dt‘F/ b-G(t,u)dt
0 0
if ue € WHH0,L;Y, X),

+ o0 otherwise,

F.:=ucL'0,L; X) —

to the functional

L ) L
/ f(t, %)du—&—/ G(t,u*)dm
0 0
if we BV(0,L;Y,X) and v < v,

+ oo otherwise.

F:=ucL'0,L;X) —

As an application, setting X = L*(Y), Y = H}(), f(t,u) = Jul%, G(t,u) = |ul%,

a 0 O

A.:=| 0 b. 0 ], they deduce the convergence of the solution to —divA.Vu. =
0 0 b

f, ue € H(Q), to the solution to mingyrm (o) F(u) — [ fudz, where

D
vRL2

Puy=4 [

Unlike ours, this approach does not apply to non diagonal conductivity matrices.

REMARK 3.13. When (u) and (u=') are uniformly bounded in L>(0, L), the solution
u. to (3.2) weakly converges, up to a subsequence, to w in H} (2;R?) and the sequence
o. = o.(u.) weakly converges in L*(2;S?) to some o satisfying —dive = f in Q.
The constitutive relation between o and e := e(u) can be deduced from classical
layering arguments (see the early works of F. Murat and L. Tartar [}3, 52], [53, p.
140], and also [29]). These arguments rest on the so-called "good” behavior of some
components of o and e. := e(u.), which do not oscillate in x1 in the following sense:
a sequence (g) that weakly converges in L*(Q) to g is said to not oscillate in z1 if,
for any sequence h-(x1) only depending on w1 and weakly converging in L?(0, L) to h,
the sequence (geh.) weakly” converges in M(Q) to gh. It turns out that (0:1i)icf1,2,3}

2 3
dv @ L2 + Zg/ Vo u*|* dm @ £2.
a=2 Q

and (€cap)a,pef2,3} are “good” components of . and e.: for, denoting by aS) the
it" column of o, noticing that —divaéi) = f; and curl (h.(z1)e1) =0, by the div-
curl lemma (see [53, Lemma 7.2]) the sequence aél) ~he(z1)er = ocih(xy) weakly*
converges in M(Q) to o1;h. Likewise, since curl Vu., =0 and div(h.(z1)eg) =0,
the sequence Vueq - he(z1)eg = %ZS; he(z1) weakly* converges in M(Q) to g%;h(ml).
The original idea of F. Murat and L. Tartar consists of transforming the constitutive
equation 0. = a.(x1)e. into an equation of the form O. = b.(x1)G., where b, =
¢(a.) for some suitable fourth-order tensors’ valued (non-linear) mapping ¢, and G
(resp. O.) is the matriz of the "good” components (resp. of the remaining, so-called
Yoscillatory” ones), namely

Oc11  Oe12 0Oc13 €c11  €c12  €c13
G.:=| 0c21 €22 €23 |, O. = | €21 0c22 0223
0ec31 €£32 €33 €e31 0e32 0g33
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Notice that o- : e. = O; : G. = b.G. : G.. It turns out that, up to a subsequence,
(b-(21)) weakly converges to some b in L?, hence we can pass to the limit in the
equation O. = b.(11)G. in the weak® topology of M(£2;S3). We obtain the equation

011 012 013 €11 €12 €13
O=bG in Q; G = 0921 €92 €93 s O := €21 0922 023 5
031 €32 €33 €31 032 033

equivalent to the effective constitutive equation

o=ae inQ; a:=¢ (b).

The limit process yielding the effective elasticity tensor a = qb’l(limLz_weak o(ae)) is
called the 1*-convergence of the sequence (a.) ( see [52, p.14]). Our proof is connected
with these classical layering arguments insofar as, in order to pass to the limit ase — 0
in the variational formulation (6.2), we write o-(u.) : e(p:) = b:G:(u:) : G:(p:)
(see (6.10)) and establish that G:(yp:) has a “good” behavior with respect to some
sugtable notion of strong convergence (see (4.2), (6.9)).

4. Technical preliminaries and a priori estimates. This section is dedi-
cated, essentially, to the analysis of the asymptotic behaviour of the solution (u.) to
(3.2) and its stress o.(u.) in the limit ¢ — 0. The following notion of convergence
will take a crucial part in this study.

DEFINITION 4.1. Let 6., 8 be positive Radon measures on a compact set K C RN and
let fe, f be Borel functions on K. We say that (f:) weakly converges to f with respect
to the pair (0.,0) if

Sup/ |f€\2d95 <o, f€ LZ(K)
e JK
(4.1) 6. 50 and £.0. 5 [0 weakly® in M(K),

(notation: f. b -

We say that (f.) strongly converges to f with respect to the pair (0c,0) if

(42)  fo =5 f and limsup/ Ifa|2d98§/ If12d0  (notation: f. 225 f).
K K

e—0

We now present the main statement of the section. For notational simplicity, the
measures (Ve ® [ZZ)@ and (m. ® L’Q)Lﬁ are denoted by v, ® £2 and m. ® £2. We set
(see (2.8))

(4.3) o’ (@) = ltr (%)IH%

PROPOSITION 4.2.
Let (u.) be the sequence of solutions to (3.2). Then u. is bounded in BD() and
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e>0

(4.4) sup/ |u’5|2dm5®£2+/ |u€|dx+/ fie le(u.)|? do < oo.
) o Q

Up to a subsequence, there exists w such that

u. > u  weakly* in BD(Q), Eu. = Eu  weakly* in M(Q;S?),

L2 vRL? | C®L2 VDL
(45) ,use(us) el Vgg’m Us(us) T Uu(u)7
2 2
eur(ul) me®LT,mBL e ((w*)), we BDy™(Q).

Before presenting the proof of Proposition 4.2, we establish some auxiliary results.
The next lemma states some fundamental properties of convergence with respect to
the pair (6., 0), proved in [36, Theorem 4.4.2] in a more general context.

LEMMA 4.3. Let (6.) be a sequence of positive Radon measures on a compact set
K C RY weakly* converging in M(K) to some positive Radon measure 6. Then,

(i) any sequence (f:) of Borel functions on K such that

(4.6) sup/ |f€|2d95 < 0,
e JKk

has a weakly converging subsequence with respect to the pair (6., 0).
.. 0,0, 0,0
(i) If fo == f (resp. fe —= f), then

(4.7) lim inf / f2do. > / f2do (resp. lim / f2de. = / f2d9>.
e—0 K K e—0 K K

(iii) If f. 98, f and g. e, g, then

lim/ fsggdt‘)E:/ fgdb.
e—0 J K

As a first application of Lemma 4.3, we obtain some relations between the measures
v, m, and Eluo Ik
LEMMA 4.4. Under (3.3), the following holds

1 1
Lipy <vi S eLy(0.L]); Ligy<m € Ln(0,L]);
4.8 1
s /[0 J £ [2dv < m([0, L]); /[0 u |5 12dm < v([0, L)).

Proof. Noticing that, by (3.1) and (3.3), sup, f[o,L] |pe?dve = sup, me([0, L]) < oo
(resp. sup, f[o,L] |tte|2dm. = sup. v([0, L]) < o), we deduce from Lemma 4.3 that
the sequence (u.) (resp. (u-1)) has a converging subsequence with respect to the pair
(ve,v) (resp. (me,m)), and

peve = gv, pZtme > hm, gelL? hel?,

(4.9) 2 2 2 2
/|g| dv < liminf/\,u5| dve; /|h| dm < liminf/|u5|7 dme.
e—0 e—0
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By (3.1) we have p.v. = p-tm. = Eho,Lp lpel?ve = me, |ue|"2m. = v, therefore

gv = hm = [’i[O,LP 'Cho,L] <L v, EhQL] <m,g= %1, h = %, and the convergences
(3.3) and (4.9) imply

/ | £ 2y < limsup m. ([0, L]) < m([0, L]),
[0,L] e—0

(4.10)
|£212dm < limsup v ([0, L)) < v([0, L]).
e—0
Assertion (4.8) is proved. O
The following statement is proved in [17, Lemma 3.1].
LEMMA 4.5. Let (b.) be a bounded sequence in L'(0,L) that weakly* converges in
M([0, L]) to some Radon measure 6 satisfying

(4.11) 6({0}) = 0({L}) = 0.

Let (w.) be a bounded sequence in W11(0, L) weakly* converging in BV (0, L) to some
w. Assume that

(4.12) 0({t)Dw({t}) =0 Vte (0,L).

Then

L
lim / Vbow.dr = Ypwdo =
e—0 0 O,L)

pwldf v € C([0, L)),
)

( (0,L

where w™) (resp. w®)) denotes the right-continuous (resp. left-continuous) represen-
tative of w.

For any ¢ € BD(2), we denote by 'yil (¢) the trace of ¢ on both sides of ¥, (see
(2.9)). As shown in the next lemma, the mappings x — 'yil (¢)(x) can be identified

with the Borel fields ¢o* defined by (2.2).
LEMMA 4.6. Let o € BD(Q) and let o*, T be defined by (2.1), (2.2). Then

(4.13) 75, (@)(@) = ¢*(2) = lim o ;P(y)dy Ha.e. x €3y, V21€(0,L),

Moreover, we have

1
(4.14) o = 5(<,o+ +¢7) H>ae onY,,, Yz, €(0,L),
and

(4.15) ©*, p* € Ljp(Ss,)  Vai€(0,L).

Furthermore, the following holds
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(4.16) ot =~ =¢* = lim e(y)dy H*-a.e. in X, if |Ep|(Xs,) =0,

r—0 B;tt (2)

and
(4.17) E(,D <vRL = T =¢p =¢* Hiae onX,,, form-a.e. x1(0,L).

Proof. The traces of a function with bounded deformation on both side of a C!
hypersurface M contained in € is H2-a.e. equal to its one side Lebesgue limits (see
[38, p. 84, Trace Theorem; p. 91, Proposition 2.2] or [2, p. 209 (ii)-(iii)]). Applying
this to M = 3;,, we obtain (4.13). Assertion (4.13) ensures that for all z; € (0, L),
for H2—a.e. € X, the two limits in the first line of (2.2) exist and are finite. When
they do, the limit in the first line of (2.1) also exists, and

1 - 1/
ST @)+ (@) =5 (hg(l) ][Bj(w)w(y) dy + ][Br(xf(y) dy)

= lim e(y) dy = " ().
r—0 B, (z)
Assertion (4.14) is proved. Assertion (4.15) results from (4.13), (4.14) and the fact
that the traces of ¢ on each side of ¥, belong to Lj,»(3,,). Noticing that by (3.17)
we have

Eols, | =|(¢" —¢ ) ©el|H[s,, Vz1€(0,L),

we deduce from the elementary inequality

(4.18) la| < V2|laon| if |n||=1,

that o™ = ¢~ H2-a.e. in X, whenever |E¢|(X;,) = 0. Assertion (4.16) then follows
from (4.13) and (4.14). Assertion (4.17) is deduced from (4.16) by noticing that, by
(3.4), m(A,) = 0 and that v ® £L2(X,,) = v({z1})L2(Y) = |[Ep|(Z:,) =0if 21 ¢ A,
and Ep < v® L2 0

Combined with Lemma 4.5, the following lemma will be used to prove a delicate
identification relation (see (4.42)) in the proof of Proposition 4.8.

LEMMA 4.7. Let ¢ € BD() such that o = 0 on 9, and let p € L'(0, L;R3) be the
Borel function defined by

(4.19) P(x1) :=/Z @*dH?* Yz, € (0,L).

@

The following holds

BeBVO.LRY), [18ll,10 .0 < el 1Bl .m <Vl

4.20
( D < |Ep|(.x ), |Dg|(B) < V2|Eg|(Bx Q) VBeB((0,L)),
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where B((0,L)) denotes the Borel o-algebra of (0,L). Moreover, the left-continuous

representative G(l) (resp. right-continuous representative ¢(7')) of @ is given by

7 (21) = / @ dH? Yz, € (0,L).
h

z]

(on o0 |

Proof. Let eV(e, (0, L)) denote the essential variation of @ on (0, L), that is

(4.21)
eTdH* VY, € (0, L)) .

Tl

tl,...,tne(a,b)\N}

4.22 V(p, (a,b)):= inf Ptiv1) —@(ti)],
(4.22) eV(p,(a,b)):= in Sup{;lso( +1) — @(t)]| a<ty<..<t,<b

£1(N)=0
By [3, Proposition 3.6 and Theorem 3.27], the field @ belongs to BV (0, L; R3) if and
only if eV (e, (0, L)) < co and in this case eV(g, (0, L)) = |D®|((0,L)). Let a,b be
two real numbers such that 0 < a < b < L, D :={t € (0,L),|Ep|(X;) > 0} and let

t1,...,tn C (a,b)\ D such that 0 < t; < ... <t, < L. By (4.16), (4.18), and Green’s
formula in BD(£;), where Q;:=(t;,t;11) x ', we have, since ¢ = 0 on 99,

/ gawm?—/ pTdH?
¥ 3

tip1 t;
/ @~ dH’ _/ etdH’ | O e
Etq‘,+1 Eti

/a%-(cp) ©ndH?| = V2|Ep ()| < V2|Ep| (),

Q;

[P(tiv1) —p(ti)| =

(4.23) )

=2

where ~;(¢) denotes the trace on 99; of the restriction of ¢ to €;, therefore

n

St =Bl < Y V2IBe| (%) < V2| B ((0.8) x ).

i=1

By the arbitrary choice of t1,...,t,, noticing that D is at most countable thus £'-
negligible, we infer that @€ BV (a, b;R3) and

(4.24) |D%((a,0)) = eV(#, (a,b)) < V2|E¢|((a,b) x ),

yielding, by the arbitrariness of a, b, the second line of (4.20). The first line easily fol-
lows. Since @ € BV ((0, L); R3), there exists a left-continuous (resp. right-continuous)
representative @) (resp. @) of @. Let us fix #; € (0, L). By (4.23), we have

= limsup

t—ay @D /Z

< limsup V2|Eg|((t,z1) x Q) =0,

t—x, tgD

lim sup
t—a] tgD

/Z o dH? — B(t)

z1

P dH? — / pTdH?
3t

z1
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therefore W (z1) = fz, @~ dH2. The proof of the identity ") (z;) = fET pTdH?
is similar. O ' '

In the next proposition, we study the asymptotic behavior of a sequence (¢.) satis-
fying the estimate

(4.25) sup/ \gog|d33+/ pie |e(p2)|” dz < oc.
e>0J0 Q

This study will be applied to the sequence of the solutions to (3.2), and also to
the sequence of test fields defined in Section 6 (see Proposition 6.1), which do not
necessarily vanish on 9. We are led to introduce the normed space BD"™ ()
deduced from (3.7) by removing the boundary conditions, namely

) I/®£2
(¢*) € L2,(0,L; H* (s R?))

1l = [ ekt + (]

PROPOSITION 4.8.
Let (¢.) be a sequence in WHL(Q;R3) satisfying the estimate (4.25). Then (@) is
bounded in BD(Q)) and, up to a subsequence,

E 2, B 2 (@R
BD"’m(Q)Z{S"EBD(Q) pevel € Lo (55 :

(4.26)

Ee,
vRL?

1
2

2 3
d1/®£2) + ( |ex/(cp*)|2dm®£2)

Q

Y = P strongly in LP(Q;R®) Vp € [1, %) ,
(427)  e(p:)Liq = Ep. = Eg weakly* in  M($%;S?),
e(t,os)ﬁ‘?ﬁ = E(pa NS weakly* in M(Q;S?),

for some ¢ € BD(Q) , ¥ € M(Q;S?). Moreover

Y = Ep,

(4.28) Ep<v®L? % €L g2 (%S,
UE®£2,U®L‘,2 E u5®£2,l/®£2 v

.UJEe(SoE) y@fb 06(906) o (‘P)a
where oV is given by (4.3). Assume in addition
(4.29) sup/ lpl|?dm. @ L* < oo,

e>0.JQ

then

(¢*) € L2,(0,L; H'(Y;R?)), ¢ € BD"™(Q),
(4.30)

; me®LEmRL? (90*)/7

g

QL mL?
61’(‘:0/5) "~ = ew’((‘P*)l)~

Proof. By the Cauchy-Schwarz inequality and the estimates (3.3) and (4.25), we have
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MBS

sy [ leddde+ [ leteoiis < [ el + ( / d)( / pelelipo) d)
<C,

thus the sequence () is bounded in BD(Q)) and weakly* converges in BD(Q), up
to a subsequence, to some . From the compactness of the injection of BD(f2) into
LP(Q;R3) for p € [1,2) (see [54, Theorem 2.4, p. 153]), we deduce

. 3
e = @ strongly in  LP(Q;R”) Vp € [1, 3y,

(4.32) )
Ep. — E¢p weakly* in M(Q;S?).

The estimate (4.31) also implies that (e(gog)ﬁ‘n[ﬁ) is bounded in M (;S?), hence the

following convergence holds, up to a subsequence, for some Y € M(Q;S?):

(4.33) e(pe)Ling = Ep. =Y weakly* in M (€ S?).

By testing the convergences (4.32) (second line) and (4.33) with some arbitrary field
¥ € D(Q;S?), we deduce that the following equation holds in M(Q;S?):

(4.34) Yo = Eeg.

By (3.1) and (4.25), we have

(4.35) Sup/ \pee(pe)|” dve @ L2 = sup/ pie |e(p2)|? dx < oo.
e>0JQ e>0JQ

Since the sequence (v ® £2?) weakly* converges to v ® £2 in M() (see (3.3)), we
deduce from Lemma 4.3 and (4.3) that, up to a subsequence,

1% 2 14 2 12 2 14 2
(4.36) poe(pe) 25 EE m oo (o) FEEOE 14 (B) T 4+ 28,
for some
(4.37) Ee Ll (S,

The first convergence in (4.36) implies, by Definition 4.1, that

(4.38) e(c,og)ﬁfﬁ =Ep. 2 Bve L2 weakly* in M(Q;S?).

Taking (4.33) into account, we infer that the following equation holds in M (Q; R?):

(4.39) T=Ev®Ll
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Noticing that by (3.5) we have v ® £2(99) = 0, we infer from (4.39) that T (99) = 0,
and then from (2.8) and (4.34) that

(4.40) T =Ta+Ta=Eep.

By (4.32), (4.33), (4.39), and (4.40), the assertions (4.27) and (4.28) are proved.
Let us now prove (4.30). By (3.3), the sequence (m. ® L?) weakly* converges in
M(Q) to m® L2, and by (3.1), (4.29) and (4.35) we have

S“p/ [oL” + lewr (L) dme ® L2 < +oo.
e>0JQ

Applying Lemma 4.3 we infer, up to a subsequence, the following convergences:

2 2 O
o MEOEmEET B pepl 2 h'm®L? weakly® in M(Q;R?),

’ ) meQL> m@@[ﬁ2

e (ol T, peey (l) 2Tm® L2 weakly* in M(;S?),

for some h' € L2, .. (4 R?), T € L2 .. (;S?). The proof of (4.30) (and of Propo-

sition 4.8) is achieved provided we show that

(4.42) h = (¢*) m®L*ae. in Q,

(4.43) (¢*) € L2,(0,L; H'(Q;R%)), T =ey ((¢*)) m® L ae in Q.

Proof of (4.42). Let us fix p € D(Q). By (4.27), (v ) weakly* converges in BD(f)
to ¢, hence, by the estimates (4.20) established in Lemma 4.7, the sequence (¢p.)
defined by (4.19) weakly* converges in BV (0, L;R®) to 1. By (4.8), (4.20) and
(4.28) we have,

|DYe| < [E(We)|(. x ) = [WE(p) + VY © oL (. x Q) < v,

therefore, by (3.4) and (3.5), the assumptions of Lemma 4.5 are satisfied by (be, w.) :=
(e, epe) and (0, w) := (m, ). Taking (4.17), (4.21) and (4.41) into account and
applying Fubini’s theorem, we deduce

uidme £ = Yim [ pvplds = i [ polet)de = lin / pDdy

:/ @) Vdm = /0L>(/ W(gp +cm2>dm

/qp NFdm e L = /¢ )'dm @ L2

Q

By the arbitrary choice of v, Assertion (4.42) is proved.
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Proof of (4.43). Let us fix ¥ € D(Q;S?). By (4.41) and (4.42), we have

/ T:¥dnoL? = lim/ peey (pe) : Wdr = lim f/ petpr - div, ®dx

(4 44) Q e—=0 Jo e—0 Q

=— / (¢*) - divy ®dm @ L,
Q

where div, ¥ := Za B=2 8x =L e,. By the arbitrary choice of ¥, we deduce that

e ((¢*)) =T, m® L2-a.e.,

yielding e, ((¢*)") € L2,(0,L; L?(Y;S%)). This, along with (4.42) and the two-
dimensional second Korn inequality in H'(Q'; R?), implies that (¢*) € L2,(0, L; H'(€V;S?)).
Assertion (4.43) is proved. O

We are now in a position to prove the main result of Section 4.

Proof. [Proof of Proposition 4.2] By multiplying (3.2) by u. and by integrating it

by parts over €2, we obtain [, o-(u.) : e(u.)dz = [, f - u.dz, and deduce

(4.45) /ua\e(u5)|2da? < / o-(ue) : e(ue)dx < C”fHLoo(Q;]RS)/ |ue|da.
Q Q Q

The assumptions (3.3), Poincaré and Cauchy-Schwarz inequalities, imply

. /Qlus d<C(/dm) (/Qu
§C</Quale(ua)l dx)z.

By Fubini’s Theorem, Poincaré’s inequality in VVO1 1(Q';R?), Assertion (3.3), Cauchy-
Schwarz and Jensen’s inequalities, and Korn’s inequality in Hg (€2'; R?), we have

L 3/ oL 2 \%
/|u’€|d:r§ C/\Vx/ugd:cSC’ (/;dm) </ e ( |szu’€|dx’> dm1>
Q =
<C’</,uE |V rul |dx’dx1><0</ /,Lg/ leg (ul)]” da dx1>
Q/ ’

1
We deduce from (4.45), (4.46), (4.47) that [, |uc|dz < C ([, |uc|dz)?, yielding

'U«s

(4.47)

(4.48) / luclde < C.
Q

On the other hand, by Korn’s inequality in Hg(£'; R?), we have
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L
712 2 __ 12 9./
£ - € 1
/|u6\ dm. @ L /u (/ || dac)dx
Q 0 Qo

(4.49) B
< C/ e ( |ewl(u’5)|2dx'> dxy < C/ pie|e(us)|?d.

0 % Q
By (4.45), (4.48), and (4.49), the estimate (4.4) is proved. In other words, the field
pe = u. satisfies (4.25) and (4.29). Therefore, by Proposition 4.8, the convergences
stated in (4.5) hold for some u € BDY'™(2). The proof of Proposition 4.2 is achieved
provided we show that

(4.50) u=0 on 09,

(which is not straightforward, because the trace is not weakly* continuous on BD(2)),
and that

(4.51) (u*) =0 H'®m-ae. on I x (0,L).

Proof of (4.50). Let us fix ¥ € C>°(Q;S?). By passing to the limit as ¢ — 0 in
the integration by parts formula fQ e(us) : Ydox = —fQ u. - divWdz, taking the
strong convergence of u. to u in L*(£;R?) and the weak™ convergence of (e(u.)) to
E(u) in M(;S?) into account (stated in (4.27), (4.28)), we obtain [5® : dEu =
— Jou - div®dz, and infer from (2.8) that [, ¥ : dEu = — [, u - div®dz. We then
deduce from the Green Formula in BD()

/‘I’SdEU:*/U'diV‘I’d[ﬂ+ U u©ndH?,
Q Q Ele)

that [, ¥ :u©®ndH?(x) = 0. By the arbitrariness of ¥, taking (4.18) into account,
Assertion (4.50) is proved.

Proof of (4.51). Let us fix ¥ € C>(;S%). Since u. = 0 on 99, (4.44) holds for
e = u.. We infer

(4.52) /Qex/ (u): Wdm e L* = —/ (/Q (u*) - divx/\Ild:c’) dm(zx).

(0,L)
By (4.30) applied to ¢, := u,, the field (u*)’ belongs to L2 (0, L; H'(Q';R?)), hence
there exists an m-negligible subset N of (0, L) such that (u*)’(z1,.) € H(Q';R3) for
all z; € (0,L) \ N. By integration by parts, taking the symmetry of ¥ into account,
we infer

(4.53) / (u*)-div, ®dz' = /8 (u*) OndH (z') — / /em/((u*)’):llldx' m-a.e. .

’ Q/

It follows from (4.52) and (4.53) that f(o Lyxog (W) ¥ndm ® H! = 0. By the
arbitrary choice of W, Assertion (4.51) is proved. O
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5. Partial mollification in BD""™(Q). For any two Borel functions f,g: Q —
R, we denote by f %’ g the partial convolution of g and f with respect to the variable
2’, defined by

~:L'171'/_/~/dl if ~£L’1,£L'/—.~. L1R2,
B1) o g(a) = RZf( y)9(y")dy f( )3(.) € L*(R?)

0 otherwise.
Given § > 0, the symbol f? stands for the “partial mollification” of f with respect to
2’ given by

(5-2) £ =1+ s,

where 15 € D(R?) denotes the standard mollifier defined by

1
C exp (7> if 2] <1, 1 2!
') = R w(@) = 5 (%)),
0 otherwise,

the constant C' being chosen so that fW ndz’ = 1. Some basic properties are stated
in the next lemma. B
LEMMA 5.1. Let f : Q — R be a Borel function, 6 a positive Radon measure on [0, L],

§ >0, andp € [1,+00). Then f° is Borel measurable. If f € L9®£2(Q), the following
estimates hold

(5.3) / |0 (x1,2")[Pde’ < / |f(x1,2")[Pdz’ Yz € (0,L).
Q Q
In particular, we have

(5.4) f € L9®52(Q)7 ||f6||L§®E2(Q) < ||f||L§®E2(Q)'

Moreover, the next convergence holds

(5.5) f? .S [ strongly in Ly ().

The following regularity assertion holds

(5.6) Fo(x1,.) e @) V€ (0,L),

and

8n+m, F} o / 8n+m,
Wf - f * 850":137” ns S L9®£2 (9)7 Vn,m S N,

(5.7) ‘

ant™ s
axgacmf‘

p — 5"*’" ||f”Lp ®Lc2 vnam e N.

9®L2
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If f € b 12() and h € Ly 12(Q) (5 + L = 1), then

(5.8) / f°hdd @ L2 = / fh°do @ L.
Q Q

If € CH(Q), then ° € CY(Q) and

o § 5
(5.9) é;/}k) = (g—i) . Vk e {1,2,3)}.

Proof. By Fubini’s theorem, the mappings h*(z) := Jge (f(:vl,x' — s ()T dy’
(where [T (x) := sup{l(z),0}) are Borel measurables and so is the set A := {z €
Q, [ flay, 2’ —y’)ng(y’)‘dy’ < +o0o}, therefore, f *' ns = (h™ — h™)14 is Borel
measurable. Assertion (5.3) follows from the classical properties of convolution in R?
(notice that [, nsda’ = 1). Assertion (5.4) is a straightforward consequence of (5.3).
We have

_ 9 2 _ ) / ’
Lls-sraect= [ a) [ 1f- PP

By (5.3), the following holds [, |f — f°|P(.,a")da’ < 2P=1 [, |fIP(.,2')dz’ € Lj, and
by the properties of mollification in LP(§Y'), for all 1 such that f(zy,.) € LP(Y),
thus for -a.e. 1 € [0, L], [, |f — f°|P(21,2")da’ converges to 0. Assertion (5.5) then
results from the dominated convergence theorem. Assertion (5.6) follows from well
known properties of mollification and (5.7) is obtained by differentiation under the
integral sign. Assertion (5.8) is proved by applying Fubini’s theorem several times.
Assertion (5.9) is obtained by noticing that ¢ € CL(R?) and by differentiating under
the integral sign. O

The next proposition specifies some properties of partial mollification when applied
to elements of BD;"™ ().

PROPOSITION 5.2. Let v € BDy™(Q) and 6 > 0. Then,

5 6
(5.10) v’ € BD(Q), B’ <vec? EO)_ (Ev)

(5.11) (v°)E = (vF)° H:-ae on X, Vaq € (0, L),

() = (v*)° HZ-a.e. on X, Vi € (0,L),
(5.12) ((°)") € 22,0, L H' (5 R?), ew ((v°)") = (ew(v"))’
5 v,m . ) _
(5.13) v' € BD""™(Q), }IL%H"’ Y HBDW”(Q)iov

and the following holds for all x € Q, a € {2,3}:
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K +
(5.14) -

nli>r(()1+ CEN (vé)i(l‘l Tk ) = 32a (’U(;)i(l‘),

(D)@ =5 @ nena) dvlon)
3 5
l 71 g ,
— — —= d

(5.15) [;21_1_2 | 8x5(81,x) 51,

- . g
(03)" (z) = /(0 ](0' J1a(v)(s1,2") dv(s1) —/0 - (s1,2") dsu.
»T1
Proof. By (5.4) we have v° € L'({;R?) and [, [v°|dz < [, |v|dz. Let us fix ¥ €

D(9;S?). Then ¥ € C>=(2;S?), thus using (5.8), (5.9), Green’s formula in BD(),
and the fact that v € BD{™(Q2), we obtain

/'v‘; -div¥ dzx —/ (div®)? dz = / v - div(¥°) dz = /\Il‘S dEv
Q
/ w0 By gy g2 = / v Vg}; dv @ L2,

By the arbitrary choice of ¥, the assertion (5.10) is proved. Similarly, applying
Green’s formula in BD(2) and using (5.8), (5.9), (5.10), we infer, for all z; € (0, L),

\Il:(v‘s)(_D e dH? = U vl ondH? = U : JEv® +/ div® - v’dz
Sy B((0,21)x ) (0,21 ) X (0,21) X
5
:/ v (LYY avec? +/ (divi®)’ - vdz
(0,11)XQ, (O,:El)XQ/

:/ oo Vggzdyegﬁu/ div(¥°%) - vdx
(0,z1)x 8 (0,21)xQ

:/ \Il‘szv_QeldHQZ/ W (v‘)6®eld7{2.
s

@1

By the arbitrary nature of ¥ and x;, we deduce that (v‘s)f Oe = ('v*)(; ® e; and
then, taking (4.18) into account, that ('05)7 = (v*)(s. Arguing in the same manner

for (05)+, we find the first line of (5.11). By (4.14) and the last mentioned line, for
all z; € (0, L) the following equalities hold H2-a.e. on ¥,:

5 N6 5 \$ + - *
(@) =3 (0" +07) = () + (7)) = 5 () + (+")7) = (°)".
Assertion (5.11) is proved. To prove (5.12), we first notice that, by (3.7), (5.4) and
!
(5.11), we have ((v°)") € L2,(0,L; L*(€;R?)). Taking (5.8), (5.9), (5.11) into
account and integrating by parts with respect to 2’ in L2, (0, L; H} (2'; R?)), we find
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) div®dm 2= o)) div®dm @ £2 = [ (v*)- div (¥°) dm 2
/Q((v))d Cdm @ L /Q(( ))" div®dm © L /( )-div () dm @ £

Q
:—/em/ (v*):W0dm @ L = —/(ez/ ('v*))61 Wdm @ L
Q Q

yielding (5.12). Assertion (5.13) is a consequence of (4.26), (5.10), (5.12), and (5.5)
applied for f € {%,ez v} and 0 € {v,m}. Let us fix x € Q: by (4.18), (5.11)

and Green’s formula, denotlng by « the trace application on BD((z1,z1 + k) x Q'),
we have

@) (@1 4 r.) = @) @)] < VE|(07) (@1 4 1) - (0 (@) O e

— V2

/ ns(x' —y)y(v)(s1,y') © ndH?*(s1,y')
O((z1,21+K)XQ)

— V2

/ ns(z' —y')dEv(s1,y') +/ v O Vens(x' —y)dsidy’
( (

z1,x1+K) XY z1,x1+K) XY

C <|E'v| ((x1, 21+ K) x ) —|—/ |v|dx) ,
(z1,21+K)XQ

therefore lim,,_, o+ |(v‘s)*(x1 + k,2') — (v°) ¥ (z)| = 0. We likewise find that lim,_,q+
’(06)4'(3:1 —k,2')—(v9)~ ‘ = 0. The first line of (5.14) is proved. The second one is

obtained by applying (5.7) and by substituting a% for 75 in the above computations.
To prove (5.15), we fix (z1,2') € Q, & > 0: by (5.10) and Green’s formula, we have

S5
/ ’fgz’z (s1,2")dv(s1) = / féllg (51,9 )ns(2" — ¢ )dv @ L3(s1,9)

(0,z14kK) (0,21 +r)xQ/

Z/( o ns(z" —y')dE11v(s1,y)
0,z1+K)xXQ/

::/Q ns(@ — o Yoy (51,4 )AH2 (51, 9) = (o7)” (@1 + ko )-

1tk

Likewise, the following holds for g € {2, 3},

8
/ Banl (s1,a")dv(s1) = / ns(z' —y')dEggv(s1,y)
(0,214k)

(0,z14rK)xXQ

0
= By O YD A 1)
x1+K)XQ!

_/:L’1+K <i/ (x/_ /)v (S /)d /) ds _/I1+H 81}6 (S )ds
= o 015 /776 Yy )vpls1, Yy )ay 1= ; dzs 1,2 1-

Passing to the limit as x — 0T, taking (5.11) and (5.14) into account, we infer
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+
Enl (51,0’ )dv(s1) = (v]) " (21.9/),
(5.16) (@1
Eggv® p o 81}
[ mm ey = [ 5 s,
(0,21]

0 833@
yielding, by (4.3),

/ (0")11(v0)(s1,2") dv(sy) :/ ltr (Ugf2> +2 fgg; dv(s1)
(0,z1] (0,z1]

5\t ’ i o avg /
=(1+2) (Ul) (iﬁlay)‘f‘l% . %(317$)d51~

The first equation in (5.15) is proved. Similarly, by (5.10) and Green’s formula, the
following holds for « € {2, 3}:

/<0 2B (o1, 2)d(o1) = /
T1+K

(0,21+rK)xQ

= [mle’ =z a1 + [ o) 5

i(@"/ —y)ds1dy’
z14r 0,z14rK)xQ’ 0

B sy , r1+K (91}6
= (va) (21 +r,2") + 7 —L(s1,2")ds;.
0

«

2ns5(x" — y')dE1ov(s1,9)

Sending « to 0T, we infer from (5.14) that

+ g
(517) / 2%5[,2 (81, )dl/(Sl) = (’Ug) (I‘]_’x/) +/ 871<81’ x/)dsl,
(O,Il] 0 @

and from (4.3) that

/ (6")1a(v°)(s1,2) dv(s)) = 9 E1a0°
(0,z1]

VRL2 (Sla )dV(Sl)
(0 Il]

( :1713 / 8 517 dsla

yielding the second equation in (5.15). O

PROPOSITION 5.3. For all v € BDy™(Q) and 6 > 0, the following holds for some
constant C' independent of §

(5.18) /Q

J

Ev’ |?
vRL2

2
du®£2§/ﬂ ng’z

2 o
2
dv® L 352/9

dv ® L2 < oo,

o Ev®
Oz VRL2

Ev |?
vRL2

dv ® L£? < oo,
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5 ({91)6 82'06

(519) v, %, 78@‘@6%‘6

€ L*(O;R3), Y a, B €{2,3}.

Proof. Assertion (5.18) follows from (5.4), (5.7) and (5.10). By Lemma 4.4, the
Lebesgue measure on §) is absolutely continuous with respect to m ® £2, thus, by
(2.4) and (4.17),

(5.20) (’Ué)+ = (v5)7 = (v‘;)* =v® L3ae. in Q.

y (5.16), (5.18), (5.20), Cauchy-Schwarz inequality and Fubini Theorem, we have

[ eipas = [ jody Pas = [
Q

<C/|En’" 2du®£2<c/|En” 2dv @ L? < oo,

2

By v’ dx

VL2 (Sl,l'/) dV(Sl)

(0,z1]

yielding, by (5.7)
Q axa
We deduce from (5.10), (5.17), (5.20) and the last inequalities that, for o € {2, 3},

2
/|vg\2da?§0 dx—i—C/
Q Q |/(0,1] alJo

<C’/|5§9‘22|d1/®£2—&-C’/Q 752/|V®£z|du®£2<oo

d:cgé—c;/ 01’ de < — /|fé1£§|2dl/®£2<oo.

T 2
Ovf x') dsi| dz

E1,V°
lo axa(817

VL2 (517 m/)dy(sl)

8%
and then from (5.7) that, for a, 8 € {2,3},

n=
/

Assertion (5.19) is proved. O

—62/'” |2d —54/|V®£2| dv ®£2<OO

_56/|V®£2| dv @ L? < .

Oy
820
8%8%

2

6. Proof of Theorem 3.1. The proof of Theorem 3.1 rests on the choice of an
appropriate sequence of test fields (¢, ), which will be constructed from an arbitrarily
chosen partially mollified element of BD{™ (€2), that is a field ¢ of the type

(6.1) e=v°, veBDI™(Q), §>0.

Let us briefly outline our approach. In the spirit of Tartar’s method [51], we will
multiply (3.2) by ¢. and integrate by parts to obtain



32 M. BELLIEUD, S. COOPER

(6.2) / o.(u.) : elp.) dz = / f - ped.

By passing to the limit as ¢ — 0 in accordance with the convergences established
in propositions 4.2 and 6.1, we will find a(u,v®) = [, f - v’dz, where a(,) is the
symmetric bilinear form on BD""™(Q2) defined by (3.9). Then, sending § to 0, we will
infer from Proposition 5.2 that a(u,v) = fQ f - vdx. From Proposition 4.2, we will
deduce that u belongs to BD;"™ (), hence is a solution to (3.6). Next, we will prove
that BD;"™(Q) is a Hilbert space and a(-,-) is coercive and continuous on it, hence
the solution to (3.6) is unique and the convergences established in Proposition 4.2 for
subsequences, hold for the complete sequences.

The sequence (p.) will be deduced from a family of sequences ((F):)ren by a
diagonalization argument. Given k € N, the construction of (¢¥). is based on the
choice of an appropriate finite partition (I ]’?)je{l ,,,,, ney Of (0, L] defined as follows:
since the set of the atoms of the measures v and m is at most countable, we can fix
a sequence (Ag)gen of finite subsets of [0, L] satisfying

Ak:{t§7tlf,...tk}7 AkCAk+1 VkEN,

) Yng

O=th<th<th<..<th <tb =1L,
(6.3) v({t5)) =m ({5}) =0 VkeN, Vje{0,...,n},

lim sup th — ¢k ‘ =0.

k‘“’oje{l,.“,nk} J it
Setting
(6.4) ]

I]k = (t?_l,tﬂ VkeN Vje{l,...,ng},

we introduce the function ¢¥ : (0, L) — R defined by

Nk Ve ]§_17x
(6.5) by =y oy )

Note that the restriction of ¢* to each I Jk is absolutely continuous, and

dot pt () _
(6.6) day (1) ve(IF) in I7; 0<¢;<1 in (0,L),

¢((t)7) =1 and GL((£j_1)") =0 Vje{l,... ,n}.

For all j € {1,...,n4}, z € I;C x Q) a € {2,3}, we set (see (4.3))
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k Iec(xl) v /
P (z) = 112 Ju o71(p)(s1,2")dv(s1)
J
l > o 830,1 ! + 1k /
(6.7) 733 z . O (s1,2")ds1 + @7 (t7_1,2"),
a=2"" -1
1
oo @)=k (x1)[ 0¥, (@) (s1,2")dv(s1) — Tawl (s1,2")ds1+¢f (th_y,2").
Ik th_, Lo !
J J—

The sequence of test fields (o) is determined by the next proposition.
PROPOSITION 6.1. Let v € BDy™ (), § > 0, and o, @* respectively given by (6.1),
(6.7). There exists an increasing sequence (k) of positive integers converging to oo
such that p. defined by

(68) Pe = ‘PIECEa

strongly converges to ¢ in L*(Q;R3) and satisfies the assumptions (4.25) and (4.29)
of Proposition 4.8. In particular, the convergences and relations (4.27), (4.28) and
(4.30) are satisfied. In addition, the following strong convergences in the sense of

(4.2) hold:

1/5®L2,y®£2 ) m5®L2,m®£2
EEE— EE——

(6.9) o-(p:)el o’(per, ew(pe em/((‘P*)l)a

where o is given by (4.3).

Proposition 6.1 will be proved in Section 6.1. The next step consists in passing to the
limit as ¢ — 0 in (6.2). Expressing in (6.2), for g € {u., ¢.}, the scalar fields e11(g),
0e22(g), 0-33(g) in terms of the components of o.(g)e; and e, (g) (the details of this
computation are situated at the end of the section), leads to the following equation:

3
/ H_%Uall(ue)aell(ﬂoe) + Z Uela(ua)asla(ﬁoe) dve ® L?
Q

a=2

3
(6.10) / Seag(ue)ess(pe) + D > ean(te)ean(pe) dme @ L2
Q

a=2

+/ %(622@5)633(905)+€33(us)€22(905))dms®£2 = / f - peda.
0 Q

By (4.5), the next weak convergences in the sense of (4.1) hold

VE®£27V®[,2 ’ ) m5®52,m®£2

6.11) o (u)es o’ (u)er, ey (u ex ((u)).

By passing to the limit as ¢ — 0 in (6.10), by virtue of (6.9) , (6.11) and Lemma 4.3
(iil), we obtain
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/Ql_%gau JoTi(e "‘Zala u)oi,(p) dv @ L?
(6.12) n / Seas(u¥)ens(p?) + A Zeaa )ean(@*)dm @ L2
Q

—i—/Q 5 (e2a(u*)ess(¢™) + ezz(u)ean(p®))dm @ L£? = /Qf - du.

An elementary computation yields

E
/QlJr2 o11(u)ot; (e —|—Z ol (w)oy, (¢ p)dvRL = /Q + u®1z:L2 : V®£2 ® dvRL?,

(6.13) /94623(1‘*)623(90*)+/Ql+lg(€22( *)ess(*)+ ess(ut)ean(9*))dmaL?

4 4 z Coa)ean ()i & L= [ ale, () e (¢) dmes £2

where a* and al are given by (3.10). We infer from (6.12) and (6.13) that

a’(uﬂsa) = / f‘P diC,
Q
where a(, -) is the continuous symmetric bilinear form on BD"'™ () defined by (3.9).
Substituting v® for ¢ (see (6.1)) and letting § converge to 0, we deduce from the
strong convergence in BDV"™(Q) of v° to v stated in (5.13) that
(6.14) a(u,v) = / f-vdx YveBD{™(Q).
Q
Since, by Proposition 4.2, the field u belongs to BDy™(£2), we conclude that u is a
solution to (3.6).

Let us prove that BD;™(Q) is a Hilbert space. By the Poincaré inequality in
{ve BD(Q), v=0 on 90} (see [54, Remark 2.5 (ii) p. 156]), we have

/|v\dm<c/d\Ev| C/| ®£2\d1/®£2
15)

<o) #

hence the semi-norm ||.||pprm (o) defined by (3.8) is a norm on BDy™(2). On the

(6.

2
SoL V12 dv® Ez) < Clvllppym Y veBD™(9Q),

other hand, Fubini’s Theorem and Korn’s inequality in Hg(9'; R?) imply

/| )V [Pdm @ L£* = / dm(zy) [ |(v")*]*da’
(6.16) " &

< c/ dm(zy) /Q lew (v*)|?da’ < C||v\|§3D5,m(Q) Vv e BDy™(Q).
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Let (v,,) be a Cauchy sequence in BDy™ (€2). By (6.15) and (6.16), the sequences (v,,),
((vh)*), (uEeg%é) are Cauchy sequences in BD(Q), L2,(0, L; Hj (€ R?)), L2 (€ S?)
respectively, hence the following convergences hold

Uy — U strongly in  BD(f2),
(617) (v/n)* — w/ Strongly in Liz(oa L7 H&(Q/7R3))7
Ev,

Jers — B strongly in L2 o2 (4 S?),

for some v, w’, E. We prove below that

6.18 Ev) < v® L2 E:E—vfz, v=0 on 09,
vRL

(6.19) w = (V)" m® Lae.

It follows from (6.17)-(6.19) that v € BD{™(Q2) and (v,,) strongly converges to v in
BDy™(9), hence BDy"™ () is a Hilbert space. The proof of Theorem 3.1 is achieved
provided we establish that the form a(-,-) is continous and coercive on BDgy ™ ().
The continuity is straightforward. The coercivity of a(-,-) results from Lemma 6.2
stated below.

Proof of (6.18). As v, = 0 on 09, by (6.17) and Green’s formula we have, for
¥ e CL();S?),

/ v-divWdr = lim v, -divWdzr = — lim VYdFEv,
Q

= — lim QF@% ;¢du®£2:_/5;¢du®c2.

n— oo Q

We deduce from Green’s formula that

—/\Il:dE(v)+/ v@n:@d%Z:—/E:quu@c?.
Q o0 Q

By the arbitrary choice of 1, we infer (6.18).
Proof of (6.19). By (6.17), limy,, o [, |(v],)* —w’|?’dm® L* = 0, hence there exists
a m-negligible subset N of (0, L) such that

(6.20) lim (V)" —w'|*dH* =0  Va, € (0,L)\ N.

n—-+oo Zwl
On the other hand, since (v,,) strongly converges to v in BD(f2), the traces 7:511 (vn)
on both side of 3, strongly converges to 'yil (v) in Ly»(3,,) for all z; € (0,L). By
(4.13), (4.17), and (6.18), v*(z1,.) = 'ygwl (v) = 75, (v) H*ae. on ¥, for m-ae.
x1 € (0,L). Accordingly, there exists a m-negligible subset N7 of (0, L) such that

(6.21) lim |(vp)* —v*|dH?> =0  Vax; € (0,L)\ N;.
n—+o00o Sy
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Let us fix 21 € (0,L) \ (N U Ny). By (6.20) there exists a subsequence of (v )*
converging H2-a.e. on ¥, to w’. By (6.21), there exists a further subsequence
converging H2-a.e. on ¥, to (v')*. Hence w' = (v')* H?-a.e. on X,, for m-a.c.
x1 € (0,L). Setting A := {z € Q, w'(z) # (v')*(2)}, Az, := AN, we infer that
H2(Az,) =0 for all 1 € (0,L)\ (NUN;). It then follows from Fubini’s theorem that
m® LE(A) = f(O,L) H2(Az, )dm(zy) = 0.

LEMMA 6.2. For allv € BDy™(Q), a, B € {2, 3}, we have

(6.22) /Q

Proof. Let v € BDy™ (), § > 0, and . defined by (6.1), (6.8). By Proposition 6.1,
the convergence (4.28) holds, hence by Lemma 4.3 (ii), we have for «, 8 € {2, 3},

J

As, on the other hand, by (4.2) and (6.9), the following holds

E.pU
v®L?

2 2 *\7Y|2 2
dv® L §/ leag((v™*))|” dm @ L=
Q

Eapgp
vRL2

2
dv® L? < liminf/ fhe |eaﬁ(c,05)|2 dzx.
e—0 Q

iy [ eleas(eo) do= [ leap((@t)) dme £,
e—0 Q Q

J

Substituting v° for ¢ and passing to the limit as § — 0, taking (4.26), (5.13) into
account, we obtain (6.22). O

Justification of (6.10). We fix e, € € S® and set o :=l(tre)I +2e, o := [(tre)I + 2e.
We have

we deduce that

Eapp
vRL?

2
dv @ L? S/ leas((©*))]> dm ® L2,
Q

3
(623) o:e= Z 0ii€ii + 012012 + 013013 + 4ea3€a3.
1=1
Noticing that

1 t 1 (& e. e
e11 = m(o'll — 1622 - 1633)7 €11 = m(all - l622 - 1633)3

02 = lers + (I + 2)exn + less = 5 (011 — lean — less) + (I + 2)ean + less,

o33 = len + lega + (I + 2)ess = 5 (011 — leas — less) + leaa + (I + 2)ess,

we obtain, by substitution,

3
Z@z‘gﬁ:0111_%2(511*1522*1533)+(H_%(Un*1622*1633)+(l+2)622+5633>522
i=1

+ (H%(Jn —legy — l633) + leag + (l + 2)633) €33

_ 1 -~ 4 l+1) ~ ~ 21 ~ —
= 55011011 + (l+2 (e22€22 + €33€33) + m(ezzesg + e33€22),
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yielding, by (6.23),

~ 1 ~ ~ ~
0:e= 5011011+ +2012€12 + 2013€13

~ 4(1+1 ~ ~ 21 ~ ~
+ 4easzeas + %(622622 + e33€33) + 5 (€22€33 + e33€22).

Substituting e(u.), e(p:), %ag(ug), %ag(gog), respectively, for e, e, o, o, we infer
(6.10).

6.1. Proof of Proposition 6.1. The proof of Proposition 6.1 lies in the asymp-
totic analysis of the family of sequences (((p’; )s) e the results of which are presented
in the next proposition whose proof is located in Section 6.2.

PROPOSITION 6.3. Let v € BDy™(2), 6 > 0, o defined by (4.3), and ¢, @k
respectively given by (6.1), (6.7). Then o belongs to H*(Q;R?) and satisfies

(6.24) sup / |k [2dm. @ £ < oo,
kEN; e>0JQ
(6.25) lim sup/ |k — | dz =0,
k—00 >0 Q
2
(6.26) lim sup limsup/ ’a'g(cplg)el‘ dv. ® L* < / oV (p)er]* dv @ L2,
k—oo e—0 Jo Q

k—o0 e—0

2
(6.27) limsuplimsup/ ew/((goﬁ)/)‘ dm5®£2§/ lear (")) dm @ L2
Q Q

Let us fix a decreasing sequence of positive reals (a)gen converging to 0. By Propo-
sition 6.3, there exists a decreasing sequence of positive reals (e )ren converging to 0
as k — oo and such that, for all € < ¢,

/ ok — | da < ay,
Q

(6.28) /Q
/,

Let k. be the unique integer such that j,_y; < e < €. (notice that k. — occ0). We set

k 2 2 v 2 2
oo(ph)er] dv.w L2 < | |0 (perl* dv e L2+ ay,
Q

em’(‘P?)

2 2 *\ 2 2
dm. @ L2 < [ ley ()| dm @ L + a.
Q

(6.29) p. = phe.

By (3.2), (3.1), (6.24), (6.28) and (6.29), the sequence (p.) strongly converges to
@ in L*(Q;R3) and satisfies the assumptions (4.25) and (4.29) of Proposition 4.8.
Therefore, the convergences (4.28) and (4.30) hold. We deduce that
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QL2 VL, QL2 mRL?
e oY (pler, ew((pe)) R e ((97))

On the other hand, (6.28) and (6.29) imply (since k. — o)

o-(p:)er

lim sup |05(cp5)el\2due®£2 §/ lo¥(p)er|” dv @ L2,

e—0

limsup/ lewr ((¢e) | dm. ® L* < /|em | dm @ L2,

e—0

yielding (6.9). Proposition 6.1 is proved provided we establish Proposition 6.3.

6.2. Proof of Proposition 6.3 . Let us prove that ¥ belongs to H!(Q;R?).
By (6.7), ¢* belongs to Hl(Ij’»C x Q/;R?) for all j € {1,...,ny— 1}, therefore it suffices

to show that the traces of ¥ coincide on each side of the common boundaries of
IF x  and IF,, x &, that is

(6.30) (%)™ = (") T H2-a.e. on Sp Vie{l -1}

One easily deduce from formula (5.15) (applied to v’ = ) that

et 2=t 0) = s [ (@) sr,a)do(s0)

(6.31) 3
l 88004 /d
*2 :l+2 o axa’(slax) S1-
J

a=2

On the other hand, by the properties of ¢* and the definition of ¢* (see (6.6), (6.7)),

we have

(i a) = s [ (Il a) dolsn)

J

(6.32) 5 gy
- s " oo (s1,a)dsy + o (8, 27).
a=2 j—1

We infer from (6.31) and (6 32) that (@F)7 (t5,27)) = of (tF,2'). Since (6.6) and (6.7)
imply (k) (t;c L) = of (tk j_1,a’) forall j € {1,...,n}, we deduce that (6.30) is

satisfied by the first component of ¢*. Likewise, we deduce from the second equation
in (5.15) that, for a € {2, 3},

P )~ et aa) = [ (@ ale)ona!) d(on) = [ , Bk

and then from (6.7) that
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() (th)= [ (0" (@Dralosavlsn)— [ G2 (or, s+ (),
Ik Ik 7re
yielding (¢F) (t5, 2)) = ot (%, 27). Noticing that (6.7) also implies that (F) (¢ |, 2") =

QL (th_ | 2) for all j € {1,.. nk} we infer that (¢F)7 (t%,2)) = (@F) L (th, 2')). As-
sertion (6.30) is proved and ¥ belongs to H'(2;R?).

The next lemma plays a crucial role in the proof of Proposition 6.3. In what follows,
for all z; € (0, L), we denote by j., the unique integer satisfying

(6.33) moe (th itk ]

VES
LEMMA 6.4. We have

(6.34) ;%us(lf) =v(I}) and ;i_]%me([f) =m(I}) VkeN, Vie{l,....,m}.

For all k € N, the mapping z1 € (0,L] — V(IJ’?ZI) defined by (6.4), (6.33) is Borel
measurable and satisfies, for all p € (0,00),

lim / I Ydm (1) = / u(I% Ydm(a),
(6.35)
lim 1/(I’?C Y dL (zy) =0, lim v(IF )P dm(z;) = 0.

Jx VES
k—oco 0 1 k—o0 [O,L] 1

Proof. Since 1/(8[]’-“) = m((‘?]f) =0forall k e N, j e {l,...,n,} (see (6.3)), the
convergences (6.34) result from (3.3). By (6.3) and (6.33), we have

(6.36) v(If ) = Zv (17) Ly (1),

hence the mapping z; € (0, L] — V(Ij’;) is Borel-measurable and, by (6.34),

lim [ v(IF Ydm.(z1) = gi_r)r(l)Zy(If)ms(I’?): v(IFYm(IF)

50 Jay J J J
Jj=1

_ / V(I Ydm(w).

The measure v is bounded and the assumptions (6.3) imply that, for each fixed x; €
(0, L], the sequence of sets (IF Jren is decreasing and satisfies ﬂkeN I hl = {x1},

therefore limy oo u( ) = y({xl}) Applying the Dominated Convergence Theorem,
noticing that, by (3.4), LY(A,) =m(A,) =0, we infer
L

Jdim (I )P AL () = / )L ) =0,
. F P dm(zy) = v({z1})Pdm(xz1) = 0.
k:lggo 0.L] v(I5,,)" dm(z1) / ({z1})Pdm(z1) =0

v
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0
Proof of (6.24). By (4.3), (5.15), (5.19), (6.1), we have, forall 2; € (0, L),

J,

therefore, by (6.6), (6.7), and (6.33),

2
cp+(t§zl_1,x’ dz’ <0/\a dv®£2+0/ ‘68790‘ dz < O,
Q e

sup / Q8 2 (1, o)’

z1€(0,L) JQ

<c([lo"@Pave e+ /\i| dw+/ (1 o) P’ ) <
Q

By integrating over (0, L) with respect to m., we obtain (6.24).
Proof of (6.25). By (5.15), (5.19), (6.1), the following estimate holds for z; € I]’?C (or
equivalently for j = jg, ):

(6.37)
|<p (z1,2") — T (t;,2")|da’ <c/| \du®£2+02/ ‘9‘/’ |d£3

L v 3
< o)} |o <so>||L2®£2+c(, PNt ]k) le 2 |20
v Je L,.np

< Cu(Ihi+C < sup clu;f))

JE€{1,...,ni}

By integration over (0, L) with respect to £, taking (6.3), (6.33), (6.35) into account,
we infer

(6.38) klgl(f)lo A [t (z1,2") — o™ (t;,,,2")|dx = 0.

By the same argument, we deduce from (6.6), (6.7) that

(6.39) i [ 1b(e1,a') = @* (05, 0o = 0
Q

k—o0

Assertion (6.25) results from (6.38) and (6.39).
Proof of (6.26). Taking (3.2), (4.3), (6.6) and (6.7) into account, an elementary
computation yields, for all j € {1,...,nx} and for L3-a.e. z € I]’? x

o-(98)(@)er = e (1r(e(P)T + 2e(ph)) e

a”(p)(s1,2")erdv(s1) + E(z),

—_

(6.40)

where for o € {2,3},
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0 dot
=13 (ke 17m’>—r§z (o1.2)

—|—2lqz$k (1) Z/ o(e 83: 10‘ (s1,2")dv(sy —lz —(& (s1,2")dsq,

(6.41)
o) = gt [, AT ) o)

d N D
1+2Z/k 8max (51, >d51+a%(1 1) = ai(xlv 7).

We prove below that

(6.42) lim sup lim sup/ [r*|2dv. ® L2 = 0.
Q

k—o0 e—0

By (6.40), we have

i
S ﬂsl(iﬂl)diﬂl/

(6.43) - j:1 (I/E(I’?))Q

Assertion (6.26) follows from (6.34), (6.42), (6.43).
Proof of (6.42). A computation analogous to (6.37) yields for 1 € ]]’?, taking (5.19)
into account,

o-(pl)er —rk ® L?

2

/‘J”(Lp)el(sh:c’)dl/(sl) dx’
I¥

/ 0¥ (p)e|” dve L2,
IkXQ/

(930+ ’ 830+ / 2 / k
(6.44) o (xl,z)faT(tj,x) dz’ < Cv(Ij) +C {fup L}E (I ).
’ [e% « Je Mk
Similarly, by (5.4),
2
da” / k k
(6.45) / 1] 88 s ahdvtsn)| da’ < ou )’ 3xa @ SOV,

2

2
2
2B (5,2 )dsy| da’ <C  sup £NIF) P
(6.46) /ﬂ w_, 9739%a GE{Lm i} Orp0%a || 12(q)
<C sup El(Ik)
je{l,...oni}

Collecting (6.6), (6.41), (6.44), (6.45), (6.46), noticing that u2v. = m., we infer
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(6.47) / rkPdv. © L7 < C/v(fj’il)dmg(:cl) +C  sup LY(I)me((0, L)),
Q Je{l 7nk}

Assertion (6.42) results from (6.3), (6.35), (6.47).
Proof of (6.27). By (6.7) we have, for z; € I]’?,

e (¢F)(2) = ex (91)(t5_1,2") + RE(2),

R (x) = ¢t (1) / ex (0¥ ()e1) (51, 2')dv(s1)

I*
J
— E D1 (s1,2")ds1€q O €
0L 40T 1 1€ 8-
—1

a,B=2

(6.48)

2
We deduce from (6.6), (6.45), (6.46), (6.48), that |, )R’;‘ (z)dm. is bounded from
above by the left-hand side of (6.47), hence, by (6.3), (6.35),

6.49 lim su / =0.
( ) k—o0 €>18
By (3.1) and (6.4) we have
2
/ |ea:/(§0+)| t? _1, @) dme ® L2 = Zme / |ez ] 1733/) dx’,
Q

yielding, by (6.34),
(6.50) hm/ lex (e 2 )dm. ® L2 / lew (¢ ‘Q(tfwl,l,xf)dm ® L2

By (6.3) and (6.33), for all 21 € (0, L), the sequence (tﬁml,l)keN converges to 7 from

below as k — oo. Therefore, by (5.14), for each x €  the following holds

(6.51) lim |e, (¢1)]?
k—o0

(t 1.2)) = |ew (7] (2).

On the other hand, by (5.15), |e. (¢ )| (t*

Juy —10 T z') < g(x), where

9(@):= | lew(a"(p)er)|” (s1,2’

(OvL) QIB 2

(s1,2")dsy.

We deduce from (5.18) and (5.19) that g € L}, -»(€), and then from (6.50), (6.51)
and the Dominated Convergence Theorem, that

(6.52) lim/|em —1: T )dm®£2:/‘e$/(¢*)|2 dm ® L2
Q

k—o00

By (3.4) and (3.23) we have |[Ep|(X;,) = 0 for m-a.e. 1 € (0, L), therefore Assertion
(4.16) implies that e,/ (p~) = e (¢*) m @ L?-a.e.. Collecting (6.48), (6.49), (6.50),
(6.52), and the last equation, the assertion (6.27) is proved.
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6.3. Proof of Corollary 3.2. Choosing ¢ € D(Q2\ X) in (6.14) (see (3.15)),
taking (3.12) into account, we get fQ\Eo'(u) ce(p)dr = [, f - @dx and infer, by
the arbitrary choice of ¢, that —divae(u) = f in 2\ X. Choosing ¢ € BDy"™ ()
such that ¢ € C*°(U) for every connected component U of Q \ ¥,, and integrating
ae(u) : e(p) by parts over each connected component of 2\ 3, taking the first line
of (3.14) into account, we deduce

and obtain the transmission conditions stated in the second and third lines of (3.14).
Conversely, any solution to (3.14) satisfies (3.6).

6.4. Sketch proof of Proposition 3.10 . Repeating the argument of the proof
of Proposition 4.2, we establish the apriori estimates

sup/ \u8|2dmg®£2+/ \u8|dx+/ Lbe |Vu5|2dx < 00,
Q Q Q

e>0

and deduce, up to a subsequence, the following convergences (analogous to (4.5))

u. = u  weakly* in BV (Q;R") for some u € BVy"" (),

(6.53) L ML

2 2
11 (CVu ey ZE25228 (o Du e v 0,

*
DoLd-1 Veu®,

where BV,"™(Q) and Vv are defined by (3.42) and (3.43). Fixing v € BV;"™(Q),
§ >0, k € N*, we set ¢ = v and

b (@) = /I (17'C Be)ei(si.a) dv(s1) | ¢ ()

Jaq

x1
— /k (T7'CVp)ei(st,z)ds) + cp+(t§-ml_1,m’).
th

Jxq —1

Mimicking propositions 6.1 and 6.3, we exhibit a sequence . (= F<) satisfying

lim/ lpe — | dz =0,
(6.54) e—0 Q

I/5®[,2,D®£2
1e(C'Ve:)el (C De Jer, V.

m5®£2,m®ﬁ2
_—
V®£d_ 1

*

Vzmp .

Multiplying (3.37) by ., integrating by parts, and applying the formula
(6.55)
CVu. : V. =(T 'CVu.)e;-(CVp.)e; — (T'CV,u.)e - (CVup.) e

+CVyu. : Vg,

proved below, we obtain
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[ pedx :/ ,uE(T_1C’Vu€)el 1 (CVep.)er dv. @ L?
Q Q
—|—/ —(T_ICVI/ue)el (CVyppe)er +CVyue - Vyp, dm. ® L2
Q

Passing to the limit as ¢ — 0 in accordance with (6.53) and (6.54), we find

a(u,go):/Quwpdx,

where

a(u, @) ::/Q(T_lC %)el -(C %)el dv @ £371

— (T CVu*)e-(CVp)*)es + CVpu*:Vaue) dn@ L9471
Q
An elementary computation shows that a(-,-) is also given by (3.44). The rest of the

proof is similar to that of Theorem 3.1.
Proof of (6.55). Noticing that T defined by (3.39) satisfies

(TVv)e; = (CVv)e; — (CV ) ey,

and taking the invertibility of T' and the symmetry of T~ " and C' into account, we
obtain

CVu:Vv = (CVu)e;-(Vv)e; + CVu:V, v =(CVu)e;-(Vv)e; +Vu:CV v
= (CVu)e;-(Vv)e; + (Vu)e; - (CVyv)es + Vyu:CVyv
= (CVu)e;- T ((CVv)e; — (CVv)e;)
+ T ((CVu)e, — (CVu)e))-(CVv)e +Vpu:CV v
=(T"'CVu)e,-(CVv)e,— (TT'CV u)e;- (CVv)e1+Vyu:CV .
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