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ASYMPTOTIC ANALYSIS OF STRATIFIED ELASTIC MEDIA IN
THE SPACE OF FUNCTIONS WITH BOUNDED DEFORMATION.

MICHEL BELLIEUD ∗ AND SHANE COOPER †

Abstract. We consider a heterogeneous elastic structure which is stratified in one direction.
We derive the limit problem under the sole assumption that the Lamé coefficients and their inverses
weakly* converge to some Radon measures.
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1. Introduction. In this paper, we study the asymptotic behavior of the
three-dimensional isotropic linear elasticity problem

(1.1)
− div (λε tr(e(u))I + 2µεe(u)) = f in Ω, u ∈ H1

0 (Ω;R3),

e(u) := 1
2 (∇∇∇u+∇∇∇Tu),

when the Lamé coefficients λε, µε and their inverses are bounded in L1(Ω) and weakly*
converge to some measures. We determine the limit problem in terms of these mea-
sures in the case when λε and µε only depend on one variable. Our results have been
announced in [13].

It is well known that, when the Lamé coefficients are uniformly bounded from above
and below by positive constants, the sequence of the solutions to (1.1) converges, up
to a subsequence, to the solution of a problem of the form −divaeffe(u) = f (see
[37, p. 374, 4o]). Under suitable periodicity assumptions, the effective tensor aeff can
be characterized by means of the theory of homogenization [16], [29], [37], [44], [53].
Diverse asymptotic analyses of (1.1) and of the associated vibration problem have been
performed under various hypotheses related to geometry and periodicity when the last
mentioned boundedness assumptions fail [1], [7], [8], [9], [12], [14], [15], [20], [23], [40],
[45], [46], [47], [48]. In this context, stratified media have recently been investigated
in [11], where a two-phase medium comprising a distribution of possibly very stiff
homothetical layers alternating with much softer ones is considered. An interesting
aspect of this study resides in the possible emergence of higher order derivatives
(resp. non local terms) in the effective equations when the Lamé coefficients (resp.
their inverses) fail to be bounded in L1. Let us also notice that spectral properties of
high contrast stratified media have been studied in [21, 22], where, in the presence of
a defect, unusual phenomena of ‘super-exponential’ localisation of eigenmodes to the
vicinity of the defect are demonstrated.

In this paper, both the elasticity coefficients and their inverses are supposed to be
bounded in L1. Apart from these boundedness conditions, we make no assumption
relating to the oscillatory behavior of these coefficients. In this respect, our analy-
sis is much more far-reaching than that developed in [11]. Unlike [11], its range of
application includes both homogenization and singular perturbations problems (see
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Remark 3.6). Indeed, most of our results do not fall within the scope of [11] (see
Remark 3.5). We show that the last mentioned boundedness assumptions in L1 pre-
clude the appearance of higher order derivatives in the limit equations, and, in most
cases, of non local effects. The sequence of the solutions to (1.1) is not, in general,
bounded in H1(Ω;R3). The natural functional space is the space of functions with
bounded deformation, that is the set of elements u of L1(Ω;R3) whose distributional
symmetrized gradient Eu is a matrix-valued measure with finite total variation. This
space, introduced in [39], [49] (see also [41]), has been intensively investigated in the
literature [2], [4], [34], [38], [50], [54], [55]. A marking feature of our results is that the
effective problem only depends on the limit measures of the elasticity coefficients and
of their inverses, not on the sequences themselves, provided these measures have no
common atom. Otherwise, the arbitrary choice of the converging sequences leads to
infinitely many distinct limit problems, some exhibiting non-local terms (see Remark
3.7). Similar properties were already known for diffusion problems in stratified media
[17] (see Remark 3.12). The generalization of such results to elasticity is anything but
straightforward, because effective problems may take a much more complicated form.
More precisely, the limit energy associated to a sequence of linear diffusion problems
is always a Dirichlet form [41]. By contrast, the limit energy associated to a sequence
of linear elasticity problems can be any non-negative lower semi-continuous quadratic
form on L2(Ω;R3) taking vanishing values on the set of rigid motions [18].

We now present our results in more details. For a given cylindrical bounded open
subset Ω = (0, L)×Ω′ of R3 with Lipschitz boundary, we consider the problem (1.1).
The Lamé coefficients are assumed to depend only on the variable x1. We suppose
that λε = lµε for some non negative real l and that the following convergences hold

(1.2) µε
?
⇀m, (µε)

−1 ?
⇀ ν weakly* in M([0, L]).

Under (1.2), we prove that the solution uε to (1.1) weakly* converges in BD(Ω) to
some function u with bounded deformation. This effective displacement is character-
ized by the emergence of jumps u+−u− at the interfaces Σt = {t}×Ω′ corresponding
to atoms {t} of ν, giving rise, if m and ν have no common atom, to the following
concentrations of elastic energy

(1.3) 1
2ν({t})−1

∫
Σt

(u+− u−) ·A(u+− u−)dH2,

where A is given by (3.13). Concentrations of elastic energy also appear on the
planes Σt corresponding to atoms of m. These extra terms are similar to membrane
stretching energy and take the form

1
2m({t})

∫
Σt

a‖ex′(u
?) : ex′(u

?)dH2,

where the operator ex′ and the fourth order tensor a‖ are given by (2.6) and (3.10),
and u? stands for the precise representative of u (see (2.1)). A concentration of elastic
energy also emerges on a set of fractal Hausdorf dimension comprised between 2 and
3. It is given in terms of the Cantor parts νc and mc of the measures ν and m by

1
2

∫
Ω

a⊥ Eu
νc⊗L2 : Eu

νc⊗L2 dν
c ⊗ L2 + 1

2

∫
Ω

a‖ex′(u
?) : ex′(u

?)dmc ⊗ L2,
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the tensor a⊥ being given by (3.10). The effective displacement u is a function with
bounded deformation, hence is approximately differentiable L3-almost everywhere in
Ω (see Remark 3.4). The bulk effective energy takes the form of a classical linear
elastic energy defined in terms of its approximate symmetric gradient e(u) by

1
2

∫
Ω

ae(u):e(u)dx,

the effective tensor a being given by (3.13). The total elastic energy F (u) is the sum
of the terms mentioned above, which can be synthetized as follows:

F (u) = 1
2

∫
Ω

a⊥ Euν⊗L2 · Euν⊗L2 dν ⊗ L2 + 1
2

∫
Ω

a‖ex′(u
?) · ex′(u?)dm⊗ L2.

The effective displacement is the unique solution to the problem minBDν,m0 (Ω) F (u)−∫
Ω
f · udx, where BDν,m

0 (Ω) is defined by (4.26). When the Cantor parts νc and mc

vanish and ν and m have a finite number of atoms, this limit problem is equivalent
to the system of equations (3.14).

The paper is organised as follows: the notations are specified in Section 2 and the
main results stated in Section 3. Section 4 is devoted to the analysis of the asymptotic
behavior of the solution to (3.2), and Section 5 to technical results relating to partial
mollification. The proof of the main result (Theorem 3.1) is situated in Section 6.

2. Notations. In this article, {e1, e2, e3} stands for the canonical basis of R3.
Points in R3 and real-valued functions are represented by symbols beginning with a
lightface lowercase (example x, i, trA, . . .) while vectors and vector-valued functions
by symbols beginning in boldface lowercase (examples: u, f , divσε, . . . ). Matri-
ces and matrix-valued functions are represented by symbols beginning in boldface
uppercase with the following exceptions: ∇∇∇u (displacement gradient), e(u) (lin-
earized strain tensor). We denote by ui or (u)i the components of a vector u
and by Aij or (A)ij those of a matrix A (that is u =

∑3
i=1 uiei =

∑3
i=1(u)iei;

A =
∑3
i,j=1Aijei⊗ej =

∑3
i,j=1(A)ijei⊗ej , where ⊗ stands for the tensor product).

For any two vectors a, b in R3, the symmetric product a� b is the symmetric 3× 3
matrix defined by a � b := 1

2 (a ⊗ b + b ⊗ a). We do not employ the usual repeated

index convention for summation. We denote by A : B =
∑3
i,j=1AijBij the inner

product of two matrices, by S3 the set of all real symmetric matrices of order 3, by I
the 3× 3 identity matrix. We denote by Ln the Lebesgue measure in Rn and by Hk
the k-dimensional Hausdorff measure. The letter C denotes constants whose precise
values may vary from line to line. Let Ω := (0, L) × Ω′ be a connected cylindrical
open Lipschitz subset of R3. For any ϕ ∈ L1

loc(Ω;R3), we denote by ϕ? its precise
representative, that is

(2.1) ϕ?(x) =

 lim
r→0

∫
−
Br(x)

ϕ(y) dy if this limit exists,

0 otherwise,

whereBr(x) is the open ball of radius r centered at x, and
∫
−
Br(x)

ϕ(y) dy :=

∫
Br(x)

ϕ(y) dy

L3(Br(x)) .
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We also set

(2.2) ϕ±(x) =

 lim
r→0

∫
−
B±r (x)

ϕ(y) dy if this limit exists,

0 otherwise,

where

(2.3) B+
r (x) := Br(x) ∩

(
(x1, L)× Ω′

)
, B−r (x) := Br(x) ∩

(
(0, x1)× Ω′

)
.

The fields ϕ? and ϕ± are Borel-measurable and take the same values on the Lebesgue
points of ϕ, thus

(2.4) ϕ± = ϕ? = ϕ L3-a.e. in Ω.

We denote by ϕ′ the element of L1
loc(Ω;R3) defined by

(2.5) ϕ′1 = 0, ϕ′α = ϕα ∀α ∈ {2, 3},

and by ϕ̃ the extension of ϕ by 0 into R3. If ϕ2, ϕ3 admit weak derivatives with
respect to x2, x3, we set

(2.6) ex′(ϕ) :=
3∑

α,β=2

1

2

Å
∂ϕα
∂xβ

+
∂ϕβ
∂xα

ã
eα ⊗ eβ .

The symbolDϕ represents the distributional gradient ofϕ andEϕ := 1
2

(
Dϕ+DϕT

)
the symmetric distributional gradient of ϕ. The space of functions with bounded de-
formation on Ω is defined by

(2.7) BD(Ω) :=
{
ϕ ∈ L1(Ω;R3) : Eϕ ∈M(Ω; S3)

}
,

whereM(Ω;S3) stands for the space of S3-valued Radon measures on Ω with bounded

total variation. For any ϕ ∈ BD(Ω), we denote by ‹Eϕ the extension of Eϕ by 0 to
Ω, that is the element of M(Ω;S3) defined by

(2.8) ‹Eϕ(A) := Eϕ(A ∩ Ω) for all Borel subset A of Ω.

For any x1 ∈ [0, L], we set

(2.9) Σx1
:= {x1} × Ω′.

The symbol λθ represents the Radon-Nikodým density of a (finite) vector valued Radon
measure λ on Ω with respect to a positive Radon measure θ on Ω. For any Borel subset
E of Ω, we denote by λbE the Radon measure defined by λbE(A) = λ(A ∩ E).

3. Setting of the problem and results. Let Ω := (0, L) × Ω′ be a bounded
cylindrical Lipschitz domain of R3, let (λε), (µε) be two sequences in L∞(0, L;R+)
such that µ−1

ε ∈ L∞(0, L;R+), and let

(3.1) νε := µ−1
ε L1

b[0,L]; mε := µεL1
b[0,L].
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We are interested in the asymptotic analysis of the sequence of linear elasticity prob-
lems

(3.2) (Pε) :


− div(σε(uε)) = f in Ω,

σε(uε)=λεtr(e(uε))I+ 2µεe(uε), e(uε)=
1

2
(∇∇∇uε +∇∇∇Tuε),

uε ∈ H1
0 (Ω;R3), f ∈ L∞(Ω,R3),

under the hypotheses (see Remark 3.3)

(3.3)
λε = lµε (l ≥ 0), sup

ε>0

Ä
||µε||L1(0,L) +

∣∣∣∣µ−1
ε

∣∣∣∣
L1(0,L)

ä
<∞,

mε
?
⇀m, νε

?
⇀ ν weakly* in M([0, L]).

We emphasize that λε and µε only depend on x1. We suppose that ν and m have no
common atom (see Remark 3.7), that is

(3.4) Aν∩Am= ∅, Aν :={t∈[0, L]; ν({t})>0}, Am:= {t∈ [0, L];m({t})>0},

and do not charge the boundary of [0, L] (see Remark 3.8), namely

(3.5) m({0})=m({L})=ν({0})=ν({L})= 0.

Under these assumptions, we prove that the sequence of the solutions to (3.2) weakly*
converges in BD(Ω) to the unique solution to

(3.6) min
ϕ∈BDν,m0 (Ω)

1
2a(ϕ,ϕ)−

∫
Ω

f ·ϕdx,

where BDν,m
0 (Ω) is the Hilbert space defined by (see (2.1))

(3.7) BDν,m
0 (Ω) :=

ϕ ∈ BD(Ω)

∣∣∣∣∣∣∣∣
Eϕ� ν ⊗ L2, Eϕ

ν⊗L2 ∈ L2
ν⊗L2(Ω;S3)

ϕ?α ∈ L2
m(0, L;H1

0 (Ω′)) α ∈ {2, 3}
ϕ = 0 on ∂Ω

 ,

(3.8) ||ϕ||BDν,m0 (Ω) :=

Å∫
Ω

| Eϕν⊗L2 |2 dν ⊗ L2

ã 1
2

+

Å∫
Ω

|ex′(ϕ?)|2dm⊗ L2

ã 1
2

,

and a(·, ·) is the continuous coercive symmetric bilinear form on BDν,m
0 (Ω) given by

(3.9) a(ψ,ϕ) :=

∫
Ω

a⊥ Eψν⊗L2 : Eϕν⊗L2 dν ⊗ L2 +

∫
Ω

a‖ex′(ψ
?) : ex′(ϕ

?)dm⊗ L2,

in terms of the fourth order tensors a⊥ and a‖ defined by
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(3.10)

a⊥Ξ :=

Ö
l tr Ξ + 2Ξ11 2Ξ12 2Ξ13

2Ξ12
l2

l+2 tr Ξ + 2l
l+2Ξ11 0

2Ξ13 0 l2

l+2 tr Ξ + 2l
l+2Ξ11

è
,

a‖Γ := 2l
l+2

3∑
β=2

Γββ

3∑
α=2

eα ⊗ eα + 2
3∑

α,β=2

Γαβeα ⊗ eβ .

Notice that

(3.11) (a⊥ + a‖)Ξ = l tr ΞI + 2Ξ.

Equivalently, we have (see Remark 3.4)

(3.12)

a(ψ,ϕ)=

∫
Ω

ae(ψ):e(ϕ)dx+
∑
t∈Aν

ν({t})−1

∫
Σt

(ψ+−ψ−) ·A(ϕ+−ϕ−)dH2

+
∑
t∈Am

m({t})
∫

Σt

a‖ex′(ψ
?) : ex′(ϕ

?)dH2

+

∫
Ω

a⊥ Eψ
νc⊗L2 : Eϕ

νc⊗L2 dν
c⊗ L2 +

∫
Ω

a‖ex′(ψ
?) : ex′(ϕ

?)dmc ⊗ L2,

where ϕ±, Σt are defined by (2.2), (2.9), νc (resp. mc) stands for the Cantor part of
ν (resp. m), e(ϕ) for the approximate symmetric differential of ϕ, and

(3.13) a :=
(
ν
L1

)−1
a⊥ + m

L1a
‖, A :=

Ñ
l + 2 0 0

0 1 0
0 0 1

é
.

Theorem 3.1. The space BDν,m
0 (Ω) defined by (3.7), endowed with the norm (3.8), is

a Hilbert space. Under the assumptions (3.3), (3.4), and (3.5), the symmetric bilinear
form a(·, ·) defined by (3.9), or (3.12), is coercive and continuous on BDν,m

0 (Ω). The
sequence of the solutions to (3.2) weakly* converges in BD(Ω) to the unique solution
to (3.6).
We can derive the PDE system associated with (3.6) when ν and m have vanishing
Cantor parts and a finite number of atoms.
Corollary 3.2. If νc = mc = 0 and Aν , Am are finite, the problem (3.6) is
equivalent to

(3.14)


− divae(u) = f in Ω \ Σ, u ∈ BDν,m

0 (Ω),

ν({t})−1A(u+− u−)=(ae(u)e1)−=(ae(u)e1)+ on Σt, ∀t ∈ Aν ,

(ae(u)e1)−−(ae(u)e1)+−m({t})divx′a
‖ex′(u

?) = 0 on Σt, ∀t ∈ Am,

where (ae(u)e1)+ (resp. (ae(u)e1)−) denotes the trace of ae(u)e1 on the right (resp.
left) face of Σt, and
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(3.15) Σ := Σν ∪ Σm, Σν :=
⋃
t∈Aν

Σt, Σm :=
⋃
t∈Am

Σt.

Remark 3.3. The conclusions of Theorem 3.1 are unchanged if the assumption
λε = lµε in (3.3) is replaced by λε = lεµε, where (lε) is a sequence of positive real
numbers converging to some l ∈ [0,+∞).
Remark 3.4. The equivalence between (3.9) and (3.12) derives from fine properties
of functions with bounded deformations. More precisely, the symmetric distributional
derivative Eϕ of any ϕ ∈ BD(Ω) can be decomposed into an absolutely continuous
part Eaϕ with respect to L3, a jump part Ejϕ and a Cantor part Ecϕ. The Cantor
part vanishes on any Borel set which is σ-finite with respect to H2. Any element ϕ of
BD(Ω) is approximately differentiable L3-almost everywhere in Ω [2, Theorem 7.4],
[34]. This means that, for L3-a.e x ∈ Ω, there exists a 3× 3 matrix ∇∇∇ϕ(x) such that

lim
r→0+

∫
−
Br(x)

|ϕ(y)−ϕ(x)−∇∇∇ϕ(x)(y − x)|
r

dy = 0.

The absolutely continuous part of Eϕ with respect to L3 is given in terms of the
approximate symmetric differential e(ϕ) = 1

2 (∇∇∇ϕ+∇∇∇Tϕ) by

(3.16) Eaϕ = e(ϕ)L3.

When Eϕ � L3, e(ϕ) is the weak symmetric gradient of ϕ. The jump part takes
the form Ejϕ = EϕbJϕ , where the ”jump set” Jϕ is a countably H2-rectifiable subset
of Ω (i.e. there exists countably many Lipschitz functions fi : R2 → Ω such that
H2
(
Jϕ \

⋃+∞
i=0 fi(R2)

)
= 0, see [3, Definition 2.57]). For any countably H2-rectifiable

Borel set M ⊂ Ω, the following holds (see [54, Chapter II], [2, p.209 (3.2)])

(3.17) EϕbM= (ϕ+
M −ϕ

−
M )� nMH2

bM ,

where nM (x) is a unit normal to M at x and ϕ±M is deduced from (2.2) by substituting
B±r (x,nM ) := {y ∈ Br(x),±(y − x) · nM (x) > 0} for B±r (x). In particular, we have

(3.18) Ejϕ = (ϕ+
Jϕ
−ϕ−Jϕ)� nJϕH2

bJϕ .

Due to its absolute continuity with respect to ν ⊗ L2, the symmetric distributional
gradient of an element of BDν,m

0 (Ω) enjoys a specific decomposition. The measure ν
(resp. m) can be split into an absolutely continuous part νa (resp. ma) with respect
to the Lebesgue measure, a singular part without atoms or Cantor part νc (resp. mc),
and a purely atomic part νat:

(3.19)

ν = νa + νc + νat, νat =
∑
t∈Aν

ν({t})δt, νa = ν
L1L1,

m = ma +mc +mat, mat =
∑
t∈Am

m({t})δt, ma = m
L1L1.
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We have νa ⊗ L2 � L3 and νat ⊗ L2 � H2
bΣν , where Σν is given by (3.15). The

measures νc ⊗ L2 and L3 are mutually singular. If A is a Borel subset of Ω that
is σ-finite with respect to H2, then by Fubini’s theorem νc ⊗ L2(A) =

∫
(0,L)

H2(A ∩
Σx1

)dνc = 0 because {x1 ∈ (0, L),H2(A ∩ Σx1
) > 0} is at most countable, thus νc-

negligible. Accordingly, there exists a Borel partition of Ω, Ω = Ωa ∪ Ωc ∪ Ωat with
Ωat = Σν (see (3.15)) such that

(3.20)

νa ⊗ L2 = ν ⊗ L2
bΩa = ν

L1L3
bΩa , νc ⊗ L2 = ν ⊗ L2

bΩc ,

νat ⊗ L2 = ν ⊗ L2
bΣν =

∑
t∈Aν

ν({t})H2
bΣt .

The condition E(ϕ)� (νa+νc+νat)⊗L2, satisfied by any element ϕ of BDν,m
0 (Ω),

implies Eaϕ� νa ⊗ L2, Ecϕ� νc ⊗ L2, Ejϕ� H2
bΣν , and

(3.21)

Eϕ
ν⊗L2 = Ea

ϕ
νa⊗L21Ωa + Ec

ϕ
νc⊗L21Ωc + Ej

ϕ
νat⊗L21Σν ν ⊗ L2-a.e. in Ω,

Eaϕ = Ea
ϕ

νa⊗L21Ωaν
a ⊗ L2 = Ea

ϕ
νa⊗L21Ωa

ν
L1L3, Ecϕ = Ec

ϕ
νc⊗L21Ωcν

c ⊗ L2,

Ejϕ = Ej
ϕ

νat⊗L21Σνν
at ⊗ L2 =

∑
t∈Aν

Ej
ϕ

νat⊗L21Σtν({t})H2
bΣt .

In particular we have Jϕ ⊂ Σν , therefore, by (3.15), (3.18),

(3.22) Ejϕ = EϕbΣν =
∑
t∈Aν

(ϕ+ −ϕ−)� e1H2
bΣt .

Taking (3.16) into account, we infer

(3.23) Eϕ = e(ϕ)L3 + Eϕ
νc⊗L2 ν

c ⊗ L2 +
∑
t∈Aν

(ϕ+ −ϕ−)� e1H2
bΣt .

We deduce from (3.16), (3.21) and (3.22) that Ea
ϕ

νa⊗L2 =
(
ν
L1

)−1
e(ϕ) L3-a.e. in Ω,

and Ej
ϕ

νat⊗L2 = (ν({t}))−1(ϕ+ − ϕ−) � e1 H2-a.e. in Σt, ∀t ∈ Aν , and then from
(3.21) that

(3.24)

Eϕ
ν⊗L2 =

(
ν
L1

)−1
e(ϕ)1Ωa + Ec

ϕ
νc⊗L21Ωc +

∑
t∈Aν

(ν({t}))−1(ϕ+ −ϕ−)� e11Σt

ν ⊗ L2-a.e. in Ω, ∀ϕ ∈ BDν,m
0 (Ω).

By (3.20), (3.24) and the formula a⊥(b � e1) : (c � e1) = c · Ab, ∀b, c ∈ R3 (see
(3.10) and (3.13)), the following holds for ϕ,ψ ∈ BDν,m

0 (Ω):

(3.25)

∫
Ω

a⊥ Eψν⊗L2 : Eϕν⊗L2 dν ⊗ L2

=

∫
Ωa

(
ν
L1

)−1
a⊥e(ψ) : e(ϕ)dL3 +

∫
Ωc
a⊥ E

c
ψ

νc⊗L2 : E
c
ϕ

νc⊗L2 dν
c ⊗ L2

+
∑
t∈Aν

∫
Σt

(ν({t}))−1(ψ+ −ψ−) ·A(ϕ+ −ϕ−)dH2.
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On the other hand we have, by (3.19),

(3.26)

∫
Ω

a‖ex′(ψ
?) : ex′(ϕ

?)dm⊗ L2

=

∫
Ω

m
L1a

‖ex′(ψ
?):ex′(ϕ

?)dx+

∫
Ω

a‖ex′(ψ
?) : ex′(ϕ

?)dmc ⊗ L2

+
∑
t∈Am

m({t})
∫

Σt

a‖ex′(ψ
?) : ex′(ϕ

?)dH2.

Combining (3.9), (3.25) and (3.26), noticing that, by (2.4) and (3.10),∫
Ω

m
L1a

‖ex′(ψ
?):ex′(ϕ

?)dx =

∫
Ω

m
L1a

‖e(ψ) : e(ϕ)dx,

taking (3.13) into account, we obtain (3.12). Notice that when νc vanishes, the space
BDν,m

0 (Ω) is a subspace of the space of special functions with bounded deformation
defined by SBD(Ω) := {ϕ ∈ BD(Ω), Ecϕ = 0} (see [2], [5], [6], [19]).
Remark 3.5 (Comparison with the results of [11]). The paper [11] investigates the
linear elastodynamic equations associated with (3.2) when µε is given by

µε = µ0ε1(0,L)\Cε(x1) + µ1ε1Cε(x1), Cε =
⋃
a∈Aε

a+ rε
(
− 1

2 ; 1
2

)
,

where Aε is a finite subset of (0, L), rε is a small parameter satisfying rε < ε :=
infa,b∈Aε,a 6=b |b − a|, and (µ0ε), (µ1ε) are two sequences of positive reals. Except in
one case (see [11, Section 3.1, case 0 < k < +∞]), this paper studies instances when
one of the sequences (µε) or (µ−1

ε ) is unbounded in L1(0, L). This case corresponds
to µε0 = µ0 > 0, rε � ε, and limε→0

rε
ε µ1ε =: k ∈ (0,+∞). Then, the conclusions of

Theorem 3.1 can be obtained in the context of [11]. More precisely, the sequence (µε)
(resp. (µ−1

ε )) weakly∗ converges inM([0, L]) to m = (µ0+nk)L1 (resp. ν = 1
µ0
L1) for

some function n ∈ L∞(0, L), defined by [11, Formula (3.16)], which characterizes the
rescaled effective number of sections of stiff layers per unit length in the e1 direction.
By (3.4), (3.7) and (3.15), the following holds: Aν = Am = ∅, Σ = ∅, BDν,m

0 (Ω) =
H1

0 (Ω;R3). The sequence of the solutions to (3.2) is bounded in H1
0 (Ω;R3) and weakly

converges to the solution to the problem given, in accordance with (3.14), by®
− divae(u) = f in Ω, u ∈ H1

0 (Ω;R3),

a = µ0(a⊥ + a‖) + nka‖.

Taking (3.11) into account, setting λ0 := lµ0, σ0(u) := µ0(a⊥+a‖)e(u) = λ0 tr(e(u))I+
2µ0e(u), σx′(u) := a‖e(u), this effective problem can be rewritten under the form®

− divσ0(u)− nkdivσx′(u
′) = f in Ω,

u ∈ H1
0 (Ω;R3),

which corresponds to the stationary version of the limit problem obtained in [11, Equa-
tion (3.18)].
Remark 3.6 (Some applications). (i) Our result can be applied to various problems
of homogenization with high contrast which do not fall into the scope of [11]. As an
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example, let us fix two small parameters ε and rε such that rε � ε, and consider a two-
phase ε-periodic composite comprising an alternation of possibly very soft elastic layers
of thickness rε and of Lamé coefficients of order rε

ε , with stiffer layers of thickness of
order ε and Lamé coefficients of order 1. More precisely, let us assume that

(3.27) µε = µ01(0,L)\Cε + rε
ε µ11Cε , λε = lµε, Cε :=

⋃
{i∈Z,(εi+rεI)⊂(0,L)}

(εi+ rεI) .

Then, the assumptions and convergences (3.3) hold with m = µ0L1 and ν =
Ä

1
µ0

+ 1
µ1

ä
L1.

By (3.4) and (3.7), we have Aν = Am = ∅, and BDν,m
0 (Ω) = H1

0 (Ω;R3), and the
limit problem as ε→ 0, deduced from (3.14), takes the form

(3.28)

{
− divσ(u) = f in Ω, u ∈ H1

0 (Ω;R3),

σ(u) =
Ä
µ0µ1

µ0+µ1
a⊥ + µ0a

‖
ä
e(u),

where a⊥ and a‖ are defined by (3.10).
(ii) Besides homogenization, our result can be applied to various singular perturba-
tion problems. By way of illustration, let us consider the case of an elastic homo-
geneous isotropic body reinforced by a single stiff layer of thickness ε and of Lamé
coefficients of order 1

ε . More precisely, let us assume that the Lamé coefficients take
the form

(3.29) µε = µ01(0,L)\Cε + 1
εµ11Cε , Cε :=

(
L
2 −

ε
2 ,

L
2 + ε

2

)
, λε = lµε.

Under these hypotheses, the assumptions and convergences (3.3) hold with m = µ0L1+
µ1δL

2
and ν = 1

µ0
L1. By (3.4) and (3.7), we have Aν = ∅, Am = {L/2}, and

BDν,m
0 (Ω) = {ϕ ∈ H1

0 (Ω;R3), ϕ?α(L/2, .) ∈ H1
0 (Ω′) ∀α ∈ {2; 3}}.

Setting

(3.30)

σ0(u) = lµ0 tr e(u)I + 2µ0e(u),

σ′1((u?)′) = 2l
l+2µ1 tr(ex′((u

?)′))I ′ + 2µ1ex′((u
?)′), I ′ :=

Ñ
0 0 0
0 1 0
0 0 1

é
the limit problem as ε→ 0, deduced from (3.14), takes the form

(3.31)


− divσ0(u) = f in Ω \ ΣL/2,

(σ0(u)e1)−−(σ0(u)e1)+ − divx′σ
′
1((u?)′) = 0 on ΣL/2,

u ∈ H1
0 (Ω;R3), u?α(L/2, .) ∈ H1

0 (Ω′) (α ∈ {2; 3}).

The field (σ(u)e1)− (resp. (σ(u)e1)+) represents the supercicial density of forces
exerted by the material occupying Ω \ ΣL/2 on the left (resp. right) face of ΣL/2.
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(iii) Assume now that the last-mentioned single layer is filled by a soft (instead of
stiff) material of Lamé coefficients of order ε. More precisely, assume that µε is
defined by substituting εµ1 for 1

εµ1 in (3.29). Then the assumptions and convergences
(3.3) hold with m = µ0L1 and ν = 1

µ0
L1 + 1

µ1
δL

2
. In this case, by (3.4) and (3.7),

Aν = {L/2}, Am = ∅, and

BDν,m
0 (Ω) = {ϕ ∈ H1(Ω \ ΣL/2;R3), ϕ = 0 on ∂Ω}.

By (3.14), the limit problem as ε→ 0 takes the form


− divσ0(u) = f in Ω \ ΣL/2,

µ1A(u+− u−)=(σ0(u)e1)−=(σ0(u)e1)+ on ΣL/2,

u ∈ H1(Ω \ ΣL/2;R3), u = 0 on ∂Ω,

where A (resp. σ0(u)) is defined by (3.13) (resp. (3.30)).
Remark 3.7. Assumption (3.4) is needed in the proof of Lemma 4.6 and in the proof
of (4.42). This assumption is equivalent to (see [26, p. 300, Lemma 6.2]):

(3.32)

∀η > 0, ∃δ > 0, ∃ε0 > 0, ∀ε < ε0,∫
{(s1,t1)∈(0,L)2, |s1−t1|<δ}

µ−1
ε (s1)µε(t1)ds1dt1 < ε.

When ν and m do not satisfy (3.4), the effective problem does not only depend on
the couple (ν,m), but also on the choice of the sequence (µε) satisfying (3.3). By

way of illustration, let us choose two sequences of positive reals (r
(1)
ε ), (r

(2)
ε ) such

that r
(1)
ε � r

(2)
ε � 1, set I1ε :=

(
L
2 −

r(1)
ε

2 , L2 +
r(1)
ε

2

)
, I2ε :=

(
L
2 −

r(2)
ε

2 , L2 +
r(2)
ε

2

)
, fix

ζ ∈ {−1, 1}, and consider the sequence (µε) defined by

(3.33) µε := 1(0,L)\I2ε +
Ä
r(2)
ε

äζ
1I2ε\I1ε +

Ä
r(1)
ε

ä−ζ
1I1ε .

The convergences (3.3) are satisfied with ν = m = δL
2

+ L1. By adapting to the

framework of elasticity the argument developed in [10, Chapter 4] in the context of
the heat equation, one can prove that, under these assumptions, the solution uε to
(3.2) strongly converges in L2(Ω;R3) to the unique solution to

(3.34)

(P(ζ)) : inf

ß
F (ζ)(ϕ)−

∫
Ω

f ·ϕdx, ϕ ∈ D
™
,

D :=

ß
ϕ ∈ H1(Ω \ ΣL/2), ϕ = 0 on ∂Ω, (ϕ′)+, (ϕ′)− ∈ H1

0 (ΣL
2

;R3)

™
.

If ζ = −1, the effective energy is given by

F (−1)(ϕ) = 1
2

∫
Ω\ΣL/2

σ(ϕ) : e(ϕ)dx +
l + 2

2

∫
ΣL/2

|ϕ+
1 − ϕ

−
1 |2dH2

+ 1
4

∫
ΣL/2

σx′(ϕ
−) : ex′(ϕ

−)dH2 + 1
4

∫
ΣL/2

σx′(ϕ
+) : ex′(ϕ

+)dH2

+ 1
2

∫
ΣL/2

∣∣(ϕ′)+ − (ϕ′)−
∣∣2 dH2.
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If ζ = 1, the effective energy is is the non-local functional defined by

(3.35) F (1)(ϕ) = inf
v∈H1

0 (ΣL/2;R3)
Φ(ϕ,v′),

where

Φ(ϕ,v′) := 1
2

∫
Ω\ΣL/2

σ(ϕ) : e(ϕ)dx+
l + 2

2

∫
ΣL/2

|ϕ+
1 − ϕ

−
1 |2dH2

+ 1
2

∫
ΣL/2

σx′(v
′) : ex′(v

′)dH2

+

∫
ΣL/2

|v′ − (ϕ′)+|2 + |v′ − (ϕ′)−|2dH2.

Substituting (ϕ′)++(ϕ′)−

2 for v′ in (3.35) and applying the two-dimensional Korn in-
equality in H1

0 (ΣL/2;R2), we find

F (−1)(ϕ) = φ
(
ϕ, (ϕ′)++(ϕ′)−

2

)
+ 1

8

∫
ΣL/2

σx′
(

(ϕ′)+−(ϕ′)−

2

)
: ex′

(
(ϕ′)+−(ϕ′)−

2

)
dH2

≥ φ
(
ϕ, (ϕ′)++(ϕ′)−

2

)
+ C

∫
ΣL/2

∣∣∣ (ϕ′)+−(ϕ′)−

2

∣∣∣2 dH2.

Therefore, by (3.35), F (−1)(ϕ) ≥ F (1)(ϕ), and the equality F (−1)(ϕ) = F (1)(ϕ) can
only hold if

1. (ϕ′)+ = (ϕ′)− on ΣL/2, which means that ϕ′?(L/2, x′) = (ϕ′)+(L/2, x′) =
(ϕ′)−(L/2, x′),

2. v′ = ϕ′?(L/2, x′) is the solution to the infimum problem (3.35), which implies
that ϕ′? = (ϕ′)+ = (ϕ′)− = 0 in ΣL/2.

Such an occurence seems not likely to happen, in general, for the solution ϕ to (3.34):
for instance, if we choose f = e2 in (3.34), we intuitively expect that projections
(ϕ′)+(L/2, x′), (ϕ′)−(L/2, x′) of the traces on ΣL/2 of the solution ϕ to (3.34) do not
vanish. Indeed, when (3.4) is not satisfied, one can prove the existence of infinitely
many different limit problems associated to some sequence (µε) satisfying (3.3).
Remark 3.8. If ν({0}) > 0, the effective displacement may fail to vanish on Σ0, and
the following concentration of elastic energy may appear on Σ0:

(3.36) 1
2ν({0})−1

∫
Σ0

u+ ·Au+dH2.

The extra term (3.36) is obtained by substituting (0, 0) for (t,u−) in (1.3). A similar
contribution emerges on ΣL if ν({L}) > 0. This phenomenon is related to the fact
that the trace application is not weakly* continuous on BD(Ω).
Remark 3.9. Our method applies to the study of second-order elliptic systems of
partial differential equations of the type

(3.37) (Pε) : −div(µεC∇∇∇uε)=f in Ω, uε ∈ H1
0 (Ω;Rn), f ∈L∞(Ω;Rn),
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where Ω := (0, L)× Ω′ is a cylindrical domain in Rd and C is a second order tensor
on Rn+d satisfying the following assumptions of symmetry and ellipticity:

(3.38)
Cijpq = Cpqij ∀((i, j), (p, q)) ∈ (Rn × Rd)2,

C Ξ : Ξ ≥ c|Ξ|2 ∀Ξ ∈ Rn×d for some c > 0.

We suppose that

(3.39) T :=
n∑

i,p=1

Ci1p1ei ⊗ ep is invertible.

We denote by BV (Ω;Rn) the space of Rn-valued functions on Ω with bounded varia-
tion, that is

(3.40) BV (Ω;Rn) :=
{
ϕ ∈ L1(Ω;Rn) : Dϕ ∈M(Ω;Rn+d)

}
.

Under these assumptions, the solution to (3.37) weakly* converges in BV (Ω;Rn) to
the unique solution to the problem

(3.41) min
u∈BV ν,m0 (Ω)

1
2a(u,u)−

∫
Ω

f · udx

where BV ν,m0 (Ω) is the Hilbert space defined by

(3.42)

BV ν,m0 (Ω) :=

ϕ ∈ BV (Ω;Rn)

∣∣∣∣∣∣∣∣
Dϕ� ν ⊗ Ld−1, ϕ = 0 on ∂Ω

Dϕ
ν⊗Ld−1 ∈ L2

ν⊗Ld−1(Ω;Rn)

ϕ? ∈ L2
m(0, L;H1

0 (Ω′;Rn))

 ,

||ϕ||BV ν,m0 (Ω) :=

Å∫
Ω

| Dϕ
ν⊗Ld−1 |2dν⊗Ld−1

ã1
2

+

Å∫
Ω

|∇∇∇x′(ϕ?)|2dm⊗ Ld−1

ã 1
2

,

and, setting

(3.43) ∇∇∇x′ϕ :=
n∑
i=1

d∑
α=2

∂ϕi
∂xα

ei ⊗ eα,

a is the continuous coercive symmetric bilinear form on BV ν,m0 (Ω) given by

(3.44) a(u,ϕ):=

∫
Ω

a⊥ Duν⊗L2 : Dϕ
ν⊗L2 dν ⊗ Ld−1 +

∫
Ω

a‖∇∇∇x′(u?):∇∇∇x′(ϕ?)dm⊗ Ld−1,

with
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(3.45)

a⊥ijkl :=
n∑

p,r=1

Cijp1(T−1)prCr1kl,

a
‖
ijkl :=

n∑
p,r=1

(Cijp1(T−1)prCr1kl + Cijkl)(1− δj1)(1− δl1).

Proposition 3.10. The normed space BV ν,m0 (Ω) defined by (3.42) is a Hilbert space.
Under the assumptions (3.3), (3.38), (3.39), the symmetric bilinear form a(·, ·) de-
fined by (3.44) is coercive and continuous on BV ν,m0 (Ω), and the sequence (uε) of
the solutions to (3.37) weakly* converges in BV (Ω;Rn) to the unique solution u to
(3.41).
The proof of Proposition 3.10 is sketched in Section 6.4.
Remark 3.11. The particular case of the heat equation in a three-dimensional domain
corresponds to the choice (n, d) = (1, 3) in (3.37). Setting Ajq := C1j1q, we deduce
from Proposition 3.10 that under the assumption (3.3), if A is definite positive and
A11 6= 0 (see (3.39)), the solution uε to

(3.46) (Pε) : −div(µεA∇∇∇uε) = f in Ω, uε ∈ H1
0 (Ω), f ∈ L∞(Ω),

weakly* converges in BV (Ω;R) to the unique solution to

min
u∈BDν,m0 (Ω)

1
2a(u, u)−

∫
Ω

fudx,

where a is defined on BV ν,m0 (Ω)2 by

a(u, ϕ) :=1
2

∫
Ω

A⊥ Du
ν⊗L2 · Dϕ

ν⊗L2 dν ⊗ L2 + 1
2

∫
Ω

A‖∇∇∇x′(u?) · ∇∇∇x′(ϕ?)dm⊗ L2,

in terms of A⊥,A‖ given by

A⊥ij :=
Ai1A1j

A11
, A

‖
ij := (

Ai1A1j

A11
+Aij)(1− δi1)(1− δj1).

Linear diffusion problems in stratified media with high contrast have also been studied
in [25, 26, 27, 28, 30, 31, 32, 33, 35].
Remark 3.12. Let X, Y be separable reflexive Banach spaces such that X ⊂ Y
with dense and compact embedding, f : [0, L] × X → [0,+∞), g : [0, L] × Y →
[0,+∞) be convex mappings with respect to the second variable with growth conditions
of order strictly larger than 1, and (aε), (bε) be sequences in L∞(0, L) such that
1
aε

?
⇀ ν and bε

?
⇀ m weakly* in M([0, L]) for some couple (ν,m) satisfying (3.4),

(3.5). Denoting by u′ the distributional derivative of u, we set W 1,1(0, L;Y,X) :=
{u ∈ L1(0, L;Y ), u′ ∈ L1(0, L;X)} and BV (0, L;Y,X) := {u ∈ L1(0, L;Y ), u′ ∈
M(0, L;X)}, whereM(0, L;X) is the set of X-valued measures on (0, L) with bounded
total variation. Bouchitté and Picard have established in [17] the Γ-convergence (see
[24]) with respect to the strong topology of L1(0, L;X) of the sequence of functional
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Fε := u ∈ L1(0, L;X)→


∫ L

0

1
aε
f(t, aεu

′
ε)dt+

∫ L

0

bεG(t, u)dt

if uε ∈W 1,1(0, L;Y,X),

+∞ otherwise,

to the functional

F := u ∈ L1(0, L;X)→


∫ L

0

f(t, u
′

ν )dν +

∫ L

0

G(t, u?)dm

if u ∈ BV (0, L;Y,X) and u′ � ν,

+∞ otherwise.

As an application, setting X = L2(Ω′), Y = H1
0 (Ω′), f(t, u) = |u|2X , G(t, u) = |u|2Y ,

Aε :=

Ñ
aε 0 0
0 bε 0
0 0 bε

é
, they deduce the convergence of the solution to −divAε∇∇∇uε =

f, uε ∈ H1
0 (Ω), to the solution to minBV ν,m0 (Ω) F (u)−

∫
fudx, where

F (u) := 1
2

∫
Ω

∣∣∣ Du
ν⊗L2

∣∣∣2 dν ⊗ L2 +
3∑

α=2

1
2

∫
Ω

|∇∇∇x′u?|2 dm⊗ L2.

Unlike ours, this approach does not apply to non diagonal conductivity matrices.
Remark 3.13. When (µε) and (µ−1

ε ) are uniformly bounded in L∞(0, L), the solution
uε to (3.2) weakly converges, up to a subsequence, to u in H1

0 (Ω;R3) and the sequence
σε := σε(uε) weakly converges in L2(Ω;S3) to some σ satisfying −divσ = f in Ω.
The constitutive relation between σ and e := e(u) can be deduced from classical
layering arguments (see the early works of F. Murat and L. Tartar [43, 52], [53, p.
140], and also [29]). These arguments rest on the so-called ”good” behavior of some
components of σε and eε := e(uε), which do not oscillate in x1 in the following sense:
a sequence (gε) that weakly converges in L2(Ω) to g is said to not oscillate in x1 if,
for any sequence hε(x1) only depending on x1 and weakly converging in L2(0, L) to h,
the sequence (gεhε) weakly∗ converges in M(Ω) to gh. It turns out that (σε1i)i∈{1,2,3}

and (eεαβ)α,β∈{2,3} are ”good” components of σε and eε: for, denoting by σ
(i)
ε the

ith column of σε, noticing that −divσ
(i)
ε = fi and curl (hε(x1)e1) = 0, by the div-

curl lemma (see [53, Lemma 7.2]) the sequence σ
(i)
ε · hε(x1)e1 = σε1ih(x1) weakly∗

converges in M(Ω) to σ1ih. Likewise, since curl ∇∇∇uεα = 0 and div(hε(x1)eβ) = 0,
the sequence ∇∇∇uεα · hε(x1)eβ = ∂uεα

∂xβ
hε(x1) weakly∗ converges in M(Ω) to ∂uα

∂xβ
h(x1).

The original idea of F. Murat and L. Tartar consists of transforming the constitutive
equation σε = aε(x1)eε into an equation of the form Oε = bε(x1)Gε, where bε =
φ(aε) for some suitable fourth-order tensors’ valued (non-linear) mapping φ, and Gε

(resp. Oε) is the matrix of the ”good” components (resp. of the remaining, so-called
”oscillatory” ones), namely

Gε :=

Ñ
σε11 σε12 σε13

σε21 eε22 eε23

σε31 eε32 eε33

é
, Oε :=

Ñ
eε11 eε12 eε13

eε21 σε22 σε23

eε31 σε32 σε33

é
.
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Notice that σε : eε = Oε : Gε = bεGε : Gε. It turns out that, up to a subsequence,
(bε(x1)) weakly converges to some b in L2, hence we can pass to the limit in the
equation Oε = bε(x1)Gε in the weak∗ topology of M(Ω;S3). We obtain the equation

O = bG in Ω; G :=

Ñ
σ11 σ12 σ13

σ21 e22 e23

σ31 e32 e33

é
, O :=

Ñ
e11 e12 e13

e21 σ22 σ23

e31 σ32 σ33

é
,

equivalent to the effective constitutive equation

σ = ae in Ω; a := φ−1(b).

The limit process yielding the effective elasticity tensor a = φ−1(lim
L2−weak φ(aε)) is

called the 1∗-convergence of the sequence (aε) ( see [52, p.14]). Our proof is connected
with these classical layering arguments insofar as, in order to pass to the limit as ε→ 0
in the variational formulation (6.2), we write σε(uε) : e(ϕε) = bεGε(uε) : Gε(ϕε)
(see (6.10)) and establish that Gε(ϕε) has a ”good” behavior with respect to some
suitable notion of strong convergence (see (4.2), (6.9)).

4. Technical preliminaries and a priori estimates. This section is dedi-
cated, essentially, to the analysis of the asymptotic behaviour of the solution (uε) to
(3.2) and its stress σε(uε) in the limit ε → 0. The following notion of convergence
will take a crucial part in this study.
Definition 4.1. Let θε, θ be positive Radon measures on a compact set K ⊂ RN and
let fε, f be Borel functions on K. We say that (fε) weakly converges to f with respect
to the pair (θε, θ) if

(4.1)

sup
ε

∫
K

|fε|2dθε <∞, f ∈ L2
θ(K)

θε
?
⇀ θ and fεθε

?
⇀ fθ weakly* in M(K),

(notation: fε
θε,θ
⇀ f).

We say that (fε) strongly converges to f with respect to the pair (θε, θ) if

(4.2) fε
θε,θ−−⇀ f and lim sup

ε→0

∫
K

|fε|2dθε ≤
∫
K

|f |2dθ (notation: fε
θε,θ−−→ f).

We now present the main statement of the section. For notational simplicity, the
measures (νε ⊗L2)bΩ and (mε ⊗L2)bΩ are denoted by νε ⊗L2 and mε ⊗L2. We set

(see (2.8))

(4.3) σν(ϕ) := l tr

Å ‹Eϕ
ν⊗L2

ã
I + 2

‹Eϕ
ν⊗L2 .

Proposition 4.2.
Let (uε) be the sequence of solutions to (3.2). Then uε is bounded in BD(Ω) and
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(4.4) sup
ε>0

∫
Ω

|u′ε|2dmε ⊗ L2 +

∫
Ω

|uε|dx+

∫
Ω

µε |e(uε)|2 dx <∞.

Up to a subsequence, there exists u such that

(4.5)

uε
?
⇀ u weakly* in BD(Ω), Euε

?
⇀ ‹Eu weakly* in M(Ω;S3),

µεe(uε)
νε⊗L2,ν⊗L2

−−−−−−−−⇀ ‹Eu
ν⊗L2 , σε(uε)

νε⊗L2,ν⊗L2

−−−−−−−−⇀ σν(u),

ex′(u
′
ε)

mε⊗L2,m⊗L2

−−−−−−−−⇀ ex′((u
?)′), u ∈ BDν,m

0 (Ω).

Before presenting the proof of Proposition 4.2, we establish some auxiliary results.
The next lemma states some fundamental properties of convergence with respect to
the pair (θε, θ), proved in [36, Theorem 4.4.2] in a more general context.
Lemma 4.3. Let (θε) be a sequence of positive Radon measures on a compact set
K ⊂ RN weakly* converging in M(K) to some positive Radon measure θ. Then,
(i) any sequence (fε) of Borel functions on K such that

(4.6) sup
ε

∫
K

|fε|2dθε <∞,

has a weakly converging subsequence with respect to the pair (θε, θ).

(ii) If fε
θε,θ−−⇀ f (resp. fε

θε,θ−−→ f), then

(4.7) lim inf
ε→0

∫
K

f2
ε dθε ≥

∫
K

f2dθ

Å
resp. lim

ε→0

∫
K

f2
ε dθε =

∫
K

f2dθ

ã
.

(iii) If fε
θε,θ−−⇀ f and gε

θε,θ−−→ g, then

lim
ε→0

∫
K

fεgεdθε =

∫
K

fgdθ.

As a first application of Lemma 4.3, we obtain some relations between the measures
ν, m, and L1

b[0,L]:

Lemma 4.4. Under (3.3), the following holds

(4.8)

L1
b[0,L] � ν; L1

ν ∈ L
2
ν([0, L]); L1

b[0,L] � m; L1

m ∈ L
2
m([0, L]);∫

[0,L]

|L
1

ν |
2dν ≤ m([0, L]);

∫
[0,L]

|L
1

m |
2dm ≤ ν([0, L]).

Proof. Noticing that, by (3.1) and (3.3), supε
∫

[0,L]
|µε|2dνε = supεmε([0, L]) < ∞

(resp. supε
∫

[0,L]
|µε|−2dmε = supε νε([0, L]) < ∞), we deduce from Lemma 4.3 that

the sequence (µε) (resp. (µ−1
ε )) has a converging subsequence with respect to the pair

(νε, ν) (resp. (mε,m)), and

(4.9)

µενε
?
⇀ gν, µ−1

ε mε
?
⇀ hm, g ∈ L2

ν , h ∈ L2
m,∫

|g|2dν ≤ lim inf
ε→0

∫
|µε|2dνε;

∫
|h|2dm ≤ lim inf

ε→0

∫
|µε|−2dmε.
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By (3.1) we have µενε = µ−1
ε mε = L1

b[0,L], |µε|
2νε = mε, |µε|−2mε = νε, therefore

gν = hm = L1
b[0,L], L

1
b[0,L] � ν, L1

b[0,L] � m, g = L1

ν , h = L1

m , and the convergences

(3.3) and (4.9) imply

(4.10)

∫
[0,L]

|L
1

ν |
2dν ≤ lim sup

ε→0
mε([0, L]) ≤ m([0, L]),∫

|L
1

m |
2dm ≤ lim sup

ε→0
νε([0, L]) ≤ ν([0, L]).

Assertion (4.8) is proved.
The following statement is proved in [17, Lemma 3.1].
Lemma 4.5. Let (bε) be a bounded sequence in L1(0, L) that weakly* converges in
M([0, L]) to some Radon measure θ satisfying

(4.11) θ({0}) = θ({L}) = 0.

Let (wε) be a bounded sequence in W 1,1(0, L) weakly* converging in BV (0, L) to some
w. Assume that

(4.12) θ({t})Dw({t}) = 0 ∀t ∈ (0, L).

Then

lim
ε→0

∫ L

0

ψbεwεdx =

∫
(0,L)

ψw(r)dθ =

∫
(0,L)

ψw(l)dθ ∀ψ ∈ C([0, L]),

where w(r) (resp. w(l)) denotes the right-continuous (resp. left-continuous) represen-
tative of w.
For any ϕ ∈ BD(Ω), we denote by γ±Σx1

(ϕ) the trace of ϕ on both sides of Σx1
(see

(2.9)). As shown in the next lemma, the mappings x→ γ±Σx1
(ϕ)(x) can be identified

with the Borel fields ϕ± defined by (2.2).
Lemma 4.6. Let ϕ ∈ BD(Ω) and let ϕ?, ϕ± be defined by (2.1), (2.2). Then

(4.13) γ±Σx1
(ϕ)(x) = ϕ±(x) = lim

r→0

∫
−
B±r (x)

ϕ(y)dy H2-a.e. x ∈ Σx1 , ∀x1∈(0, L).

Moreover, we have

(4.14) ϕ? =
1

2
(ϕ+ +ϕ−) H2-a.e. on Σx1

, ∀x1∈(0, L),

and

(4.15) ϕ?, ϕ± ∈ L1
H2(Σx1

) ∀x1∈(0, L).

Furthermore, the following holds
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(4.16) ϕ+ = ϕ− = ϕ? = lim
r→0

∫
−
B±r (x)

ϕ(y)dy H2-a.e. in Σx1
if |Eϕ|(Σx1

) = 0,

and

(4.17) ‹Eϕ� ν ⊗L2 =⇒ ϕ+ = ϕ− = ϕ? H2-a.e. on Σx1
, for m-a.e. x1∈(0, L).

Proof. The traces of a function with bounded deformation on both side of a C1

hypersurface M contained in Ω is H2-a.e. equal to its one side Lebesgue limits (see
[38, p. 84, Trace Theorem; p. 91, Proposition 2.2] or [2, p. 209 (ii)-(iii)]). Applying
this to M = Σx1

, we obtain (4.13). Assertion (4.13) ensures that for all x1 ∈ (0, L),
for H2−a.e. x ∈ Σx1

, the two limits in the first line of (2.2) exist and are finite. When
they do, the limit in the first line of (2.1) also exists, and

1

2
(ϕ+(x) +ϕ−(x)) =

1

2

Ç
lim
r→0

∫
−
B+
r (x)

ϕ(y) dy +

∫
−
B−r (x)

ϕ(y) dy

å
= lim
r→0

∫
−
Br(x)

ϕ(y) dy = ϕ?(x).

Assertion (4.14) is proved. Assertion (4.15) results from (4.13), (4.14) and the fact
that the traces of ϕ on each side of Σx1

belong to L1
H2(Σx1

). Noticing that by (3.17)
we have

|EϕbΣx1
| =

∣∣(ϕ+ −ϕ−
)
� e1

∣∣H2bΣx1
∀x1∈(0, L),

we deduce from the elementary inequality

(4.18) |a| ≤
√

2|a� n| if ||n|| = 1,

that ϕ+ = ϕ− H2-a.e. in Σx1 whenever |Eϕ|(Σx1) = 0. Assertion (4.16) then follows
from (4.13) and (4.14). Assertion (4.17) is deduced from (4.16) by noticing that, by
(3.4), m(Aν) = 0 and that ν⊗L2(Σx1

) = ν({x1})L2(Ω′) = |Eϕ|(Σx1
) = 0 if x1 6∈ Aν

and Eϕ� ν ⊗ L2.
Combined with Lemma 4.5, the following lemma will be used to prove a delicate
identification relation (see (4.42)) in the proof of Proposition 4.8.
Lemma 4.7. Let ϕ ∈ BD(Ω) such that ϕ = 0 on ∂Ω, and let ϕ ∈ L1(0, L;R3) be the
Borel function defined by

(4.19) ϕ(x1) :=

∫
Σx1

ϕ?dH2 ∀x1 ∈ (0, L).

The following holds

(4.20)
ϕ∈BV (0,L;R3), ||ϕ||

L1(0,L;R3)
≤ ||ϕ||L1(Ω), ||ϕ||BV (0,L;R3)

≤
√

2||ϕ||BD(Ω),

Dϕ� |Eϕ|(.× Ω′), |Dϕ|(B) ≤
√

2|Eϕ|(B × Ω′) ∀B ∈ B((0, L)),
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where B((0, L)) denotes the Borel σ-algebra of (0, L). Moreover, the left-continuous
representative ϕ(l) (resp. right-continuous representative ϕ(r)) of ϕ is given by

(4.21)

ϕ(l)(x1) =

∫
Σx1

ϕ−dH2 ∀x1 ∈ (0, L).Ç
resp. ϕ(r)(x1) =

∫
Σx1

ϕ+dH2 ∀x1 ∈ (0, L)

å
.

Proof. Let eV(ϕ, (0, L)) denote the essential variation of ϕ on (0, L), that is

(4.22) eV(ϕ, (a, b)) := inf
L1(N)=0

sup

{
n∑
i=1

|ϕ(ti+1)−ϕ(ti)| ,
∣∣∣∣∣ t1, . . . , tn ∈ (a, b) \N
a < t1 < . . . < tn < b

}
.

By [3, Proposition 3.6 and Theorem 3.27], the field ϕ belongs to BV (0, L;R3) if and
only if eV(ϕ, (0, L)) < ∞ and in this case eV(ϕ, (0, L)) = |Dϕ|((0, L)). Let a, b be
two real numbers such that 0 ≤ a < b ≤ L, D := {t ∈ (0, L), |Eϕ|(Σt) > 0} and let
t1, . . . , tn ⊂ (a, b) \D such that 0 < t1 < . . . < tn < L. By (4.16), (4.18), and Green’s
formula in BD(Ωi), where Ωi :=(ti, ti+1)× Ω′, we have, since ϕ = 0 on ∂Ω,

(4.23)

|ϕ(ti+1)−ϕ(ti)| =
∣∣∣∣∣
∫

Σti+1

ϕ−dH2 −
∫

Σti

ϕ+dH2

∣∣∣∣∣
≤
√

2

∣∣∣∣∣
(∫

Σti+1

ϕ−dH2 −
∫

Σti

ϕ+dH2

)
� e1

∣∣∣∣∣
=
√

2

∣∣∣∣∫
∂Ωi

γi(ϕ)� ndH2

∣∣∣∣ =
√

2 |Eϕ (Ωi)| ≤
√

2 |Eϕ| (Ωi) ,

where γi(ϕ) denotes the trace on ∂Ωi of the restriction of ϕ to Ωi, therefore

n∑
i=1

|ϕ(ti+1)−ϕ(ti)| ≤
n∑
i=1

√
2 |Eϕ| (Ωi) ≤

√
2 |Eϕ| ((a, b)× Ω′) .

By the arbitrary choice of t1, . . . , tn, noticing that D is at most countable thus L1-
negligible, we infer that ϕ∈BV (a, b;R3) and

(4.24) |Dϕ|((a, b)) = eV(ϕ, (a, b)) ≤
√

2 |Eϕ| ((a, b)× Ω′) ,

yielding, by the arbitrariness of a, b, the second line of (4.20). The first line easily fol-
lows. Since ϕ ∈ BV ((0, L);R3), there exists a left-continuous (resp. right-continuous)
representative ϕ(l) (resp. ϕ(r)) of ϕ. Let us fix x1 ∈ (0, L). By (4.23), we have

lim sup
t→x−1 ,t6∈D

∣∣∣∣∣
∫

Σx1

ϕ−dH2 −ϕ(t)

∣∣∣∣∣ = lim sup
t→x−1 ,t6∈D

∣∣∣∣∣
∫

Σx1

ϕ−dH2 −
∫

Σt

ϕ+dH2

∣∣∣∣∣
≤ lim sup
t→x−1 ,t6∈D

√
2 |Eϕ| ((t, x1)× Ω′) = 0,
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therefore ϕ(l)(x1) =
∫

Σx1
ϕ−dH2. The proof of the identity ϕ(r)(x1) =

∫
Σx1

ϕ+dH2

is similar.
In the next proposition, we study the asymptotic behavior of a sequence (ϕε) satis-
fying the estimate

(4.25) sup
ε>0

∫
Ω

|ϕε|dx+

∫
Ω

µε |e(ϕε)|2 dx <∞.

This study will be applied to the sequence of the solutions to (3.2), and also to
the sequence of test fields defined in Section 6 (see Proposition 6.1), which do not
necessarily vanish on ∂Ω. We are led to introduce the normed space BDν,m(Ω)
deduced from (3.7) by removing the boundary conditions, namely

(4.26)

BDν,m(Ω) =

{
ϕ ∈ BD(Ω)

∣∣∣∣∣Eϕ� ν ⊗ L2, Eϕ
ν⊗L2 ∈ L2

ν⊗L2(Ω;R3)

(ϕ?)′ ∈ L2
m(0, L;H1(Ω′;R3))

}
,

||ϕ||
BDν,m(Ω)

:=

∫
Ω

|ϕ|dx+

Å∫
Ω

∣∣∣ Eϕν⊗L2

∣∣∣2dν ⊗ L2

ã 1
2

+

Å∫
Ω

|ex′(ϕ?)|2dm⊗ L2

ã 1
2

.

Proposition 4.8.
Let (ϕε) be a sequence in W 1,1(Ω;R3) satisfying the estimate (4.25). Then (ϕε) is
bounded in BD(Ω) and, up to a subsequence,

(4.27)

ϕε → ϕ strongly in Lp(Ω;R3) ∀p ∈
[
1, 3

2

)
,

e(ϕε)L3
bΩ = Eϕε

?
⇀ Eϕ weakly* in M(Ω; S3),

e(ϕε)L3
bΩ = ‹Eϕε ?

⇀ Υ weakly* in M(Ω;S3),

for some ϕ ∈ BD(Ω) , Υ ∈M(Ω; S3). Moreover

(4.28)

Υ = ‹Eϕ,‹Eϕ�ν⊗L2,
‹Eϕ
ν⊗L2 ∈L2

ν⊗L2(Ω; S3),

µεe(ϕε)
νε⊗L2,ν⊗L2

−−−−−−−−⇀
‹Eϕ
ν⊗L2 , σε(ϕε)

νε⊗L2,ν⊗L2

−−−−−−−−⇀ σν(ϕ),

where σν is given by (4.3). Assume in addition

(4.29) sup
ε>0

∫
Ω

|ϕ′ε|2dmε ⊗ L2 <∞,

then

(4.30)
(ϕ?)′ ∈ L2

m(0, L;H1(Ω′;R3)), ϕ ∈ BDν,m(Ω),

ϕ′ε
mε⊗L2,m⊗L2

−−−−−−−−⇀ (ϕ?)′, ex′(ϕ
′
ε)

mε⊗L2,m⊗L2

−−−−−−−−⇀ ex′((ϕ
?)′).

Proof. By the Cauchy-Schwarz inequality and the estimates (3.3) and (4.25), we have
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(4.31)

∫
Ω

|ϕε|dx+

∫
Ω

|e(ϕε)|dx ≤
∫

Ω

|ϕε|dx+

Å∫
Ω

1
µε
dx

ã 1
2
Å∫

Ω

µε |e(ϕε)|2 dx
ã 1

2

≤ C,

thus the sequence (ϕε) is bounded in BD(Ω) and weakly* converges in BD(Ω), up
to a subsequence, to some ϕ. From the compactness of the injection of BD(Ω) into
Lp(Ω;R3) for p ∈

[
1, 3

2

)
(see [54, Theorem 2.4, p. 153]), we deduce

(4.32)
ϕε → ϕ strongly in Lp(Ω;R3) ∀p ∈

[
1, 3

2

)
,

Eϕε
?
⇀ Eϕ weakly* in M(Ω; S3).

The estimate (4.31) also implies that (e(ϕε)L3
bΩ) is bounded in M(Ω;S3), hence the

following convergence holds, up to a subsequence, for some Υ ∈M(Ω;S3):

(4.33) e(ϕε)L3
bΩ = ‹Eϕε ?

⇀ Υ weakly* in M(Ω;S3).

By testing the convergences (4.32) (second line) and (4.33) with some arbitrary field
Ψ ∈ D(Ω; S3), we deduce that the following equation holds in M(Ω;S3):

(4.34) ΥbΩ = Eϕ.

By (3.1) and (4.25), we have

(4.35) sup
ε>0

∫
Ω

|µεe(ϕε)|2 dνε ⊗ L2 = sup
ε>0

∫
Ω

µε |e(ϕε)|2 dx <∞.

Since the sequence (νε ⊗ L2) weakly* converges to ν ⊗ L2 in M(Ω) (see (3.3)), we
deduce from Lemma 4.3 and (4.3) that, up to a subsequence,

(4.36) µεe(ϕε)
νε⊗L2,ν⊗L2

−−−−−−−−⇀Ξ, σε(ϕε)
νε⊗L2,ν⊗L2

−−−−−−−−⇀ l tr (Ξ) I + 2 Ξ,

for some

(4.37) Ξ ∈ L2
ν⊗L2(Ω; S3).

The first convergence in (4.36) implies, by Definition 4.1, that

(4.38) e(ϕε)L3
bΩ = ‹Eϕε ?

⇀ Ξν ⊗ L2 weakly* in M(Ω;S3).

Taking (4.33) into account, we infer that the following equation holds in M(Ω;R3):

(4.39) Υ = Ξν ⊗ L2.
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Noticing that by (3.5) we have ν ⊗L2(∂Ω) = 0, we infer from (4.39) that Υ(∂Ω) = 0,
and then from (2.8) and (4.34) that

(4.40) Υ = Υb∂Ω + ΥbΩ = ‹Eϕ.
By (4.32), (4.33), (4.39), and (4.40), the assertions (4.27) and (4.28) are proved.

Let us now prove (4.30). By (3.3), the sequence (mε ⊗ L2) weakly* converges in
M(Ω) to m⊗ L2 , and by (3.1), (4.29) and (4.35) we have

sup
ε>0

∫
Ω

|ϕ′ε|
2

+ |ex′(ϕ′ε)|
2
dmε ⊗ L2 < +∞.

Applying Lemma 4.3 we infer, up to a subsequence, the following convergences:

(4.41)
ϕ′ε

mε⊗L2,m⊗L2

−−−−−−−−⇀ h′, µεϕ
′
ε
?
⇀ h′m⊗ L2 weakly* in M(Ω;R3),

ex′(ϕ
′
ε)

mε⊗L2,m⊗L2

−−−−−−−−⇀ Γ, µεex′(ϕ
′
ε)

?
⇀ Γm⊗ L2 weakly* in M(Ω;S3),

for some h′ ∈ L2
m⊗L2(Ω;R3), Γ ∈ L2

m⊗L2(Ω;S3). The proof of (4.30) (and of Propo-
sition 4.8) is achieved provided we show that

(4.42) h′ = (ϕ?)′ m⊗ L2-a.e. in Ω,

(4.43) (ϕ?)
′ ∈ L2

m(0, L;H1(Ω′;R3)), Γ = ex′
(
(ϕ?)

′)
m⊗ L2-a.e. in Ω.

Proof of (4.42). Let us fix ψ ∈ D(Ω). By (4.27), (ψϕε) weakly* converges in BD(Ω)
to ψϕ, hence, by the estimates (4.20) established in Lemma 4.7, the sequence (ψϕε)
defined by (4.19) weakly* converges in BV (0, L;R3) to ψϕ. By (4.8), (4.20) and
(4.28) we have,

|Dψϕ| � |E(ψϕ)|(.× Ω′) = |ψE(ϕ) +∇∇∇ψ �ϕL3|(.× Ω′)� ν,

therefore, by (3.4) and (3.5), the assumptions of Lemma 4.5 are satisfied by (bε, wε) :=
(µε, ψϕε) and (θ, w) := (m,ψϕ). Taking (4.17), (4.21) and (4.41) into account and
applying Fubini’s theorem, we deduce

∫
Ω

ψh′dm⊗ L2 = lim
ε→0

∫
Ω

µεψϕ
′
εdx = lim

ε→0

∫
Ω

µεψ(ϕ?)′εdx = lim
ε→0

∫ L

0

µεψϕ′εdx1

=

∫
(0,L)

(ψϕ′)(r)dm =

∫
(0,L)

Ç∫
Σx1

ψ(ϕ′)+dH2

å
dm

=

∫
Ω

ψ(ϕ′)+dm⊗ L2 =

∫
Ω

ψ(ϕ?)′dm⊗ L2.

By the arbitrary choice of ψ, Assertion (4.42) is proved.
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Proof of (4.43). Let us fix Ψ ∈ D(Ω; S3). By (4.41) and (4.42), we have

(4.44)

∫
Ω

Γ : Ψ dm⊗ L2 = lim
ε→0

∫
Ω

µεex′(ϕε) : Ψdx = lim
ε→0
−
∫

Ω

µεϕ
′
ε · divx′Ψdx

= −
∫

Ω

(ϕ?)′ · divx′Ψdm⊗ L2,

where divx′Ψ :=
∑3
α,β=2

∂Ψαβ
∂xβ

eα. By the arbitrary choice of Ψ, we deduce that

ex′
(
(ϕ?)

′)
= Γ, m⊗ L2-a.e.,

yielding ex′
(
(ϕ?)

′) ∈ L2
m(0, L;L2(Ω′;S3)). This, along with (4.42) and the two-

dimensional second Korn inequality inH1(Ω′;R2), implies that (ϕ?)
′ ∈ L2

m(0, L;H1(Ω′;S3)).
Assertion (4.43) is proved.

We are now in a position to prove the main result of Section 4.

Proof. [Proof of Proposition 4.2] By multiplying (3.2) by uε and by integrating it
by parts over Ω, we obtain

∫
Ω
σε(uε) : e(uε)dx =

∫
Ω
f · uεdx, and deduce

(4.45)

∫
Ω

µε|e(uε)|2dx ≤
∫

Ω

σε(uε) : e(uε)dx ≤ C||f ||L∞(Ω;R3)

∫
Ω

|uε|dx.

The assumptions (3.3), Poincaré and Cauchy-Schwarz inequalities, imply

(4.46)

∫
Ω

|(uε)1|dx ≤ C
∫

Ω

∣∣∣∣∂(uε)1

∂x1

∣∣∣∣ dx ≤ C Å∫
Ω

1

µε
dx

ã 1
2

Ç∫
Ω

µε

∣∣∣∣∂(uε)1

∂x1

∣∣∣∣2 dx
å 1

2

≤ C
Å∫

Ω

µε|e(uε)|2dx
ã 1

2

.

By Fubini’s Theorem, Poincaré’s inequality in W 1,1
0 (Ω′;R2), Assertion (3.3), Cauchy-

Schwarz and Jensen’s inequalities, and Korn’s inequality in H1
0 (Ω′;R2), we have

(4.47)

∫
Ω

|u′ε|dx≤ C
∫

Ω

|∇∇∇x′u′ε|dx≤C
Ç∫ L

0

1
µε
dx1

å1
2
Ç∫ L

0

µε

Å∫
Ω′
|∇∇∇x′u′ε| dx′

ã2

dx1

å1
2

≤C
Ç∫ L

0

µε

∫
Ω′
|∇∇∇x′u′ε|

2
dx′dx1

å1
2

≤C
Ç∫ L

0

µε

∫
Ω′
|ex′(u′ε)|

2
dx′dx1

å1
2

.

We deduce from (4.45), (4.46), (4.47) that
∫

Ω
|uε|dx ≤ C

(∫
Ω
|uε|dx

) 1
2 , yielding

(4.48)

∫
Ω

|uε|dx ≤ C.

On the other hand, by Korn’s inequality in H1
0 (Ω′;R2), we have
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(4.49)

∫
Ω

|u′ε|2dmε ⊗ L2 =

∫ L

0

µε

Å∫
Ω′
|u′ε|2dx′

ã
dx1

≤ C
∫ L

0

µε

Å∫
Ω′
|ex′(u′ε)|2dx′

ã
dx1 ≤ C

∫
Ω

µε|e(uε)|2dx.

By (4.45), (4.48), and (4.49), the estimate (4.4) is proved. In other words, the field
ϕε = uε satisfies (4.25) and (4.29). Therefore, by Proposition 4.8, the convergences
stated in (4.5) hold for some u ∈ BDν,m(Ω). The proof of Proposition 4.2 is achieved
provided we show that

(4.50) u = 0 on ∂Ω,

(which is not straightforward, because the trace is not weakly* continuous on BD(Ω)),
and that

(4.51) (u?)′ = 0 H1 ⊗m-a.e. on ∂Ω′ × (0, L).

Proof of (4.50). Let us fix Ψ ∈ C∞(Ω;S3). By passing to the limit as ε → 0 in
the integration by parts formula

∫
Ω
e(uε) : Ψdx = −

∫
Ω
uε · divΨdx, taking the

strong convergence of uε to u in L1(Ω;R3) and the weak* convergence of (e(uε)) to‹E(u) in M(Ω;S3) into account (stated in (4.27), (4.28)), we obtain
∫

Ω
Ψ : d‹Eu =

−
∫

Ω
u · divΨdx, and infer from (2.8) that

∫
Ω

Ψ : dEu = −
∫

Ω
u · divΨdx. We then

deduce from the Green Formula in BD(Ω)∫
Ω

Ψ : dEu = −
∫

Ω

u · divΨdx+

∫
∂Ω

Ψ : u� ndH2,

that
∫
∂Ω

Ψ : u�ndH2(x) = 0. By the arbitrariness of Ψ, taking (4.18) into account,
Assertion (4.50) is proved.
Proof of (4.51). Let us fix Ψ ∈ C∞(Ω;S3). Since uε = 0 on ∂Ω, (4.44) holds for
ϕε = uε. We infer

(4.52)

∫
Ω

ex′(u
′) : Ψ dm⊗ L2 = −

∫
(0,L)

Å∫
Ω′

(u?)′ · divx′Ψdx′
ã
dm(x1).

By (4.30) applied to ϕε := uε, the field (u?)′ belongs to L2
m(0, L;H1(Ω′;R3)), hence

there exists an m-negligible subset N of (0, L) such that (u?)′(x1, .) ∈ H1(Ω′;R3) for
all x1 ∈ (0, L) \N . By integration by parts, taking the symmetry of Ψ into account,
we infer

(4.53)

∫
Ω′

(u?)′·divx′Ψdx′=

∫
∂Ω′

(u?)′·ΨndH1(x′)−
∫

Ω′
ex′((u

?)′) : Ψdx′ m-a.e. x1.

It follows from (4.52) and (4.53) that
∫

(0,L)×∂Ω′
(u?)′ · Ψndm ⊗ H1 = 0. By the

arbitrary choice of Ψ, Assertion (4.51) is proved.
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5. Partial mollification in BDν,m(Ω). For any two Borel functions f, g : Ω→
R, we denote by f ∗′ g the partial convolution of g and f with respect to the variable
x′, defined by

(5.1) f ∗′ g(x) :=


∫
R2

f̃(x1, x
′ − y′)g̃(y′)dy′ if f̃(x1, x

′ − .)g̃(.) ∈ L1(R2),

0 otherwise.

Given δ > 0, the symbol fδ stands for the “partial mollification” of f with respect to
x′ given by

(5.2) fδ := f ∗′ ηδ,

where ηδ ∈ D(R2) denotes the standard mollifier defined by

η(x′) :=

C exp

Å
1

|x′|2 − 1

ã
if |x′| < 1,

0 otherwise,

ηδ(x
′) :=

1

δ2
η

Å
x′

δ

ã
,

the constant C being chosen so that
∫
R2 ηdx

′ = 1. Some basic properties are stated
in the next lemma.
Lemma 5.1. Let f : Ω→ R be a Borel function, θ a positive Radon measure on [0, L],
δ > 0, and p ∈ [1,+∞). Then fδ is Borel measurable. If f ∈ Lpθ⊗L2(Ω), the following
estimates hold

(5.3)

∫
Ω′
|fδ(x1, x

′)|pdx′ ≤
∫

Ω′
|f(x1, x

′)|pdx′ ∀x1 ∈ (0, L).

In particular, we have

(5.4) fδ ∈ Lpθ⊗L2(Ω), ||fδ||Lp
θ⊗L2 (Ω) ≤ ||f ||Lp

θ⊗L2 (Ω).

Moreover, the next convergence holds

(5.5) fδ −→
δ→0

f strongly in Lpθ⊗L2(Ω).

The following regularity assertion holds

(5.6) fδ(x1, .) ∈ C∞(Ω
′
) ∀x1 ∈ (0, L),

and

(5.7)

∂n+m

∂xn2 x
m
3
fδ = f ∗′ ∂

n+m

∂xn2 x
m
3
ηδ ∈ Lpθ⊗L2(Ω), ∀n,m ∈ N,∣∣∣∣∣∣ ∂n+m

∂xn2 x
m
3
fδ
∣∣∣∣∣∣
Lp
θ⊗L2

≤ C
δn+m ||f ||Lp

θ⊗L2
∀n,m ∈ N.
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If f ∈ Lpθ⊗L2(Ω) and h ∈ Lp
′

θ⊗L2(Ω) ( 1
p + 1

p′ = 1), then

(5.8)

∫
Ω

fδhdθ ⊗ L2 =

∫
Ω

fhδdθ ⊗ L2.

If ψ ∈ C1
c (Ω), then ψδ ∈ C1(Ω) and

(5.9)
∂
(
ψδ
)

∂xk
=

Å
∂ψ

∂xk

ãδ
, ∀k ∈ {1, 2, 3}.

Proof. By Fubini’s theorem, the mappings h±(x) :=
∫
R2(f̃(x1, x

′ − y′)ηδ(y
′))±dy′

(where l+(x) := sup{l(x), 0}) are Borel measurables and so is the set A := {x ∈
Ω,
∫
R2

∣∣∣f̃(x1, x
′ − y′)ηδ(y′)

∣∣∣ dy′ < +∞}, therefore, f ∗′ ηδ = (h+ − h−)1A is Borel

measurable. Assertion (5.3) follows from the classical properties of convolution in R2

(notice that
∫
R2 ηδdx

′ = 1). Assertion (5.4) is a straightforward consequence of (5.3).
We have

∫
Ω

|f − fδ|pdθ ⊗ L2 =

∫
[0,L]

dθ(x1)

∫
Ω′
|f − fδ|p(x1, x

′)dx′.

By (5.3), the following holds
∫

Ω′
|f − fδ|p(., x′)dx′ ≤ 2p−1

∫
Ω′
|f |p(., x′)dx′ ∈ L1

θ, and
by the properties of mollification in Lp(Ω′), for all x1 such that f(x1, .) ∈ Lp(Ω′),
thus for θ-a.e. x1 ∈ [0, L],

∫
Ω′
|f − fδ|p(x1, x

′)dx′ converges to 0. Assertion (5.5) then
results from the dominated convergence theorem. Assertion (5.6) follows from well
known properties of mollification and (5.7) is obtained by differentiation under the
integral sign. Assertion (5.8) is proved by applying Fubini’s theorem several times.

Assertion (5.9) is obtained by noticing that ψ̃ ∈ C1
c (R2) and by differentiating under

the integral sign.
The next proposition specifies some properties of partial mollification when applied
to elements of BDν,m

0 (Ω).
Proposition 5.2. Let v ∈ BDν,m

0 (Ω) and δ > 0. Then,

(5.10) vδ ∈ BD(Ω), Evδ � ν ⊗ L2, E(vδ)
ν⊗L2 =

Ä
Ev
ν⊗L2

äδ
,

(5.11)
(vδ)± = (v±)δ H2-a.e. on Σx1

, ∀x1 ∈ (0, L),

(vδ)? = (v?)δ H2-a.e. on Σx1
, ∀x1 ∈ (0, L),

(5.12)
Ä(
vδ
)?ä′ ∈ L2

m(0, L;H1(Ω′;R3)), ex′
Ä(
vδ
)?ä

= (ex′(v
?))

δ
,

(5.13) vδ ∈ BDν,m(Ω), lim
δ→0

∣∣∣∣∣∣v − vδ∣∣∣∣∣∣
BDν,m(Ω)

= 0,

and the following holds for all x ∈ Ω, α ∈ {2, 3}:
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(5.14)

lim
κ→0+

(vδ)∓(x1 ± κ, x′) = (vδ)±(x),

lim
κ→0+

∂
∂xα

(vδ)∓(x1 ± κ, x′) = ∂
∂xα

(vδ)±(x),

(5.15)

(
vδ1
)+

(x) =
1

l + 2

∫
(0,x1]

(σν)11(vδ)(s1, x
′) dν(s1)

−
3∑

β=2

l

l + 2

∫ x1

0

∂vδβ
∂xβ

(s1, x
′)ds1,

(
vδα
)+

(x) =

∫
(0,x1]

(σν)1α(vδ)(s1, x
′) dν(s1)−

∫ x1

0

∂vδ1
∂xα

(s1, x
′) ds1.

Proof. By (5.4) we have vδ ∈ L1(Ω;R3) and
∫

Ω
|vδ|dx ≤

∫
Ω
|v|dx. Let us fix Ψ ∈

D(Ω;S3). Then Ψδ ∈ C∞(Ω;S3), thus using (5.8), (5.9), Green’s formula in BD(Ω),
and the fact that v ∈ BDν,m

0 (Ω), we obtain

∫
Ω

vδ · divΨ dx =

∫
Ω

v · (divΨ)δ dx =

∫
Ω

v · div(Ψδ) dx = −
∫

Ω

Ψδ : dEv

= −
∫

Ω

Ψδ : Evν⊗L2 dν ⊗ L2 = −
∫

Ω

Ψ :
Ä
Ev
ν⊗L2

äδ
dν ⊗ L2.

By the arbitrary choice of Ψ, the assertion (5.10) is proved. Similarly, applying
Green’s formula in BD(Ω) and using (5.8), (5.9), (5.10), we infer, for all x1 ∈ (0, L),

∫
Σx1

Ψ:
(
vδ
)−� e1dH2 =

∫
∂((0,x1)×Ω′)

Ψ : vδ � n dH2 =

∫
(0,x1)×Ω′

Ψ : dEvδ +

∫
(0,x1)×Ω′

divΨ · vδdx

=

∫
(0,x1)×Ω′

Ψ :
Ä
Ev
ν⊗L2

äδ
dν ⊗ L2 +

∫
(0,x1)×Ω′

(divΨ)δ · vdx

=

∫
(0,x1)×Ω′

Ψδ : Evν⊗L2 dν ⊗ L2 +

∫
(0,x1)×Ω′

div(Ψδ) · vdx

=

∫
Σx1

Ψδ : v− � e1dH2 =

∫
Σx1

Ψ :
(
v−
)δ � e1dH2.

By the arbitrary nature of Ψ and x1, we deduce that
(
vδ
)− � e1 = (v−)

δ � e1 and

then, taking (4.18) into account, that
(
vδ
)−

= (v−)
δ
. Arguing in the same manner

for
(
vδ
)+

, we find the first line of (5.11). By (4.14) and the last mentioned line, for
all x1 ∈ (0, L) the following equalities hold H2-a.e. on Σx1

:

(v?)
δ

= 1
2

(
v+ + v−

)δ
= 1

2

Ä(
v+
)δ

+
(
v−
)δä

= 1
2

Ä(
vδ
)+

+
(
vδ
)−ä

=
(
vδ
)?
.

Assertion (5.11) is proved. To prove (5.12), we first notice that, by (3.7), (5.4) and

(5.11), we have
Ä(
vδ
)?ä′ ∈ L2

m(0, L; L2(Ω′;R3)). Taking (5.8), (5.9), (5.11) into

account and integrating by parts with respect to x′ in L2
m(0, L;H1

0 (Ω′;R3)), we find
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∫
Ω

Ä(
vδ
)?ä′·divΨdm⊗ L2=

∫
Ω

(
(v?)

′)δ· divΨdm⊗ L2 =

∫
Ω

(v?)
′· div

(
Ψδ
)
dm⊗ L2

=−
∫

Ω

ex′ (v
?):Ψδdm⊗ L2 = −

∫
Ω

(ex′ (v
?))

δ
: Ψdm⊗ L2,

yielding (5.12). Assertion (5.13) is a consequence of (4.26), (5.10), (5.12), and (5.5)

applied for f ∈
¶
Ev
ν⊗L2 , ex′(v),v

©
and θ ∈ {ν,m}. Let us fix x ∈ Ω: by (4.18), (5.11)

and Green’s formula, denoting by γ the trace application on BD((x1, x1 + κ) × Ω′),
we have

∣∣∣(vδ)−(x1 + κ, x′)− (vδ)+(x)
∣∣∣ ≤ √2

∣∣∣((v−)δ(x1 + κ, x′)− (v+)δ(x)
)
� e1

∣∣∣
=
√

2

∣∣∣∣∣
∫
∂((x1,x1+κ)×Ω′)

ηδ(x
′ − y′)γ(v)(s1, y

′)� ndH2(s1, y
′)

∣∣∣∣∣
=
√

2

∣∣∣∣∣
∫

(x1,x1+κ)×Ω′
ηδ(x

′ − y′)dEv(s1, y
′) +

∫
(x1,x1+κ)×Ω′
v �∇∇∇x′ηδ(x′ − y′)ds1dy

′

∣∣∣∣∣
≤ C

Ç
|Ev| ((x1, x1 + κ)× Ω′) +

∫
(x1,x1+κ)×Ω′

|v|dx
å
,

therefore limκ→0+

∣∣(vδ)−(x1 + κ, x′)− (vδ)+(x)
∣∣ = 0. We likewise find that limκ→0+∣∣∣(vδ)+(x1−κ, x′)−(vδ)−(x)

∣∣∣ = 0. The first line of (5.14) is proved. The second one is

obtained by applying (5.7) and by substituting ∂ηδ
∂xα

for ηδ in the above computations.
To prove (5.15), we fix (x1, x

′) ∈ Ω, κ > 0: by (5.10) and Green’s formula, we have

∫
(0,x1+κ)

E11vδ
ν⊗L2 (s1, x

′)dν(s1) =

∫
(0,x1+κ)×Ω′

E11v
ν⊗L2 (s1, y

′)ηδ(x
′ − y′)dν ⊗ L2(s1, y

′)

=

∫
(0,x1+κ)×Ω′

ηδ(x
′ − y′)dE11v(s1, y

′)

=

∫
Σx1+κ

ηδ(x
′ − y′)v−1 (s1, y

′)dH2(s1, y
′) =

(
v−1
)δ

(x1 + κ, y′).

Likewise, the following holds for β ∈ {2, 3},∫
(0,x1+κ)

Eββvδ
ν⊗L2 (s1, x

′)dν(s1) =

∫
(0,x1+κ)×Ω′

ηδ(x
′ − y′)dEββv(s1, y

′)

= −
∫

(0,x1+κ)×Ω′

∂

∂yβ
(ηδ(x

′ − y′)) vβ(s1, y
′)dL3(s1, y

′)

=

∫ x1+κ

0

Å
∂

∂xβ

∫
Ω′
ηδ(x

′ − y′)vβ(s1, y
′)dy′
ã
ds1 =

∫ x1+κ

0

∂vδβ
∂xβ

(s1, x
′)ds1.

Passing to the limit as κ→ 0+, taking (5.11) and (5.14) into account, we infer
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(5.16)

∫
(0,x1]

E11vδ
ν⊗L2 (s1, x

′)dν(s1) =
(
vδ1
)+

(x1, y
′),

∫
(0,x1]

Eββvδ
ν⊗L2 (s1, x

′)dν(s1) =

∫ x1

0

∂vδβ
∂xβ

(s1, x
′)ds1,

yielding, by (4.3),

∫
(0,x1]

(σν)11(vδ)(s1, x
′) dν(s1) =

∫
(0,x1]

l tr
(
Eϕ
ν⊗L2

)
+ 2 E11ϕ

ν⊗L2 dν(s1)

= (l + 2)
(
vδ1
)+

(x1, y
′) + l

3∑
β=2

∫ x1

0

∂vδβ
∂xβ

(s1, x
′)ds1.

The first equation in (5.15) is proved. Similarly, by (5.10) and Green’s formula, the
following holds for α ∈ {2, 3}:

∫
(0,x1+κ)

2E1αvδ
ν⊗L2 (s1, x

′)dν(s1) =

∫
(0,x1+κ)×Ω′

2ηδ(x
′ − y′)dE1αv(s1, y

′)

=

∫
Σx1+κ

ηδ(x
′ − y′)v−α (s1, y

′)dH2(s1, y
′) +

∫
(0,x1+κ)×Ω′
v1(s1, y

′)
∂ηδ
∂xα

(x′ − y′)ds1dy
′

=
(
vδα
)−

(x1 + κ, x′) +

∫ x1+κ

0

∂vδ1
∂xα

(s1, x
′)ds1.

Sending κ to 0+, we infer from (5.14) that

(5.17)

∫
(0,x1]

2E1αvδ
ν⊗L2 (s1, x

′)dν(s1) =
(
vδα
)+

(x1, x
′) +

∫ x1

0

∂vδ1
∂xα

(s1, x
′)ds1,

and from (4.3) that

∫
(0,x1]

(σν)1α(vδ)(s1, x
′) dν(s1) =

∫
(0,x1]

2E1αvδ
ν⊗L2 (s1, x

′)dν(s1)

=
(
vδα
)+

(x1, x
′) +

∫ x1

0

∂vδ1
∂xα

(s1, x
′)ds1,

yielding the second equation in (5.15).
Proposition 5.3. For all v ∈ BDν,m

0 (Ω) and δ > 0, the following holds for some
constant C independent of δ

(5.18)

∫
Ω

∣∣∣Evδν⊗L2

∣∣∣2 dν ⊗ L2 ≤
∫

Ω

∣∣∣ Evν⊗L2

∣∣∣2 dν ⊗ L2 <∞,∫
Ω

∣∣∣ ∂
∂xα

Evδ
ν⊗L2

∣∣∣2dν ⊗ L2 ≤ C

δ2

∫
Ω

∣∣∣ Evν⊗L2

∣∣∣2 dν ⊗ L2 <∞,
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(5.19) vδ,
∂vδ

∂xα
,

∂2vδ

∂xα∂xβ
∈ L2(Ω;R3), ∀ a, β ∈ {2, 3}.

Proof. Assertion (5.18) follows from (5.4), (5.7) and (5.10). By Lemma 4.4, the
Lebesgue measure on Ω is absolutely continuous with respect to m ⊗ L2, thus, by
(2.4) and (4.17),

(5.20)
(
vδ
)+

=
(
vδ
)−

=
(
vδ
)?

= vδ L3-a.e. in Ω.

By (5.16), (5.18), (5.20), Cauchy-Schwarz inequality and Fubini Theorem, we have

∫
Ω

|vδ1|2dx =

∫
Ω

|(vδ1)+|2dx =

∫
Ω

∣∣∣∣∣
∫

(0,x1]

E11vδ
ν⊗L2 (s1, x

′) dν(s1)

∣∣∣∣∣
2

dx

≤ C
∫

Ω

|E11vδ
ν⊗L2 |2dν ⊗ L2 ≤ C

∫
Ω

|E11v
ν⊗L2 |2dν ⊗ L2 <∞,

yielding, by (5.7)

∫
Ω

∣∣∣∣ ∂vδ1∂xα

∣∣∣∣2 dx ≤ C

δ2

∫
Ω

∣∣∣vδ1∣∣∣2 dx ≤ C

δ2

∫
Ω

|E11v
ν⊗L2 |2dν ⊗ L2 <∞.

We deduce from (5.10), (5.17), (5.20) and the last inequalities that, for α ∈ {2, 3},∫
Ω

|vδα|2dx ≤ C
∫

Ω

∣∣∣∣∣
∫

(0,x1]

E1αvδ
ν⊗L2 (s1, x

′)dν(s1)

∣∣∣∣∣
2

dx+ C

∫
Ω

∣∣∣∣∫ x1

0

∂vδ1
∂xα

(s1, x
′) ds1

∣∣∣∣2dx
≤ C

∫
Ω

|E1αv
ν⊗L2 |2dν ⊗ L2 + C

∫
Ω

∣∣∣∣ ∂vδ1∂xα

∣∣∣∣2 dx ≤ C

δ2

∫
Ω

| Evν⊗L2 |2dν ⊗ L2 <∞,

and then from (5.7) that, for α, β ∈ {2, 3},

∫
Ω

∣∣∣∣ ∂vδ∂xα

∣∣∣∣2 dx ≤ C

δ2

∫
Ω

|vδα|2dx ≤
C

δ4

∫
Ω

| Evν⊗L2 |2dν ⊗ L2 <∞,∫
Ω

∣∣∣∣ ∂2vδ

∂xα∂xβ

∣∣∣∣2 dx ≤ C

δ2

∫
Ω

∣∣∣∣ ∂vδ∂xα

∣∣∣∣2 dx ≤ C

δ6

∫
Ω

| Evν⊗L2 |2dν ⊗ L2 <∞.

Assertion (5.19) is proved.

6. Proof of Theorem 3.1. The proof of Theorem 3.1 rests on the choice of an
appropriate sequence of test fields (ϕε), which will be constructed from an arbitrarily
chosen partially mollified element of BDν,m

0 (Ω), that is a field ϕ of the type

(6.1) ϕ = vδ, v ∈ BDν,m
0 (Ω), δ > 0.

Let us briefly outline our approach. In the spirit of Tartar’s method [51], we will
multiply (3.2) by ϕε and integrate by parts to obtain
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(6.2)

∫
Ω

σε(uε) : e(ϕε) dx =

∫
Ω

f ·ϕεdx.

By passing to the limit as ε → 0 in accordance with the convergences established
in propositions 4.2 and 6.1, we will find a(u,vδ) =

∫
Ω
f · vδdx, where a(·, ·) is the

symmetric bilinear form on BDν,m(Ω) defined by (3.9). Then, sending δ to 0, we will
infer from Proposition 5.2 that a(u,v) =

∫
Ω
f · vdx. From Proposition 4.2, we will

deduce that u belongs to BDν,m
0 (Ω), hence is a solution to (3.6). Next, we will prove

that BDν,m
0 (Ω) is a Hilbert space and a(·, ·) is coercive and continuous on it, hence

the solution to (3.6) is unique and the convergences established in Proposition 4.2 for
subsequences, hold for the complete sequences.

The sequence (ϕε) will be deduced from a family of sequences ((ϕkε)ε)k∈N by a
diagonalization argument. Given k ∈ N, the construction of (ϕkε)ε is based on the
choice of an appropriate finite partition (Ikj )j∈{1,...,nk} of (0, L] defined as follows:
since the set of the atoms of the measures ν and m is at most countable, we can fix
a sequence (Ak)k∈N of finite subsets of [0, L] satisfying

(6.3)



Ak =
{
tk0 , t

k
1 , . . . , t

k
nk

}
, Ak ⊂ Ak+1 ∀k ∈ N,

0 = tk0 < tk1 < tk2 < . . . < tknk−1
< tknk = L,

ν
({
tkj
})

= m
({
tkj
})

= 0 ∀k ∈ N, ∀j ∈ {0, . . . , nk},

lim
k→∞

sup
j∈{1,...,nk}

∣∣∣tkj − tkj−1

∣∣∣ = 0.

Setting

(6.4)
Ikj :=

(
tkj−1, t

k
j

]
∀ k ∈ N, ∀j ∈ {1, . . . , nk},

we introduce the function φkε : (0, L)→ R defined by

(6.5) φkε(x1) :=

nk∑
j=1

νε((t
k
j−1, x1))

νε(Ikj )
1Ik

j
(x1).

Note that the restriction of φkε to each Ikj is absolutely continuous, and

(6.6)

dφkε
dx1

(x1) =
µ−1
ε (x1)

νε(Ikj )
in I̊kj ; 0 ≤ φkε ≤ 1 in (0, L),

φkε((tkj )−) = 1 and φkε((tkj−1)+) = 0 ∀j ∈ {1, . . . , nk}.

For all j ∈ {1, . . . , nk}, x ∈ Ikj × Ω′, α ∈ {2, 3}, we set (see (4.3))
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(6.7)

ϕkε1(x) :=
φkε(x1)

l + 2

∫
Ik
j

σν11(ϕ)(s1, x
′)dν(s1)

− l

l + 2

3∑
α=2

∫ x1

tk
j−1

∂ϕα
∂xα

(s1, x
′)ds1 + ϕ+

1 (tkj−1, x
′),

ϕkεα(x) :=φkε(x1)

∫
Ik
j

σν1α(ϕ)(s1, x
′)dν(s1)−

∫ x1

tk
j−1

∂ϕ1
∂xα

(s1, x
′)ds1+ϕ+

α (tkj−1, x
′).

The sequence of test fields (ϕε) is determined by the next proposition.

Proposition 6.1. Let v ∈ BDν,m
0 (Ω), δ > 0, and ϕ, ϕkε respectively given by (6.1),

(6.7). There exists an increasing sequence (kε) of positive integers converging to ∞
such that ϕε defined by

(6.8) ϕε := ϕkεε ,

strongly converges to ϕ in L1(Ω;R3) and satisfies the assumptions (4.25) and (4.29)
of Proposition 4.8. In particular, the convergences and relations (4.27), (4.28) and
(4.30) are satisfied. In addition, the following strong convergences in the sense of
(4.2) hold:

σε(ϕε)e1
νε⊗L2,ν⊗L2

−−−−−−−−→ σν(ϕ)e1, ex′(ϕε)
mε⊗L2,m⊗L2

−−−−−−−−→ ex′((ϕ
?)′),(6.9)

where σν is given by (4.3).

Proposition 6.1 will be proved in Section 6.1. The next step consists in passing to the
limit as ε→ 0 in (6.2). Expressing in (6.2), for g ∈ {uε,ϕε}, the scalar fields e11(g),
σε22(g), σε33(g) in terms of the components of σε(g)e1 and ex′(g) (the details of this
computation are situated at the end of the section), leads to the following equation:

(6.10)

∫
Ω

1
l+2σε11(uε)σε11(ϕε) +

3∑
α=2

σε1α(uε)σε1α(ϕε) dνε ⊗ L2

+

∫
Ω

4e23(uε)e23(ϕε) + 4(l+1)
l+2

3∑
α=2

eαα(uε)eαα(ϕε) dmε ⊗ L2

+

∫
Ω

2l
l+2

(
e22(uε)e33(ϕε) + e33(uε)e22(ϕε)

)
dmε ⊗ L2 =

∫
Ω

f ·ϕεdx.

By (4.5), the next weak convergences in the sense of (4.1) hold

(6.11) σε(uε)e1
νε⊗L2,ν⊗L2

−−−−−−−−⇀ σν(u)e1, ex′(u
′
ε)

mε⊗L2,m⊗L2

−−−−−−−−⇀ ex′((u
?)′).

By passing to the limit as ε→ 0 in (6.10), by virtue of (6.9) , (6.11) and Lemma 4.3
(iii), we obtain
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(6.12)

∫
Ω

1
l+2σ

ν
11(u)σν11(ϕ) +

3∑
α=2

σν1α(u)σν1α(ϕ) dν ⊗ L2

+

∫
Ω

4 e23(u?)e23(ϕ?) + 4(l+1)
l+2

3∑
α=2

eαα(u?)eαα(ϕ?)dm⊗ L2

+

∫
Ω

2l
l+2

(
e22(u?)e33(ϕ?) + e33(u?)e22(ϕ?)

)
dm⊗ L2 =

∫
Ω

f ·ϕ dx.

An elementary computation yields

(6.13)

∫
Ω

1
l+2σ

ν
11(u)σν11(ϕ)+

3∑
α=2

σν1α(u)σν1α(ϕ)dν⊗L2=

∫
Ω

a⊥ Euν⊗L2 : Eϕν⊗L2 dν⊗L2,∫
Ω

4 e23(u?)e23(ϕ?) +

∫
Ω

2l
l+2

(
e22(u?)e33(ϕ?)+ e33(u?)e22(ϕ?)

)
dm⊗L2

+ 4(l+1)
l+2

3∑
α=2

eαα(u?)eαα(ϕ?)dm⊗ L2=

∫
Ω

a‖ex′(u
?) : ex′(ϕ

?) dm⊗ L2,

where a⊥ and a‖ are given by (3.10). We infer from (6.12) and (6.13) that

a(u,ϕ) =

∫
Ω

f ·ϕ dx,

where a(·, ·) is the continuous symmetric bilinear form on BDν,m(Ω) defined by (3.9).
Substituting vδ for ϕ (see (6.1)) and letting δ converge to 0, we deduce from the
strong convergence in BDν,m(Ω) of vδ to v stated in (5.13) that

(6.14) a(u,v) =

∫
Ω

f · v dx ∀v ∈ BDν,m
0 (Ω).

Since, by Proposition 4.2, the field u belongs to BDν,m
0 (Ω), we conclude that u is a

solution to (3.6).
Let us prove that BDν,m

0 (Ω) is a Hilbert space. By the Poincaré inequality in
{v ∈ BD(Ω), v = 0 on ∂Ω} (see [54, Remark 2.5 (ii) p. 156]), we have

(6.15)

∫
Ω

|v|dx ≤ C
∫

Ω

d|Ev| = C

∫
Ω

| Evν⊗L2 |dν ⊗ L2

≤ C
Å∫

Ω

| Evν⊗L2 |2 dν ⊗ L2

ã 1
2

≤ C||v||BDν,m0 (Ω) ∀ v ∈ BDν,m
0 (Ω),

hence the semi-norm ||.||BDν,m0 (Ω) defined by (3.8) is a norm on BDν,m
0 (Ω). On the

other hand, Fubini’s Theorem and Korn’s inequality in H1
0 (Ω′;R2) imply

(6.16)

∫
Ω

|(v′)?|2dm⊗ L2 =

∫ L

0

dm(x1)

∫
Ω′
|(v′)?|2dx′

≤ C
∫ L

0

dm(x1)

∫
Ω′
|ex′(v?)|2dx′ ≤ C||v||2BDν,m0 (Ω) ∀ v ∈ BDν,m

0 (Ω).
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Let (vn) be a Cauchy sequence inBDν,m
0 (Ω). By (6.15) and (6.16), the sequences (vn),

((v′n)?), (Evnν⊗L2 ) are Cauchy sequences in BD(Ω), L2
m(0, L;H1

0 (Ω;R3)), L2
ν⊗L2(Ω;S3)

respectively, hence the following convergences hold

(6.17)

vn → v strongly in BD(Ω),

(v′n)? → w′ strongly in L2
m(0, L;H1

0 (Ω′;R3)),

Evn
ν⊗L2 → Ξ strongly in L2

ν⊗L2(Ω; S3),

for some v, w′, Ξ. We prove below that

E(v)� ν ⊗ L2, Ξ = Ev
ν⊗L2 , v = 0 on ∂Ω,(6.18)

w′ = (v′)? m⊗ L2-a.e..(6.19)

It follows from (6.17)-(6.19) that v ∈ BDν,m
0 (Ω) and (vn) strongly converges to v in

BDν,m
0 (Ω), hence BDν,m

0 (Ω) is a Hilbert space. The proof of Theorem 3.1 is achieved
provided we establish that the form a(·, ·) is continous and coercive on BDν,m

0 (Ω).
The continuity is straightforward. The coercivity of a(·, ·) results from Lemma 6.2
stated below.
Proof of (6.18). As vn = 0 on ∂Ω, by (6.17) and Green’s formula we have, for
Ψ ∈ C1(Ω;S3),

∫
Ω

v · divΨdx = lim
n→∞

∫
Ω

vn · divΨdx = − lim
n→∞

∫
Ω

ΨdEvn

= − lim
n→∞

∫
Ω

Evn
ν⊗L2 : ψdν ⊗ L2 = −

∫
Ω

Ξ : ψdν ⊗ L2.

We deduce from Green’s formula that

−
∫

Ω

Ψ : dE(v) +

∫
∂Ω

v � n : ΨdH2 = −
∫

Ω

Ξ : ψdν ⊗ L2.

By the arbitrary choice of ψ, we infer (6.18).
Proof of (6.19). By (6.17), limn→+∞

∫
Ω
|(v′n)?−w′|2dm⊗L2 = 0, hence there exists

a m-negligible subset N of (0, L) such that

lim
n→+∞

∫
Σx1

|(v′n)? −w′|2dH2 = 0 ∀x1 ∈ (0, L) \N.(6.20)

On the other hand, since (vn) strongly converges to v in BD(Ω), the traces γ±Σx1
(vn)

on both side of Σx1
strongly converges to γ±Σx1

(v) in L1
H2(Σx1

) for all x1 ∈ (0, L). By

(4.13), (4.17), and (6.18), v?(x1, .) = γ+
Σx1

(v) = γ−Σx1
(v) H2-a.e. on Σx1 for m-a.e.

x1 ∈ (0, L). Accordingly, there exists a m-negligible subset N1 of (0, L) such that

lim
n→+∞

∫
Σx1

|(vn)? − v?|dH2 = 0 ∀x1 ∈ (0, L) \N1.(6.21)
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Let us fix x1 ∈ (0, L) \ (N ∪ N1). By (6.20) there exists a subsequence of (v′n)?

converging H2-a.e. on Σx1
to w′. By (6.21), there exists a further subsequence

converging H2-a.e. on Σx1
to (v′)?. Hence w′ = (v′)? H2-a.e. on Σx1

for m-a.e.
x1 ∈ (0, L). Setting A := {x ∈ Ω, w′(x) 6= (v′)?(x)}, Ax1 := A ∩ Σx1 , we infer that
H2(Ax1) = 0 for all x1 ∈ (0, L)\ (N ∪N1). It then follows from Fubini’s theorem that
m⊗ L2(A) =

∫
(0,L)

H2(Ax1
)dm(x1) = 0.

Lemma 6.2. For all v ∈ BDν,m
0 (Ω), α, β ∈ {2, 3}, we have

(6.22)

∫
Ω

∣∣∣Eαβvν⊗L2

∣∣∣2 dν ⊗ L2 ≤
∫

Ω

|eαβ((v?)′)|2 dm⊗ L2.

Proof. Let v ∈ BDν,m
0 (Ω), δ > 0, and ϕε defined by (6.1), (6.8). By Proposition 6.1,

the convergence (4.28) holds, hence by Lemma 4.3 (ii), we have for α, β ∈ {2, 3},∫
Ω

∣∣∣Eαβϕν⊗L2

∣∣∣2 dν ⊗ L2 ≤ lim inf
ε→0

∫
Ω

µε |eαβ(ϕε)|2 dx.

As, on the other hand, by (4.2) and (6.9), the following holds

lim
ε→0

∫
Ω

µε |eαβ(ϕε)|2 dx =

∫
Ω

|eαβ((ϕ?)′)|2 dm⊗ L2,

we deduce that ∫
Ω

∣∣∣Eαβϕν⊗L2

∣∣∣2 dν ⊗ L2 ≤
∫

Ω

|eαβ((ϕ?)′)|2 dm⊗ L2.

Substituting vδ for ϕ and passing to the limit as δ → 0, taking (4.26), (5.13) into
account, we obtain (6.22).
Justification of (6.10). We fix e, ẽ ∈ S3 and set σ := l(tr e)I+ 2e, σ̃ := l(tr ẽ)I+ 2ẽ.
We have

(6.23) σ : ẽ =
3∑
i=1

σiiẽii + σ12σ̃12 + σ13σ̃13 + 4e23ẽ23.

Noticing that

e11 = 1
l+2 (σ11 − le22 − le33), ẽ11 = 1

l+2 (σ̃11 − lẽ22 − lẽ33),

σ22 = le11 + (l + 2)e22 + le33 = l
l+2 (σ11 − le22 − le33) + (l + 2)e22 + le33,

σ33 = le11 + le22 + (l + 2)e33 = l
l+2 (σ11 − le22 − le33) + le22 + (l + 2)e33,

we obtain, by substitution,

3∑
i=1

σiiẽii=σ11
1
l+2 (σ̃11−lẽ22−lẽ33)+

Ä
l
l+2 (σ11−le22−le33)+(l+2)e22+le33

ä
ẽ22

+
Ä

l
l+2 (σ11 − le22 − le33) + le22 + (l + 2)e33

ä
ẽ33

= 1
l+2σ11σ̃11 + 4(l+1)

l+2 (e22ẽ22 + e33ẽ33) + 2l
l+2 (e22ẽ33 + e33ẽ22),
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yielding, by (6.23),

σ : ẽ = 1
l+2σ11σ̃11 + +2σ12ẽ12 + 2σ13ẽ13

+ 4e23ẽ23 + 4(l+1)
l+2 (e22ẽ22 + e33ẽ33) + 2l

l+2 (e22ẽ33 + e33ẽ22).

Substituting e(uε), e(ϕε),
1
µε
σε(uε),

1
µε
σε(ϕε), respectively, for e, ẽ, σ, σ̃, we infer

(6.10).

6.1. Proof of Proposition 6.1. The proof of Proposition 6.1 lies in the asymp-
totic analysis of the family of sequences

((
ϕkε
)
ε

)
k∈N, the results of which are presented

in the next proposition whose proof is located in Section 6.2.
Proposition 6.3. Let v ∈ BDν,m

0 (Ω), δ > 0, σν defined by (4.3), and ϕ, ϕkε
respectively given by (6.1), (6.7). Then ϕkε belongs to H1(Ω;R3) and satisfies

(6.24) sup
k∈N; ε>0

∫
Ω

|ϕkε |2dmε ⊗ L2 <∞,

(6.25) lim
k→∞

sup
ε>0

∫
Ω

|ϕkε −ϕ| dx = 0,

(6.26) lim sup
k→∞

lim sup
ε→0

∫
Ω

∣∣∣σε(ϕkε)e1

∣∣∣2 dνε ⊗ L2 ≤
∫

Ω

|σν(ϕ)e1|2 dν ⊗ L2,

(6.27) lim sup
k→∞

lim sup
ε→0

∫
Ω

∣∣∣ex′((ϕkε)′)∣∣∣2 dmε ⊗ L2 ≤
∫

Ω

|ex′((ϕ?)′)|
2
dm⊗ L2.

Let us fix a decreasing sequence of positive reals (αk)k∈N converging to 0. By Propo-
sition 6.3, there exists a decreasing sequence of positive reals (εk)k∈N converging to 0
as k →∞ and such that, for all ε < εk,

(6.28)

∫
Ω

|ϕkε −ϕ| dx ≤ αk,∫
Ω

∣∣∣σε(ϕkε)e1

∣∣∣2 dνε ⊗ L2 ≤
∫

Ω

|σν(ϕ)e1|2 dν ⊗ L2 + αk,∫
Ω

∣∣∣ex′(ϕkε)
∣∣∣2 dmε ⊗ L2 ≤

∫
Ω

|ex′(ϕ?)|2 dm⊗ L2 + αk.

Let kε be the unique integer such that εkε+1 ≤ ε < εkε (notice that kε →∞). We set

(6.29) ϕε = ϕkεε .

By (3.2), (3.1), (6.24), (6.28) and (6.29), the sequence (ϕε) strongly converges to
ϕ in L1(Ω;R3) and satisfies the assumptions (4.25) and (4.29) of Proposition 4.8.
Therefore, the convergences (4.28) and (4.30) hold. We deduce that
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σε(ϕε)e1
νε⊗L2,ν⊗L2

−−−−−−−−⇀ σν(ϕ)e1, ex′((ϕε)
′)
mε⊗L2,m⊗L2

−−−−−−−−⇀ ex′((ϕ
?)′).

On the other hand, (6.28) and (6.29) imply (since kε →∞)

lim sup
ε→0

∫
Ω

|σε(ϕε)e1|2 dνε ⊗ L2 ≤
∫

Ω

|σν(ϕ)e1|2 dν ⊗ L2,

lim sup
ε→0

∫
Ω

∣∣ex′ ((ϕε)′)∣∣2 dmε ⊗ L2 ≤
∫

Ω

|ex′((ϕ?)′)|
2
dm⊗ L2,

yielding (6.9). Proposition 6.1 is proved provided we establish Proposition 6.3.

6.2. Proof of Proposition 6.3 . Let us prove that ϕkε belongs to H1(Ω;R3).
By (6.7), ϕkε belongs to H1(Ikj ×Ω′;R3) for all j ∈ {1, . . . , nk−1}, therefore it suffices

to show that the traces of ϕkε coincide on each side of the common boundaries of
Ikj × Ω′ and Ikj+1 × Ω′, that is

(6.30) (ϕkε)− = (ϕkε)+ H2-a.e. on Σtk
j
∀j ∈ {1, . . . , nk − 1}.

One easily deduce from formula (5.15) (applied to vδ = ϕ) that

(6.31)

ϕ+
1(tkj , x

′)−ϕ+
1(tkj−1, x

′)= 1
l+2

∫
Ik
j

(σν)11(ϕ)(s1, x
′)dν(s1)

−
3∑

α=2

l
l+2

∫
Ik
j

∂ϕα
∂xα

(s1, x
′)ds1.

On the other hand, by the properties of φkε and the definition of ϕkε (see (6.6), (6.7)),
we have

(6.32)

(ϕkε)−1 (tkj , x
′) = 1

l+2

∫
Ik
j

(σν)11(ϕ)(s1, x
′) dν(s1)

−
3∑

α=2

l
l+2

∫ tkj

tk
j−1

∂ϕα
∂xα

(s1, x
′)ds1 + ϕ+

1 (tkj−1, x
′).

We infer from (6.31) and (6.32) that (ϕkε)−1 (tkj , x
′)) = ϕ+

1 (tkj , x
′). Since (6.6) and (6.7)

imply (ϕkε)+
1 (tkj−1, x

′) = ϕ+
1 (tkj−1, x

′) for all j ∈ {1, . . . , nk}, we deduce that (6.30) is

satisfied by the first component of ϕkε . Likewise, we deduce from the second equation
in (5.15) that, for α ∈ {2, 3},

ϕ+
α (tkj , x

′)− ϕ+
α (tkj−1, x

′) =

∫
Ik
j

(σν)1α(ϕ)(s1, x
′) dν(s1)−

∫
Ik
j

∂ϕ1
∂xα

(s1, x
′) ds1,

and then from (6.7) that
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(ϕkε)−α (tkj,x
′)=

∫
Ik
j

(σν(ϕ))1α(s1,x
′)dν(s1)−

∫
Ik
j

∂ϕ1
∂xα

(s1, x
′)ds1+ϕ+

α (tkj−1,x
′),

yielding (ϕkε)−α (tkj , x
′)) = ϕ+

α (tkj , x
′). Noticing that (6.7) also implies that (ϕkε)+

α (tkj−1, x
′) =

ϕ+
α (tkj−1, x

′) for all j ∈ {1, . . . , nk}, we infer that (ϕkε)−α (tkj , x
′)) = (ϕkε)+

α (tkj , x
′)). As-

sertion (6.30) is proved and ϕkε belongs to H1(Ω;R3).
The next lemma plays a crucial role in the proof of Proposition 6.3. In what follows,
for all x1 ∈ (0, L), we denote by jx1 the unique integer satisfying

(6.33) x1 ∈
Ä
tkjx1−1, t

k
jx1

ó
.

Lemma 6.4. We have

(6.34) lim
ε→0

νε(I
k
j ) = ν(Ikj ) and lim

ε→0
mε(I

k
j ) = m(Ikj ) ∀k∈N, ∀j∈{1, . . . , nk}.

For all k ∈ N, the mapping x1 ∈ (0, L] → ν(Ikjx1
) defined by (6.4), (6.33) is Borel

measurable and satisfies, for all p ∈ (0,∞),

(6.35)

lim
ε→0

∫
ν(Ikjx1

)dmε(x1) =

∫
ν(Ikjx1

)dm(x1),

lim
k→∞

∫ L

0

ν(Ikjx1
)p dL1(x1) = 0, lim

k→∞

∫
[0,L]

ν(Ikjx1
)p dm(x1) = 0.

Proof. Since ν(∂Ikj ) = m(∂Ikj ) = 0 for all k ∈ N, j ∈ {1, . . . , nk} (see (6.3)), the
convergences (6.34) result from (3.3). By (6.3) and (6.33), we have

(6.36) ν(Ikjx1
) =

nk∑
j=1

ν
(
Ikj
)
1Ik

j
(x1),

hence the mapping x1 ∈ (0, L]→ ν(Ikjx1
) is Borel-measurable and, by (6.34),

lim
ε→0

∫
ν(Ikjx1

)dmε(x1) = lim
ε→0

nk∑
j=1

ν(Ikj )mε(I
k
j ) =

nk∑
j=1

ν(Ikj )m(Ikj )

=

∫
ν(Ikjx1

)dm(x1).

The measure ν is bounded and the assumptions (6.3) imply that, for each fixed x1 ∈
(0, L], the sequence of sets (Ikjx1

)k∈N is decreasing and satisfies
⋂
k∈N ↓ Ikjx1

= {x1},
therefore limk→∞ ν(Ikjx1

) = ν({x1}). Applying the Dominated Convergence Theorem,

noticing that, by (3.4), L1(Aν) = m(Aν) = 0, we infer

lim
k→∞

∫ L

0

ν(Ikjx1
)p dL1(x1) =

∫
Aν
ν({x1})pdL1(x1) = 0,

lim
k→∞

∫
[0,L]

ν(Ikjx1
)p dm(x1) =

∫
Aν
ν({x1})pdm(x1) = 0.
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Proof of (6.24). By (4.3), (5.15), (5.19), (6.1), we have, forall x1 ∈ (0, L),∫
Ω′

∣∣∣ϕ+(tkjx1
−1, x

′)
∣∣∣2 dx′ ≤ C

∫
Ω

|σν(ϕ)|2 dν ⊗ L2 + C

∫
Ω

∣∣∣ ∂ϕ∂xα ∣∣∣2 dx ≤ C,

therefore, by (6.6), (6.7), and (6.33),

sup
x1∈(0,L)

∫
Ω′
|ϕkε |2(x1, x

′)dx′

≤ C
Å∫

Ω

|σν(ϕ)|2dν ⊗ L2+

∫
Ω

| ∂ϕ
∂xα
|2dx+

∫
Ω′
|ϕ+(tkjx1

−1, x
′)|2dx′

ã
≤C.

By integrating over (0, L) with respect to mε, we obtain (6.24).
Proof of (6.25). By (5.15), (5.19), (6.1), the following estimate holds for x1 ∈ Ikj (or
equivalently for j = jx1):

(6.37)∫
Ω′
|ϕ+(x1, x

′)−ϕ+(tj , x
′)|dx′ ≤ C

∫
Ik
j
×Ω′
|σν(ϕ)|dν ⊗ L2 + C

3∑
α=2

∫
Ik
j
×Ω′
| ∂ϕ
∂xα
|dL3

≤ Cν(Ikj )
1
2 ||σν(ϕ)||

1
2

L2

ν⊗L2
+ C

Ç
sup

j∈{1,...,nk}
L1(Ikj )

å 1
2 3∑
α=2

|| ∂ϕ
∂xα
||

1
2

L2(Ω)

≤ Cν(Ikj )
1
2 + C

Ç
sup

j∈{1,...,nk}
L1(Ikj )

å 1
2

.

By integration over (0, L) with respect to L1, taking (6.3), (6.33), (6.35) into account,
we infer

(6.38) lim
k→∞

∫
Ω

|ϕ+(x1, x
′)−ϕ+(tjx1

, x′)|dx = 0.

By the same argument, we deduce from (6.6), (6.7) that

(6.39) lim
k→∞

∫
Ω

|ϕkε(x1, x
′)−ϕ+(tjx1

, x′)|dx = 0.

Assertion (6.25) results from (6.38) and (6.39).
Proof of (6.26). Taking (3.2), (4.3), (6.6) and (6.7) into account, an elementary
computation yields, for all j ∈ {1, . . . , nk} and for L3-a.e. x ∈ Ikj × Ω′,

(6.40)

σε(ϕ
k
ε)(x)e1 = µε

(
ltr(e(ϕkε))I + 2e(ϕkε)

)
e1

=
1

νε(Ikj )

∫
Ik
j

σν(ϕ)(s1, x
′)e1dν(s1) + rkε(x),

where for α ∈ {2, 3},
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(6.41)

rkε1
µε

(x) := l
3∑

α=2

Å
∂ϕ+

α
∂xα

(tkj−1, x
′)− ∂ϕ+

α
∂xα

(x1, x
′)

ã
+ 2lφkε(x1)

3∑
α=2

∫
Ik
j

∂(σν(ϕ))1α

∂xα
(s1, x

′)dν(s1)−l
3∑

α=2

∫ x1

tk
j−1

∂2ϕ1

∂x2
α

(s1, x
′)ds1,

rkεα
µε

(x) :=
1

l + 2
φkε(x1)

∫
Ik
j

∂(σν(ϕ))11

∂xα
(s1, x

′) dν(s1)

− l

l + 2

3∑
β=2

∫ x1

tk
j−1

∂2ϕβ
∂xβ∂xα

(s1, x
′)ds1 +

∂ϕ+
1

∂xα

(
tkj−1, x

′)− ∂ϕ1
∂xα

(
x1, x

′).
We prove below that

(6.42) lim sup
k→∞

lim sup
ε→0

∫
Ω

|rkε |2dνε ⊗ L2 = 0.

By (6.40), we have

(6.43)

∫
Ω

∣∣∣σε(ϕkε)e1 − rkε
∣∣∣2dνε ⊗ L2

=

nk∑
j=1

∫
Ik
j
µ−1
ε (x1)dx1

(νε(Ikj ))2

∫
Ω′

∣∣∣∣∣
∫
Ik
j

σν(ϕ)e1(s1, x
′)dν(s1)

∣∣∣∣∣
2

dx′

≤
nk∑
j=1

ν(Ikj )

νε(Ikj )

∫
Ik
j
×Ω′
|σν(ϕ)e1|2 dν ⊗ L2.

Assertion (6.26) follows from (6.34), (6.42), (6.43).
Proof of (6.42). A computation analogous to (6.37) yields for x1 ∈ Ikj , taking (5.19)
into account,

(6.44)

∫
Ω′

∣∣∣∣∂ϕ+

∂xα
(x1, x

′)− ∂ϕ+

∂xα
(tj , x

′)

∣∣∣∣2 dx′ ≤ Cν(Ikj ) + C sup
j∈{1,...,nk}

L1(Ikj ).

Similarly, by (5.4),

(6.45)

∫
Ω′

∣∣∣∣∣
∫
Ik
j

∂σν

∂xα
(s1, x

′)dν(s1)

∣∣∣∣∣
2

dx′ ≤ Cν(Ikj )
∣∣∣∣∣∣∂σν∂xα

∣∣∣∣∣∣2
L2

ν⊗L2 (Ω)
≤ Cν(Ikj ),

(6.46)

∫
Ω′

∣∣∣∣∣
∫ x1

tk
j−1

∂2ϕβ
∂xβ∂xα

(s1, x
′)ds1

∣∣∣∣∣
2

dx′ ≤ C sup
j∈{1,...,nk}

L1(Ikj )

∣∣∣∣∣∣∣∣ ∂2ϕβ
∂xβ∂xα

∣∣∣∣∣∣∣∣2
L2(Ω)

≤ C sup
j∈{1,...,nk}

L1(Ikj ).

Collecting (6.6), (6.41), (6.44), (6.45), (6.46), noticing that µ2
ενε = mε, we infer
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(6.47)

∫
Ω

|rkε |2dνε ⊗ L2 ≤ C
∫
ν(Ikjx1

)dmε(x1) + C sup
j∈{1,...,nk}

L1(Ikj )mε((0, L)).

Assertion (6.42) results from (6.3), (6.35), (6.47).
Proof of (6.27). By (6.7) we have, for x1 ∈ Ikj ,

(6.48)

ex′(ϕ
k
ε)(x) = ex′(ϕ

+)(tkj−1, x
′) +Rk

ε(x),

Rk
ε(x) := φkε(x1)

∫
Ik
j

ex′ (σ
ν(ϕ)e1) (s1, x

′)dν(s1)

−
3∑

α,β=2

∫ x1

tk
j−1

∂2ϕ1

∂xα∂xα
(s1, x

′)ds1eα � eβ .

We deduce from (6.6), (6.45), (6.46), (6.48), that
∫

Ω

∣∣∣Rk
ε

∣∣∣2 (x)dmε is bounded from

above by the left-hand side of (6.47), hence, by (6.3), (6.35),

(6.49) lim
k→∞

sup
ε>0

∫
Ω

∣∣∣Rk
ε

∣∣∣2 dmε ⊗ L2 = 0.

By (3.1) and (6.4) we have

∫
Ω

∣∣ex′(ϕ+)
∣∣2 (tkjx1

−1, x
′) dmε ⊗ L2 =

nk∑
j=1

mε(I
k
j )

∫
Ω′

∣∣ex′(ϕ+)
∣∣2 (tkj−1, x

′) dx′,

yielding, by (6.34),

(6.50) lim
ε→0

∫
Ω

∣∣ex′(ϕ+)
∣∣2 (tkjx1

−1, x
′)dmε ⊗ L2 =

∫
Ω

∣∣ex′(ϕ+)
∣∣2(tkjx1−1, x

′)dm⊗ L2.

By (6.3) and (6.33), for all x1 ∈ (0, L), the sequence (tkjx1−1
)k∈N converges to x1 from

below as k →∞. Therefore, by (5.14), for each x ∈ Ω the following holds

(6.51) lim
k→∞

∣∣ex′(ϕ+)
∣∣2 (tkjx1−1, x

′) =
∣∣ex′(ϕ−)

∣∣2 (x).

On the other hand, by (5.15),
∣∣ex′(ϕ+)

∣∣2(tkjx1−1, x
′) ≤ g(x), where

g(x) :=

∫
(0,L)

|ex′(σν(ϕ)e1)|2 (s1, x
′)dν(s1)+

3∑
α,β=2

∫ L

0

∣∣∣∣ ∂2ϕ1
∂xα∂xβ

∣∣∣∣2(s1, x
′)ds1.

We deduce from (5.18) and (5.19) that g ∈ L1
m⊗L2(Ω), and then from (6.50), (6.51)

and the Dominated Convergence Theorem, that

(6.52) lim
k→∞

∫
Ω

∣∣ex′(ϕ+)
∣∣2(tkjx1

−1, x
′) dm⊗ L2 =

∫
Ω

∣∣ex′(ϕ−)
∣∣2 dm⊗ L2.

By (3.4) and (3.23) we have |Eϕ|(Σx1
) = 0 for m-a.e. x1 ∈ (0, L), therefore Assertion

(4.16) implies that ex′(ϕ
−) = ex′(ϕ

?) m ⊗ L2-a.e.. Collecting (6.48), (6.49), (6.50),
(6.52), and the last equation, the assertion (6.27) is proved.
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6.3. Proof of Corollary 3.2. Choosing ϕ ∈ D(Ω \ Σ) in (6.14) (see (3.15)),
taking (3.12) into account, we get

∫
Ω\Σ σ(u) : e(ϕ)dx =

∫
Ω
f · ϕdx and infer, by

the arbitrary choice of ϕ, that −divae(u) = f in Ω \ Σ. Choosing ϕ ∈ BDν,m
0 (Ω)

such that ϕ ∈ C∞(U) for every connected component U of Ω \ Σν , and integrating
ae(u) : e(ϕ) by parts over each connected component of Ω \ Σ, taking the first line
of (3.14) into account, we deduce

∑
t∈Am

∫
Σt

(
(ae(u)e1)−−(ae(u)e1)+

)
·ϕ+m({t})a‖ex′(u?) : ex′(ϕ

?)dH2

+
∑
t∈Aν

∫
Σt

(ae(u)e1)−·ϕ−−(ae(u)e1)+·ϕ++(u+−u−)·ν({t})−1A(ϕ+−ϕ−)dH2=0,

and obtain the transmission conditions stated in the second and third lines of (3.14).
Conversely, any solution to (3.14) satisfies (3.6).

6.4. Sketch proof of Proposition 3.10 . Repeating the argument of the proof
of Proposition 4.2, we establish the apriori estimates

sup
ε>0

∫
Ω

|uε|2dmε ⊗ L2 +

∫
Ω

|uε|dx+

∫
Ω

µε |∇∇∇uε|2 dx <∞,

and deduce, up to a subsequence, the following convergences (analogous to (4.5))

(6.53)
uε

?
⇀ u weakly* in BV (Ω;Rn) for some u ∈ BV ν,m0 (Ω),

µε(C∇∇∇uε)e1
νε⊗L2,ν⊗L2

−−−−−−−−⇀ (C Du
ν⊗Ld−1 )e1, ∇∇∇x′uε

mε⊗L2,m⊗L2

−−−−−−−−⇀ ∇∇∇x′u?,

where BV ν,m0 (Ω) and ∇∇∇x′v are defined by (3.42) and (3.43). Fixing v ∈ BV ν,m0 (Ω),
δ > 0, k ∈ N∗, we set ϕ = vδ and

ϕkε(x) :=

Ñ∫
Ik
jx1

(T−1C Dϕ
ν⊗Ld−1 )e1(s1, x

′) dν(s1)

é
φkε(x1)

−
∫ x1

tk
jx1
−1

(T−1C∇∇∇x′ϕ) e1(s1, x
′)ds1 +ϕ+(tkjx1

−1, x
′).

Mimicking propositions 6.1 and 6.3, we exhibit a sequence ϕε(= ϕkεε ) satisfying

(6.54)
lim
ε→0

∫
Ω

|ϕε −ϕ| dx = 0,

µε(C∇∇∇ϕε)e1
νε⊗L2,ν⊗L2

−−−−−−−−→ (C Dϕ
ν⊗Ld−1 )e1, ∇∇∇x′ϕε

mε⊗L2,m⊗L2

−−−−−−−−→ ∇∇∇x′ϕ?.

Multiplying (3.37) by ϕε, integrating by parts, and applying the formula
(6.55)
C∇∇∇uε :∇∇∇ϕε=(T−1C∇∇∇uε)e1 ·(C∇∇∇ϕε)e1 − (T−1C∇∇∇x′uε) e1 · (C∇∇∇x′ϕε) e1

+C∇∇∇x′uε :∇∇∇x′ϕε,

proved below, we obtain
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∫
Ω

f ·ϕεdx =

∫
Ω

µε(T
−1C∇∇∇uε)e1 · µε(C∇∇∇ϕε)e1 dνε ⊗ L2

+

∫
Ω

−(T−1C∇∇∇x′uε)e1 · (C∇∇∇x′ϕε)e1 +C∇∇∇x′uε · ∇∇∇x′ϕε dmε ⊗ L2.

Passing to the limit as ε→ 0 in accordance with (6.53) and (6.54), we find

a(u,ϕ) =

∫
Ω

u ·ϕ dx,

where

a(u,ϕ) :=

∫
Ω

(T−1C Du
ν⊗Ld−1 )e1 · (C Dϕ

ν⊗Ld−1 )e1 dν ⊗ Ld−1

−
∫

Ω

(T−1C∇∇∇x′u?)e1 ·(C∇∇∇x′ϕ)?)e1 +C∇∇∇x′u? :∇∇∇x′ϕ)? dm⊗ Ld−1.

An elementary computation shows that a(·, ·) is also given by (3.44). The rest of the
proof is similar to that of Theorem 3.1.
Proof of (6.55). Noticing that T defined by (3.39) satisfies

(T∇∇∇v)e1 = (C∇∇∇v) e1 − (C∇∇∇x′v) e1,

and taking the invertibility of T and the symmetry of T−1 and C into account, we
obtain

C∇∇∇u :∇∇∇v = (C∇∇∇u)e1 ·(∇∇∇v)e1 +C∇∇∇u :∇∇∇x′v =(C∇∇∇u)e1 ·(∇∇∇v)e1+∇∇∇u :C∇∇∇x′v
= (C∇∇∇u)e1 ·(∇∇∇v)e1 + (∇∇∇u)e1 ·(C∇∇∇x′v)e1 +∇∇∇x′u :C∇∇∇x′v
= (C∇∇∇u)e1 ·T−1((C∇∇∇v)e1 − (C∇∇∇x′v)e1)

+ T−1((C∇∇∇u)e1 − (C∇∇∇x′u)e1)·(C∇∇∇x′v)e1 +∇∇∇x′u :C∇∇∇x′v
=(T−1C∇∇∇u)e1 ·(C∇∇∇v)e1− (T−1C∇∇∇x′u)e1 ·(C∇∇∇x′v)e1+∇∇∇x′u :C∇∇∇x′v.
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et forte conductivités. (French) [Homogenization of stratified structures with low and high
conductivities] C. R. Acad. Sci. Paris Sér. I Math. 314 (1992), no. 3, 183186.

[33] Heron, B., Mossino, J., Picard, C., Homogenization of some quasilinear problems for strat-
ified media with low and high conductivities, Differential and Integral Equations, 7,n0 1,
(1994), pp. 157–178.

[34] Hajlasz, P., On Approximate Differentiability of functions with Bounded Deformation,
Manuscripta Math. 91 (1996), pp. 61–72.
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