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HOMOGENIZATION OF STRATIFIED ELASTIC COMPOSITES
WITH HIGH CONTRAST

MICHEL BELLIEUD ∗

Abstract. We determine the asymptotic behavior of the solutions to the linear elastodynamic
equations in a stratified media comprising an alternation of possibly very stiff layers with much
softer ones, when the thickness of the layers tends to zero. The limit equations may depend on
higher order terms, characterizing bending effects. A part of this work is set in the context of
non-periodic homogenization and an extension to stochastic homogenization is presented.
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1. Introduction. In this paper we analyze the asymptotic behavior of the so-
lution to the linear elastodynamic equations in a composite material wherein, at a
microscopic scale, possibly very ”stiff” layers alternate with a much ”softer” medium.
Stratified composite media have been intensively investigated over the last decades,
especially in the context of diffusion equations [18, 27, 29, 30, 31, 32, 39, 52, 54]. As
regards linear elasticity, layered elastic composites have been studied in [26, 28, 33, 38]
under assumptions of uniform boundedness and uniform definite positiveness of the
elasticity tensor guaranteeing that the effective equation is a standart linear elasticity
equation. When these assumptions break down, as for instance in the so-called ”high
contrast case”, the limit equilibrium equation may be of a quite different type: it
may correspond, in theory, to the Euler equation associated to the minimization of
any lower semi-continuous quadratic form on L2 vanishing on rigid motions [20]. In
particular, it may be non-local and depend on higher order derivatives of the displace-
ment. Elastic media with high contrast have been studied under various geometrical
assumptions. Composites with stiff grain-like inclusions have been investigated in
[7, 8, 45], stiff fibered structures in [8, 12, 13, 46, 50], and stiff media with holes filled
with a soft material in [22, 24, 47]. Our aim is to complement this body of work in
the context of stratified media. Our approach is based on the two-scale convergence
method [3, 5, 19, 23, 40, 41], which yields the convergence to an effective solution. It
also yields a first order corrector result in L2 (see Remark 3.14), but not the rigor-
ous error estimates of higher order with respect to small parameters provided by the
asymptotic expansions method [1, 2, 6, 15, 16, 21, 43, 44, 45, 48, 49].

For a given bounded smooth open subset Ω of R3, we consider a linear elastody-
namic problem like (3.5). We assume that the Lamé coefficients take possibly large
values in a subset Bε of Ω and much smaller values elsewhere. The set Bε consists
of a non-periodic distribution of parallel disjoint homothetic layers of thickness rε,
whose median planes are orthogonal to e3 and separated by a minimal distance ε,
where ε, rε are positive reals converging to zero (see fig. 3.1). The effective volume
fraction of the stiff phase Bε is characterized by the parameter ϑ defined by (3.10).
Both cases ϑ = 0 and 0 < ϑ < 1 are investigated. The order of magnitude of the
Lamé coefficients in the stiff phase is determined by the parameters k and κ defined
by (3.8).

When the elasticity coefficients in the soft phase are of order 1 and the effective
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2 M. BELLIEUD

volume fraction of the stiff phase vanishes the limit behavior of the composite is
governed, if 0 < k < +∞, by the equation

(1.1) (ρ+ nρ1)
∂2u

∂t2
− divσ(u)− nkdivσx′(u

′) = (ρ+ nρ1)f in Ω×(0, T ),

where ρ denotes the mass density in the softer phase, and u′, σx′ , σ and ρ1 are
defined, respectively, by (2.1), (3.13), and (3.7). The function n characterizes the
rescalled effective number of sections of stiff layers per unit length in the e3 direction
and is obtained as the weak* limit in L∞(Ω) of the sequence (nε) defined by (3.14).
When the order of magnitude of the elasticity coefficients in the stiff layers is larger,
that is when k = +∞, the functions u1 and u2 vanish on the set {n > 0} and the
behavior of u3 is governed by the equation (3.19), (3.20) or (3.21), depending on the
order of magnitude of κ. In the case 0<κ<+∞, this equation involves the 4th partial
derivatives of u3 with respect to x1, x2:

(1.2)
(ρ+ nρ1)

∂2u3

∂t2
− (divσ(u))3 + n

κ

3

l + 1

l + 2

2∑
α,β=1

∂4u3

∂x2
α∂x

2
β

= (ρ+ nρ1)f3 in Ω×(0, T ),

revealing bending effects. The effective behavior on the set {n = 0} is that of a homo-
geneous material without stiff layers. In Theorem 3.5, we extend these results to the
stochastic case. The set Bε(ω) then depends on a random element ω of some sample
space O ⊂ 2R equiped with a probability P satisfying (3.23). The limit problem as
ε → 0 is deduced from the above equations, P -almost surely, by substituting for n
the conditional expectation EFP n0(ω) with respect to P given the σ-algebra F of the
periodic sets, of the random variable n0 defined by (3.24).

If the order of magnitude of the elasticity coefficients in the soft interlayers is
strictly smaller than 1 and strictly larger than ε2, the effective equations are deduced
from (1.1), (1.2), formally, by removing the term divσ(u) (see Theorem 3.7).

When the elastic moduli in the soft phase are of order ε2, the effective behavior of
the composite turns sensitive to the slightest geometrical perturbation (see Remark
3.20). The effective equation can not be expressed simply in terms of the function n
as in the other cases. This characteristic renders the study of non-periodic homoge-
nization a very difficult task: we only treat the case of an ε-periodic distribution of
stiff layers. The homogenized problem then takes the form of a system of equations
coupling some field v, characterizing the effective displacement in the stiff layers, with
the two-scale limit u0 : Ω×(0, T ) × (− 1

2 ,
1
2 )3 → R3 of the solution (uε) to (3.5) (see

[3, 41]). This field v is obtained as the limit of the sequence (uεmε), where mε is the
measure supported by the stiff layers defined by (3.39). If 0 < k < +∞, the effective
behavior of the displacement in the stiff medium is governed by the equation

(1.3) ρ1

∂2v

∂t2
− kdivσx′(v

′) =ρ1f + g(u0) in Ω× (0, T ),

associated with the boundary and initial conditions given in (3.45). This equation
displays stretching vibrations with regard to the transversal components v1, v2 of v.
It is coupled with the soft phase through the field g(u0) which represents the sum of
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the surface forces applied on each stiff layer by the adjacent soft medium. This field
is defined by (3.42), in terms of the restriction of u0 to Ω× (0, T )× Y \A, which
characterizes the effective displacement in the soft interstitial layers. The letters Y
and A denote, respectively, the unit cell and the rescaled stiff layer (see (3.36), (3.37)).
The effective displacement in the soft phase is governed by the equation

ρ
∂2u0

∂t2
− divy(σ0y(u0)) = ρf in Ω× (0, T )× Y \A,

where σ0y is defined by (3.42). This equation is coupled with the variable v by the
relation (3.41) on Ω×(0, T )×A. The weak limit of (uε) in L2(Ω× (0, T )) is given by
u(x, t) =

∫
Y
u0(x, t, y)dy.

When the order of magnitude of the elasticity coefficients in the stiff layers is
larger, the functions v1 and v2 vanish and the effective displacement in the stiff phase
is governed by the equation of v3 given by (3.46), (3.47) or (3.48), depending on the
order of magnitude of κ. In the case 0<κ<+∞, this equation,

ρ1

∂2v3

∂t2
+
κ

3

l+1

l+2

2∑
α,β=1

∂4v3

∂x2
α∂x

2
β

= ρ1f3 + (g(u0))3 in Ω×(0, T ),

involves the 4th partial derivatives of v3 with respect to x1, x2, characterizing bending
vibrations. Otherwise, the stiff layers display the behavior of a collection of unstretch-
able membranes if (k, κ) = (+∞, 0) and that of fixed bodies if κ =∞.

Our results apply as well to equilibrium equations (see remarks 3.11, 3.19) and
can be extended to multiphase composites (see remarks 3.10, 3.16, 3.17). Multiphase
homogenized models have been studied in [8, 44, 45, 47, 48, 49].

As occurs in the case of fibers or grain-like inclusions embedded in a soft matrix
(see [8, p.3]), the two-phase stratified composites modeled above by homogenization
prove to be, in general, unsufficiently reinforced to ”resist” to body forces. Accord-
ingly, some of the components of the effective displacement may exhibit a quadratic
behavior with respect to time, describing a motion of collapse. The whole displace-

ment u does so, for instance, on the set
˚̊ �{n = 0} in (3.28)-(3.30). If κ = 0, a similar

behavior is shown by u3 in (3.28), (3.29), and by v3 in (3.45), (3.46), if f is not
parallel to the layers. In these cases, the sequence of the solutions to the associated
equilibrium problems (see (3.32)) may fail to be bounded in L2, and the effective
equilibrium problem to be well-posed. Boundedness in L2 is achieved by considering
suitable multiphase media. n the fibered case, the choice of such media has been
discussed in [8, Proposition 5.2]. We extend this discussion in remarks 3.11, 3.19, 6.3.

The paper is organised as follows: in Section 2 we specify the notations and in
Section 3 we state our main results. In Section 4, we recall some classical results and
introduce a non-periodic variant of the two-scale convergence for which we establish
a compactness result. The effective equations are derived in Section 6 by employing
apriori estimates demonstrated in Section 5, and a technical lemma proved in the
appendix.

2. Notations. In this article, {e1, .., eN} stands for the canonical basis of RN .
Points in RN or in ZN and real-valued functions are represented by symbols beginning
by a lightface lowercase (example x, i,detA...) and vectors and vector-valued functions
by symbols beginning by a boldface lowercase (examples: x, i, u, f , g, divσε,...).
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Matrices and matrix-valued functions are represented by symbols beginning by a
boldface uppercase with the following exceptions: ∇∇∇u (displacement gradient), e(u)
(linearized strain tensor). We denote by ui or (u)i the components of a vector u and
by Aij or (A)ij those of a matrix A (that is u =

∑N
i=1 uiei =

∑N
i=1(u)iei; A =∑N

i,j=1Aijei⊗ej =
∑N
i,j=1(A)ijei⊗ej). We do not employ the usual repeated index

convention for summation. We denote by A :B =
∑N
i,j=1AijBij the inner product of

two matrices, by εijk the three-dimensional alternator, by u∧v =
∑3
i,j,k=1 εijkujvkei

the exterior product in R3, by SM (M ∈ N) the set of all real symmetric matrices of
order M , by IM the M ×M identity matrix. The symbol ]D denotes the cardinality
of a finite set D. The letter C stands for different constants independent of ε whose
precise values may vary. For any weakly differentiable vector field ψ : Ω ⊂ R3 → R3,
we set

(2.1)

ψ′ := ψ1e1 + ψ2e2; ex′(ψ) :=
2∑

α,β=1

1

2

Å
∂ψα
∂xβ

+
∂ψβ
∂xα

ã
eα ⊗ eβ (= ex′(ψ

′));

σx′(ψ) :=

Ö
2∂ψ1

∂x1
+ 2l

l+2

Ä
∂ψ1

∂x1
+ ∂ψ2

∂x2

ä
∂ψ1

∂x2
+ ∂ψ2

∂x1
0

∂ψ1

∂x2
+ ∂ψ2

∂x1
2∂ψ2

∂x2
+ 2l

l+2

Ä
∂ψ1

∂x1
+ ∂ψ2

∂x2

ä
0

0 0 0

è
,

where the non-negative parameter l is defined in (3.6). We reproduce and modify here
some notations from [8]: we denote by C∞] (Y ) (resp. C](Y )) the set of Y -periodic

functions from C∞
(
R3
)

(resp. C(R3)), by C∞] (Y \ B) the set of the restrictions of

the elements of C∞] (Y ) to Y \ B, by H1
] (Y ) (resp. H1

] (Y \ B)) the completion of

C∞] (Y ) (resp. C∞] (Y \ B)) with respect to the norm w →
(∫
Y

(|w|2 + |∇∇∇w|2)dy
) 1

2

( resp. w → (
∫
Y \B(|w|2 + |∇∇∇w|2)dy)

1
2 ). For any subset Q of the unit cell Y , the

symbol Q] stands for the periodization on all R3 of Q, that is

(2.2) Q] :=
⋃
z∈Z3

z +Q.

3. Setting of the problem and results. We consider a cylindrical domain
Ω := Ω′× (0, L), where Ω′ is a bounded smooth domain of R2. Given a small positive
real ε, the non-periodic distribution Bε of disjoint homothetical stiff layers Bjε will be
described in terms of a finite subset ωε of R

(3.1) ωε :=
{
ωjε, j ∈ Jε

}
, Jε := {1, .., ]ωε},

satisfying

(3.2) ωε ⊂ (0, L), min
j,j′∈Jε,j 6=j′

|ωjε − ωj
′

ε | = ε, dist(ωε, {0, L}) >
ε

2
,

and of a small parameters rε verifying

(3.3) ε > rε(1 + δ) for some δ > 0,
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by setting (see Fig. 3.1)

(3.4) Bε :=
⋃
j∈Jε

Bjε ; Bjε := Ω′ ×
(
ωjε + rεI

)
; I :=

Å
−1

2
,

1

2

ã
.

Fig. 3.1.

As in [8], we consider the vibration problem

(3.5) (Pε) :



ρε
∂2uε
∂t2

− div(σε(uε)) = ρεf in Ω×(0, T ),

σε(uε) = λε tr(e(uε))I + 2µεe(uε), e(uε) =
1

2
(∇∇∇uε +∇∇∇Tuε),

uε ∈ C([0, T ]; H1
0 (Ω,R3)) ∩ C1([0, T ]; L2(Ω,R3)),

uε(0) = a0,
∂uε
∂t

(0) = b0, f ∈ C(Ω×(0, T );R3),

(a0, b0) ∈
(
H1

0 (Ω,R3)× L2(Ω,R3)
)
∩ C(Ω,R3)2.

The Lamé coefficients µε, λε and the mass density ρε are assumed to take constant
values of possibly different orders of magnitude in the set of layers Bε and in the set
of interlayers Ω \Bε. More precisely, we suppose that

(3.6)

µε(x) = µ1ε1Bε(x) + µ0ε1Ω\Bε(x), λε(x) = λ1ε1Bε(x) + λ0ε1Ω\Bε(x),

µ1ε ≥ c > 0, lε :=
λ1ε

µ1ε
, lim

ε→0
lε = l ∈ [0,+∞), 0 ≤ λ0ε < Cµ0ε << µε1,

and

(3.7) ρε(x) = ρ1Ω\Bε +
ε

rε
ρ11Bε , ρ, ρ1 ∈ (0,+∞).

We assume and set
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(3.8) k := lim
ε→0

rε
ε
µ1ε ∈ (0,+∞], κ := lim

ε→0

r3
ε

ε
µ1ε ∈ [0,+∞].

The weak* relative compactness in L∞(0, T ;L2(Ω;R3)) of the sequence of the solu-
tions to (3.5) is ensured by the following hypothesis:

(3.9) sup
ε>0

∫
Ω

Ä
ρε|b0|2+σε(a0) :e(a0)

ä
dx+

∫
Ω×(0,T )

ρε |f |2dxdt < +∞.

3.1. Case of interlayers with Lamé coefficients of order 1 . We consider
the case of extremely thin layers of extremely large stiffness alternating with inter-
layers of elastic moduli of order 1. The effective volume fraction of the stiff layers is
characterized by:

(3.10) ϑ := lim
ε→0

rε
ε
.

We assume in this subsection that

ϑ = 0,(3.11)

µ0ε = µ > 0; λ0ε = λ ≥ 0.(3.12)

We introduce the operator σ : H1(Ω;R3)→L2(Ω;S3) and nε ∈ L∞(Ω) defined by

σ(ϕ) := λ tr(e(ϕ))I + 2µe(ϕ) ∀ϕ ∈ H1(Ω;R3),(3.13)

nε(x) :=
∑
i∈Zε

]
(
ωε ∩

(
εi− ε

2
, εi+

ε

2

])
1(εi− ε2 ,εi+

ε
2 )(x3),(3.14)

Zε :=
{
i ∈ Z,

(
εi− ε

2
, εi+

ε

2

]
⊂ (0, L)

}
.(3.15)

Assumption (3.2) implies that |nε|L∞(Ω) ≤ 1, therefore, up to a subsequence,

(3.16) nε
?
⇀ n weakly* in L∞(Ω) for some n ∈ L∞(Ω).

The scalar 1
εnε(x) is an approximation at x of the local number of stiff layers per unit

length in the e3 direction. For simplicity (see Remark 3.3), we assume that

(3.17) {n > 0} is a finite union of open connected subsets of Ω if k = +∞.

Under these assumptions, we prove that the solution to (3.5) weakly* converges in
L∞(0, T ; H1

0 (Ω;R3)) to the unique solution to (Phom(n,k,κ)) defined, in terms of k, κ, n

given by (3.8), (3.16), as follows: if 0 < k < +∞, we get (see (2.1))

(3.18)
(Phom(n,k,0)) :

(0 < k < +∞)



(ρ+ nρ1)
∂2u

∂t2
− divσ(u)

− nkdivσx′(u
′) = (ρ+ nρ1)f in Ω×(0, T ),

u ∈ C([0, T ];H1
0 (Ω;R3)) ∩ C1([0, T ];L2(Ω;R3)),

u(0) = a0,
∂u

∂t
(0) = b0.
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If k = +∞ and κ = 0, the limit problem is deduced from (3.18), formally, by substi-
tuting (0, 0) for (u1(x), u2(x)) when n(x) > 0:

(3.19) (Phom(n,+∞,0)) :



(ρ+ nρ1)
∂2u3

∂t2
− (divσ(u))3 = (ρ+ nρ1)f3 in Ω×(0, T ),

ρ
∂2uα
∂t2

− (divσ(u))α = ρfα in
˚̊ �{n = 0} × (0, T ),

uα = 0 on ∂
˚̊ �{n = 0} × (0, T ) (α ∈ {1, 2}),

nu1 =nu2= 0, u∈C([0, T ];H1
0 (Ω;R3))∩C1([0, T ];L2(Ω;R3)),

u(0) = (a011{n=0}, a021{n=0}, a03),

∂u

∂t
(0) = (b011{n=0}, b021{n=0}, b03).

The case 0 < κ < +∞ is characterized by the emergence of fourth order derivatives
with respect to x1, x2 in the limit equations, revealing bending effects:

(3.20)
(Phom(n,+∞,κ)) :

(0<κ<+∞)



(ρ+ nρ1)
∂2u3

∂t2
− (divσ(u))3 + n

κ

3

l + 1

l + 2

2∑
α,β=1

∂4u3

∂x2
α∂x

2
β

= (ρ+ nρ1)f3 in Ω×(0, T ),

ρ
∂2uα
∂t2

− (divσ(u))α = ρfα in
˚̊ �{n = 0} × (0, T ),

uα = 0 on ∂
˚̊ �{n = 0} × (0, T ) (α ∈ {1, 2}),

nu1 =nu2= 0, u∈C([0, T ];H1
0 (Ω;R3))∩C1([0, T ];L2(Ω;R3)),

u3 ∈ C([0, T ];L2
n(0, L;H2

0 (Ω′))),

u(0) = (a011{n=0}, a021{n=0}, a03),

∂u

∂t
(0) = (b011{n=0}, b021{n=0}, b03).

If κ = +∞, we get:

(3.21) (Phom(n,+∞,+∞)) :



ρ
∂2u

∂t2
− divσ(u) = ρf in

˚̊ �{n = 0} × (0, T ),

u = 0 on ∂
˚̊ �{n = 0} × (0, T ),

nu = 0, u ∈ C([0, T ];H1
0 (Ω;R3)) ∩ C1([0, T ];L2(Ω;R3)),

u(0) = a01{n=0},
∂u

∂t
(0) = b01{n=0}.

Theorem 3.1. Assume (3.11), (3.12), (3.16), then the sequence (uε) of the
solutions to (3.5) weakly* converges in L∞(0, T ; H1

0 (Ω;R3)) to the unique solution of
the problem (Phom(n,k,κ)) given by (3.18)-(3.21).

Remark 3.2. (i) When stiff fibers [9, 13] (resp. grain-like inclusions [7]) embed-
ded in a matrix of stiffness of order 1 are considered, the fibers (resp. the inclusions)
disappear from the limit problem if rε � exp− 1

ε2 (resp. rε � ε3), where rε denotes
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the diameter of the sections of the fibers (resp. of the inclusions). This never occurs
in the stratified case, whatever the choice of (rε). This is related to the fact that the
harmonic capacity of a surface in Ω is always positive, whereas that of a line or a
point are equal to zero.

(ii) Under (3.12), the case ϑ > 0, k < +∞ has been studied in [27], [38]. In the case
ϑ > 0, k = +∞, we came up against technical complications (see Remark 6.1).

Remark 3.3. If (3.17) is not satisfied, the sequence (uε) of the solutions to (3.5)
weakly* converges in L∞(0, T ; H1

0 (Ω;R3)) to the unique solution of the variational

problem (4.23) with data deduced from (6.60), (6.61) by substituting ‹Vn,k,κ and ãn,k,κ,
defined by (6.62), for Vn,k,κ and an,k,κ. Assumption (3.17) ensures the equivalence
between (3.19-3.21) and the last mentioned variational problem.

3.2. Stochastic case. Fix d > 0 and set

O :=
{
ω ∈ 2R, ∀(ω1, ω2) ∈ ω × ω, ω1 6= ω2 ⇒ |ω1 − ω2| ≥ d

}
,

ωε(ω) := εω ∩ (ε, L− ε) ∀ω ∈ O,(3.22)

where 2R denotes the set of all subsets of R. Let BO be the Borel σ-algebra generated
by the Hausdorff distance on O (see Remark 3.6), and P be a probability on (O,BO)
satisfying

(3.23) P (A+ z) = P (A) ∀ z ∈ Z, ∀A ∈ BO.

We consider the random distribution of stiff homothetical layers Bε(ωε(ω)) and the
problem (Pε(ω)) obtained by substituting ωε(ω) for ωε in (3.4), (3.5). In what follows,
F represents the σ-algebra of the Y -periodic elements of BO, EFPX the conditional
expectation of a random variable X given F with respect to P , nε(ω) the element of
L∞(Ω) defined by substituting ωε(ω) for ωε in (3.14), and n0 : O → N the random
variable given by

(3.24) n0(ω) := ]

Å
ω ∩

ï
−1

2
,

1

2

ïã
∀ω ∈ O.

The following theorem is proved in [10]:

Theorem 3.4. Under the assumptions stated above, there exists a sequence of
reals (εk) converging to 0 and a P -negligible subset N of O, such that for all ω ∈ O\N,

(3.25) nεk(ω)
?
⇀ EFP n0(ω) weakly* in L∞(Ω).

The following result straightforwardly follows from theorems 3.1, 3.4:

Theorem 3.5. Assume (3.11), (3.12), and let (εk) and N be the sequence and
the P -negligible set given by Theorem 3.4. Then, for all ω ∈ O \ N, the solution
to (Pεk(ω)), weakly* converges in L∞(0, T ;H1

0 (Ω;R3)) to the unique solution to the
problem (Phom

(EF
P
n0(ω),k,κ)

) defined by (3.18-3.21).

Remark 3.6. The restriction of the Hausdorff distance dH to O is an ex-
tended metric on O, and the mapping dO : O2 → [0, 1] defined by dO(ω, ω′) :=
min{1, dH(ω, ω′)} is a finite metric on O which turns O into a complete metric space.
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3.3. Intermediate case . Under the assumptions

ε2 << µ0ε << 1, 0 ≤ λ0ε ≤ Cµ0ε,(3.26)

nε → n strongly in L2(Ω),(3.27)

and (3.17) (see Remark 3.9), we show that the solution to (3.5) weakly* converges in
L∞(0, T ;L2(Ω;R3)) to the unique solution to (Phom(n,k,κ)) defined by

(3.28)
(Phom(n,k,0)) :

(0<k<+∞)



(ρ(1− ϑn) + nρ1)
∂2u

∂t2
− nkdivσx′(u

′)

= (ρ(1− ϑn) + nρ1)f in Ω×(0, T ),

u1, u2 ∈ C([0, T ];L2
n(0, L;H1

0 (Ω′))),

u ∈ C1([0, T ];L2(Ω;R3)), u(0) = a0,
∂u

∂t
(0) = b0,

(3.29) (Phom(n,+∞,0)) :



(ρ(1−ϑn)+nρ1)
∂2u3

∂t2
= (ρ(1− ϑn)+ nρ1)f3 in Ω×(0, T ),

ρ
∂2uα
∂t2

= ρfα in
˚̊ �{n = 0} × (0, T ), (α ∈ {1, 2}),

nu1 = nu2 = 0, u ∈ C1([0, T ];L2(Ω;R3)),

u(0) = (a011{n=0}, a021{n=0}, a03),

∂u

∂t
(0) = (b011{n=0}, b021{n=0}, b03),

(3.30)
(Phom(n,+∞,κ)) :

(0 < κ < +∞)



(ρ(1− ϑn) + nρ1)
∂2u3

∂t2
+ n

κ

3

l + 1

l + 2

2∑
α,β=1

∂4u3

∂x2
α∂x

2
β

= (ρ(1− ϑn) + nρ1)f3 in Ω×(0, T ),

ρ
∂2uα
∂t2

= ρfα in
˚̊ �{n = 0} × (0, T ), (α ∈ {1, 2}),

nu1 = nu2 = 0,

u3 ∈ C([0, T ];L2
n(0, L;H2

0 (Ω′))), u ∈ C1([0, T ];L2(Ω;R3)),

u(0) = (a011{n=0}, a021{n=0}, a03),

∂u

∂t
(0) = (b011{n=0}, b021{n=0}, b03),

(3.31) (Phom(n,+∞,+∞)) :


ρ
∂2u

∂t2
= ρf in

˚̊ �{n = 0} × (0, T ),

nu = 0, u ∈ C1([0, T ];L2(Ω;R3)),

u(0) = a01{n=0},
∂u

∂t
(0) = b01{n=0}.
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Theorem 3.7. Under (3.17), (3.26), (3.27), the solution to (3.5) weakly* con-
verges in L∞(0, T ;L2(Ω;R3)) to the unique solution to (Phom(n,k,κ)) given by (3.28-

3.31).
Remark 3.8. (i) Problems (3.28-3.31) are formally deduced from (3.18-3.21) by

removing the term “divσ(u)” (see (3.11)). This indicates that no strain energy is
stored in the softer phase.
(ii) Assumption (3.27), stronger than (3.16), precludes the application of Theorem
3.4 and the extension of Theorem 3.7 to the setting of stochastic homogenization.

Remark 3.9. If (3.17) is not satisfied, the sequence (uε) of the solutions to (3.5)
weakly* converges in L∞(0, T ;L2(Ω;R3)) to the unique solution of the variational
problem (4.23), (6.60), (6.61). Under (3.17), this variational problem is equivalent
to (3.29-3.31).

Remark 3.10. Theorems 3.1, 3.7 can be extended to the case of a multiphase
stratified elastic composite comprising several distributions of stiff layers of various
stiffness and thickness (see Remark 6.2 for more details). Combining our results with
those established in [8], [13], [14], one can also derive the effective equations governing
the behavior of a composite comprising disjoint distributions of stiff layers alternating
with softer interlayers in which fibers or grain-like inclusions are embedded (see also
Remark 3.17).

Remark 3.11. Under the assumptions of theorems 3.1, 3.7, the limit problem
associated to the sequence of equilibrium problems

(3.32) − div(σε(uε)) = f in Ω, uε ∈ H1
0 (Ω,R3), f ∈ L2(Ω,R3),

is given by

(3.33) u ∈ V and a(u,w) = (f ,w)H , ∀w ∈ V,

where the Hilbert spaces V and H and the non-negative symmetric bilinear form a(., .)
are specified in Remark 6.3. Under the assumptions of Theorem 3.7, this bilinear form
fails to be coercive on L2(Ω;R3) if κ = 0 and may fail to be so if the function n is
not bounded from below by a positive constant. Remark 6.3 states conditions ensuring
coerciveness in stratified multiphase media. Coerciveness can also be achieved by re-
inforcing the composite by stiff fibers embedded in the soft phase (see [8, Proposition
5.2]).

3.4. Case of soft interlayers with Lamé coefficients of order ε2 . We
assume that

(3.34) µ0ε = ε2µ0, λ0ε = ε2λ0, µ0 > 0, λ0 ≥ 0,

and that the stiff layers are periodically distributed (see (3.15)):

(3.35) Bε :=
⋃
i∈Zε

Biε; Biε := Ω′ × (εi+ rεI) .

Under these hypotheses, setting (see Remark 3.13)
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Y :=

Å
−1

2
,

1

2

ã3

; B :=

Å
−1

2
,

1

2

ã2

×
Å
−ϑ

2
,
ϑ

2

ã
; Σ :=

Å
−1

2
,

1

2

ã2

× {0},(3.36)

A := B if ϑ > 0, A := Σ if ϑ = 0,(3.37)

ϑ > 0 if κ = 0,(3.38)

and denoting by M(Ω;R3) the set of R3-valued Radon measures on Ω, we show that
the solution uε to (3.5) two-scale converges to u0 ∈ C([0, T ];L2(Ω, H1

] (Y ;R3))) (see
Section 4 for the definition of this convergence), and the sequence (uεmε), where mε

is the measure defined by

(3.39) mε :=
ε

rε
1Bε(x)L3

bΩ,

weakly* converges in L∞(0, T ;M(Ω;R3)) to v ∈ C1([0, T ];L2(Ω;R3)), where (u0,v)
is the unique solution to the coupled system of equations (comparable in certain
respects with [8, (2.17)])

(3.40)

®
(Phomsoft ),

(Phomstiff (k, κ)),

defined below in terms of k, κ, and ϑ given, respectively, by (3.8) and (3.10). The
fields u0 and v are linked by the following relation in Ω× (0, T )×A:

(3.41) v(x, t) = u0(x, t, y) in Ω×(0, T )×A.

We introduce the operators ey,σ0y :H1(Y ;R3)→L2(Y ;S3), g :H→R3 defined by

(3.42)

(ey(w))ij =
1

2

Å
∂wi
∂yj

+
∂wj
∂yi

ã
, σ0y(w) := λ0 tr(ey(w))I + 2µ0ey(w),

g(w) :=


−
∫
∂(Y \B)∩B

σ0y(w)νY \BdH2(y), if A = B,∫
Σ

(σ0y(w+)− σ0y(w−)) · e3dH2(y) if A = Σ,

where νY \B stands for the outward normal to ∂(Y \B) and

(3.43) H :=
{
w ∈ H1(Y \A;R3), div(σ0y(w)) ∈ (H1(Y \A;R3))′

}
,

denoting by E′ the topological dual of a Banach space E, and by w+ (resp. w−) the

restriction of w to
(−1

2 ,
1
2

)2 × (0, 1
2

)
(resp.

(−1
2 ,

1
2

)2 × (−1
2 , 0

)
). Problem (Phomsoft ) in

(3.40) is the equation of u0 in Ω× (0, T )× (Y \A) coupled with v through (3.41) and
given by (denoting by ν the outward normal to ∂Y ):
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(3.44) (Phomsoft) :



ρ
∂2u0

∂t2
− divy(σ0y(u0)) = ρf in Ω× (0, T )× Y \A,

(u0,v) satisfies (3.41),

σ0y(u0)ν(y) = −σ0y(u0)ν(−y) on Ω×(0, T )× ∂Y,
u0∈C([0, T ];L2(Ω, H1

] (Y ;R3)))∩C1([0, T ];L2(Ω× Y ;R3)),

u0(0)1Y \A = a01Y \A,
∂u0

∂t
(0)1Y \A = b01Y \A.

Equation (3.44) governs the effective behavior of the displacement in the soft phase.
Problem (Phomstiff (k, κ)) in (3.40) is an equation of v in Ω× (0, T ) coupled with (Phomsoft )
through the source term g(u0) defined by (3.42). This equation rules the effective
behavior of the displacement in the stiff layers. Its form is determined by the order
of magnitude of the coefficients k, κ. If 0 < k < +∞, we get (see (2.1))

(3.45)

(Phomstiff (k, 0)) :

(0 < k < +∞)


ρ1

∂2v

∂t2
− kdivσx′(v

′) = ρ1f + g(u0) in Ω×(0, T ),

v1, v2 ∈ C([0, T ];L2(0, L;H1
0 (Ω′))) ∩ C1([0, T ];L2(Ω)),

v ∈ C1([0, T ];L2(Ω;R3)), v(0) = a0,
∂v

∂t
(0) = b0.

If (k, κ) = (+∞, 0), we obtain

(3.46) (Phomstiff (+∞, 0)) :


ρ1

∂2v3

∂t2
= ρ1f3 + (g(u0))3 in Ω×(0, T ),

v1 = v2 = 0,

v3 ∈ C1([0, T ], L2(Ω)), v3(0) = a03,
∂v3

∂t
(0) = b03.

If 0 < κ < +∞, the emergence of fourth derivatives of v3 reveal bending effects:

(3.47)
(Phomstiff (+∞, κ)) :

(0 < κ < +∞)



ρ1

∂2v3

∂t2
+
κ

3

l+1

l+2

2∑
α,β=1

∂4v3

∂x2
α∂x

2
β

= ρ1f3 + (g(u0))3 in Ω×(0, T ),

v1 = v2 = 0,

v3 ∈ C([0, T ];L2(0, L;H2
0 (Ω′))) ∩ C1([0, T ];L2(Ω)),

v3(0) = a03,
∂v3

∂t
(0) = b03.

If κ = +∞, the displacement in the stiff layers asymptotically vanishes:

(3.48) (Phomstiff (+∞,+∞)) : v = 0.

Theorem 3.12. Under (3.34), (3.35), the solution uε to (3.5) two-scale con-
verges to u0 with respect to x and weakly* converges in L∞(0, T ;L2(Ω,R3)) to u =
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Y
u0(., y)dy, and the sequence (uεmε), where mε is defined by (3.39), weakly* con-

verges in L∞(0, T ;M(Ω,R3)) to vL3
bΩ, where (u0,v) is the unique solution to (3.40).

Moreover, uε(τ) two-scale converges to u0(τ) with respect to x, for each τ ∈ [0, T ].
Remark 3.13. When ϑ = 0, k ∈ (0,+∞], additional sub-regimes are likely to

appear in the cases rε = cε2 and ε2 � rε � ε, possibly attended by the emergence of
bending effects. Similar phenomena have been studied by V. V. Zhikov [55] and V. V.
Zhikov and S. E. Pastukhova [56] in the context of periodic singular structures.

Remark 3.14. One can show (see [8, p.2548] for more details), that if a0 = 0
and if the fields b0, f are sufficiently regular, the following corrector result holds

(3.49) lim
ε→0

∣∣∣∣∣∣uε − u0

(
x, t,

x

ε

)∣∣∣∣∣∣
L2(Ω×(0,T );R3)

= 0.

Remark 3.15. The effective problem (3.40) is non-local in space and time. Non-
local effects [3], [5]-[19], [20, 21, 23, 34, 44], [47]-[50], and memory effects [1, 4, 37,
53] are typical of composite media with high contrast.

Remark 3.16 (Multiphase stratified elastic media). In the same way as in [8,
Section 4], we can extend Theorem 3.12 to the case of a multiphase medium whereby

m ε-periodic disconnected families B
[1]
ε , ..., B

[m]
ε of parallel layers are embedded in a

soft matrix. The limit problem then takes the following form

{
(Phomsoft ),

(Phom [j]
stiff ), j ∈ {1, ...,m},

and can be written under the variational form (4.23) for some suitable choice of data

H,V, a, h, ξ0, ξ1. Each family B
[m]
ε is associated to some subset A[j] of Y like in

(3.37). The system (Phomsoft ) governs the effective displacement in the soft phase, and
only differs from (3.44) by the relation (3.41) which is replaced by a series of relations
on each set Ω×(0, T )×A[j] between u0 and some auxiliary variable v[j] characterizing

the effective displacement in B
[j]
ε . Each problem (Phom [j]

stiff ) consists of an equation of

v[j] of the same form as (Phomstiff ) in (3.40), coupled with u0 through the operator g[j]

deduced from (3.42) by replacing A by A[j].
Remark 3.17. Multiphase composites comprising, besides stiff layers, periodic

distributions of fibers or grain-like inclusions, can also be considered. By way of
illustration, let us examine the case of a composite consisting of an ε-periodic family

B
[1]
ε of parallel stiff layers of thickness ϑε (ϑ > 0) alternating with a softer medium in

which an ε-periodic family B
[2]
ε of parallel stiff fibers and an ε-periodic family B

[3]
ε of

stiff grain-like inclusions are embedded. The disconnected families (B
[i]
ε ) are defined

in terms of three connected subsets B[1], B[2], B[3] of Y with disjoint closure by setting

B
[i]
ε := ε

(⋃
j∈Z3 j +B[i]

)
∩ Ω (see figure 3.2). We assume that the Lamé coefficients

take constant values of order at least 1 in each B
[i]
ε , and constant values ε2λ0, ε2µ0

in Ω \
⋃3
i=1B

[i]
ε . The limit problem then takes the form

{
(Phomsoft ),

(Phom [i]
stiff ), i ∈ {1, 2, 3},

where, setting B :=
⋃3
i=1B

[i], yB[i] := 1
|B[i]|

∫
B[i]ydy,
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(3.50) (Phomsoft ) :



ρ
∂2u0

∂t2
− divy(σ0y(u0)) = ρf in Ω×(0, T )×(Y \B),

u0(x, t, y) = v[1](x, t) in Ω×(0, T )×B[1],

u0 = v[i] + r[i] ∧ (y − yB[i]) in Ω×(0, T )×B[i], (j ∈ {2, 3}),
σ0y(u0).n(y) = −σ0y(u0).n(−y) on Ω×(0, T )× ∂Y,
u0 ∈ C([0, T ];L2(Ω, H1

] (Y ;R3))) ∩ C1([0, T ];L2(Ω× Y ;R3)),

u0(0)1Y \B = a01Y \B ,
∂u0

∂t
(0)1Y \B = b01Y \B .

The problem (Phom [1]
stiff ) in (3.50) is an equation of v[1] characterizing the effective

displacement in the stiff layers as described in Remark 3.16. For i ∈ {2, 3}, the prob-

lem (Phom [i]
stiff ) is a system of equations of v[i], r[i] defined in [8, Section 4], governing

the effective displacement in the fibers if i = 2, in the grain-like inclusions if i = 3.
The couple (v[i], 1

εr
[i]) represents the reduction elements (on the principal axes of the

fibers or at the geometrical center of gravity of the inclusions) of an helicoidal vector
field locally approximating the displacement in the fibers or the grain-like inclusions.

Fig. 3.2.

Remark 3.18. The solution to (3.44) is actually independent of y1, y2. We have
u0(x, y) = ǔ0(x, y3), where, setting I :=

(
− 1

2 ,
1
2

)
, ǔ0(x, y3) is the unique solution to

(Phomsoft) :



ρ
∂2ǔ0

∂t2
−

Ñ
µ 0 0
0 µ 0
0 0 λ+ 2µ

é
∂2ǔ0

∂y2
3

= ρf in Ω× (0, T )× I \
ï
−ϑ

2
,
ϑ

2

ò
,

v(x, t) = ǔ0(x, t, y3) in Ω× (0, T )×
ï
−ϑ

2
,
ϑ

2

ò
,

∂ǔ0

∂y3
(.,

1

2
) =

∂ǔ0

∂y3
(.,−1

2
),

ǔ0 ∈ C([0, T ];L2(Ω, H1
] (I;R3))) ∩ C1([0, T ];L2(Ω× I;R3)),

ǔ0(0)1I\[−ϑ2 ,
ϑ
2 ] = a01I\[−ϑ2 ,

ϑ
2 ],

∂ǔ0

∂t
(0)1I\[−ϑ2 ,

ϑ
2 ] = b01I\[−ϑ2 ,

ϑ
2 ].
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We retained the dependence on y1, y2 in (3.44) in order to extend our results to such
multiphase media as described in Remark 3.17 and derive (3.50).

Remark 3.19 (Equilibrium equations). The conclusions of [8, Corollary 5.1]
remain valid in the stratified case: if the solution to the equilibrium problem (3.32)
two-scale converges to u0 ∈ L2(Ω× Y ;R3), then u0 is a solution to the problem

(3.51) u0 ∈ V and a(u0,w0) = (f ,w0)H , ∀w0 ∈ V,

where V , H, a(., .) are specified in Remark 3.16. The form a(., .) may fail to be
coercive on L2(Ω× Y ;R3), and problem (3.51) may then have no solution. The same
conditions stated in Remark 6.3 for Theorem 3.7 also ensure the coercivity of a(., .)
in the present context. Coerciveness is also achieved in the composite described in
Remark 3.17 provided the Lamé coefficients of the fibers are at least of order 1

ε2 (see
[8, Proposition 5.2]). Note in passing that one should substitute 1 for ρε in [8, Formula
5.1], otherwise the proof of ”(iii)⇒ (iv)” in [8, p. 2552] is false.

Remark 3.20. Under Assumption (3.34), the slightest perturbation of periodicity
leads to a complete change of the form of the effective problem. For instance, if m ∈ N
and ωjε = ε

(
j + 1

2

)
if j is a multiple of m, and ωjε = εj otherwise in (3.35), then

the limit problem is a system of equations coupling u0 with m auxiliary variables
v[1], ...,v[m] as described in Remark 3.16, which can not be expressed, as in theorems
3.1, 3.7, simply in terms of the function n defined by (3.16). The extension of Theorem
3.12 to the non-periodic case is far beyond the scope of this paper.

4. Two-scale convergence and other analysis tools. In Section 4.1, we
recall some properties of the two-scale convergence of G. Allaire [3] and G. Nguetseng
[41] and reproduce some statements of [8] in a suitable form for the present context. In
Section 4.2, we introduce a non-periodic notion of two-scale convergence with respect
to a sequence of measures and establish a compactness result (Lemma 4.2). Two
classical analysis results are recalled in Section 4.3.

4.1. Two-scale convergence. A sequence (fε) in L2(0, T ;L2(Ω)) is said to
two-scale converge to f0 ∈ L2(0, T ; L2(Ω× Y )) with respect to x if, for all ϕ0 ∈
D(Ω×(0, T ), C∞] (Y )),

(4.1)
lim
ε→0

∫
Ω×(0,T )

fε(x, t)ϕ0

(
x, t,

x

ε

)
dxdt =

∫
Ω×(0,T )×Y

f0ϕ0dxdtdy,

(notation: fε ⇀⇀ f0) .

A sequence (ϕε) ⊂ L2(0, T ;L2(Ω)) strongly two-scale converges to ϕ0 ∈ L2(0, T ;L2(Ω
×Y )) with respect to x if

(4.2)
ϕε ⇀⇀ ϕ0 and lim

ε→0
||ϕε||L2(0,T ;L2(Ω)) = ||ϕ0||L2(0,T ;L2(Ω×Y )),

(notation: ϕε −→−→ ϕ0).

The symbols ⇀⇀ and −→−→ will also denote the two-scale convergence and the strong
two-scale convergence of sequences (fε) in L2(Ω) independent of t, defined by formally
considering them as constant in t. Any bounded sequence in L2(0, T ;L2(Ω)) has a
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two-scale convergent subsequence [41]. An admissible sequence with respect to two-
scale convergence is a sequence (ϕε)⊂L2(0, T ;L2(Ω)) that two-scale converges to some
ϕ0 ∈ L2(0, T ;L2(Ω× Y )) and such that, for every two-scale convergent sequence (fε),

(4.3) lim
ε→0

∫
Ω×(0,T )

fεϕεdxdt =

∫
Ω×(0,T )×Y

f0ϕ0dxdtdy.

A sequence (ϕε) is admissible if and only if it strongly two-scale converges to some
ϕ0 (see [8, p.2528]). For all ψ0 ∈ L2(0, T ;L2(Ω, C∞] (Y ))) ∪ L2

] (Y,C(Ω×(0, T ))),
the sequence (ψ0(x, t, xε ))ε>0 strongly two-scale converges to ψ0 (see [3], Lemma 5.2,
Corollary 5.4). In particular, if Q is a Borel subset of Y , and Q] is its periodization
on R3 defined by (2.2), then the sequence

(
1Q]

(
x
ε

))
strongly two-scale converges

to 1Q(y). Under (3.35), if ϑ > 0, then |1Ω\Bε − 1(Y \B)]

(
x
ε

)
|L2(Ω) → 0, therefore

1Ω\Bε −→−→ 1Y \B . If ϑ = 0, (1Ω\Bε) strongly converges to 1 in L2(Ω), hence strongly
two-scale converges to 1. We deduce that (see (3.37))

(4.4) 1Ω\Bε −→−→ 1Y \A, 1Bε −→−→ 1A.

The next Lemma is a straightforward variant of [8, Lemma 6.1].
Lemma 4.1. (i) Let (hε) be a bounded sequence in L∞(Ω×(0, T )×Y ) such that

hε−→−→h0. Then, for every sequence (χε) ⊂ L2(0, T ;L2(Ω)), the following implications
hold:

χε −→−→ χ0 =⇒ χεhε −→−→ χ0h0,(4.5)

χε ⇀⇀ χ0 =⇒ χεhε ⇀⇀ χ0h0.(4.6)

(ii) If (fε) is bounded in L∞(0, T ;L2(Ω)), then (fε) two-scale converges, up to a
subsequence, to some f0 ∈ L∞(0, T ;L2(Ω× Y )). If in addition (fε) is bounded in

W 1,∞(0, T ;L2(Ω)), then f0 ∈ W 1,∞(0, T ;L2(Ω× Y )) and
Ä
∂fε
∂t

ä
two-scale converges

to ∂f0

∂t . Besides, if fε(0) ⇀⇀ a0, then a0 = f0(0) and fε(τ) ⇀⇀ f0(τ), ∀τ ∈ [0, T ].

Furthermore, if
Ä
∂fε
∂t

ä
−→−→∂f0

∂t and fε(0)−→−→a0, then fε(τ)−→−→f0(τ), ∀τ ∈ [0, T ].

4.2. Two-scale convergence with respect to (mε). One can easily check
that the sequence (mε) defined by (3.39) is bounded in M(Ω) and satisfies

(4.7) mε
∗
⇀ nL3

bΩ weakly* in M(Ω),

where n is defined by (3.16). Notice that

(4.8) n = 1 under (3.35).

In what follows, the symbol L2
n(Ω;R3) stands for the set of all Borel fields w : Ω→ R3

such that
∫

Ω
|w|2ndx < +∞. Similarly, for any Hilbert space H, we denote by

L2
n(0, L;H) the set of all Borel fields w : (0, L) → H such that

∫ L
0
|w|2Hndx < +∞.

We set (see (3.3), (3.4))

(4.9) yε(z) :=
∑
j∈Jε

(z − ωjε)1ωjε+rε(1+δ)I(z).
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We say that a sequence (fε) in L2(0, T ;L2(Ω)) two-scale converges to f0 ∈ L2(0, T ;
L2
n(Ω×I)) with respect to the sequence of measures (mε) if for each ψ ∈ D(Ω×(0, T );

C∞] (I)), the following holds

(4.10)
lim
ε→0

∫
Ω×(0,T )

fε(x, t)ψ

Å
x, t,

yε(x3)

rε

ã
dmεdt =

∫
Ω×(0,T )×I

f0ψndxdtdy3.

(Notation: fε
mε⇀⇀ f0).

Lemma 4.2. Let (fε) be a sequence in L2(0, T ;L2(Ω)) satisfying

(4.11) sup
ε>0

∫
Ω×(0,T )

|fε|2dmεdt < +∞.

Then (fε) two-scale converges with respect to (mε), up to a subsequence, to some
f0 ∈ L2

n(0, T ;L2(Ω× I)). In addition, if

(4.12) sup
ε>0,τ>0

∫
Ω

|fε|2(τ)dmε < +∞,

then f0 ∈ L∞(0, T ;L2
n(Ω× I)).

Proof. By Cauchy-Schwarz Inequality and by (4.11), we have

(4.13)

∣∣∣∣∣
∫

Ω×(0,T )

fε(x, t)ψ

Å
x, t,

yε(x3)

rε

ã
dmεdt

∣∣∣∣∣
≤ C

Ç∫
Ω×(0,T )

|fε|2dmεdt

å 1
2

||ψ||L∞(Ω×(0,T )×I)

≤ C||ψ||L∞(Ω×(0,T )×I) ∀ψ ∈ C(Ω×(0, T )× I).

Hence, by the Riesz representation theorem, for each ε > 0 there exists a finite Radon
measure θε ∈M(Ω×(0, T )× I) such that

(4.14)

∫
ψdθε =

∫
Ω×(0,T )

fε(x, t)ψ

Å
x, t,

yε(x3)

rε

ã
dmεdt ∀ψ ∈ C(Ω×(0, T )× I).

By (4.13) and (4.14), the sequence (θε) is bounded inM(Ω×(0, T )× I), thus weakly*
converges, up to a subsequence, to some θ ∈ M(Ω×(0, T )× I). By Cauchy-Schwarz
inequality, we have

(4.15)
∣∣∣∣∫ ψdθε

∣∣∣∣≤
Ç∫

Ω×(0,T )

|fε|2dmεdt

å 1
2
Ç∫

Ω×(0,T )

∣∣∣∣ψ Åx, t, yε(x3)

rε

ã∣∣∣∣2dmεdt

å 1
2

.

The proof of the next statement is similar to that of [3, Lemma 1.3]:

(4.16) lim
ε→0

∫
Ω

∣∣∣∣ϕÅx, yε(x3)

rε

ã∣∣∣∣2 dmε =

∫
Ω×I
|ϕ|2ndxdy3 ∀ϕ ∈ C(Ω× I).
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We deduce from (4.11), (4.14), (4.15), (4.16), and from the weak* convergence in
M(Ω×(0, T )× I) of (θε) to θ, that

∣∣∣∣∫ ψdθ

∣∣∣∣ = lim
ε→0

∣∣∣∣∫ ψdθε

∣∣∣∣ ≤ C||ψ||L2
n(Ω×(0,T )×I) ∀ψ ∈ C(Ω×(0, T )× I).

Thus, the linear form ψ →
∫
ψdθ is continuous on C(Ω×(0, T )× I) with respect to

the strong topology of L2
n(Ω×(0, T ) × I). By a density argument, this linear form

can be extended to a continuous linear form on L2
n(Ω×(0, T ) × I) which, by the

Riesz representation theorem, takes the form ψ →
∫

Ω×(0,T )×I ψf0ndxdtdy for some

f0 ∈ L2
n(Ω×(0, T ) × I). We infer that θ = nf0L5

bΩ×(0,T )×I
, and then, taking (4.14)

and the weak* convergence of (θε) to θ into account, deduce (4.10). Under (4.12), by
Fubini’s Theorem and Cauchy-Schwarz inequality, we have

∫
Ω×(0,T )

fε(x, t)ψ

Å
x, t,

yε(x3)

rε

ã
dmεdt ≤ C

∫
(0,T )

Ç∫ ∣∣∣∣ψ Åx, τ, yε(x3)

rε

ã∣∣∣∣2dmε

å 1
2

dτ.

By passing to the limit as ε→ 0 in the last inequality, thanks to (4.16) and to the Dom-
inated Convergence Theorem, we get

∫
Ω×(0,T )×I f0ψndxdtdy3 ≤ C|ψ|L1(0,T ;L2

n(Ω×I))

and deduce, by the arbitrary choice of ψ, that f0 ∈ L∞(0, T ;L2
n(Ω× I)).

4.3. Two classical results. For the reader’s convenience, we reproduce below
Lemma A2 of [11] (see also [17] for a more general version) and Theorem 6.2 of [8],
which collects some abstract results proved in [25, 35, 36]. The lemma will be employed
to identify the limit of the sequence (uεmε), where uε is the solution to (3.5). The
theorem will be applied to check the existence, the uniqueness, and some regularity
properties of the solution to Problem (3.5) and of the associated limit problems. In
what follows, we denote by E′ the continuous dual space of a Banach space E and by
σ(E′, E) the weak* topology on E′.

Lemma 4.3. Let K be a compact subset of RN and (θε) a bounded sequence of pos-
itive Radon measures on K, weakly* converging inM(K) to some θ ∈M(K). Let (fε)
be a sequence of θε-measurable functions such that supε

∫
|fε|2dθε < +∞. Then the se-

quence (fεθε) is sequentially relatively compact in the weak* topology σ(M(K), C(K))

and every cluster point is of the form fθ, with f ∈ L2
θ. Moreover, if fεθε

?
⇀ fθ, then

(4.17) lim inf
ε→0

∫
|fε|2dθε ≥

∫
|f |2dθ.

Theorem 4.4. Let V and H be separable Hilbert spaces such that V ⊂ H =
H ′ ⊂ V ′, with continuous and dense imbeddings. Let ||.||V , |.|H , ((., .))V , (., .)H
denote their respective norm and inner product. Let a : V × V → R be a con-
tinuous bilinear symmetric form on V . Let A ∈ L(V, V ′) be defined by a(ξ, ξ̃) =

(Aξ, ξ̃)(V ′,V ), ∀ (ξ, ξ̃) ∈ V 2. Assume that

(4.18) ∃(λ, α) ∈ [0,+∞)× (0,+∞), a(ξ, ξ) + λ|ξ|2H ≥ α||ξ||2V , ∀ ξ ∈ V.
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Let h ∈ L2(0, T ;H), ξ0 ∈ V , ξ1 ∈ H. Then there exists a unique solution ξ to

(4.19)
Aξ(t) +

∂2ξ

∂t2
(t) = h(t), ξ ∈ L2(0, T ;V ),

∂ξ

∂t
∈ L2(0, T ;H), ξ(0) = ξ0,

∂ξ

∂t
(0) = ξ1.

Furthermore, we have

(4.20) ξ ∈ C([0, T ];V ) ∩ C1([0, T ];H),
∂ξ

∂t
∈ L2(0, T ;V ),

∂2ξ

∂t2
∈ L2(0, T ;V ′).

Besides, setting

(4.21) e(τ) :=
1

2

ïÅ
∂ξ

∂t
(τ),

∂ξ

∂t
(τ)

ã
H

+ a(ξ(τ), ξ(τ))

ò
, ∀ τ ∈ [0, T ],

the following holds

(4.22) e(τ) = e(0) +

∫ τ

0

Å
h,
∂ξ

∂t

ã
H

dt, ∀ τ ∈ [0, T ].

Problem (4.19) is equivalent to

(4.23)

∫ T

0

Å
a(ξ(t), ξ̃)η(t) + (ξ(t), ξ̃)H

∂2η

∂t2
(t)

ã
dt+ (ξ0, ξ̃)H

∂η

∂t
(0)

− (ξ1, ξ̃)Hη(0) =

∫ T

0

(h, ξ̃)Hη(t)dt,

∀ ξ̃ ∈ V, ∀ η ∈ D(]−∞, T [); ξ∈L2(0, T ;V ),
∂ξ

∂t
∈L2(0, T ;H).

5. Asymptotic behavior of the solution to (3.5). In this section, we estab-
lish a series of estimates satisfied by the solution uε to (3.5) (see Proposition 5.2),
and investigate in lemmas 5.3, 5.4 , and 5.5, the asymptotic behavior of sequences
satisfying such estimates. These results are synthetized in Corollary 5.6. We start
with a key inequality.

Lemma 5.1. We have

(5.1)

∫ Ç∣∣∣∣ϕ1

rε

∣∣∣∣2 +

∣∣∣∣ϕ2

rε

∣∣∣∣2 + |ϕ3|2
å
dmε ≤

C

r2
ε

∫
|e(ϕ)|2 dmε ∀ϕ ∈ H1

0 (Ω;R3).

Proof. By (3.4) and (3.39), it is sufficient to show that for all j ∈ Jε, and all
ϕ ∈ H1(Bjε ;R3) such that ϕ = 0 on ∂Bjε ∩ ∂Ω,

(5.2)

∫
Bjε

Ç∣∣∣∣ϕ1

rε

∣∣∣∣2 +

∣∣∣∣ϕ2

rε

∣∣∣∣2 + |ϕ3|2
å
dx ≤ C

r2
ε

∫
Bjε

|e(ϕ)|2 dx.

By Korn’s inequality, we have
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∫
Ω′×(− 1

2 ; 1
2 )
|ψ|2dy ≤ C

∫
Ω′×(− 1

2 ; 1
2 )
|e(ψ)|2dy ∀ψ ∈W,

W :=

ß
ψ ∈ H1

Å
Ω′ ×

Å
−1

2
;

1

2

ã
;R3

ã
, ψ = 0 on ∂Ω′ ×

Å
−1

2
;

1

2

ã™
.

By making the change of variable y = (x1, x2,
x3−ωjε
rε

), we get, for all ψ ∈W ,

(5.3)

∫
Bjε

|ψ|2
Å
x1, x2,

x3 − ωjε
rε

ã
dx ≤C

∫
Bjε

|e(ψ)|2
Å
x1, x2,

x3 − ωjε
rε

ã
dx.

Setting ϕ(x) =

Ñ
ψ1

ψ2
1
rε
ψ3

é(
x1, x2,

x3−ωjε
rε

)
, a straightforward computation yields

∫
Bjε

Ä
|ϕ1|2 + |ϕ2|2 + r2

ε |ϕ3|2
ä

(x)dx =

∫
Bjε

|ψ|2
Å
x1, x2,

x3 − ωjε
rε

ã
dx

≤ C
∫
Bjε

|e(ψ)|2
Å
x1, x2,

x3 − ωjε
rε

ã
dx ≤ C

∫
Bjε

|e(ϕ)|2 (x)dx.

The inequality (5.2) is proved.
Proposition 5.2. There exists a unique solution uε to (3.5). Moreover,

(5.4)
∂uε
∂t
∈ L2(0, T ;H1

0 (Ω;R3)),
∂2uε
∂t2

∈ L2(0, T ;H−1(Ω;R3)).

Under (3.6), (3.9), there exists a constant C > 0 such that

(5.5)

∫
Ω

µ0ε|e(uε)|2(τ)dx+

∫
Ω

Ç
ρε

∣∣∣∣∂uε∂t
∣∣∣∣2+ |uε|2

å
(τ)dx≤C ∀τ ∈ [0, T ],∫

|e (uε)|2 (τ) + |u′ε|
2

(τ)dmε ≤ C
(rε
ε
µ1ε

)−1

∀τ ∈ [0, T ],∫
|uε3|2 (τ)dmε ≤ C

Å
r3
ε

ε
µ1ε

ã−1

,

∫
|uε|2 (τ)dmε ≤ C ∀τ ∈ [0, T ].

Proof. Problem (3.5) is equivalent to (4.23), where H := L2(Ω;R3), (ξ, ξ̃)H :=∫
Ω
ρεξ · ξ̃dx, V := H1

0 (Ω;R3) (V ′ = H−1(Ω;R3)), a(ξ, ξ̃) :=
∫

Ω
σε(ξ) : e(ξ̃)dx, and

(ξ0, ξ1,h) = (a0, b0,f). By (3.7), (H, (., .)H) is a Hilbert space and the assumptions of
Theorem 4.4 are satisfied. Therefore, Problem (3.5) has a unique solution. Assertion
(5.4) follows from (4.20). By (4.22) we have, for all τ ∈ [0, T ],

1

2

∫
Ω

Ç
ρε

∣∣∣∣∂uε∂t
∣∣∣∣2 + σε(uε) : e(uε)

å
(τ)dx

=
1

2

∫
Ω

Ä
ρε |b0|2 + σε(a0) : e(a0)

ä
dx+

∫
Ω×(0,τ)

ρεf ·
∂uε
∂t

dxdt.
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We deduce from Cauchy-Schwarz Inequality that

∣∣∣∣∣
∫

Ω×(0,τ)

ρεf ·
∂uε
∂t

dxdt

∣∣∣∣∣ ≤
 ∫

Ω×(0,T )

ρε |f |2 dxdt

√∫
Ω×(0,T )

ρε

∣∣∣∣∂uε∂t
∣∣∣∣2 dxdt.

Taking (3.9) into account, we infer

(5.6)

∫
Ω

Ç
ρε

∣∣∣∣∂uε∂t
∣∣∣∣2 dx+ σε(uε) : e(uε)

å
(τ)dx

≤ C

(
1 +

√∫
Ω×(0,T )

ρε

∣∣∣∣∂uε∂t
∣∣∣∣2 dxdt

)
∀τ ∈ [0, T ].

By integrating (5.6) with respect to τ over (0, T ), we deduce that
∫

Ω×(0,T )
ρε

∣∣∣∂uε∂t ∣∣∣2
dxdt ≤ C and then, coming back to (5.6), that

(5.7)

∫
Ω

ρε

∣∣∣∣∂uε∂t
∣∣∣∣2 (τ)dx+

∫
Ω

σε(uε) : e(uε)(τ)dx ≤ C ∀τ ∈ [0, T ].

We infer from (3.5), (3.6), (3.39), and (5.7), that

(5.8)

∫
Ω

ρε

∣∣∣∣∂uε∂t
∣∣∣∣2(τ) + µ0ε|e(uε)|2(τ)dx ≤ C ∀τ ∈ [0, T ],∫

|e(uε)|2(τ)dmε ≤ C
(rε
ε
µ1ε

)−1

∀τ ∈ [0, T ].

By (3.7), (3.39), and (5.8), and by the continuity of a0 (see (3.5)), we have

(5.9)

∫
Ω

|uε|2(τ)dx+

∫
|uε|2(τ)dmε =

∫
Ω

∣∣∣∣a0 +

∫ τ

0

∂uε
∂t

(t)dt

∣∣∣∣2 d(L3 +mε)(x)

≤ C
Ç

1 +

∫
Ω×(0,T )

ρε

∣∣∣∣∂uε∂t
∣∣∣∣2 (t)dxdt

å
≤ C ∀τ ∈ [0, T ].

By (5.1) and (5.8), we have

∫ ∣∣∣∣uε1rε
∣∣∣∣2 +

∣∣∣∣uε2rε
∣∣∣∣2 + |uε3|2 (τ)dmε ≤

C

r2
ε

∫
|e(uε)|2(τ)dmε ≤

Cε

r3
εµ1ε

∀τ ∈ [0, T ],

which, combined with (5.8), (5.9) completes the proof of (5.5).
Lemma 5.3. Let (uε) be a sequence in W1,∞(0, T ;H1

0 (Ω;R3), L2(Ω;R3)) satisfying

(5.10) sup
ε>0,τ∈(0,T )

∫
|uε|2 +

∣∣∣∣∂uε∂t
∣∣∣∣2 + |e(uε)|2 (τ)dmε < +∞.

Then, up to a subsequence, the following holds
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(5.11)

uεmε
?
⇀ nv,

∂uε
∂t

mε
?
⇀ n

∂v

∂t
weakly* in L∞(0, T ;M(Ω;R3)),

v1, v2 ∈ L∞(0, T ;L2
n(0, L;H1

0 (Ω′))), v ∈W 1,∞(0, T ;L2
n(Ω;R3)),

ex′(u
′
ε)mε

?
⇀ nex′(v

′) weakly* in L∞(0, T ;M(Ω;S3)).

Furthermore,

(5.12)

nv1 = nv2 = 0 if lim inf
ε→0

sup
τ∈(0,T )

∫
|e(uε)|2 (τ)dmε = 0,

nv = 0 if lim inf
ε→0

sup
τ∈(0,T )

∫ ∣∣∣∣ 1

rε
e(uε)

∣∣∣∣2 (τ)dmε = 0.

Moreover, if

(5.13)
sup

ε>0,τ∈(0,T )

∫
Ω

µ0ε |e(uε)|2 (τ)dx < +∞, ε2 << µε0, and

nε → n strongly in L2(Ω) and uε
?
⇀ u weakly* in L∞(0, T ;L2(Ω;R3)),

or if

(5.14)
sup

ε>0,τ∈(0,T )

∫
Ω

|e(uε)|2 (τ)dx < +∞, and

uε → u strongly in L2(0, T ;L2(Ω;R3)),

then nu = nv.
Proof. By applying Lemma 4.3 to θε := L1

b(0,T ) ⊗ mε, K := (0, T )× Ω, fε ∈
{uε, ∂uε∂t , ex′(u

′
ε)}, taking (4.7) and (5.10) into account, we obtain the convergences

(5.15)
uεmε

?
⇀ nv,

∂uε
∂t

mε
?
⇀ nγ weakly* in M((0, T )× Ω;R3)),

ex′(u
′
ε)mε

?
⇀ nΞ weakly* in M((0, T )× Ω;S3)),

up to a subsequence, for some suitable v,γ ∈ L2(0, T ;L2
n(Ω;R3)), Ξ ∈ L2(0, T ;L2

n(Ω;S3))
such that Ξij = 0 if 3 ∈ {i, j}. By (5.10), the sequences (uεmε),

(
∂uε
∂t mε

)
and

(ex′(u
′
ε)mε) are bounded in L∞(0, T ;M(Ω)), therefore the convergences (5.15) also

hold with respect to the weak* topology of L∞(0, T ;M(Ω)). Let us fix Ψ ∈ C∞(Ω×(0, T );
S2). By integration by parts, we have

2∑
α,β=1

∫
Ω×(0,T )

(ex′(u
′
ε))αβΨαβ (x, t) dmεdt = −

∫
Ω×(0,T )

(uε1e1 + uε2e2) · divx′Ψ (x, t) dmεdt.

By passing to the limit as ε→ 0, taking (5.15) into account, we obtain
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(5.16)

2∑
α,β=1

∫
Ω×(0,T )

ΞαβΨαβndxdt = −
∫

Ω×(0,T )

(v1e1 + v2e2) · divx′Ψndxdt.

By making Ψ vary in D(Ω×(0, T );S2), we deduce that nex′(v
′)(= ex′(nv

′)) = nΞ in
the sense of distributions on Ω×(0, T ), and then infer from Korn inequality in H1(Ω′)
that nv1, nv2 ∈ L∞(0, T ;L2(0, L;H1(Ω′))), that is v1, v2 ∈ L∞(0, T ;L2

n(0, L;H1(Ω′))).

By integrating (5.16) by parts for Ψ ∈ C∞(Ω×(0, T );S2), we get
∫ T

0

∫ L
0

∫
∂Ω′

nv′ ·Ψν
dH1dx3dt = 0 and infer from the arbitrariness of Ψ that v1, v2 ∈ L∞(0, T ;L2

n(0, L;
H1

0 (Ω′))). We prove in a similar way that v ∈ W 1,∞(0, T ;L2
n(Ω;R3)) and γ = ∂v

∂t .
Assertion (5.11) is proved. Assertion (5.12) is a consequence of the following inequal-
ities (holding for α ∈ {1, 2}), deduced from (4.17), (5.1), (5.15)∫

Ω×(0,T )

|vα|2ndxdt ≤ lim inf
ε→0

∫
Ω×(0,T )

|uεα|2dmε(x)dt ≤ lim inf
ε→0

∫
Ω×(0,T )

|e(uε)|2 dmε(x)dt,∫
Ω×(0,T )

|v|2ndxdt ≤ lim inf
ε→0

∫
Ω×(0,T )

|uε|2dmε(x)dt ≤ lim inf
ε→0

∫
Ω×(0,T )

∣∣∣∣ 1

rε
e(uε)

∣∣∣∣2 dmε(x)dt.

It remains to show that under (5.13) or (5.14), nu = nv. To that aim, we set

(5.17) v̂ε(x, t) :=
∑
j∈Jε

uε(x1, x2, ω
j
ε, t)1(ωjε− rε2 ,ω

j
ε+

rε
2 ](x3).

By Fubini’s Theorem, Jensen’s inequality and Korn’s inequality in H1
0 (Ω;R3), we have

(5.18)

∫
|uε − v̂ε|2(τ)dmε=

ε

rε

∑
j∈Jε

∫
Ω′
dx′
∫ ωjε+

rε
2

ωjε− rε2

∣∣uε(x′, x3, τ)−uε(x′, ωjε, τ)
∣∣2dx3

≤ ε

rε

∑
j∈Jε

∫
Ω′
dx′
∫ ωjε+

rε
2

ωjε− rε2

(∫ ωjε+
rε
2

ωjε− rε2

∣∣∣∣∂uε∂x3

∣∣∣∣ (x′, s3, τ)ds3

)2

dx3

≤ εrε
∫

Ω

|∇∇∇uε|2(τ)dx ≤ Cεrε
∫

Ω

|e(uε)|2(τ)dx.

Therefore, under (5.13) or (5.14), limε→0

∫
|uε − v̂ε|2(τ)dmε = 0. Hence, by (5.15),

(5.19) v̂εmε
?
⇀ nv weakly* in L∞(0, T ;M(Ω;R3)).

We define (see (3.1, 3.15))

(5.20) vε(x, t) :=
∑
i∈Zε

Ö ∑
{ωjε∈ωε∩(εi− ε2 ,εi+ ε

2 ]}
uε(x

′, ωjε, t)

è
1(εi− ε2 ,εi+

ε
2 ](x3).

Noticing that by (3.2) and (3.15),
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(5.21) ωε ⊂
⋃
i∈Zε

(
εi− ε

2
, εi+

ε

2

]
,

we infer from (3.39) and (5.17) that

(5.22)

∫
Ω

|vε|2(τ)dx ≤ C
∑
i∈Zε

∑
{ωjε∈ωε∩(εi− ε2 ,εi+ ε

2 ]}
ε

∫
Ω′
|uε(x′, ωjε, τ)|2dx′

= C
ε

rε

∑
j∈Jε

rε

∫
Ω′
|uε(x′, ωjε, τ)|2dx′ = C

∫
|v̂ε|2(τ)dmε.

Therefore, by (5.10) and (5.18), under (5.13) or (5.14), the sequence (vε) is bounded
in L∞(0, T ;L2(Ω;R3)). Thus the following convergence holds, up to a subsequence

(5.23) vε
?
⇀ w weakly* in L∞(0, T ;L2(Ω;R3)).

To identify w, we fix ϕ ∈ D(Ω×(0, T );R3) and set ϕ̆ε(x, t) :=
∑
i∈Zε ϕ(x′, εi, t)

1(εi− ε2 ,εi+
ε
2 ](x3). Noticing that |ϕ̆ε −ϕ|L∞(Ω×(0,T );R3) ≤ Cε, we infer

(5.24)

∫
Ω×(0,T )

w ·ϕdxdt = lim
ε→0

∫
Ω×(0,T )

vε · ϕ̆εdxdt.

On the other hand, by (3.39), (5.17) and (5.20), we have

(5.25)

∫
Ω

vε · ϕ̆ε(t)dx =
∑
i∈Zε

∑
{ωjε∈ωε∩(εi− ε2 ,εi+ ε

2 ]}

∫
Ω′×(εi− ε2 ,εi+

ε
2 ]

uε(x
′, ωjε, t) ·ϕ(x′, εi, t)dx

=
∑
i∈Zε

∑
{ωjε∈ωε∩(εi− ε2 ,εi+ ε

2 ]}

∫
Ω′×(ωjε+ rε

2 ,ω
j
ε+

rε
2 )

v̂ε(x, t) ·ϕ(x′, εi, t)dmε.

For all i ∈ Zε and all ωjε ∈ ωε∩
(
εi− ε

2 , εi+ ε
2

]
, we have |ϕ(x1, x2, εi, t)−ϕ(x, t)| ≤ Cε

in Ω′ ×
(
ωjε + rε

2 , ω
j
ε + rε

2

)
× (0, T ). Taking (5.21) into account, we deduce

∣∣∣∣∣∣∣
∑
i∈Zε

∑
{ωjε∈ωε∩(εi− ε2 ,εi+ ε

2 ]}

∫
Ω′×(ωjε+ rε

2 ,ω
j
ε+

rε
2 )

v̂ε(x, t) ·ϕ(x′, εi, t)dmε −
∫
v̂ε(t) ·ϕ(t)dmε

∣∣∣∣∣∣∣
≤ Cε

∫
|v̂ε| (t)dmε.

Therefore, by (5.19) and (5.25), the following holds

(5.26) lim
ε→0

∫
Ω×(0,T )

vε · ϕ̆εdxdt = lim
ε→0

∫
Ω×(0,T )

v̂ε ·ϕdmεdt =

∫
Ω×(0,T )

nv ·ϕdxdt.
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Combining (5.24) and (5.26) we deduce, by the arbitrary choice of ϕ,

(5.27) w = nv.

On the other hand, by (3.14), (5.20), (5.21), Jensen’s inequality and Korn’s inequality
in H1

0 (Ω), we have

(5.28)

∫
Ω

|nεuε − vε|2 (τ)dx

=
∑
i∈Zε

∫
Ω′×(εi− ε2 ,εi+

ε
2 ]

∣∣∣∣∣∣∣
∑

{ωjε∈ωε∩(εi− ε2 ,εi+ ε
2 ]}
uε − uε(x′, ωjε, τ)

∣∣∣∣∣∣∣
2

dx

≤ C
∑
i∈Zε

∑
{ωjε∈ωε∩(εi− ε2 ,εi+ ε

2 ]}

∫
Ω′×(εi− ε2 ,εi+

ε
2 ]

∣∣uε − uε(x′, ωjε, τ)
∣∣2 dx

≤ Cε2
∑
i∈Zε

nε(εi)

∫
Ω′×(εi− ε2 ,εi+

ε
2 ]

∣∣∣∣∂uε∂x3

∣∣∣∣2 (τ)dx ≤ Cε2

∫
Ω

|e(uε)|2 (τ)dx.

We infer that, under either (5.13) or (5.14), the sequence
( ∫

Ω×(0,T )
|nεuε − vε|2 (τ)

dxdt
)

converges to 0. Therefore, by (5.23) and (5.27),

(5.29) nεuε
?
⇀ nv weakly* in L∞(0, T ;L2(Ω;R3)).

Under (5.14), it easily follows from the strong convergence of (uε) to u in L2(0, T ;L2(Ω;
R3)) and the weak* convergence of (nε) to n in L∞(Ω) (see (3.16)), that (nεuε) weakly
converges to nu in L2(0, T ;L2(Ω;R3)), therefore nu = nv. The same conclusion holds
under (5.13), because (uε) weakly* converges to u in L∞(0, T ;L2(Ω;R3)) and (nε) is
bounded in L∞(Ω) and strongly converges to n in L2(Ω). The proof of Lemma 5.3 is
concluded.

Lemma 5.4. Let (uε) be a sequence in L∞(0, T ;H1
0 (Ω;R3)) satisfying

(5.30) sup
ε>0,τ∈(0,T )

∫ ∣∣∣∣∂uε∂t
∣∣∣∣2 +

∣∣∣∣ 1

rε
e(uε)

∣∣∣∣2 (τ)dmε < +∞.

Then, up to a subsequence, the convergences (5.11) take place. Moreover,

(5.31) v3 ∈ L∞(0, T ;L2
n(0, L;H2

0 (Ω′))).

Besides, up to a subsequence, the following convergences hold (see (4.10)):

(5.32)

uεα
rε

mε⇀⇀ ξα(x, t)− ∂v3

∂xα
(x, t)y3 (α ∈ {1, 2}),Å

1

rε
e(uε)

ã
αβ

mε⇀⇀
1

2

Å
∂ξα
∂xβ

+
∂ξβ
∂xα

ã
(x, t)− ∂2v3

∂xα∂xβ
(x, t)y3 (α, β ∈ {1, 2}),

ξ1, ξ2 ∈ L∞(0, T ;L2
n(0, L;H1

0 (Ω′))).
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Proof. By (5.1) and (5.30), we have

(5.33) sup
ε>0,τ∈(0,T )

∫ Ç∣∣∣∣uε1rε ∣∣∣∣2 +

∣∣∣∣uε2rε
∣∣∣∣2 + |uε3|2

å
dmε < +∞.

By (5.30) and (5.33), assumption (5.10) of Lemma 5.3 is verified, hence, up to a
subsequence, the convergences (5.11) take place. By Lemma 4.2, (5.30) and (5.33),
there exist v ∈ L∞(0, T ;L2

n(Ω;R3)), ζ01, ζ02, ζ03 ∈ L∞(0, T ;L2
n(Ω × I)), and Ξb ∈

L∞(0, T ; L2
n(Ω× I;S3)), such that (see (2.1))

(5.34)
umε

?
⇀ nv weakly* in L∞(0, T ;M(Ω;R3)); nv1 = nv2 = 0;

uε3
mε⇀⇀ ζ03;

uεα
rε

mε⇀⇀ ζ0α (α ∈ {1, 2}); 1

rε
ex′(uε)

mε⇀⇀ Ξb.

We will use the following assertion, which will be proved later,

(5.35) n(x)ζ03(x, t, y3) = n(x)v3(x, t) a.e. in Ω×(0, T )× I.

Then, we fix a matrix field Ψ satisfying

(5.36) Ψ ∈ C∞
Ä
Ω× (0, T );D(I;S3)

ä
, Ψ33 = 0.

Noticing that x→ Ψ
Ä
x, t, yε(x3)

rε

ä
vanishes on the complement of the support of mε,

by integration by parts we get

(5.37)

∫
Ω×(0,T )

e(uε) :Ψ

Å
x, t,

yε(x3)

rε

ã
dmεdt = −

∫
Ω×(0,T )

uε · divxΨ

Å
x, t,

yε(x3)

rε

ã
dmεdt

−
2∑

α=1

∫
Ω×(0,T )

uεα
rε

∂Ψα3

∂y3

Å
x, t,

yε(x3)

rε

ã
dmεdt.

By passing to the limit as ε → 0 in (5.37), taking (5.30), (5.34) and (5.35) into
account, we infer

(5.38) 0 = −
∫

Ω×(0,T )×I
v3(divxΨ)3ndxdtdy3 −

2∑
α=1

∫
Ω×(0,T )×I

ζ0α
∂Ψα3

∂y3
ndxdtdy3.

Fixing α ∈ {1, 2}, ϕ ∈ C∞(Ω× (0, T )), ψ ∈ D(I), and selecting in (5.38) a field of
the form Ψ(x, t, y3) := ϕ(x, t)ψ(y3)(eα ⊗ e3 + e3 ⊗ eα), we get

0 = −
∫

Ω×(0,T )

v3(x, t)
∂ϕ

∂xα
(x, t)ndxdt

Å∫
I

ψ(y3)dy3

ã
−
∫

Ω×(0,T )

Å∫
I

ζ0α(x, t, y3)
∂ψ

∂y3
(y3)dy3

ã
ϕ(x, t)ndxdt.
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Choosing ψ such that
(∫
I
ψ(y3)dy3

)
6= 0, and making ϕ vary in C∞(Ω× (0, T )), we

deduce that

(5.39) v3 ∈ L∞(0, T ;L2
n(0, L;H1

0 (Ω′))),

then, by integration by parts with respect to xα, infer

0 =

∫
Ω×(0,T )×I
ϕ(x, t)ψ(y3)

∂v3

∂xα
(x, t)ndxdtdy3 −

∫
Ω×(0,T )×I
ζ0α(x, t, y3)

∂ψ

∂y3
(y3)ϕ(x, t)ndxdtdy3.

We deduce, from the arbitrary choice of ϕ and ψ, that

ζ0α∈L∞
(
0, T ;L2

n

(
Ω;H1 (I)

))
; n

∂ζ0α
∂y3

(x, t, y3)=−n ∂v3

∂xα
(x, t) in Ω×(0, T )× I,

and then that

(5.40) nζ0α(x, t, y3) = nξα(x, t)− n ∂v3

∂xα
(x, t)y3 in Ω×(0, T )× I,

for some suitable ξα ∈ L∞(0, T ;L2
n(Ω)). Next, we choose a matrix field Ψ satisfying

(5.36) and Ψ3k = 0 ∀ k ∈ {1, 2, 3}. By multiplying (5.37) by 1
rε

, we get

2∑
α,β=1

∫
Ω×(0,T )

eαβ(uε)

rε
Ψαβ

Å
x, t,

yε(x3)

rε

ã
dmεdt =

−
2∑

α,β=1

∫
Ω×(0,T )

uεα
rε

Ψαβ

∂xβ

Å
x, t,

yε(x3)

rε

ã
dmεdt.

By passing to the limit as ε→ 0, thanks to (5.34) and (5.40), we find

2∑
α,β=1

∫
Ω×(0,T )×I

Ξb
αβΨαβndxdtdy

= −
2∑

α,β=1

∫
Ω×(0,T )×I

Å
ξα(x, t)− ∂v3

∂xα
(x, t)y3

ã
∂Ψαβ

∂xβ
(x, t, y3)ndxdtdy3.

By the arbitrary choice of the functions Ψαβ(= Ψβα) in C∞
Ä
Ω× (0, T );D(I)

ä
and

(5.39), we deduce that for α, β ∈ {1, 2}, the following holds

ξα ∈ L∞(0, T ;L2
n(0, L;H1

0 (Ω′))), v3 ∈ L∞(0, T ;L2
n(0, L;H2

0 (Ω′))),

nΞbαβ(x, t, y3) =
1

2
n

Å
∂ξα
∂xβ

+
∂ξβ
∂xα

ã
(x, t)− n ∂2v3

∂xα∂xβ
(x, t)y3 in Ω×(0, T )× I.

The proof of Lemma 5.4 is concluded.
Proof of (5.35). By (5.17) and (5.30), we have
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(5.41)

∫
|uε3−v̂ε3|2(τ)dmε=

ε

rε

∑
j∈Jε

∫
Ω′
dx′
∫ ωjε+

rε
2

ωjε− rε2

∣∣uε3(x, τ)−uε3(x′, ωjε, τ)
∣∣2dx3

≤εrε
∑
j∈Jε

∫
Ω′
dx′
∫ ωjε+

rε
2

ωjε− rε2

∣∣∣∣∂uε3∂x3

∣∣∣∣2(x′, x3, τ)dx3≤Cr2
ε

∫
|e(uε)|2(τ)dmε≤Cr4

ε .

We easily deduce from (5.34) and (5.41) that

(5.42) v̂ε3mε
?
⇀ nv3 weakly* in L∞(0, T ;M(Ω)); v̂ε3

mε⇀⇀ ζ03.

Fixing ψ ∈ D(Ω×(0, T )× I), we set (see (4.9))

(5.43) ψ̃ε

Å
x, t,

yε(x3)

rε

ã
:=
∑
j∈Jε

ψ

Å
x′, ωjε, t,

yε(x3)

rε

ã
1(ωjε− rε2 ,ω

j
ε+

rε
2 )(x3).

We have

(5.44)

∣∣∣∣ψ̃ε Åx, t, yε(x3)

rε

ã
− ψ

Å
x, t,

yε(x3)

rε

ã∣∣∣∣ ≤ Crε in Bε.

By making the change of variables y =
x3−ωjε
rε

, we get
∫ ωjε+ rε

2

ωjε− rε2
ψ
Ä
x′, ωjε, t,

yε(x3)
rε

ä
dx3 =

rε
∫
I
ψ
(
x′, ωjε, t, y3

)
dy3. We infer

(5.45)

∫
Ω×(0,T )

v̂ε3ψ̃ε

Å
x, t,

yε(x3)

rε

ã
dmεdt

=
ε

rε

∑
j∈Jε

∫
Ω′×(0,T )

dx′dt

∫ ωjε+
rε
2

ωjε− rε2
uε3(x′, ωjε, t)ψ

Å
x′, ωjε, t,

yε(x3)

rε

ã
dx3

=
ε

rε

∑
j∈Jε

∫
Ω′×(0,T )

rεuε3(x′, ωjε, t)

Å∫
I

ψ
(
x′, ωjε, t, y3

)
dy3

ã
dx′dt

=
ε

rε

∑
j∈Jε

∫
Ω′×(0,T )

dx′dt

∫ ωjε+
rε
2

ωjε− rε2
uε3(x′, ωjε, t)

Å∫
I

ψ
(
x′, ωjε, t, y3

)
dy3

ã
dx3

=

∫
Ω×(0,T )

v̂ε3(x, t) Êψε(x, t)dmεdt,

where Êψε(x, t) :=
∑
j∈Jε

(∫
I
ψ
(
x′, ωjε, t, y3

)
dy3

)
1(ωjε− rε2 ,ω

j
ε+

rε
2 )(x3). Noticing that∣∣∣ Êψε(x, t)− (∫I ψ (x, t, y3) dy3

)∣∣∣ ≤ Crε in Bε, we deduce successively from (5.42),

(5.45), (5.44), and again (5.42) that
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(5.46)

∫
Ω×(0,T )×I
v3(x, t)

Å∫
I

ψ (x, t, y3) dy3

ã
ndxdt= lim

ε→0

∫
Ω×(0,T )

v̂ε3(x, t)

Å∫
I

ψ (x, t, y3) dy3

ã
dmεdt

= lim
ε→0

∫
Ω×(0,T )

v̂ε3(x, t) Êψε(x, t)dmεdt = lim
ε→0

∫
Ω×(0,T )

v̂ε3(x, t)ψ̃ε

Å
x, t,

yε(x3)

rε

ã
dmεdt

= lim
ε→0

∫
Ω×(0,T )

v̂ε3(x, t)ψ

Å
x, t,

yε(x3)

rε

ã
dmεdt =

∫
Ω×(0,T )×I
ζ03(x, t, y3)ψ(x, t, y3)ndxdtdy3.

By the arbitrary choice of ψ, assertion (5.35) is proved.
The next Lemma is specific to the periodic case. Given a sequence (uε) satisfying
(5.10) and (5.47) (and possibly (5.30)), we establish some relations satisfied by its
two-scale limit u0 and by the field v introduced in Lemma 5.3.

Lemma 5.5. Assume that Bε is the ε-periodic set defined by (3.35) and let (uε)
be a sequence in L∞(0, T ;H1

0 (Ω;R3)) satisfying (5.10) and

(5.47) sup
τ∈[0,T ], ε>0

∫
Ω

|uε|2 +

∣∣∣∣∂uε∂t
∣∣∣∣2 + ε2|e(uε)|2(τ)dx < +∞, uε(0) = a0.

Then, up to a subsequence, the convergences (5.11) take place with n = 1. Moreover

(5.48)

uε ⇀⇀ u0 and εe(uε) ⇀⇀ ey(u0) in accordance with (4.1),

u0 ∈ L∞(0, T ;L2(Ω;H1
] (Y ;R3))) ∩W 1,∞(0, T ;L2(Ω× Y ;R3)),

∂uε
∂t

⇀⇀
∂u0

∂t
, uε(τ) ⇀⇀ u0(τ) ∀ τ ∈ [0, T ].

Furthermore,
(i) If ϑ > 0, then

(5.49) u0(x, t, y) = v(x, t) in Ω× (0, T )×B.

(ii) If ϑ = 0 and if the estimate (5.30) is satisfied, then

(5.50) u0(x, t, y) = v(x, t) on Ω× (0, T )× Σ.

Proof. The convergences (5.11) are deduced from Lemma 5.3. Under (5.47), by
Lemma 4.1 (ii), the sequence (uε) (resp. (εe(uε))) two-scale converges, up to a subse-
quence, to some u0 ∈ L∞(0, T ;L2(Ω× Y ;R3)) (resp. Ξm ∈ L∞(0, T ;L2(Ω× Y ;S3))).
Choosing Ψ ∈ D(Ω×(0, T );C∞] (Y ;S3)) and passing to the limit as ε→ 0 in the equa-
tion

(5.51)

∫
Ω×(0,T )

εe(uε) : Ψ
(
x, t,

x

ε

)
dxdt =

− ε
∫

Ω×(0,T )

uε · divxΨ
(
x, t,

x

ε

)
dxdt−

∫
Ω×(0,T )

uε · divyΨ
(
x, t,

x

ε

)
dxdt,
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we infer
∫

Ω×(0,T )×Y Ξm :Ψdxdtdy = −
∫

Ω×(0,T )×Y u0 ·divyΨdxdtdy and deduce, by the

arbitrary choice of Ψ, that u0 ∈ L∞(0, T ;L2(Ω;H1
] (Y ;R3))) and ey(u0) = Ξm. By

Lemma 4.1 (ii), u0 ∈W 1,∞(0, T ;L2(Ω×Y ;R3)) and the convergences of the last line
of (5.48) hold. Assertion (5.48) is proved.

If ϑ > 0, by (5.10) and (5.47), the sequence (εe(uε)1Bε) strongly converges to 0 in
L2(Ω ×(0, T );R3). On the other hand, by (4.4), (5.48) and Lemma 4.1, (εe(uε)1Bε)
two-scale converges to ey(u0)1B , hence ey(u0) = 0 in Ω × (0, T ) × B and, for a. e.
(x, t) ∈ Ω×(0, T ), the restriction of u0(x, t, .) to B is a rigid displacement. Since u0

is Y -periodic, we deduce that

(5.52) u0 = a in Ω×(0, T )×B,

for some a∈L∞(0, T ;L2(Ω;R3)). By (4.4), (5.48) and Lemma 4.1 (i), the sequence
(uε1Bε) two-scale converges to u0(x, t, y)1B(y). Fixing ϕ∈D(Ω×(0, T ); R3), taking
(5.11), (5.47) and (5.52) into account, and noticing that ε

rε
→ 1
|B| , we deduce

∫
Ω×(0,T )

v ·ϕdxdt = lim
ε→0

∫
Ω×(0,T )

uε ·ϕdmεdt = lim
ε→0

ε

rε

∫
Ω×(0,T )

uε ·ϕ1Bε(x)dxdt

=
1

|B|

∫
Ω×(0,T )×B

u0 ·ϕ(x, t)1B(y)dxdtdy =

∫
Ω×(0,T )

a ·ϕdxdt,

and infer, from the arbitrary choice of ϕ, that v = a. Assertion (5.49) is proved.
Let us assume now that ϑ = 0 (i.e. that rε � ε). Since the stiff layers are

periodicaly distributed, by (3.35) the field vε defined by (5.20) takes the form

(5.53) vε(x, t) :=
∑
i∈Zε

uε(x1, x2, εi, t)1(εi− ε2 ,εi+
ε
2 ](x3),

and coincides in Bε with the field v̂ε given by (5.17). Therefore, by (5.18),

(5.54)

∫
|vε − uε|2(τ)dmε ≤ C

rε
ε

∫
Ω

ε2|e(uε)|2(τ)dx ∀τ ∈ [0, T ].

Since rε � ε, we deduce from (5.11), (5.47) and (5.54) that
∫
|vε|2(τ)dmε ≤ C. On

the other hand, taking (3.39), (3.35) and (5.53) into account, it is easy to check that∫
|vε|2(τ)dmε =

∫
Ω
|vε|2(τ)dx, therefore the sequence (vε) is bounded in L∞(0, T ;L2(Ω;R3)).

It then follows from Lemma 4.1 (ii) that

(5.55) vε ⇀⇀ v0,

up to a subsequence, for some v0 ∈ L∞(0, T ;L2(Ω×Y ;R3)). We establish below that

(5.56)
∂v0

∂y3
= 0 a.e. in Ω× (0, T )× Y, u0 = v0 on Ω× (0, T )× Σ,

and that (see (2.1))
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(5.57)

v′(x, t) = v′0(x, t, y) a.e. in Ω× (0, T )× Y,

v3(x, t) =

∫
(− 1

2 ,
1
2 )

2
v03(x, t, s1, s2, y3)ds1ds2.

The next equation (proved below)

(5.58)
∂v03

∂yα
= 0 ∀α ∈ {1, 2}, if (5.30) holds true,

joined with (5.57), yields (5.50). It remains to prove (5.56), (5.57) and (5.58).
Proof of (5.56). Let us fix ψ ∈ D(Ω×(0, T );D](Y ;R3)). By (5.53) we have

∫
Ω×(0,T )

vε ·
∂ψ

∂y3

(
x, t,

x

ε

)
dxdt

=
∑
i∈Zε

∫
Ω′×(0,T )

uε(x1, x2, εi, t) ·

(∫
(εi− ε2 ,εi+

ε
2 )

∂ψ

∂y3

Å
x, t,

x′

ε
,
x3

ε

ã
dx3

)
dx′dt.

Since ψ(x, t, .) ∈ D](Y ;R3), the following holds

∫
(εi− ε2 ,εi+

ε
2 )

∂ψ

∂y3

Å
x, t,

x′

ε
,
x3

ε

ã
dx3 =

1

ε

∫
(− 1

2 ,
1
2 )

∂ψ

∂y3

Å
x, t,

x′

ε
, y3

ã
dy3 = 0,

therefore
∫

Ω×(0,T )
vε · ∂ψ∂y3

(
x, t, xε

)
dxdt = 0. By passing to the limit as ε→ 0, we infer∫

Ω×(0,T )×Y v0 · ∂ψ∂y3
(x, t, y) dxdtdy = 0, and deduce from the arbitrary choice of ψ that

(5.59)
∂v0

∂y3
= 0 in Ω×(0, T )× Y.

We set Y + :=
(
− 1

2 ,
1
2

)2 × (0, 1
2

)
and fix Ψ ∈ D(Ω×(0, T );D](Y ;S3)). Then, for each

i ∈ Zε (defined by (3.15)), the field Ψ
(
x, t, xε

)
vanishes on ∂

(
Ω′ ×

(
εi− ε

2 , εi+ ε
2

))
×

(0, T ), and, for ε small enough, the support of Ψ
(
x, t, xε

)
is included in

⋃
i∈Zε Ω′ ×[

εi− ε
2 , εi+ ε

2

]
× (0, T ). Hence, by integration by parts, we get

(5.60)

∫
Ω×(0,T )

εe(uε) : Ψ
(
x, t,

x

ε

)
1Y +

]

(x
ε

)
dxdt =

∑
i∈Zε

∫
Ω′×(εi,εi+ ε

2 )×(0,T )

εe(uε) : Ψ
(
x, t,

x

ε

)
dxdt

= −
∑
i∈Zε

ε

∫
Ω′×{εi}×(0,T )

uε ·Ψ
Å
x, t,

x′

ε
, 0

ã
e3dH2(x)dt

−
∫

Ω×(0,T )

εuε · divxΨ
(
x, t,

x

ε

)
1Y +

]

(x
ε

)
+ uε · divyΨ

(
x, t,

x

ε

)
1Y +

]

(x
ε

)
dxdt.

We set Ψε

Ä
x, t, x

′

ε , 0
ä

:=
∑
i∈Zε Ψ

Ä
x1, x2, εi, t,

x′

ε , 0
ä
1(εi− ε2 ,εi+

ε
2 )(x3). Notice that
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(5.61)

∣∣∣∣Ψε

Å
x, t,

x′

ε
, 0

ã
−Ψ

Å
x, t,

x′

ε
, 0

ã∣∣∣∣ ≤ Cε,∣∣∣∣ ∂∂yαΨε

Å
x, t,

x′

ε
, 0

ã
− ∂

∂yα
Ψ

Å
x, t,

x′

ε
, 0

ã∣∣∣∣ ≤ Cε for α ∈ {1, 2}.

By the definitions Ψε and vε (see (5.53)), there holds

(5.62) −
∑
i∈Zε

ε

∫
Ω′×{εi}×(0,T )

uε ·Ψ(x, t,
x′

ε
, 0)e3dH2(x)dt=−

∫
Ω×(0,T )

vε ·Ψε

Å
x, t,

x′

ε
, 0

ã
e3dxdt.

Taking (5.55) and (5.61) into account, and noticing that by (5.59) we have v0(x, t, y) =
v0(x, t, y′, 0) in Ω×(0, T )× Y , we obtain

(5.63)

lim
ε→0
−
∫

Ω×(0,T )

vε ·Ψε

Å
x, t,

x′

ε
, 0

ã
e3dxdt = −

∫
Ω×(0,T )×Y

v0 ·Ψ (x, t, y′, 0) e3dxdtdy

= −
∫

Ω×(0,T )×Σ

v0 ·Ψe3dxdtdH2(y).

By passing to the limit as ε→ 0 in (5.60), applying Lemma 4.1 (i) with hε = 1Y +

(
x
ε

)
and taking (5.48), (5.62) and (5.63) into account, we get

∫
Ω×(0,T )×Y +

ey(u0) : Ψdxdtdy = −
∫

Ω×(0,T )×Σ

v0 ·Ψe3dxdtdH2(y)−
∫

Ω×(0,T )×Y +

u0 · divyΨdxdtdy.

By integration by parts, we have

−
∫

Ω×(0,T )×Y +

u0 · divyΨdxdtdy =

∫
Ω×(0,T )×Σ

u0 ·Ψe3dxdtdH2(y) +

∫
Ω×(0,T )×Y +

ey(u0) : Ψdxdtdy.

Joining the last two equations, we infer that
∫

Ω×(0,T )×Σ
u0 ·Ψe3dxdtdH2(y) =∫

Ω×(0,T )×Σ
v0 · Ψe3dxdtdH2(y). By the arbitrary choice of Ψ (and by (5.59)), we

deduce that (5.56) holds.
Proof of (5.57). Let us fix ψ ∈ D(Ω×(0, T );R3) and set

(5.64) ψε(x, t) :=
∑
i∈Zε

ψ(x1, x2, εi, t)1(εi− ε2 ,εi+
ε
2 ](x3).

By (3.39) and (5.53) we have

(5.65)

∫
Ω×(0,T )

vε ·ψεdmεdt =
ε

rε

∑
i∈Zε

∫
Ω′×(εi− rε2 ,εi+

rε
2 )×(0,T )

uε(x
′, εi, t) ·ψ(x′, εi, t)dxdt

=
∑
i∈Zε

∫
Ω′×(εi− ε2 ,εi+

ε
2 )×(0,T )

uε(x
′, εi, t) ·ψ(x′, εi, t)dxdt =

∫
Ω×(0,T )

vε ·ψεdxdt.

We infer from (5.55) and from the estimate
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(5.66) |ψ −ψε|L∞(Ω×(0,T );R3) ≤ Cε,

that

(5.67) lim
ε→0

∫
Ω×(0,T )

vε ·ψεdxdt =

∫
Ω×(0,T )

Å∫
Y

v0(x, t, y)dy

ã
ψ(x, t)dxdt.

By (5.54) and (5.66), the following holds

(5.68) lim
ε→0

∣∣∣∣∣
∫

Ω×(0,T )

uε ·ψdmεdt−
∫

Ω×(0,T )

vε ·ψεdmεdt

∣∣∣∣∣ = 0.

The weak* convergence of (uεmε) to v and (5.65), (5.67), (5.68), imply

∫
Ω×(0,T )

v ·ψdxdt = lim
ε→0

∫
Ω×(0,T )

uε ·ψdmεdt =

∫
Ω×(0,T )

Å∫
Y

v0(x, t, y)dy

ã
·ψ(x, t)dxdt,

yielding, by the arbitrary choice of ψ,

(5.69) v(x, t) =

∫
Y

v0(x, t, y)dy in Ω×(0, T ).

By (5.59) and (5.69), the proof of (5.57) is achieved provided that we establish that

(5.70)
∂v0α

∂yβ
= 0 ∀α, β ∈ {1, 2}.

To that aim, let us fix Ψ ∈ D
Ä
Ω×(0, T );C∞]

Ä(
− 1

2 ,
1
2

)2
;S3
ää

. Since uε vanishes on

∂Ω× (0, T ), by integrating by parts with respect to x1 and x2, we get (see (2.1))∫
Ω×(0,T )

ex′(u
′
ε) : Ψ

Å
x, t,

x′

ε

ã
dmεdt =−

∫
Ω×(0,T )

u′ε · div′x′Ψ

Å
x, t,

x′

ε

ã
dmεdt

− 1

ε

∫
Ω×(0,T )

u′ε · div′y′Ψ

Å
x, t,

x′

ε

ã
dmεdt.

By (5.10), the left-hand side and the first term on the right-hand side of the above
equation are bounded, therefore

(5.71) lim
ε→0

∫
Ω×(0,T )

u′ε · div′y′Ψ

Å
x, t,

x′

ε

ã
dmεdt = 0.

On the other hand, by (5.54) and (5.61), there holds

(5.72) lim
ε→0

∣∣∣∣∣
∫

Ω×(0,T )

u′ε · div′y′Ψ

Å
x, t,

x′

ε

ã
dmεdt−

∫
Ω×(0,T )

v′ε · div′y′Ψε

Å
x, t,

x′

ε

ã
dmεdt

∣∣∣∣∣ = 0.
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A computation analogous to (5.65) yields

(5.73)

∫
Ω×(0,T )

v′ε · div′y′Ψε

Å
x, t,

x′

ε

ã
dmεdt =

∫
Ω×(0,T )

v′ε · div′y′Ψε

Å
x, t,

x′

ε

ã
dxdt.

By (5.61) and by the two-scale convergence of vε to v0 (see (5.55)), there holds

(5.74) lim
ε→0

∫
Ω×(0,T )

v′ε · div′y′Ψε

Å
x, t,

x′

ε

ã
dxdt =

∫
Ω×(0,T )×Y

v′0 · div′y′Ψ (x, t, y′) dxdtdy.

Combining (5.71)-(5.74), we get

(5.75)

∫
Ω×(0,T )×Y

v′0 · div′y′Ψ (x, t, y′) dxdtdy = 0,

hence ey′(v
′
0) = 0, in the sense of distributions. We deduce that y′ → v′0(x, t, y′, y3)

is a rigid displacement. By integrating (5.75) by parts, we infer∫
Ω×(0,T )×∂(− 1

2 ,
1
2 )

2
v′0(x, t, y) ·Ψ (x, t, y′)νdxdtdH1(y′) = 0,

and deduce from the arbitrary choice of Ψ ∈ D
Ä
Ω×(0, T );C∞]

Ä(
− 1

2 ,
1
2

)2
;S3
ää

, that

v′0 ∈ L2
Ä
Ω×(0, T ), H1

]

Ä(
− 1

2 ,
1
2

)2
;R3

ää
. The periodicity of v′0 with respect to y′ and

the fact that y′ → v′0(x, t, y′, y3) is a rigid displacement imply that y′ → v′0(x, t, y′) is
a constant field. Assertion (5.70) is proved. The proof of (5.57) is achieved.

Proof of (5.58). We assume (5.30), fix ψ ∈ D
Ä
Ω×(0, T );D]

Ä(
− 1

2 ,
1
2

)2ää
, η ∈ D(I),

and α ∈ {1, 2}. Noticing that the mapping x → ψ
Ä
x, t, x

′

ε

ä
η
Ä
yε(x3)
rε

ä
is compactly

supported in Bε, by integration by parts we obtain

(5.76)

∫
Ω×(0,T )

Å
∂uεα
∂x3

+
∂uε3
∂xα

ã
ψ

Å
x, t,

x′

ε

ã
η

Å
yε(x3)

rε

ã
dmεdt

= −
∫

Ω×(0,T )

Å
uεα

∂ψ

∂x3

Å
x, t,

x′

ε

ã
+ uε3

∂ψ

∂xα

Å
x, t,

x′

ε

ãã
η

Å
yε(x3)

rε

ã
dmεdt

−
∫

Ω×(0,T )

uεα
rε

ψ

Å
x, t,

x′

ε

ã
∂η

∂x3

Å
yε(x3)

rε

ã
dmεdt

− 1

ε

∫
Ω×(0,T )

uε3
∂ψ

∂yα

Å
x, t,

x′

ε

ã
η

Å
yε(x3)

rε

ã
dmεdt.

By (5.1) we have

∫ ∣∣∣∣∂uεα∂x3
+
∂uε3
∂xα

∣∣∣∣2 +

∣∣∣∣uεαrε
∣∣∣∣2 + |uε3|2(τ)dmε ≤ C

∫
1

r2
ε

|e(uε)|2(τ)dmε,

hence, by (5.30), all terms of the three first lines of (5.76) are bounded. We infer

lim
ε→0

∫
Ω×(0,T )

uε3
∂ψ

∂yα

Å
x, t,

x′

ε

ã
η

Å
yε(x3)

rε

ã
dmεdt = 0,
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and then deduce from (5.54) and from an estimate analogous to (5.61) that

(5.77) lim
ε→0

∫
Ω×(0,T )

vε3
∂ψε
∂yα

Å
x, t,

x′

ε

ã
η

Å
yε(x3)

rε

ã
dmεdt = 0,

where ψε is defined by (5.64). Taking (5.53) and (5.64) into account, and noticing

that 1
rε

∫
(εi− rε2 ,εi+

rε
2 ) η

Ä
yε(x3)
rε

ä
dx3 =

∫
I
η(y)dy, we get

(5.78)

∫
Ω×(0,T )

vε3
∂ψε
∂yα

Å
x, t,

x′

ε

ã
η

Å
yε(x3)

rε

ã
dmεdt

=
ε

rε

∑
i∈Zε

∫
Ω′×(εi− rε2 ,εi+

rε
2 )×(0,T )

uε3(x′, εi, t)
∂ψ

∂yα

Å
x′, εi, t,

x′

ε

ã
η

Å
yε(x3)

rε

ã
dx′dx3dt

= ε
∑
i∈Zε

∫
Ω′×(0,T )

uε3(x′, εi, t)
∂ψ

∂yα

Å
x′, εi, t,

x′

ε

ã
dx′dt

Å∫
I

η(y)dy

ã
=

Ç∫
Ω×(0,T )

vε3
∂ψε
∂yα

Å
x, t,

x′

ε

ã
dxdt

åÅ∫
I

η(y)dy

ã
.

On the other hand, by (5.55) and an estimate analogous to (5.61), there holds

(5.79) lim
ε→0

∫
Ω×(0,T )

vε3
∂ψε
∂yα

Å
x, t,

x′

ε

ã
dxdt =

∫
Ω×(0,T )×Y

v03
∂ψ

∂yα
dxdtdy.

Joining (5.77), (5.78), (5.79), and choosing η such that
∫
I
ηdy3 6= 0, we infer that∫

Ω×(0,T )×Y v03
∂ψ
∂yα

dxdtdy = 0. By the arbitraryness of ψ, Assertion (5.58) is proved.

In the next Corollary, we derive from Proposition 5.2 and lemmas 5.3, 5.4, 5.5, a series
of convergences and identification relations for various sequences associated with the
solution to (3.5).

Corollary 5.6. Let uε be the solution to (3.5).

(i) Up to a subsequence, the convergences (5.11) hold and

(5.80) nv1 = nv2 = 0 if k = +∞, nv = 0 if κ = +∞.

Under (5.13) or (5.14), nu = nv.

(ii) If κ > 0, the relation (5.31) and convergences (5.32) hold.

(iii) In the periodic case, that is under (3.34) and (3.35), the convergences and re-
lations (5.48) hold. If ϑ > 0 (resp. ϑ = 0), the relations (5.49) (resp. (5.50)) are
verified.

Proof. Noticing that by (3.8) and (5.5), the estimate (5.10) holds, Assertion (i)
follows from Lemma 5.3 ( Assertion (5.80) is a consequence of (3.8), (5.5), and (5.12)).
If κ > 0, by (3.8) and (5.5) the estimate (5.30) holds, and Assertion (ii) follows from
Lemma 5.4. In the periodic case, by (3.34), (3.35), and (5.5), uε satisfies (5.10) and
(5.47) and by (3.8), (3.38) and (5.5) it satisfies (5.30) if ϑ = 0. Hence (iii) results
from Lemma 5.5.
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6. Proof of theorems 3.1, 3.7, 3.12.
In the spirit of Tartar [53, 54], we will multiply (3.5) by an appropriate test field

φε, integrate by parts, and, passing to the limit as ε→ 0 by means of the convergences
derived in Corollary 5.6, obtain a variational problem equivalent to the announced
limit problem, and also to (4.23) for some suitable H,V, a, h, ξ0, ξ1. Theorem 4.4 will
yield existence, uniqueness, and regularity of the effective displacement. Uniqueness
implies that the convergences obtained in Corollary 5.6 for subsequences hold for the
complete sequences.

6.1. Proof of Theorem 3.12. We set

(6.1)

H :=

®
(w0,ψ) ∈ L2(Ω× Y ;R3)× L2(Ω;R3),

w0 = ψ in Ω×B

´
,

((w0,ψ), (‹w0, ‹ψ))H :=

∫
Ω×Y

ρw0 · ‹w0dxdy,

 if ϑ > 0,

H := L2(Ω× Y ;R3)× L2(Ω;R3),

((w0,ψ), (‹w0, ‹ψ))H :=

∫
Ω×Y

ρw0 · ‹w0dxdy +

∫
Ω

ρ1ψ · ‹ψdx, if ϑ = 0.

We easily deduce from the positiveness of ρ and ρ1 (see (3.7)) that H is a Hilbert
space. We fix a couple (w0,ψ) ∈ L2(0, T ;H) satisfying (see (3.37))

w0 ∈ C∞([0, T ];D(Ω;C∞] (Y ;R3))), ψ ∈ C∞([0, T ];D(Ω;R3)),(6.2)

w0(T ) =
∂w0

∂t
(T ) = ψ(T ) =

∂ψ

∂t
(T ) = 0,(6.3)

ψ1 = ψ2 = 0 if k = +∞, ψ = 0 if κ = +∞,(6.4)

w0(., y) = ψ(.) in Ω×(0, T )×A.(6.5)

We choose a sequence (αε) of positive reals such that

(6.6) ε << αε << 1 and
[rε
ε
� αε � 1 if ϑ = 0

]
,

and set

(6.7) Cε := {x ∈ Ω, dist(x,Bε) < αεrε} .

It is usefull to notice that

(6.8) L3(Cε \Bε) ≤ C
αεrε
ε

,

and that, by (6.5), the following estimate holds for m ∈ {1, 2}:

(6.9)

∣∣∣ψ(x,t)−w0

(
x, t,

x

ε

)∣∣∣+∣∣∣∣∂mψ∂tm
(x,t)− ∂

mw0

∂tm

(
x,t,

x

ε

)∣∣∣∣≤Cβε in Cε×(0,T ),

βε = αε if ϑ > 0, βε =
rε
ε

if ϑ = 0.
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By (6.7), we can fix a sequence (ηε) in C∞(Ω) satisfying

(6.10) 0 ≤ ηε ≤ 1, ηε = 1 in Bε, ηε = 0 in Ω \ Cε, |∇∇∇ηε| <
C

rεαε
.

The sequence of test fields (φε) mentioned above will be defined by

(6.11) φε(x, t) := ηε(x) Ùψε (x, t) + (1− ηε(x))w0

(
x, t,

x

ε

)
,

where Ùψε is described in Section 7. As φε(x, t) = w0

(
x, t, xε

)
in Ω \ Cε × (0, T ), we

deduce from (6.5), (6.9), (6.10), (6.11), and (7.4) that the following estimates hold in
Ω× (0, T ) for m ∈ {1, 2}:

(6.12)

∣∣∣φε(x, t)−w0

(
x, t,

x

ε

)∣∣∣+∣∣∣∣∂mφε∂tm
(x, t)− ∂

mw0

∂tm

(
x, t,

x

ε

)∣∣∣∣≤ Cβ1ε,

β1ε = rε + αε if ϑ > 0, β1ε =
rε
ε

if ϑ = 0.

It is also interesting to notice that by (6.10), (6.11), and (7.4),

(6.13) |φε(x, t)−ψ(x, t)|+
∣∣∣∣∂mφε∂tm

(x, t)− ∂mψ

∂tm
(x, t)

∣∣∣∣ ≤ Crε in Bε × (0, T ).

By (3.5) and (3.6) we have |σε(φε)| ≤ Cµ0ε|∇∇∇φε| in (Ω \ Bε) × (0, T ), therefore by
(6.9), (6.10), (6.12), (7.4), the next estimates are satisfied in (Cε \Bε)× (0, T )

(6.14)

|σε(φε)| ≤Cµ0ε

(
|∇ηε|

∣∣∣Ùψε(x,t)−w0

(
x, t,

x

ε

)∣∣∣+∣∣∣∇∇∇Ùψε(x,t)∣∣∣+∣∣∣∇∇∇(w0

(
x,t,

x

ε

))∣∣∣)
≤ Cµ0ε

Å
1

αεrε
(rε + βε) +

C

ε

ã
≤ Cµ0εβ2ε,

β2ε =
1

αε
+

1

ε
if ϑ > 0, β2ε =

1

αεε
if ϑ = 0.

Applying (4.5) to χε = ρε1Ω\Bε , h0 ∈ {w0,
∂2w0

∂t2 ,w0(0), ∂
2w0

∂t2 (0)}, we deduce from
(3.7), (4.4), (6.6), and (6.12), that the following convergences hold for m ∈ {1, 2}

(6.15)
ρεφε1Ω\Bε −→−→ ρ1Y \A(y)w0, ρε

∂mφε
∂tm

1Ω\Bε −→−→ ρ1Y \A(y)
∂mw0

∂tm
,

ρεφε(0)1Ω\Bε−→−→ρ1Y \A(y)w0(0), ρε
∂φε
∂t

(0)1Ω\Bε−→−→ρ1Y \A(y)
∂w0

∂t
(0).

By multiplying (3.5) by φε, after integrations by parts we obtain (see (6.3))

(6.16)

∫
Ω×(0,T )

ρεuε ·
∂2φε
∂t2

dxdt+

∫
Ω

ρεa0 ·
∂φε
∂t

(0)dx−
∫

Ω

ρεb0 · φε(0)dx

+

∫
Ω×(0,T )

e(uε) : σε(φε)dxdt =

∫
Ω×(0,T )

ρεf · φεdxdt.
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By (3.7) and (3.39), we have

(6.17)

∫
Ω×(0,T )

ρεuε ·
∂2φε
∂t2

dxdt =

∫
Ω×(0,T )

ρ1Ω\Bεuε ·
∂2φε
∂t2

dxdt

+

∫
Ω×(0,T )

ρ1uε ·
∂2φε
∂t2

dmε(x)dt.

We deduce from (5.48) (see Corollary 5.6), and (6.15) that

lim
ε→0

∫
Ω×(0,T )

ρε1Ω\Bεuε ·
∂2φε
∂t2

dxdt =

∫
Ω×(0,T )×Y

ρ1Y \A(y)u0 ·
∂2w0

∂t2
dxdtdy.

By (5.11), and (6.13), we have

lim
ε→0

∫
Ω×(0,T )

ρ1uε ·
∂2φε
∂t2

dmε(x)dt =

∫
Ω×(0,T )

ρ1v ·
∂2ψ

∂t2
dxdt.

The last three equations imply

(6.18) lim
ε→0

∫
Ω×(0,T )

ρεuε ·
∂2φε
∂t2

dxdt =

∫
Ω×(0,T )×Y \A

ρu0·
∂2w0

∂t2
dxdtdy +

∫
Ω×(0,T )

ρ1v ·
∂2ψ

∂t2
dxdt.

As, by (3.5), a0, b0, and f are continuous, we obtain by the same argument

(6.19)

lim
ε→0

∫
Ω

ρεa0 ·
∂φε
∂t

(0)dx =

∫
Ω×Y \A

ρa0 ·
∂w0

∂t
(0)dxdy +

∫
Ω

ρ1a0 ·
∂2ψ

∂t2
(0)dx,

lim
ε→0

∫
Ω

ρεb0 · φε(0)dx =

∫
Ω×Y \A

ρb0 ·w0(0)dxdy +

∫
Ω

ρ1b0 ·ψ(0)dx,

lim
ε→0

∫
Ω×(0,T )

ρεf · φεdxdt =

∫
Ω×(0,T )×Y \A

ρf ·w0dxdtdy +

∫
Ω×(0,T )

ρ1f ·
∂2ψ

∂t2
dxdt.

We split the 4th term on the left-hand side of (6.16) into the sum of three terms:

(6.20)

∫
Ω×(0,T )

e(uε) : σε(φε)dxdt = I1ε + I2ε + I3ε; I1ε :=

∫
Ω\Cε×(0,T )

εe(uε) :
1

ε
σε(φε)dxdt,

I2ε :=

∫
Cε\Bε×(0,T )

εe(uε) :
1

ε
σε(φε)dxdt, I3ε :=

∫
Bε×(0,T )

e(uε) : σε(φε)dxdt.

By (6.10) and (6.11), we have φε1Ω\Cε = w0

(
x, t, xε

)
1Ω\Cε . Taking (3.5), (3.6), and

(3.34) into account, we deduce that

(6.21)

∣∣∣∣1εσε (φε)− σ0y(w0)
(
x, t,

x

ε

)∣∣∣∣1Ω\Cε ≤ Cε,

where the operator σ0y is defined by (3.42). The following convergence
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(6.22) 1Ω\Cε −→−→ 1Y \A,

follows from (4.4) and from the strong convergence of 1Cε\Bε to 0 in L2(Ω), which
results from (6.6) and (6.8). By applying Assertion (4.5) of Lemma 4.1 to h0 :=
σ0y(w0) and χε := 1Ω\Cε , taking (6.21) into account, we infer

(6.23)
1

ε
σε (φε)1Ω\Cε −→−→ σ0y(w0)1Y \A(y).

We deduce from (5.48), (6.20), and (6.23) that

(6.24) lim
ε→0

I1ε =

∫
Ω×(0,T )×Y \A

ey(u0) : σ0y(w0)dxdtdy.

By (3.34), (6.8) and (6.14), we have
∫
Cε\Bε×(0,T )

∣∣ 1
εσε(φε)

∣∣2 dxdt ≤ C
Ä
αε + ε2

αε

ä
if

ϑ > 0, and
∫
Cε\Bε×(0,T )

∣∣ 1
εσε(φε)

∣∣2 dxdt ≤ C rε
αεε

if ϑ = 0. Therefore, by (6.6), the

sequence
(

1
εσε(φε)1Cε\Bε

)
strongly converges to 0 in L2(Ω× (0, T );S3). Accordingly,

we infer from (5.47) and (6.20) that

(6.25) lim
ε→0

I2ε = 0.

Finally, the limit of the sequence (I3ε) defined by (6.20) is computed in Lemma 7.1
in terms of k and κ. Passing to the limit as ε → 0 in (6.16), collecting (6.4), (6.18),
(6.19), (6.20), (6.24), (6.25), and (7.5), we obtain the variational formulation given,
according to the order of magnitude of k and κ, by (6.26), (6.39), (6.41), or (6.32).
We distinguish 4 cases:

Case 0 < k < +∞. We find

(6.26)

∫
Ω×(0,T )×Y \A

ρu0 ·
∂2w0

∂t2
dxdtdy +

∫
Ω×(0,T )×Y \A

ρa0 ·
∂w0

∂t
(0)− ρb0 ·w0(0)dxdy

+

∫
Ω×(0,T )

ρ1v ·
∂2ψ

∂t2
dxdt+

∫
Ω

ρ1a0 ·
∂ψ

∂t
(0)− ρ1b0 ·ψ(0)dx

+

∫
Ω×(0,T )×Y \A

ey(u0) : σ0y(w0)dxdtdy + k

∫
Ω×(0,T )

ex′(v
′) : σx′(ψ

′)dxdt

=

∫
Ω×(0,T )×Y \A

ρf ·w0dxdtdy +

∫
Ω×(0,T )

ρ1f ·ψdxdt,

for all (w0,ψ) ∈ L2(0, T ;H) satisfying (6.2)-(6.5). We set (see (6.1))
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(6.27)

ξ = (u0,v), ξ0 = (a0,a0), ξ1 = (b0, b0), h = (f ,f),

V :=

®
(w0,ψ) ∈ H

∣∣∣∣∣w0 ∈ L2(Ω;H1
] (Y ;R3))

ψ1, ψ2 ∈ L2(0, L;H1
0 (Ω′))

´
if ϑ > 0,

V :=


(w0,ψ) ∈ H

∣∣∣∣∣∣∣∣∣∣∣∣

w0 ∈ L2(Ω;H1
] (Y ;R3)),

ψ1, ψ2 ∈ L2(0, L;H1
0 (Ω′))

w′0(x, y) = ψ′(x) on Ω× Σ∫
Σ

w03(., y)dH2(y) = ψ3


if rε << ε,

a(v,ψ) := k

∫
Ω

ex′(v
′) : σx′(ψ

′)dx,

a((u0,v), (w0,ψ)) :=

∫
Ω×Y \A

ey(u0) : σy(w0)dxdy + a(v,ψ),

((u0,v),(w0,ψ))V :=((u0,v),(w0,ψ))H+a(v,ψ) +

∫
Ω×Y \A
∇∇∇yu0 ·∇∇∇yw0dxdy.

By (4.8), (5.11) and (5.48), we have ξ = (u0,v)∈L2(0, T ;V ), ∂ξ∂t ∈L
2(0, T ;H), thus

by a density argument the variational formulation (6.26) is equivalent to (4.23). By
(6.1), (6.27), and the following Korn’s inequality (see [42], p. 14),∫

Y \A
|w|2 + |∇∇∇(w)|2dy ≤ C

∫
Y \A
|w|2 + |e(w)|2dy ∀w ∈ H1(Y \A;R3),

for all ξ̃ = (w0,ψ) ∈ V , the following holds

(6.28)
||ξ̃||2V = |ξ̃|2H + a(ψ,ψ) + ||∇∇∇y(w0)||2L2(Ω×Y \A;R3)

≤ C|ξ̃|2H +C||ey(w0)||2L2(Ω×Y \A;R3)+ a(ψ,ψ) ≤ C|ξ̃|2H + Ca(ξ̃, ξ̃),

yielding (4.18). We deduce from Theorem 4.4 that ξ = (u0,v) is the unique solution
to (6.26). By (4.19), (4.20), (6.27), the following holds

(6.29) ξ ∈ C([0, T ];V ) ∩ C1([0, T ];H), ξ(0) = (a0,a0),
∂ξ

∂t
(0) = (b0, b0).

It follows from (6.29), from the following inequalities (deduced from (6.1), (6.27))

(6.30)

||w0||L2(Ω;H1
]
(Y ;R3)) + ||ψ||L2(Ω;R3) + ||ψ1||L2(0,L;H1

0 (Ω′))

+ ||ψ2||L2(0,L;H1
0 (Ω′)) ≤ C||(w0,ψ)||V ∀ (w0,ψ) ∈ V,

||w0||L2(Ω×Y ;R3) + ||ψ||L2(Ω;R3) ≤ C|(w0,ψ)|H ∀ (w0,ψ) ∈ H,

and the following implication, holding for any couple (E1, E2) of Banach spaces

A∈L(E1, E2)

B∈Ck([0, T ];E1)

´
⇒
ï
A ◦B∈Ck([0, T ];E2);

ds

dts
(A ◦B) = A ◦ d

s

dts
B ∀s ≤ k

ò
,
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applied with B = ξ = (u0,v), E1 ∈ {H,V }, (A(ξ), E2) ∈
{ Ä
u0, L

2(Ω;H1
] (Y ;R3))

ä
,(

v, L2(Ω;R3)
)
,
(
vα, L

2(0, L;H1
0 (Ω′))

)
,
(
u0, L

2(Ω× Y ;R3)
)
,
(
v, L2(Ω)

)}
, that

(6.31)

u0∈C([0, T ];L2(Ω;H1
] (Y ;R3)))∩C1([0, T ];L2(Ω× Y ;R3)),

u0(0) = a0,
∂u0

∂t
(0) = b0,

v ∈ C1([0, T ];L2(Ω;R3)), v(0) = a0,
∂v

∂t
(0) = b0,

v1, v2∈C([0, T ];L2(0, L;H1
0 (Ω′)))∩C1([0, T ];L2(Ω)).

Next we prove that the variational problem (6.26) is equivalent to (3.40). Setting
ψ = 0 in (6.26), noticing that ey(u0) : σ0y(w0) = σ0y(u0) :∇∇∇y(w0), we get

(6.32)

∫
Ω×(0,T )×Y \A

ρu0 ·
∂2w0

∂t2
dxdtdy +

∫
Ω×Y \A
ρa0 ·

∂w0

∂t
(0)dxdy −

∫
Ω×Y \A
ρb0 ·w0(0)dxdy

+

∫
Ω×(0,T )×Y \A

σ0y(u0) :∇∇∇y(w0)dxdtdy =

∫
Ω×(0,T )×Y \A

ρf ·w0dxdtdy,

and, letting w0 vary over D(Ω×(0, T )×Y \A;R3), deduce

(6.33) ρ
∂2u0

∂t2
− divy(σ0y(u0)) = ρf in Ω× (0, T )× Y \A.

By integrating (6.32) by parts with respect to (t, y) for an arbitrary w0 satisfying
(6.2), (6.3), (6.5), we infer from (6.33) that

∫
Ω×(0,T )×∂Y σ0y(u0)ν ·w0dxdtdH2(y) = 0

(ν := outward pointing normal to ∂Y ). Noticing that σ0y(u0)ν = 0 H2 a. e. on
∂Y ∩ A (because if ϑ > 0, then A = B and, by (5.49), σ0y(u0) = 0 in B, whereas if
rε << ε, then A = Σ and H2(∂Y ∩ Σ) = 0), we deduce

(6.34) σ0y(u0)ν(x, t, y) = −σ0y(u0)ν(x, t,−y) on Ω×(0, T )× ∂Y.

Fixing (w0,ψ) ∈ L2(0, T ;H) satisfying (6.2), (6.3), we infer from the Y -periodicity
of w0, (6.5), and (6.34), that (see (3.42))

(6.35)

−
∫

Ω×(0,T )×∂(Y \A)

σ0y(u0)ν ·w0dxdtdH2(y) = −
∫

Ω×(0,T )×∂(Y \A)∩A
σ0y(u0)νY \A ·ψdxdtdH2(y)

=

∫
Ω×(0,T )

g(u0) ·ψdxdt.

By multiplying (6.33) by w0 and by integrating it by parts over Ω× (0, T )× Y \A,
thanks to (6.31), (6.34), (6.35) we obtain

(6.36)

∫
Ω×(0,T )×Y \A

ρu0 ·
∂2w0

∂t2
dxdtdy +

∫
Ω×Y \A
ρa0 ·

∂w0

∂t
(0)dxdy −

∫
Ω×Y \A
ρ b0 ·w0(0)dxdy

+

∫
Ω×(0,T )×Y \A
ey(u0) : σ0y(w0)dxdtdy +

∫
Ω×(0,T )

g(u0) ·ψdxdt=
∫

Ω×(0,T )×Y \A
ρf ·w0dxdtdy.

By subtracting (6.36) from (6.26), we find
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(6.37)

∫
Ω×(0,T )

ρ1v ·
∂2ψ

∂t2
dxdt−

∫
Ω×(0,T )

g(u0) ·ψdxdt+ k

∫
Ω×(0,T )

ex′(v
′) : σx′(ψ

′)dxdt

+

∫
Ω

ρ1a0 ·
∂ψ

∂t
(0)dx−

∫
Ω

ρ1b0 ·ψ(0)dx =

∫
Ω×(0,T )

ρ1f ·ψdxdt.

Making ψ vary in D(Ω×(0, T );R3), we infer

(6.38) ρ1

∂2v

∂t2
− kdivσx′(v

′) =ρ1f + g(u0) in Ω×(0, T ).

By (6.31), (6.33), (6.34), (6.38), and Lemma 5.5, the couple (u0,v) is a solution to
(3.40), (3.45). Conversely, any solution to (3.40), (3.45) satisfies (6.26).
Case k = +∞, κ = 0. We obtain

(6.39)

∫
Ω×(0,T )×Y \A

ρu0 ·
∂2w0

∂t2
dxdtdy +

∫
Ω×Y \A

ρa0 ·
∂w0

∂t
(0)− ρb0 ·w0(0)dxdy

+

∫
Ω×(0,T )

ρ1v3
∂2ψ3

∂t2
dxdt+

∫
Ω

ρ1a03
∂ψ3

∂t
(0)− ρ1b03ψ03(0)dx

+

∫
Ω×(0,T )×(Y \A)

ey(u0) : σ0y(w0)dxdtdy =

∫
Ω×(0,T )×Y \A
ρf ·w0dxdtdy +

∫
Ω×(0,T )

ρ1f3ψ3dxdt.

This variational formulation is satisfied for all (w0,ψ) ∈ L2(0, T ;H) verifying (6.2)-
(6.5). We set (H and V being given by (6.1), (6.27))

(6.40)

ξ = (u0,v), H(2) := {(w0,ψ) ∈ H, ψ1 = ψ2 = 0} ,
(., .)H(2) := (., .)H , V (2) := V ∩H(2), (., .)V (2) := (., .)V ,

h(2) :=
(
f1Y \A+ f3e31A, f3e3

)
,

a(2)((u0,v), (w0,ψ)) :=

∫
Ω×Y \A

ey(u0) : σy(w0)dxdy,

ξ
(2)
0 := (a01Y \A+ a03e31A, a03e3), ξ

(2)
1 := (b01Y \A+ b03e31A, b03e3).

By (4.8), (5.10), (5.48) and (5.80), we have ξ ∈ L2(0, T ;V (2)) and ξ′ ∈ L2(0, T ;H(2)).
Therefore, by a density argument, the variational problem (6.39) is equivalent to
(4.23). By (6.28), (6.40), the estimate (4.18) is satisfied. We deduce from Theorem
4.4 that ξ = (u0,v) is the unique solution to (6.39) and that ξ ∈ C([0, T ];V (2)) ∩
C1([0, T ];H(2)), ξ(0) = ξ

(2)
0 , ∂ξ∂t (0) = ξ

(2)
1 . Then, repeating the argument employed to

prove (6.31), we infer from (6.30) and (6.40) that the initial-boundary conditions and
regularity properties stated in (3.44), (3.46) are satisfied. Setting ψ3 = 0 in (6.39),
we get (6.32) and deduce (6.33), (6.34), (6.35), (6.36). Then, subtracting (6.36) from
(6.39), taking (6.4) into account, we find

∫
Ω×(0,T )

ρ1v3
∂2ψ3

∂t2
dxdt−

∫
Ω×(0,T )

(g(u0))3ψ3dxdt+

∫
Ω

ρ1a03
∂ψ3

∂t
(0)dx

−
∫

Ω

ρ1b03ψ3(0)dx =

∫
Ω×(0,T )

ρ1f3ψ3dxdt.
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Making ψ3 vary in D(Ω×(0, T )), we deduce that ρ1
∂2v3

∂t2 = ρ1f3+(g(u0))3 in Ω×(0, T )
and infer that (u0,v) is solution to (3.40), (3.46).
Case 0 < κ < +∞. Passing to the limit as ε→ 0 in (6.16), we obtain

(6.41)

∫
Ω×(0,T )×Y \A

ρu0 ·
∂2w0

∂t2
dxdtdy +

∫
Ω×Y \A

ρa0 ·
∂w0

∂t
(0)− ρb0 ·w0(0)dxdy

+

∫
Ω×(0,T )

ρ1v3
∂2ψ3

∂t2
dxdt+

∫
Ω

ρ1a03
∂ψ3

∂t
(0)− ρ1b03ψ03(0)dx

+

∫
Ω×(0,T )×(Y \A)

ey(u0) : σ0y(w0)dxdtdy +
κ

6

∫
Ω×(0,T )

H(v3) :Hσ(ψ3)dxdt

=

∫
Ω×(0,T )×Y \A

ρf ·w0dxdtdy +

∫
Ω×(0,T )

ρ1f3ψ3dxdt,

for all (w0,ψ)∈L2(0,T;H) verifying (6.2)-(6.5). We set (see (6.27), (6.40), (7.6))

(6.42)

H(3) := H(2),

V (3) :=

®
(w0, ψ3e3) ∈ V (2)

∣∣∣∣∣ ψ3 ∈ L2(0, L;H2
0 (Ω′))

w0(x, y) = ψ3(x)e3 on Ω× Σ

´
,

(((u0, v3e3), (w0, ψ3e3)))V (3) := (((u0, v3e3), (w0, ψ3e3)))V

+

∫
Ω

Å
∂2v3

∂x2
1

∂2ψ3

∂x2
1

+
∂2v3

∂x2
2

∂2ψ3

∂x2
2

+
∂2v3

∂x2
1

∂2ψ3

∂x2
2

+
∂2v3

∂x2
2

∂2ψ3

∂x2
1

ã
dx,

(6.43)

a(3)(v3e3, ψ3e3)) :=
κ

6

∫
Ω

H(v3) :Hσ(ψ3)dxdt,

a(3)((u0,v), (w0,ψ)) :=

∫
Ω×(Y \B)

ey(u0) : σy(w0)dxdy + a(3)(v,ψ),

ξ
(3)
0 := ξ

(2)
0 , ξ

(3)
1 := ξ

(2)
1 , h(3) := h(2).

By Corollary 5.6 (ii) and assertions (4.8), (5.10), (5.48), and (5.80), there holds ξ =
(u0,v) ∈ L2(0, T ;V (3)) and ∂ξ

∂t ∈ L2(0, T ;H(3)) hence, by a density argument, the
variational formulation (6.41) is equivalent to (4.23). By (6.27), (6.28), (6.40), (6.42),

(6.43), and (7.6), for all ξ̃ = (w0,ψ) ∈ V (3), we have

||ξ̃||2V (3) ≤ ||ξ̃||2V + Ca(3)(ψ,ψ) ≤ C(|ξ̃|H + a(ξ̃, ξ̃) + a(3)(ψ,ψ))

≤ C(|ξ̃|H(3) + a(3)(ξ̃, ξ̃)),

hence Assumption (4.18) is satisfied. We deduce from Theorem 4.4 that ξ=(u0,v) is

the unique solution to (6.41) and that ξ ∈ C([0, T ];V (3))∩C1([0, T ];H(3)), ξ(0) = ξ
(3)
0 ,

∂ξ
∂t (0) = ξ

(3)
1 , yielding, by the inequality (6.30) joined with

||ψ3||L2(0,L;H2
0 (Ω′))≤C||(w0,ψ)||V (3) ,∀ (w0,ψ)∈V (3),

the initial-boundary conditions and regularity properties stated in (3.44), (3.47). Re-
peating the argument for the case 0 < k < +∞, we set ψ3 = 0 in (6.41), obtain (6.32),
deduce (6.33), (6.34), (6.35), (6.36), subtract (6.36) from (6.41), and get
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(6.44)

∫
Ω×(0,T )

ρ1v3
∂2ψ3

∂t2
dxdt+

κ

6

∫
Ω×(0,T )

H(v3) :Hσ(ψ3)dxdt

−
∫

Ω×(0,T )

(g(u0))3ψ3dxdt−
∫

Ω

ρ1(b0)3ψ3(x, 0)dx =

∫
Ω×(0,T )

ρ1f3ψ3dxdt.

By (7.6), the following equation holds in the sense of distributions in D′(Ω×(0, T ))

κ

6
〈H(v3) :Hσ(ψ3)〉D′,D =

κ

3

l + 1

l + 2

∞
2∑

α,β=1

∂4v3

∂x2
α∂x

2
β

, ψ3

∫
D′,D

.

Making ψ3 vary in D(Ω×(0, T )) in (6.44), we infer

ρ1

∂2v3

∂t2
+
κ

3

l + 1

l + 2

2∑
α,β=1

∂4v3

∂x2
α∂x

2
β

= ρ1f3 + (g(u0))3, in Ω×(0, T ),

and deduce that (u0,v) satisfies (3.40), (3.47).
Case κ = +∞. By (7.5) we have I3ε = 0. By passing to the limit as ε→ 0 in (6.16),
we obtain (6.32) and, taking (5.80) into account, deduce in a similar manner that
(u0,v) satisfies (3.40), (3.48). The proof of Theorem 3.12 is achieved.

6.2. Proofs of theorems 3.1 and 3.7. Under the assumptions of Theorem 3.1,
by (3.12) and (5.5), the sequence (uε) (resp.

(
∂uε
∂t

)
) is bounded in L∞(0, T ;H1

0 (Ω;R3))
(resp. L∞(0, T ;L2(Ω; R3))), therefore by the Aubin-Lions-Simon lemma (see [51,
Corollary 6]), (uε) strongly converges in L2(0, T ;L2(Ω;R3)) and weakly* converges
in L∞(0, T ;H1

0 (Ω;R3)), up to a subsequence, to some u ∈ L∞(0, T ;H1
0 (Ω;R3)). In

particular, assumption (5.14) of Lemma 5.3 is satisfied, hence nu = nv.
Under the assumptions of Theorem 3.7, by the apriori estimates (5.5), the se-

quence (uε) is bounded in L∞(0, T ;L2(Ω;R3)), hence weakly* converges in L∞(0, T ;
L2(Ω;R3)), up to a subsequence, to some u ∈ L∞(0, T ;L2(Ω;R3)). By (3.26) and
(3.27), Assumption (5.13) of Lemma 5.3 is satisfied, thus we also get nu = nv. Ap-
plying Corollary 5.6, we deduce in both cases from (5.11), (5.31), (5.80), and (7.5),
that

(6.45)

uεmε
?
⇀ nu weakly* in L∞(0, T ;M(Ω;R3)),

u1, u2 ∈ L∞(0, T ;L2
n(0, L;H1

0 (Ω′))),

ex′(u
′
ε)mε

?
⇀ nex′(u

′) weakly* in L∞(0, T ;M(Ω;S3)),

nu1 = nu2 = 0, if k = +∞,

u3 ∈ L∞(0, T ;L2
n(0, L;H2

0 (Ω′))) if κ > 0,

nu = 0 if κ = +∞,

In,k,κ(v,ψ) = In,k,κ(u,ψ).

Let us check that

(6.46) 1Ω\Bε
?
⇀ 1− ϑn weakly* in L∞(Ω),
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where ϑ is defined by (3.10). If ϑ = 0, (6.46) follows from the fact that |Bε| → 0.
Otherwise, if ϑ > 0, then the sequence ( εrε1Bε) is bounded in L∞(Ω) and, by (4.7),
weakly* converges in L∞(Ω) to n. It then follows from (3.10) that (1Bε) weakly*
converges in L∞(Ω) to ϑn, yielding (6.46). Next, we check that

(6.47) uε1Ω\Bε ⇀ u(1− ϑn) weakly in L2(Ω× (0, T );R3).

If ϑ = 0, Assertion (6.47) follows from the weak convergence of (uε) to u in L2(Ω×
(0, T )) and the convergence of L3(Bε) to 0. Otherwise, if ϑ > 0, then

Ä
ε
rε
uε1Bε

ä
is

bounded in L2(Ω× (0, T )), and weakly converges, by (6.45), to nu. Hence, by (3.10),
(uε1Bε) weakly converges to nϑu, yielding (6.47).
We fix a field ψ verifying (6.2), (6.3), and

(6.48) nψ1 = nψ2 = 0 if k = +∞; nψ = 0 if κ = +∞.

The sequence of test fields (φε) is defined by substituting ψ for w0 in (6.11), that is

(6.49) φε(x, t) := ηε(x) Ùψε (x, t) + (1− ηε(x))ψ (x, t) ,

where Ùψε (x, t) is described in Section 7, and ηε satisfies (6.10), now with respect to
the non-periodic sets Bε, Cε given by (3.4), (6.7). We assume that (see Remark 6.1)

(6.50)

rε
ε
<< αε << 1 under the assumptions of Theorem 3.1,

µ0ε << αε << 1 under the assumptions of Theorem 3.7.

By (6.10), (6.49), and (7.4), the following estimates hold in Ω× (0, T ) for m ∈ {1, 2}:

(6.51)
∣∣∣φε(x, t)−ψ (x, t, x

ε

)∣∣∣+

∣∣∣∣∂mφε∂tm
(x, t)− ∂mψ

∂tm

(
x, t,

x

ε

)∣∣∣∣ ≤ Crε.
We deduce from (6.8) and from the estimate σε(φε(x, t)) ≤ C µ0ε

αε
in Cε \Bε × (0, T ),

obtained in a similar manner as (6.14), that

(6.52)

∫
Cε\Bε×(0,T )

|σε(φε(x, t))|2 dxdt ≤ C
µ2
ε0rε
αεε

.

We multiply Equation (3.5) by φε and integrate it by parts to get (see (6.16), (6.20))

(6.53)

∫
Ω×(0,T )

ρεuε ·
∂2φε
∂t2

dxdt+

∫
Ω

ρεa0 ·
∂φε
∂t

(0)dx−
∫

Ω

ρεb0 · φε(0)dx

+ I1ε + I2ε + I3ε =

∫
Ω×(0,T )

ρεf · φεdxdt.

By the same argument as the one used to get (6.18), (6.19), splitting each term as in
(6.17) and taking into account (3.7), (4.7), (6.46), (6.47), (6.51), we obtain
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(6.54)

lim
ε→0

∫
Ω×(0,T )

ρεuε ·
∂2φε
∂t2

dxdt =

∫
Ω×(0,T )

ρ(1− ϑn)u · ∂
2ψ

∂t2
dxdt+

∫
Ω×(0,T )

ρ1u ·
∂2ψ

∂t2
ndxdt,

lim
ε→0

∫
Ω

ρεa0 ·
∂φε
∂t

(0)dx =

∫
Ω

ρ(1− ϑn)a0 ·
∂ψ

∂t
(0)dx+

∫
Ω

ρ1a0 ·
∂2ψ

∂t2
(0)ndxdt,

lim
ε→0

∫
Ω

ρεb0 · φε(0)dx =

∫
Ω

ρ(1− ϑn)b0 ·ψ(0)dx+

∫
Ω

ρ1b0 ·ψ(0)ndxdt,

lim
ε→0

∫
Ω×(0,T )

ρεf · φεdxdt =

∫
Ω×(0,T )

ρ(1− ϑn)f ·ψdxdt+

∫
Ω×(0,T )

ρ1f ·
∂2ψ

∂t2
ndxdt.

Under the assumptions of Theorem 3.1, by (3.12), (3.13) and (6.49) we have σε(φε) =
σ(ψ) in Ω\Cε×(0, T ), and by (3.11) and (6.7), limε→0 |Cε| = 0, therefore the sequence
(σε(φε)1Ω\Cε) strongly converges to σ(ψ) in L2(Ω × (0, T );S3)). We deduce from
the weak* convergence of (uε) to u in L∞(0, T ;H1

0 (Ω;R3)) that

(6.55) lim
ε→0

I1ε =

∫
Ω×(0,T )

e(u) : σ(ψ)dxdt.

Under the assumptions of Theorem 3.7, noticing that |σε(φε)1Ω\Cε | = |σε(ψ)1Ω\Cε | ≤
Cµ0ε and taking (3.26), (5.5), (6.20) into account, we get

(6.56) lim sup
ε→0

I1ε ≤ lim sup
ε→0

Cµ
1
2
0ε

Ç∫
Ω×(0,T )

µ0ε|e(uε)(τ)|2dxdt
å 1

2

= 0.

By (5.5), and (6.52), we have

I2ε ≤
Ç∫

Ω×(0,T )

|e(uε)|2dxdt
å 1

2
Ç∫

Cε\Bε×(0,T )

|σε(φε(x, t))|2 dxdt
å 1

2

≤ C
Å
µ0ε

αε

rε
ε

ã 1
2

.

Under the assumptions of Theorem 3.1 (resp. Theorem 3.7), we deduce from (3.12)
and (6.50) that

(6.57) lim
ε→0

I2ε = 0.

Collecting (6.54), (6.55), (6.56), (6.57), and (7.5), by passing to the limit as ε→ 0 in
(6.16), we obtain, under the assumptions of Theorem 3.1,

(6.58)

∫
Ω×(0,T )

(ρ+ ρ1n)u · ∂
2ψ

∂t2
dxdt+

∫
Ω×(0,T )

(ρ+ ρ1n)

Å
a0 ·

∂ψ

∂t
(0)− b0 ·ψ(0)

ã
dx

+

∫
Ω×(0,T )

e(u) : σ(ψ)dxdt+ In,k,κ(u,ψ) =

∫
Ω×(0,T )

(ρ+ ρ1n)f · udxdt,

and, under the assumptions of Theorem 3.7,
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(6.59)

∫
Ω×(0,T )

(ρ(1− ϑn) + ρ1n)u · ∂
2ψ

∂t2
dxdt

+

∫
Ω×(0,T )

(ρ(1− ϑn) + ρ1n)

Å
a0 ·

∂ψ

∂t
(0)− b0 ·ψ(0)

ã
dx+ In,k,κ(u,ψ)

=

∫
Ω×(0,T )

(ρ(1− ϑn) + ρ1n)f · udxdt.

The variational formulation (6.59), joined with (6.45), is equivalent to (4.23), where

(6.60)

Hn,k,κ=

®
ψ∈L2(Ω;R3)

∣∣∣∣∣nψ1 = nψ2 = 0 if k = +∞;

nψ = 0 if κ = +∞

´
;

Vn,k,κ=

®
ψ∈Hn,k,κ

∣∣∣∣∣ψ1, ψ2∈L2
n(0, L;H1

0 (Ω′)) if 0 < k

ψ3 ∈ L2
n(0, L;H2

0 (Ω′)) if 0 < κ,

´
;

(u,ψ)Hn,k,κ =

∫
Ω

(ρ(1− ϑn) + ρ1n)u ·ψdx;

((u,ψ))Vn,k,κ = (u,ψ)Hn,k,κ + In,k,κ(u,ψ); an,k,κ(u,ψ) = In,k,κ(u,ψ);

(6.61)

hn,k,κ = Hn,k,κ(f), ξ0,n,k,κ = Hn,k,κ(a0), ξ1,n,k,κ = Hn,k,κ(b0),

Hn,k,κ(g) :=


g if 0 < k < +∞,
(g11{n=0}, g21{n=0}, g3), if k = +∞, κ < +∞,
g1{n=0} if κ = +∞.

The variational formulation (6.58), joined with (6.45), is equivalent to (4.23), with

data deduced from (6.60), (6.61) by substituting ‹Vn,k,κ and ãn,k,κ for Vn,k,κ and an,k,κ,
where

(6.62)

‹Vn,k,κ := Vn,k,κ ∩H1
0 (Ω;R3); ((u,ψ))

Ṽn,k,κ
= ((u,ψ))Vn,k,κ +

∫
Ω

∇∇∇u · ∇∇∇ψdx,

ãn,k,κ(u,ψ) := an,k,κ(u,ψ) +

∫
Ω

e(u) : σ(ψ)dx.

The assumptions of Theorem 4.4 are satisfied in both cases, guaranteeing existence,
uniqueness and regularity properties of the solution. Finally, by integrations by parts,
it is easy to check that the variational problems (6.58), (6.59), associated with (6.45),
are equivalent, under (3.17), to the problems announced in theorems 3.1, 3.7.

Remark 6.1. The assumption stated in the first line of (6.50) is employed to
derive (6.25) and requires (3.11). The case µ0ε = µ > 0, ϑ > 0, k = +∞ is open.

Remark 6.2 (Multiphase case). Theorems 3.1, 3.7 can be extended to the case of

m distributions B
[s]
ε (s ∈ {1, ..,m}) of parallel disjoint homothetical layers of thickness

r
[s]
ε , Lamé coefficients λ

[s]
1ε , µ

[s]
1ε , and mass density ε

r
[s]
ε

ρ
[s]
1 , defined in terms of a finite

subset ω
[s]
ε of (0, L) and r

[s]
ε by a formula like (3.4). The sets ω

[s]
ε are disjoint and their

union ωε :=
⋃m
s=1 ω

[s]
ε satisfies (3.2), which implies that the minimal distance between
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two distincts points of ωε is equal to ε. We suppose that ε > r
[s]
ε (1+δ), ∀s ∈ {1, ..,m}

for some δ > 0 and set ϑ[s] := limε→0
r[s]
ε

ε . The Lamé coefficients in Ω \
⋃m
s=1B

[s]
ε are

assume to be constant and denoted by λ0ε, µ0ε.

When λ0ε, µ0ε satisfy (3.26) and each sequence (n
[s]
ε ) strongly converges to n[s] in

L1(Ω), the solution to (3.5) weakly* converges in L∞(0, T ;L2(Ω;R3)) to the unique
solution to the problem (4.23), where the data are deduced from (6.60) as follows:

(6.63)

H :=
m⋂
s=1

Hn[s],k[s],κ[s] ; (u,ψ)H =

∫
Ω

(ρ(1−
m∑
s=1

ϑ[s]n[s]) + ρ
[s]
1 n[s])u ·ψdx

V :=
m⋂
s=1

Vn[s],k[s],κ[s] ; ((u,ψ))V = (u,ψ)H +
m∑
s=1

In[s],k[s],κ[s](u,ψ),

a(u,ψ) =
m∑
s=1

an[s],k[s],κ[s](u,ψ),

h = H(f), ξ0 = H(a0), ξ1 = H(b0),

(H(g)(x))α =

®
0 if ∃s ∈ {1, ..,m}, n[s](x) > 0 and k[s] = +∞,
gα otherwise, (α ∈ {1, 2}),

(H(g)(x))3 =

®
0 if ∃s ∈ {1, ..,m}, n[s](x) > 0 and κ[s] = +∞,
g3(x) otherwise.

When λ0ε, µ0ε satisfy (3.12), and when ϑ[s] = 0 for each s ∈ {1, ..,m}, the
solution to (3.5) weakly* converges in L∞(0, T ; H1

0 (Ω;R3)) to the unique solution to

(4.23), with data ‹H, ‹V , ã... deduced from H, V , a... defined in (6.63) as follows:

(6.64)

‹H := H; ‹V = V ∩H1
0 (Ω;R3); ((u,ψ))

Ṽ
:= ((u,ψ))V +

∫
Ω

∇∇∇u · ∇∇∇ψdx;

ã(u,ψ) = a(u,ψ) +

∫
Ω

e(u) : σ(ψ)dx; (h̃, ξ̃0, ξ̃1) := (h, ξ0, ξ1).

Remark 6.3 (Elliptic case). When λ0ε, µ0ε satisfy (3.12), and when ϑ[s] = 0
for each s ∈ {1, ..,m}, the solution uε to the equilibrium problem (3.32) is bounded

in H1
0 (Ω;R3) and weakly converges to the unique field u ∈ ‹V satisfying ã(u,ψ) =

(f ,ψ)
H̃
, ∀ψ ∈ ‹V , where ‹V is the Hilbert space and ã(., .) the continuous coercive

bilinear form on ‹V given by (6.64).

If λ0ε, µ0ε satisfy (3.26), each sequence (n
[s]
ε ) strongly converges to n[s] in L2(Ω),

and uε is bounded in L2(Ω;R3), then uε weakly converges, up to a subsequence, to
some u ∈ V verifying a(u,ψ) = (f ,ψ)H ∀ψ ∈ V , with H,V, a(., .) defined by (6.63).
In this case, the non-negative bilinear form a(., .) may fail to be coercive on L2(Ω;R3)
and the sequence uε to be bounded in L2(Ω;R3). These coercivity and boundedness
are guaranteed by the existence of s ∈ {1, ..,m} and c > 0 such that κ[s] > 0 and

n
[s]
ε ≥ c a.e. in Ωε :=

⋃
i∈Z[s]

ε

(
εi− ε

2 , εi+ ε
2

]
(see (3.15)). (Notice that if the second

assumption in (3.2) is replaced by minj,j′∈Jε,j 6=j′ |ωjε − ωj
′

ε | = ηε for some arbitrarily

fixed η ∈
(
0, 1

2

)
, our proofs are unchanged and n

[s]
ε ≥ c1Ωε does not imply that B

[s]
ε is

ε-periodic).
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Sketch of the proof. Let s be such that κ[s] > 0. The bilinear form associated with

(3.32), namely aε(ϕ,ψ) =
∫

Ω
e(ϕ) : σε(ψ)dx ∀(ϕ,ψ) ∈

(
H1

0 (Ω;R3)
)2

, satisfies, by
(3.5), (3.8), and (3.26)

(6.65) aε(ϕ,ϕ) ≥ C
∫

Ω

ε2 |e(ϕ)|2 dx+ C

∫
Ω

∣∣∣∣∣ 1

r
[s]
ε

e(ϕ)

∣∣∣∣∣
2

dm[s]
ε .

Let uε be a sequence in H1
0 (Ω;R3), and let m

[s]
ε , v̂[s]

ε , v[s]
ε be defined by substituting

ω
[s]
ε for ωε in (3.39), (5.17), (5.20). We have, since n

[s]
ε ≥ c1Ωε ,

∫
Ω

|uε|2 dx ≤
∫

Ω\Ωε
|uε|2 dx+ C

∫
Ωε

∣∣∣n[s]
ε uε − v[s]

ε

∣∣∣2 dx+ C

∫
Ω

∣∣∣v[s]
ε

∣∣∣2 dx.
Looking back at (5.28), and using the fact that uε vanishes on ∂Ω, we obtain

∫
Ω\Ωε

|uε|2 dx+ C

∫
Ωε

∣∣∣n[s]
ε uε − v[s]

ε

∣∣∣2 dx
≤ Cε2

∫
Ω\Ωε

∣∣∣∣∂uε∂x3

∣∣∣∣2 (τ)dx+ Cε2
∑
i∈Z[s]

ε

∫
Ω′×(εi− ε2 ,εi+

ε
2 ]

∣∣∣∣∂uε∂x3

∣∣∣∣2 (τ)dx

≤ Cε2

∫
Ω

|∇∇∇uε|2dx ≤ Cε2

∫
Ω

|e(uε)|2dx,

yielding
∫

Ω
|uε|2 dx ≤ Cε2

∫
Ω
|e(uε)|2dx + C

∫
Ω

∣∣∣v[s]
ε

∣∣∣2 dx. On the other hand, by

(5.22), (5.18), (5.1),

∫
Ω

∣∣∣v[s]
ε

∣∣∣2 dx =

∫
Ω

∣∣∣v̂[s]
ε

∣∣∣2 dm[s]
ε ≤ C

∫
Ω

∣∣∣uε − v̂[s]
ε

∣∣∣2 dm[s]
ε + C

∫
Ω

|uε|2 dm[s]
ε

≤ Cεr[s]
ε

∫
Ω

|e(uε)|2 dm[s]
ε + C

∫
Ω

∣∣∣∣∣ 1

r
[s]
ε

e(uε)

∣∣∣∣∣
2

dm[s]
ε ,

therefore, for all uε ∈ H1
0 (Ω;R3),

∫
Ω
|uε|2 dx ≤ Caε(uε,uε). In the particular

case when uε is the solution to (3.32), we infer
∫

Ω
|uε|2 dx ≤ C

∫
Ω
f · uεdx ≤

C
Ä∫

Ω
|uε|2 dx

ä 1
2
, hence (uε) is bounded in L2(Ω;R3). We choose a smooth field

ψ ∈ V and consider the associated sequence of test field φε used for the proof of the
multiphase case, whose construction is similar to (6.49). Repeating the argument of [8,

p. 40, (iii)⇒ (i)], we find that a(ψ,ψ) = limε→0 aε(φε,φε) ≥ c limε→0

∫
Ω
|φε|2 dx =∫

Ω
|ψ|2 dx. By a density argument, we deduce

∫
Ω
|ψ|2 dx ≤ Ca(ψ,ψ) ∀ψ ∈ V .

7. Appendix. A common step in the proofs of theorems 3.1, 3.7, and 3.12 lies
in the computation of the limit of the sequence (I3ε) defined by (see (6.11), (6.20))

(7.1) I3ε :=

∫
Bε×(0,T )

e(uε) : σε(Ùψε)dxdt,
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where uε is the solution to (3.5) and the oscillating test fields Ùψε is defined bellow,
in terms of ψ ∈ C∞([0, T ];D(Ω;R3)) satisfying (6.4), of δ given by (3.3), and of the
order of magnitude of the parameters k and κ. We introduce the field ψε given by

(7.2) ψε(x, t) :=
∑
j∈Jε

(∫
−

(ωjε− rε2 ,ω
j
ε+

rε
2 )

ψ(x1, x2, s3, t)ds3

)
1(

ωjε−
rε(1+δ)

2 ,ωjε+
rε(1+δ)

2

)(x3).

(i) If 0 < k ≤ +∞ and κ = 0, we set

(7.3)

Ùψε(x, t) := ψε (x, t) + rεw1ε

Å
x, t,

yε(x3)

rε

ã
,

w1ε(x, t, y3) :=

Ü
−∂ψε3∂x1

y3

−∂ψε3∂x2
y3

−lε
lε+2

(
∂ψε1
∂x1

+ ∂ψε2
∂x2

)
y3

ê
.

where the function yε(.) is defined by (4.9).
(ii) If 0 < κ ≤ +∞, we setÙψε(x, t) := ψε (x, t) + rεw1ε

Å
x, t,

yε(x3)

rε

ã
+ r2

εw2ε

Å
x, t,

yε(x3)

rε

ã
,

w1ε (x, t, y3) := −∂ψε3
∂x1

y3e1 −
∂ψε3
∂x2

y3e2,

w2ε (x, t, y3) :=
lε

2(lε + 2)

Ç
∂2ψε3
∂x2

1

+
∂2ψε3
∂x2

2

å
y2

3e3.

It is usefull to notice that Ùψε is continuously differentiable in Cε × (0, T ) (see (6.7)),

that Ùψε = 0 if κ = +∞ (because then, by (6.4), ψ = 0) and that for m ∈ {1, 2},

(7.4)

Ç∣∣∣Ùψε(x, t)−ψ(x, t)
∣∣∣+

∣∣∣∣∣∂mÙψε∂tm
(x, t)− ∂mψ

∂tm
(x, t)

∣∣∣∣∣
å
1Cε(x) ≤ Crε,∣∣∣∇∇∇Ùψε(x, t)∣∣∣1Cε ≤ C.

Lemma 7.1. Let uε be the solution to (3.5). Let I3ε be defined by (7.1) in terms

of Ùψε described above. Then,

(7.5) lim
ε→0

I3ε= In,k,κ(v,ψ) :=


k

∫
Ω×(0,T )

ex′(v
′) : σx′(ψ

′)ndxdt if 0 < k < +∞,

κ

6

∫
Ω×(0,T )

H(v3) :Hσ(ψ3)ndxdt if 0 < κ < +∞,

0 if (k, κ) = (+∞, 0) or κ = +∞,

the operators H, Hσ being defined by
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(7.6)

H(ψ) :=

Ö
∂2ψ
∂x2

1

∂2ψ
∂x1∂x2

0
∂2ψ

∂x1∂x2

∂2ψ
∂x2

2
0

0 0 0

è
;

Hσ(ψ) :=

Ö
2 l+1
l+2

∂2ψ
∂x2

1
+ l

l+2
∂2ψ
∂x2

2

∂2ψ
∂x1∂x2

0
∂2ψ

∂x1∂x2

l
l+2

∂2ψ
∂x2

1
+ 2 l+1

l+2
∂2ψ
∂x2

2
0

0 0 0

è
.

Proof. Case 0 < k < +∞. We easily check that

(7.7)

∣∣∣∣∣∣ψ−ψε∣∣∣∣∣∣
L∞(Bε×(0,T ))

+

∣∣∣∣∣
∣∣∣∣∣∂(ψ −ψε)

∂xα

∣∣∣∣∣
∣∣∣∣∣
L∞(Bε×(0,T ))

≤ Crε (α ∈ {1, 2}),∣∣∣∣∣
∣∣∣∣∣∂2(ψ −ψε)
∂xα∂xβ

∣∣∣∣∣
∣∣∣∣∣
L∞(Bε×(0,T ))

≤ Crε (α, β ∈ {1, 2}).

A straightforward computation yields (see (3.5), (3.6))

(7.8)

σε(Ùψε)1Bε=
µ1ε

Ü
2∂ψε1∂x1

+ 2lε
lε+2

(
∂ψε1
∂x1

+ ∂ψε2
∂x2

)
∂ψε1
∂x2

+ ∂ψε2
∂x1

0

∂ψε1
∂x2

+ ∂ψε2
∂x1

2∂ψε2∂x2
+ 2lε

lε+2

(
∂ψε1
∂x1

+ ∂ψε2
∂x2

)
0

0 0 0

ê
1Bε

+ rεµ1εO(1).

Since rε
ε µ1ε → k ∈ (0,+∞) and lε → l ∈ (0,∞) (see (3.6)), we infer from (7.7) that

lim
ε→0

∣∣∣rε
ε
σε(Ùψε)− kσx′(ψ′)(x, t)∣∣∣

L∞(Bε×(0,T ))
= 0,

where σx′(ψ
′) is given by (2.1). By Corollary 5.6 (i), the convergences (5.11) are

verified, thus the sequence (ex′(u
′
ε)mε) weakly* converges in L∞(0, T ;M(Ω;S3)) to

nex′(v
′). Taking (3.39), (5.5), and (7.1) into account, we deduce that

lim
ε→0

I3ε = lim
ε→0

∫
Ω×(0,T )

kex′(uε) : σx′(ψ
′)dmεdt = k

∫
Ω×(0,T )

ex′(v
′) : σx′(ψ

′)ndxdt.

Case (k, κ) = (+∞, 0). By (6.4), (7.8), we have |σε(Ùψε)1Bε | ≤ Cµ1εrε, thus, by
(3.8), the second line of (5.5), and (7.1), there holds

I3ε ≤ Cµ1εrε

∫
Bε×(0,T )

|e(uε)|dxdt = Cµ1ε
r2
ε

ε

∫
Bε×(0,T )

|e(uε)|dmεdt

≤ Cµ1ε
r2
ε

ε

 ∫
Bε×(0,T )

|e(uε)|2dmεdt ≤ Cµ1ε
r2
ε

ε

…
ε

rεµε1
≤ C

…
r3
ε

ε
µ1ε = o(1).
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Case 0 < κ < +∞. A straightforward computation gives

r2
ε

ε
σε(Ùψε)1Bε =

− 2
r3
ε

ε
µ1ε

yε(x3)

rε

Ü
2(lε+1)
lε+2

∂2ψε3
∂x2

1
+ lε
lε+2

∂2ψε3
∂x2

2

∂2ψε3
∂x1∂x2

0

∂2ψε3
∂x1∂x2

lε
lε+2

∂2ψε3
∂x2

1
+ 2(lε+1)

lε+2
∂2ψε3
∂x2

2
0

0 0 0

ê
1Bε

+ rεO

Å
r3
ε

ε
µε

ã
.

We deduce from (3.6), (3.8), (7.6), and (7.7), that

(7.9) lim
ε→0

∣∣∣∣r2
ε

ε
σε(Ùψε) + 2κHσ(ψ3)

yε(x3)

rε

∣∣∣∣
L∞(Bε×(0,T );S3)

= 0.

By (3.39) and (7.1), we have

(7.10) I3ε =
rε
ε

∫
Ω×(0,T )

e(uε) : σε(Ùψε)dmεdt =

∫
Ω×(0,T )

1

rε
e(uε) :

r2
ε

ε
σε(Ùψε)dmεdt.

Taking Corollary 5.6 (ii) into account, we infer from (5.5), (5.30), (5.32), (7.9), (7.10),
that

lim
ε→0

I3ε = lim
ε→0
−
∫

Ω×(0,T )

1

rε
ex′(uε) : 2κHσ(ψ3)

yε(x3)

rε
dmεdt

=−2κ
2∑

α,β=1

∫
Ω×(0,T )×I
(Hσ(ψ3))αβ

Å
1

2

Å
∂ξα
∂xβ

+
∂ξβ
∂xα

ã
(x, t)− ∂2v3

∂xα∂xβ
(x, t)y3

ã
y3ndxdtdy3

=
κ

6

∫
Ω×(0,T )

H(v3) : Hσ(ψ3)ndxdt.
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