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HOMOGENIZATION OF STRATIFIED ELASTIC COMPOSITES
WITH HIGH CONTRAST

MICHEL BELLIEUD *

Abstract. We determine the asymptotic behavior of the solutions to the linear elastodynamic
equations in a stratified media comprising an alternation of possibly very stiff layers with much
softer ones, when the thickness of the layers tends to zero. The limit equations may depend on
higher order terms, characterizing bending effects. A part of this work is set in the context of
non-periodic homogenization and an extension to stochastic homogenization is presented.

Key words. homogenization, elasticity, non-local effects

AMS subject classifications. 35B27, 35B40, 35R60, 74B05, 74Q10

1. Introduction. In this paper we analyze the asymptotic behavior of the so-
lution to the linear elastodynamic equations in a composite material wherein, at a
microscopic scale, possibly very ”stiff” layers alternate with a much ”softer” medium.
Stratified composite media have been intensively investigated over the last decades,
especially in the context of diffusion equations [18, 27, 29, 30, 31, 32, 39, 52, 54]. As
regards linear elasticity, layered elastic composites have been studied in [26, 28, 33, 38]
under assumptions of uniform boundedness and uniform definite positiveness of the
elasticity tensor guaranteeing that the effective equation is a standart linear elasticity
equation. When these assumptions break down, as for instance in the so-called ”high
contrast case”, the limit equilibrium equation may be of a quite different type: it
may correspond, in theory, to the Euler equation associated to the minimization of
any lower semi-continuous quadratic form on L? vanishing on rigid motions [20]. In
particular, it may be non-local and depend on higher order derivatives of the displace-
ment. Elastic media with high contrast have been studied under various geometrical
assumptions. Composites with stiff grain-like inclusions have been investigated in
[7, 8, 45], stiff fibered structures in [8, 12, 13, 46, 50], and stiff media with holes filled
with a soft material in [22, 24, 47]. Our aim is to complement this body of work in
the context of stratified media. Our approach is based on the two-scale convergence
method [3, 5, 19, 23, 40, 41], which yields the convergence to an effective solution. It
also yields a first order corrector result in L? (see Remark 3.14), but not the rigor-
ous error estimates of higher order with respect to small parameters provided by the
asymptotic expansions method [1, 2, 6, 15, 16, 21, 43, 44, 45, 48, 49].

For a given bounded smooth open subset Q of R?, we consider a linear elastody-
namic problem like (3.5). We assume that the Lamé coefficients take possibly large
values in a subset B. of ) and much smaller values elsewhere. The set B. consists
of a non-periodic distribution of parallel disjoint homothetic layers of thickness 7.,
whose median planes are orthogonal to es and separated by a minimal distance ¢,
where ¢, r. are positive reals converging to zero (see fig. 3.1). The effective volume
fraction of the stiff phase B, is characterized by the parameter ¥ defined by (3.10).
Both cases ¥ = 0 and 0 < ¥ < 1 are investigated. The order of magnitude of the
Lamé coefficients in the stiff phase is determined by the parameters k and s defined
by (3.8).

When the elasticity coefficients in the soft phase are of order 1 and the effective
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volume fraction of the stiff phase vanishes the limit behavior of the composite is
governed, if 0 < k < +00, by the equation

2
(1.1) (p—ﬁ—nﬁl)aaTq; —divo(u) — nkdive, (u') = (p+np)f  in Qx(0,7T),

where p denotes the mass density in the softer phase, and u’, o,/, o and p; are
defined, respectively, by (2.1), (3.13), and (3.7). The function n characterizes the
rescalled effective number of sections of stiff layers per unit length in the eg direction
and is obtained as the weak* limit in L*°(2) of the sequence (n.) defined by (3.14).
When the order of magnitude of the elasticity coefficients in the stiff layers is larger,
that is when k& = +oo, the functions u; and ug vanish on the set {n > 0} and the
behavior of usz is governed by the equation (3.19), (3.20) or (3.21), depending on the
order of magnitude of . In the case 0 < k< 400, this equation involves the 4*" partial
derivatives of uz with respect to x1, xo:

L 0%ug . /{l—i—l 2 O*us
(p+np1)—at2 — (divo(u))s + 3l+2 Z axQBxﬁ

- (p+np1)f3 in Qx(0,7),

(1.2)

revealing bending effects. The effective behavior on the set {n = 0} is that of a homo-
geneous material without stiff layers. In Theorem 3.5, we extend these results to the
stochastic case. The set B.(w) then depends on a random element w of some sample
space O C 2% equiped with a probability P satisfying (3.23). The limit problem as
€ — 0 is deduced from the above equations, P-almost surely, by substituting for n
the conditional expectation E¥ng(w) with respect to P given the o-algebra F of the
periodic sets, of the random variable ng defined by (3.24).

If the order of magnitude of the elasticity coefficients in the soft interlayers is
strictly smaller than 1 and strictly larger than 2, the effective equations are deduced
from (1.1), (1.2), formally, by removing the term divo(u) (see Theorem 3.7).

When the elastic moduli in the soft phase are of order €2, the effective behavior of
the composite turns sensitive to the slightest geometrical perturbation (see Remark
3.20). The effective equation can not be expressed simply in terms of the function n
as in the other cases. This characteristic renders the study of non-periodic homoge-
nization a very difficult task: we only treat the case of an e-periodic distribution of
stiff layers. The homogenized problem then takes the form of a system of equations
coupling some field v, characterizing the effective displacement in the stiff layers, with
the two-scale limit wg : 2% (0,7T) x (—3,2)3 — R3 of the solution (u.) to (3.5) (see
[3, 41]). This field v is obtained as the limit of the sequence (u.m.), where m, is the
measure supported by the stiff layers defined by (3.39). If 0 < k < 400, the effective
behavior of the displacement in the stiff medium is governed by the equation

_ 0%

(1.3) P

— kdive, (v') =p, f + g(uo) in Qx(0,7),

associated with the boundary and initial conditions given in (3.45). This equation
displays stretching vibrations with regard to the transversal components vy, vs of v.
It is coupled with the soft phase through the field g(ug) which represents the sum of
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the surface forces applied on each stiff layer by the adjacent soft medium. This field
is defined by (3.42), in terms of the restriction of ug to 2 x (0,7) x Y \ A, which
characterizes the effective displacement in the soft interstitial layers. The letters Y
and A denote, respectively, the unit cell and the rescaled stiff layer (see (3.36), (3.37)).
The effective displacement in the soft phase is governed by the equation

8211,0

P oz — divy(ooy(uo)) = pf in Q@x(0,T)xY\ A4,

where oy, is defined by (3.42). This equation is coupled with the variable v by the
relation (3.41) on Qx (0,7) x A. The weak limit of (u.) in L?(Q x (0,7)) is given by
u(z,t) = fy uo (7, t,y)dy.

When the order of magnitude of the elasticity coefficients in the stiff layers is
larger, the functions v; and ve vanish and the effective displacement in the stiff phase
is governed by the equation of v3 given by (3.46), (3.47) or (3.48), depending on the
order of magnitude of k. In the case 0 <k <400, this equation,

_ 0%v3 kKIiI+1 2 0*vs

o 3012 2w 922022 " in Qx (0,7
"1 o2 +3l+2a511ax33m% pifs +(g(uo))s  in Qx(0,7),

involves the 4*" partial derivatives of v with respect to x1, x2, characterizing bending
vibrations. Otherwise, the stiff layers display the behavior of a collection of unstretch-
able membranes if (k,x) = (+00,0) and that of fixed bodies if kK = occ.

Our results apply as well to equilibrium equations (see remarks 3.11, 3.19) and
can be extended to multiphase composites (see remarks 3.10, 3.16, 3.17). Multiphase
homogenized models have been studied in [8, 44, 45, 47, 48, 49].

As occurs in the case of fibers or grain-like inclusions embedded in a soft matrix
(see [8, p.3]), the two-phase stratified composites modeled above by homogenization
prove to be, in general, unsufficiently reinforced to "resist” to body forces. Accord-
ingly, some of the components of the effective displacement may exhibit a quadratic
behavior with respect to time, describing a motion of collapse. The whole displace-

ment u does so, for instance, on the set {n = 0} in (3.28)-(3.30). If k = 0, a similar
behavior is shown by ug in (3.28), (3.29), and by vz in (3.45), (3.46), if f is not
parallel to the layers. In these cases, the sequence of the solutions to the associated
equilibrium problems (see (3.32)) may fail to be bounded in L2, and the effective
equilibrium problem to be well-posed. Boundedness in L? is achieved by considering
suitable multiphase media. n the fibered case, the choice of such media has been
discussed in [8, Proposition 5.2]. We extend this discussion in remarks 3.11, 3.19, 6.3.

The paper is organised as follows: in Section 2 we specify the notations and in
Section 3 we state our main results. In Section 4, we recall some classical results and
introduce a non-periodic variant of the two-scale convergence for which we establish
a compactness result. The effective equations are derived in Section 6 by employing
apriori estimates demonstrated in Section 5, and a technical lemma proved in the
appendix.

2. Notations. In this article, {ey,..,ey} stands for the canonical basis of RY.
Points in RY or in Z" and real-valued functions are represented by symbols beginning
by a lightface lowercase (example z, 7, det A...) and vectors and vector-valued functions
by symbols beginning by a boldface lowercase (examples: x, i, u, f, g, divo,...).
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Matrices and matrix-valued functions are represented by symbols beginning by a
boldface uppercase with the following exceptions: Vu (displacement gradient), e(u)
(linearized strain tensor). We denote by u; or (u); the components of a vector w and
by A;; or (A);; those of a matrix A (that is u = YN, uie; = YN (u)e;; A =
Zf\szl Ajje;Re; = Zf-\fj:l(A)ijei ®e;). We do not employ the usual repeated index
convention for summation. We denote by A: B = Z?szl A;;jB;; the inner product of
two matrices, by €, the three-dimensional alternator, by u Av = Zij,kzl €ijkU;VL€4
the exterior product in R?, by S (M € N) the set of all real symmetric matrices of
order M, by I the M x M identity matrix. The symbol D denotes the cardinality
of a finite set D. The letter C stands for different constants independent of € whose
precise values may vary. For any weakly differentiable vector field 1 : Q C R3 — R3,
we set

1 (0o | OYp
I ) o o _ Y.
’l»b = ¢161 + w262, ez’(’lp) = azﬁzl 5 (azﬁ + % ey dep (_ ez'(lp ))7
2.1 Oy 21 oY [oLT} oY oY
1) 258 + 2 (Gh + G ows T 0wy 0
, = 1 4 O O | 21 (O¢1 | 0¥
o (%) ULy O 250 + 25 (5 + 52) o
0 0 0

where the non-negative parameter [ is defined in (3.6). We reproduce and modify here
some notations from [8]: we denote by Cg°(Y) (resp. Cy(Y)) the set of Y-periodic

functions from C*> (R?) (resp. C(R?)), by Cg°(Y \ B) the set of the restrictions of
the elements of C°(Y) to Y \ B, by H/(Y) (resp. H;(Y \ B)) the completion olf
Cgo(Y) (vesp. C*(Y'\ B)) with respect to the norm w — ([, ([w]* + [Vw[?)dy)>
( resp. w — (fy\B(|w|2 + [Vw[?)dy)z ). For any subset Q of the unit cell Y, the
symbol @ stands for the periodization on all R? of Q, that is

(2.2) Qﬁ = U z+ Q.

z€Z3

3. Setting of the problem and results. We consider a cylindrical domain
Q= Q' x(0,L), where Q' is a bounded smooth domain of R%. Given a small positive
real €, the non-periodic distribution B, of disjoint homothetical stiff layers BJ will be
described in terms of a finite subset w. of R

(3.1) We = {wg,j € JE} , Je =11, . fwe},

satisfying

(3.2) w. C(0,L), min |l —wf|=¢, dist(w.,{0,L})> <,
J,J'€Je,5#5" 2

and of a small parameters r. verifying

(3.3) e>r(1+9) for some ¢ > 0,
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by setting (see Fig. 3.1)

Gay  Be= U BL B=0x(and); I=(-55).
JEJe

(=X]
Y
e
A

~
Q2

Fia. 3.1.

As in [8], we consider the vibration problem

pe% —div(o.(u.)) = p.f  inQx(0,T),
0. (1) = A tr(e(wo)) + 2peus),  e(u.) = 5(Vuo + V7 u)
(3:5) (P . e (o, T); HYQR) N CL((0, T); 13(2,R%)),

M) =ty e COXO.TR),

(a0, bo) € (H(2,R?) x L*(Q,R%)) N C(Q,R?)>.

u.(0) = ay,

The Lamé coeflicients p., A. and the mass density p. are assumed to take constant
values of possibly different orders of magnitude in the set of layers B. and in the set
of interlayers Q \ B.. More precisely, we suppose that

pe(x) = melp (z) + pocLovs, (7),  Ac(z) = Mclp (z) + Ao Loy B, (2),

3.6
( ) pie =2 c¢>0, I.:= At
Hie

, 12%15:[6[0,%-00), 0 < Ape < Clge << flet,

and

€ _ _
(3.7) pe(x) = ployp, + —pils., p, Py € (0,400).
g

We assume and set
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3
— 1 Te i e
(3.8) k.= &11_{% —Hie € (0, +o0], K= &11_1;% ~he € [0, +00].

The weak* relative compactness in L>(0,T; L?(2;R?)) of the sequence of the solu-
tions to (3.5) is ensured by the following hypothesis:

(3.9) sup/(ps\b0|2+0'€(ao):e(ao))dx +/ pe | fPdadt < +oc0.
e>0JQ x(0,T)

3.1. Case of interlayers with Lamé coefficients of order 1 . We consider
the case of extremely thin layers of extremely large stiffness alternating with inter-
layers of elastic moduli of order 1. The effective volume fraction of the stiff layers is
characterized by:

(3.10) 9= lim —.

e—=0 €

We assume in this subsection that

(3.11) 9 =0,
(312) toe = p > 0; Aoe = A > 0.
We introduce the operator o: H(Q;R3?) — L?(Q;S3) and n. € L>(Q) defined by

(3.13) o(p) = Atr(e(p)I + 2ue(p) Vo € H(QR?),
(3.14) ne(x) == lEZZ i (we N (€i - %,Si + %D 1(Ei,%,5i+%)($3),
(3.15) z.:={iez, (ci- = ei+ ; c(0,L)}.

Assumption (3.2) implies that |n.|p~(q) < 1, therefore, up to a subsequence,

(3.16) ne = n weakly* in L>(Q) for some n € L=(Q).

The scalar %ne(as) is an approximation at x of the local number of stiff layers per unit
length in the es direction. For simplicity (see Remark 3.3), we assume that

(3.17)  {n >0} is a finite union of open connected subsets of Q if k = +oo.

Under these assumptions, we prove that the solution to (3.5) weakly™ converges in
L>(0,T; HE(;R?)) to the unique solution to (P(h,f}?ﬁ)) defined, in terms of k, k, n
given by (3.8), (3.16), as follows: if 0 < k < 400, we get (see (2.1))

2u
(p+ nﬁl)ﬁ —divo(u)
(3.18) (PLE o)) - —nkdive, (u') = (p+np,))f  in Qx(0,7),
T (0<k < 400) | we C(0,T]; Hy (4 R?) N CY([0, T]; L* (% R?)),
ou
U(O) = ay, E(O) = b().
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If k = 400 and k = 0, the limit problem is deduced from (3.18), formally, by substi-
tuting (0,0) for (uq(z),us(z)) when n(zx) > 0:

0° . :
(p+ 1)) s> — (diver(u)s = (p+np)fs i Qx(0,7),
Pug R
Pam (divo(u))q = pfa in{n=0}x(0,7),

(3.19) (P{ﬁ"jw,o)) S ua=0 ond{n : 0} x (0,7) (a €{1,2}),
nuy =nug= 0, w€C([0, T;H (% R*)NC ([0, T]; L (9 R?)),

u(0) = (ao11 {n=0}, @021 {n=0}, @03),

ou
5t (0) = (bo11{n=0},bo21 {n=0}, bo3)-

The case 0 < kK < 400 is characterized by the emergence of fourth order derivatives
with respect to x1, o in the limit equations, revealing bending effects:

_ 0%us . KL+l ¢ 0'us
(p+np1) 55 = (dive(u))s + g 2 022007
= (p —+ nﬁl)fg, in 2x (O,T),
0%uq )

(Phom ) o~ (divo(w)a =pfa i {n=0}x(0,7),

P .
(3.20) = (mreem) T
(O<netoo) ] ta=0 ondfn=0}x©0.1) (ac{12}),

nuy =nus= 0, ucC([0, T|;Hi(Q;R*)NC ([0, T]; L (4 R?)),
ug € C([0,T); L5 (0, L; H3 (1)),

u(0) = (ao1 1 {n=0}, @021 {n=0}, @03),

ou
E@) = (bor1 =0y, bo21 {n—0}, bo3)-

If Kk = 400, we get:

8211, . ) -
e divo(u) =pf in{n=0}x(0,7T),
(3.21) (Phom . )i ™™ 0 ond{n=0}x(0,T),
o nu=0, we C([0,T); Hy(%R) N C[0,T); LA R%)),
ou

u(0) = aol {—oy, E(O) = bol{p—0}-

THEOREM 3.1. Assume (5.11), (3.12), (3.16), then the sequence (u.) of the
solutions to (3.5) weakly* converges in L°°(0,T; H(£;R?)) to the unique solution of

the problem (P(}ﬁffﬁﬁ)) given by (3.18)-(3.21).
REMARK 3.2. (i) When stiff fibers [9, 13] (resp. grain-like inclusions [7]) embed-

ded in a matriz of stiffness of order 1 are considered, the fibers (resp. the inclusions)

disappear from the limit problem if r. < exp —8% (resp. re < €3), where r. denotes
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the diameter of the sections of the fibers (resp. of the inclusions). This never occurs
in the stratified case, whatever the choice of (r:). This is related to the fact that the
harmonic capacity of a surface in Q is always positive, whereas that of a line or a
point are equal to zero.
(i) Under (3.12), the case ¥ > 0, k < 400 has been studied in [27], [38]. In the case
¥ >0, k = +o0, we came up against technical complications (see Remark 6.1).
REMARK 3.3. If (3.17) is not satisfied, the sequence (ue) of the solutions to (3.5)
weakly* converges in L>(0,T; H}(Q;R3)) to the unique solution of the variational
problem (4.23) with data deduced from (6.60), (6.61) by substituting mG’,@ and n, i,
defined by (6.62), for Vi« and an k.. Assumption (3.17) ensures the equivalence
between (3.19-3.21) and the last mentioned variational problem.

3.2. Stochastic case. Fix d > 0 and set

O = {wEZR, V(w,wr) € w X w, wy #ws = |wg —ws zd},
(3.22) we(w) :==ewn (e, L —¢) Yw e O,

where 2% denotes the set of all subsets of R. Let By be the Borel o-algebra generated
by the Hausdorff distance on O (see Remark 3.6), and P be a probability on (O, Bo)
satisfying

(3.23) P(A+2)=P(A) YVzeZ VA€ Bo.

We consider the random distribution of stiff homothetical layers B.(w.(w)) and the
problem (P (w)) obtained by substituting w.(w) for w, in (3.4), (3.5). In what follows,
F represents the o-algebra of the Y-periodic elements of By, E X the conditional
expectation of a random variable X given F with respect to P, n.(w) the element of
L>(Q) defined by substituting w.(w) for w. in (3.14), and ng : O — N the random
variable given by

) weo

N =
NN

(3.24) nofw) = (wn |-

The following theorem is proved in [10]:
THEOREM 3.4. Under the assumptions stated above, there exists a sequence of
reals (ex) converging to 0 and a P-negligible subset N of O, such that for allw € O\MN,

(3.25) e, (W) = Efng(w)  weakly* in L>(Q).

The following result straightforwardly follows from theorems 3.1, 3.4:

THEOREM 3.5. Assume (3.11), (3.12), and let (e;) and N be the sequence and
the P-negligible set given by Theorem 3.4. Then, for all w € O\ N, the solution
to (P-, (w)), weakly™ converges in L>(0,T; Hi(Q;R3)) to the unique solution to the
problem ( (hé’gno(w)ykm)) defined by (3.18-53.21).

REMARK 3.6. The restriction of the Hausdorff distance dy to O is an ex-
tended metric on O, and the mapping do : D? — [0,1] defined by do(w,w’) =
min{1, dy(w,w’)} is a finite metric on O which turns O into a complete metric space.
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3.3. Intermediate case . Under the assumptions
(3.26) e < e < 1, 0< Ao < Clage,
(3.27) ne —mn  strongly in  L*(Q),

and (3.17) (see Remark 3.9), we show that the solution to (3.5) weakly™ converges in
L>(0,T; L?(2;R?)) to the unique solution to (P(hnml?n)) defined by

2
(p(1 —9n) + nﬁl)a—u — nkdivo, (u')

ot2
oy (Tloko) = (p(1 =) +npy) f in 2x(0,7),
' (0<k<+00)| u1,uy € C([0,T); L2(0, L; HL(Y))),
we 00, T1 L)), u(0) = ao, 2u(0) = by,

82 us

(p(l_ﬁn)""nﬁl) = (p<1 _ﬁn)'i_nﬁl)f?) in QX(OvT)’

o2

0%uq .

hom p ot? - pfa n {n = 0} X (OaT)a (Oé € {1, 2}),
(3.29) (P(n,+oo,0)) : nuy =nus =0, ué€E Cl([(),T]; LQ(Q;R‘?))’

u(0) = (ao11 (=0}, @021 {n=0},@03),

ou
E(O) = (bo11 (=01, bo21 {n—0}, bo3),

0%us . o5 +1 & O*us
2 9 29,2
ot 31+2 Syl O3 0z

= (p(1 =9n)+np;)fs in Qx(0,7T),
om ({9211404 ) =
30) Pliioem) ] P = plo i =0} < (0.7), (o€ {1,2}),
(0 <k <+00) | nuy = nuy =0,
uz € C([0,TT; L3 (0, Ly H3 (), w € CH([0, TT; L2 (4 RY)),

u(0) = (a1 1 (=0}, @02l {n=0y, a03),

(p(1 —0n) +np,)

Ju
a(o) = (bo11 {n=0y, bo21 {n—0}, bo3),
82u ) =
pﬁ:pf in {n =0} x (0,7),
(331) (P )L mu=0, we OO, T L0,

ou
u(0) = aol{n=0}, 5 (0) = boln=o)-
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THEOREM 3.7. Under (3.17), (3.26), (3.27), the solution to (3.5) weakly* con-
verges in L>(0,T; L*(Q;R3)) to the unique solution to (P{‘Tfﬂn)) given by (3.28-
3.91).

REMARK 3.8. (i) Problems (3.28-3.31) are formally deduced from (3.18-3.21) by
removing the term “dive(u)” (see (3.11)). This indicates thalt no strain energy is
stored in the softer phase.

(ii) Assumption (3.27), stronger than (5.16), precludes the application of Theorem
3.4 and the extension of Theorem 3.7 to the setting of stochastic homogenization.

REMARK 3.9. If (3.17) is not satisfied, the sequence (u:) of the solutions to (3.5)
weakly* converges in L>(0,T; L?(;R3)) to the unique solution of the variational
problem (4.23), (6.60), (6.61). Under (3.17), this variational problem is equivalent
to (3.29-3.51).

REMARK 3.10. Theorems 3.1, 3.7 can be extended to the case of a multiphase
stratified elastic composite comprising several distributions of stiff layers of various
stiffness and thickness (see Remark 6.2 for more details). Combining our results with
those established in [8], [13], [14], one can also derive the effective equations governing
the behavior of a composite comprising disjoint distributions of stiff layers alternating
with softer interlayers in which fibers or grain-like inclusions are embedded (see also
Remark 3.17).

REMARK 3.11. Under the assumptions of theorems 3.1, 3.7, the limit problem
associated to the sequence of equilibrium problems

(3.32) —div(o.(u))=f in Q  u.€ H} LR, feL?QRY),
is given by
(3.33) weV and a(u,w)=(f,w)y, YwEel,

where the Hilbert spaces V' and H and the non-negative symmetric bilinear form a(.,.)
are specified in Remark 6.5. Under the assumptions of Theorem 3.7, this bilinear form
fails to be coercive on L*(S;R?) if k = 0 and may fail to be so if the function n is
not bounded from below by a positive constant. Remark 6.3 states conditions ensuring
coerciveness in stratified multiphase media. Coerciveness can also be achieved by re-
inforcing the composite by stiff fibers embedded in the soft phase (see [8, Proposition

5.2).

3.4. Case of soft interlayers with Lamé coefficients of order 2 . We
assume that

(334) Hoe = 62#07 )\OE = 52)\()’ o > 07 A0 > 07

and that the stiff layers are periodically distributed (see (3.15)):

(3.35) B, = U Bl Bl:=Q x(gi+rd).
i€2Z.

Under these hypotheses, setting (see Remark 3.13)
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11 _(11)2 (1919)_ _(11)2
(336) Y— (7575) ,B.— 75,5 X 75,5 ,E.— 75,5 X{O},
(337) A=B if ¥>0, A:=3% if 9=0,

(338) 9¥>0 if k=0,

and denoting by M (Q; R?) the set of R*-valued Radon measures on Q, we show that
the solution u. to (3.5) two-scale converges to ug € C([0, T); L*(, Hﬁl (Y;R3))) (see
Section 4 for the definition of this convergence), and the sequence (u.m.), where m,.
is the measure defined by

13
(3.39) me = —1p, (#)L,
€

weakly* converges in L>(0,T; M(Q;R?)) to v € C*([0,T]; L*(Q; R?)), where (ug,v)
is the unique solution to the coupled system of equations (comparable in certain
respects with [8, (2.17)])

hom
(340) { (Psoft)7

(P (k. ),

defined below in terms of k, x, and ¥ given, respectively, by (3.8) and (3.10). The
fields ug and v are linked by the following relation in Q x (0,7T") x A:

(3.41) v(z,t) = uo(a,t,y) in Ox(0,T) x A.

We introduce the operators ey, oq,: H'(Y;R?*) — L*(Y;S?), g: H—R? defined by

1 /0w; Ow;
ey = 5 (G + 52 ) ouyw) i= Aatr(e,(w))] +2ue, (w),
g i
(3.42) - / _ooy(w)vy\ pdH(y), if A=B,
S(Y\B)NB
g(w) :=

/E(UOy(er) —ooy(w?)) - esdH?(y) if A=Y,

where vy p stands for the outward normal to (Y \ B) and

(3.43) H={we H (Y \ A4R?), div(og,(w)) € (H'(Y \ A4R?)},

denoting by E’ the topological dual of a Banach space E, and by w™ (resp. w™) the

restriction of w to (_71, %)2 X (O, %) (resp. (_71, %)2 X (_71,0)) Problem (Pg;’ﬁ) in
(3.40) is the equation of uy in Q x (0,7) x (Y \ A) coupled with v through (3.41) and

given by (denoting by v the outward normal to 9Y):
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2u
p% — divy (oo, (uo)) = pf i Qx (0,T)x Y\ A,
(up,v) satisfies (3.41),
(3.44) (Pf;;’t‘) ooy (uo)V(y) = —ooy(uo)v(—y) on Qx(0,T) x 9Y,
wo€ C(0,T]; L2, B (Y RP) NCH(0,T]; LR x V3 RY),

ou
up(0)1y\ 4 = aoly\ 4, 51 0 — (0)Ly\ 4 = boly\ 4.

Equation (3.44) governs the effective behavior of the displacement in the soft phase.
Problem (P;ﬁ’}}(k k)) in (3.40) is an equation of v in Q x (0,T") coupled with (P;ﬁ;’}?)
through the source term g(wo) defined by (3.42). This equation rules the effective
behavior of the displacement in the stiff layers. Its form is determined by the order
of magnitude of the coefficients k, k. If 0 < k < 400, we get (see (2.1))

2’U
71 0% hdive (v)) = 5, f + glu) in Qx(0.7),
v1, s € C(0, T); L2(0, L HA())) N C([0, T): L3(9),
ov
o

(Peit (k,0)) :
(3.45) (0 <k <+400)

v € CH([0,T]; L*(%R?)),  v(0) = aq, 0) = by.

If (k, k) = (+00,0), we obtain

(921}3 _ .
pl atg p1f3+(g(u0))3 m QX(OaT)a
(3.46) (Pl (+00,0)) : { vy = vy =0,
o
vs € C1([0,T], L2(R)), v3(0) = ags, %(0) — bos.

If 0 < k < +00, the emergence of fourth derivatives of vs reveal bending effects:

_ 2'U3 kl+1 Z 841)3
P ot? 3 l+2 8332 8x5
Gy P Croo ) Skt gt n 00,
' (0 < Kk < 400) vy =g =0,
vg € C([0,T]; L*(0, L; H3 () N C*([0,T]; L* (1)),
0
1}3(0) = ap3, %(0) = b03.

If kK = +00, the displacement in the stiff layers asymptotically vanishes:

THEOREM 3.12. Under (3.34), (3.35), the solution u. to (3.5) two-scale con-
verges to ug with respect to x and weakly* converges in L°°(0,T; L?(2,R?)) to u =
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Jy wo(.,y)dy, and the sequence (u.m.), where m. is defined by (3.39), weakly* con-
verges in L>=(0,T; M(Q,R?)) to vﬁfﬂ, where (ug,v) is the unique solution to (3.40).
Moreover, u.(7) two-scale converges to uo(T) with respect to x, for each T € [0,T].
REMARK 3.13. When ¥ = 0, k € (0,+00], additional sub-regimes are likely to
appear in the cases r. = ce? and €2 < r. < ¢, possibly attended by the emergence of
bending effects. Similar phenomena have been studied by V. V. Zhikov [55] and V. V.
Zhikov and S. E. Pastukhova [56] in the context of periodic singular structures.
REMARK 3.14. One can show (see [8, p.2548] for more details), that if ag = 0
and if the fields by, f are sufficiently regular, the following corrector result holds

X
Us — U l’,t,*
IS

REMARK 3.15. The effective problem (3.40) is non-local in space and time. Non-
local effects [3], [5]-[19], [20, 21, 23, 34, 44], [47]-[50], and memory effects [1, 4, 37,
53] are typical of composite media with high contrast.

REMARK 3.16 (Multiphase stratified elastic media). In the same way as in [8,
Section 4], we can extend Theorem 3.12 to the case of a multiphase medium whereby

(3.49) lim
L2(x(0,T);R3)

e—0

m e-periodic disconnected families BE], e BL"’] of parallel layers are embedded in a
soft matriz. The limit problem then takes the following form

{(Pi’é’}?),
hom [j .
(Psm'ff m)a jed{l,...m},

and can be written under the variational form (4.23) for some suitable choice of data

H,V.a,h,&,&. Each family BE"] is associated to some subset AUl of Y like in
(3.37). The system (73?00}?) governs the effective displacement in the soft phase, and
only differs from (3.44) by the relation (3.41) which is replaced by a series of relations
on each set Qx (0,T) x AUl between ug and some auziliary variable v characterizing

hom [j])

the effective displacement in By], Each problem (Pstiff consists of an equation of

hom

vVl of the same form as (Pstiff) in (3.40), coupled with wy through the operator gl!
deduced from (3.42) by replacing A by Al

REMARK 3.17. Multiphase composites comprising, besides stiff layers, periodic
distributions of fibers or grain-like inclusions, can also be considered. By way of
illustration, let us examine the case of a composite consisting of an e-periodic family
BE] of parallel stiff layers of thickness 9 (9 > 0) alternating with a softer medium in
which an e-periodic family B?] of parallel stiff fibers and an e-periodic family BE’] of
stiff grain-like inclusions are embedded. The disconnected families (Bg]) are defined
in terms of three connected subsets B, B2l Bl of Y with disjoint closure by setting
Bl .= ¢ (Ujezs  + B[i]) NQ (see figure 3.2). We assume that the Lamé coefficients

take constant values of order at least 1 in each Bg], and constant values €2\, 52ﬂ0

in Q\ U2, BY. The limit problem then takes the form

{(7’?5}7),
(Phom 1), i € {1,2,3},

where, setting B := U?:l Bl Ypli 1= ‘B—l[i]' me ydy,
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0%u, . _
Piatzo — divy (oo, (uo)) = pf in Qx(0,T)x (Y \ B),
Uo(l‘,t,y) = v[l](-rat) m QX(O,T) X B[l]7

ug = v+l A (y—ypm) in Qx(0,T) x Bl (j €1{2,3}),
ooy(uo).n(y) = —ooy(ug) n(-y) on 2x(0,T) x 9Y,

ug € C([0,T]; L*(2, Hy (Y;R?))) N CH([0, T]; L*(2 x Y3 R?)),
auo

ot
The problem (P;Ltoif?} [1]) in (3.50) is an equation of vl characterizing the effective

displacement in the stiff layers as described in Remark 3.16. For i € {2,3}, the prob-

lem (Pg:?} M) is a system of equations of v, r1 defined in [8, Section 4], governing

the effective displacement in the fibers if i = 2, in the grain-like inclusions if 1 = 3.
The couple (v[i], %rm) represents the reduction elements (on the principal azes of the
fibers or at the geometrical center of gravity of the inclusions) of an helicoidal vector
field locally approximating the displacement in the fibers or the grain-like inclusions.

(3.50) (Phom)

uo(0)1y\p = aoly\B, (0)1y\B = boly\B-

Fia. 3.2.

REMARK 3.18. The solution to (3.44) is actually independent of y1,y2. We have
uo(z,y) = Go(zx,ys), where, setting I := (—%, %), uo(z,ys3) is the unique solution to
2 @0 0 2 9 9
p%, 0 u 0 88“;0:/)1" in Qx(o,T)xI\[fg,ﬂ,
0 0 A42u) 99
. , 9 9
v(z,t) = ao(x,t,ys) in Qx(0,T) x 53

(PSiD oay 1. oae, 1

a2 T oy 2

o € C([0,T]; L*(2, Hy (1;R?))) N CH([0,T]; L*(2 x L;R?)),
Ot

2 o

Uo(01n[-4.4) = aoln[-4 OIn[-g.4) =



STRATIFIED ELASTIC COMPOSITES WITH HIGH CONTRAST 15

We retained the dependence on y1,ys in (3.44) in order to extend our results to such
multiphase media as described in Remark 3.17 and derive (3.50).

REMARK 3.19 (Equilibrium equations). The conclusions of [8, Corollary 5.1]
remain valid in the stratified case: if the solution to the equilibrium problem (3.32)
two-scale converges to ug € L?(Q2 x Y;R?), then ug is a solution to the problem

(3.51) ug eV and a(uo,wo) = (f,’UJQ)H, Ywg € V,

where V., H, a(.,.) are specified in Remark 3.16. The form a(.,.) may fail to be
coercive on L*(Q x Y;R?), and problem (3.51) may then have no solution. The same
conditions stated in Remark 6.3 for Theorem 3.7 also ensure the coercivity of a(.,.)
in the present context. Coerciveness is also achieved in the composite described in
Remark 3.17 provided the Lamé coefficients of the fibers are at least of order E% (see
[8, Proposition 5.2]). Note in passing that one should substitute 1 for p. in [8, Formula
5.1], otherwise the proof of ”(iii) = (iv)” in [8, p. 2552] is false.

REMARK 3.20. Under Assumption (3.34), the slightest perturbation of periodicity
leads to a complete change of the form of the effective problem. For instance, if m € N
and wl = ¢ (j + %) if § is a multiple of m, and w! = £j otherwise in (5.35), then
the limit problem is a system of equations coupling wy with m auziliary variables
ol . wl™ as described in Remark 3.16, which can not be expressed, as in theorems
3.1, 8.7, simply in terms of the function n defined by (3.16). The extension of Theorem
3.12 to the non-periodic case is far beyond the scope of this paper.

4. Two-scale convergence and other analysis tools. In Section 4.1, we
recall some properties of the two-scale convergence of G. Allaire [3] and G. Nguetseng
[41] and reproduce some statements of [8] in a suitable form for the present context. In
Section 4.2, we introduce a non-periodic notion of two-scale convergence with respect
to a sequence of measures and establish a compactness result (Lemma 4.2). Two
classical analysis results are recalled in Section 4.3.

4.1. Two-scale convergence. A sequence (f.) in L2(0,7T;L*(Q)) is said to
two-scale converge to fo € L?(0,T; L?*(2 x Y)) with respect to x if, for all ¢y €
D(2x(0,T), C2(Y)),

lim (2, )0 (x t, f) dedt = / fopodadtdy,
(4.1) €20 Jax(0,1) € Qx(0,T)XY

(notation: f. = fo) .

A sequence (¢.) C L?(0,T; L*(Q)) strongly two-scale converges to pg € L?(0,T; L?(Q
xY')) with respect to x if

(42) pe = ¢o and  lim lleelln20,7;2(0)) = llvollL2(0,m;02(@xv))s
(notation: p. —» o).

The symbols — and —» will also denote the two-scale convergence and the strong
two-scale convergence of sequences (f.) in L?(£2) independent of ¢, defined by formally
considering them as constant in . Any bounded sequence in L?(0,T; L?(Q2)) has a
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two-scale convergent subsequence [41]. An admissible sequence with respect to two-
scale convergence is a sequence (. ) C L2(0,T; L*(Q)) that two-scale converges to some
o € L2(0,T; L?(2 x Y)) and such that, for every two-scale convergent sequence ( f.),

(4.3) lim fegoedzdt:/ fowodzdtdy.
=0 Joxo,1) Qx(0,T)xY’

A sequence (p.) is admissible if and only if it strongly two-scale converges to some
po (see [8, p.2528]). For all ¢ € L*(0,T; L*(Q,C{o(Y))) U L (Y, C(2x(0,T))),
the sequence (Yo(z,t, £))e>0 strongly two-scale converges to v (see [3], Lemma 5.2,
Corollary 5.4). In particular, if @ is a Borel subset of Y, and Qy is its periodization
on R? defined by (2.2), then the sequence (1g, (£)) strongly two-scale converges
to 1o(y). Under (3.35), if @ > 0, then [Ig\p, — Ly\n), (£) |22(@) — O, therefore
To\p. —» Iy\p. If ¥ =0, (1g\ B, ) strongly converges to 1 in L?(£2), hence strongly
two-scale converges to 1. We deduce that (see (3.37))

(44) ]lQ\BE — ]ly\A, ]lBE —» 1a.

The next Lemma is a straightforward variant of [8, Lemma 6.1].

LEMMA 4.1. (i) Let (he) be a bounded sequence in L= (Qx (0,T)xY) such that
he—+hg. Then, for every sequence (x.) C L?(0,T; L?(Q)), the following implications
hold:

(4.5) Xe —* Xo = Xche —» Xoho,
(4.6) Xe = Xo = Xche = xoho.

(ii) If (f-) is bounded in L>=(0,T;L?*(Q)), then (f.) two-scale converges, up to a
subsequence, to some fo € L>(0,T;L*(Q2 x Y)). If in addition (f.) is bounded in
Whee(0,T; L3(Q)), then fo € WH°(0,T; L?(Q2 x Y)) and (%’}) two-scale converges

to %. Besides, if f-(0) = ag, then ag = fo(0) and f-(7)— fo(r), V7 € [0,T].

Furthermore, if (%{f) —»% and f-(0)—»ag, then f.(7)—»fo(7), V7 € [0,T)].

4.2. Two-scale convergence with respect to (mi) One can easily check
that the sequence (m,.) defined by (3.39) is bounded in M() and satisfies

(4.7) me — n[ﬁ:fQ weakly* in M(Q),

where n is defined by (3.16). Notice that

(4.8) n=1 under (3.35).

In what follows, the symbol L2 (Q; R3) stands for the set of all Borel fields w :  — R3
such that [, |w|*ndz < +oo. Similarly, for any Hilbert space H, we denote by
L2(0,L; H) the set of all Borel fields w : (0, L) — H such that fOL |lw|%ndr < +oo.
We set (see (3.3), (3.4))

(4.9) ye(2) =D (2 - WDt sr gy (2):

Jj€Je
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We say that a sequence (f.) in L?(0,T; L?(f)) two-scale converges to fo € L?(0,T;
L2 (Q x I)) with respect to the sequence of measures (m.) if for each ¢ € D(Qx (0,T);
C¢e (1)), the following holds

Ye (l‘g)

Te

lim fet ) (.1
(4.10) €20 Jax(0,1)

(Notation: f. & fo).

) dm.dt = / foundzdtdys.
Qx(0,T)x 1

LEMMA 4.2. Let (f.) be a sequence in L*(0,T; L*(Q2)) satisfying

(4.11) sup/ |f-|2dm.dt < +oo.
e>0 Jax(0,1)

Then (f:) two-scale converges with respect to (me), up to a subsequence, to some

fo € L2(0,T; L*(Q x I)). In addition, if

(4.12) sup /|f5|2(7)dm5<+oo,
e>0,7>0.J¢Q

then fo € L>(0,T; L2(Q2 x I)).
Proof. By Cauchy-Schwarz Inequality and by (4.11), we have

/Q o fola, ) (x,t, y‘f(”’?’)) dm.dt

Te

<C (/ |fa|2dmedt> %] oo (x(0, 1) x 1)
Qx(0,T)
< Cl[Y] e axo,myxy Y € C(Q2x(0,T) x I).

(4.13)

Hence, by the Riesz representation theorem, for each € > 0 there exists a finite Radon
measure 0. € M(Qx(0,T) x I) such that

(4.14) /wdae = /QX( Felz, ) (x,t, @) dmedt Vi € C(Qx(0,T) x I).

0,T)

By (4.13) and (4.14), the sequence (6.) is bounded in M(Qx (0,T") x I), thus weakly*
converges, up to a subsequence, to some § € M(Qx(0,T) x I). By Cauchy-Schwarz
inequality, we have
2 3
dmgdt> .

1
2
< (/ |f5|2dmsdt> (/
Qx(0,T) Qx(0,T)

The proof of the next statement is similar to that of [3, Lemma 1.3]:

(4.15) ‘/wdes " (x,t, ?JE(IP’))

Te

(4.16) lim

dm, = / lo*ndrdys Yo € C(Qx1).
QxI
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We deduce from (4.11), (4.14), (4.15), (4.16), and from the weak* convergence in
M(Qx(0,T) x I) of (6.) to 0, that

o= f v

Thus, the linear form ¢ — [4df is continuous on C(Qx (0,T) x I) with respect to
the strong topology of L2(2x(0,T) x I). By a density argument, this linear form
can be extended to a continuous linear form on L2(Qx(0,T) x I) which, by the
Riesz representation theorem, takes the form v — fo(O,T)x ; Y fondxdtdy for some

fo € L2(Qx(0,T) x I). We infer that 0 = nfyL} , and then, taking (4.14)

LQX(O,T)XI

and the weak™ convergence of (6.) to 6 into account, deduce (4.10). Under (4.12), by
Fubini’s Theorem and Cauchy-Schwarz inequality, we have
ve(s) v\, )
felz, )y <z,t, 7>dm5dt <C / ‘1/1 (x, T, 7) dm. | dr.
Ox(0,T) Te (0,7) Te
By passing to the limit as e — 0 in the last inequality, thanks to (4.16) and to the Dom-
inated Convergence Theorem, we get fo(o T)x1 foyndzdtdys < Cl|p1o,1:22 (ax1))

and deduce, by the arbitrary choice of v, that fo € L>(0,T; L2(2 x I)). O

< Oz oxo,myxy V¥ € C(Qx(0,T) x I).

4.3. Two classical results. For the reader’s convenience, we reproduce below
Lemma A2 of [11] (see also [17] for a more general version) and Theorem 6.2 of [§],
which collects some abstract results proved in [25, 35, 36]. The lemma will be employed
to identify the limit of the sequence (u.m.), where u. is the solution to (3.5). The
theorem will be applied to check the existence, the uniqueness, and some regularity
properties of the solution to Problem (3.5) and of the associated limit problems. In
what follows, we denote by E’ the continuous dual space of a Banach space E and by
o(E', E) the weak* topology on E’.

LEMMA 4.3. Let K be a compact subset of RN and (6.) a bounded sequence of pos-
itive Radon measures on K, weakly* converging in M(K) to some € M(K). Let (f:)
be a sequence of O.-measurable functions such that sup, [ |f-|?df. < +oco. Then the se-
quence (f-0:) is sequentially relatively compact in the weak™* topology o(M(K), C(K))
and every cluster point is of the form f0, with f € L%. Moreover, if f-0. X £0, then

(4.17) liminf/\fs|2d95 2/|f|2d9-
e—0

THEOREM 4.4. Let V and H be separable Hilbert spaces such that V. C H =
H' C V', with continuous and dense imbeddings. Let ||.||v, ||z, ((,)Dv, (. )m
denote their respective morm and inner product. Let a : V XV — R be a con-
tinuous bilinear symmetric form on V. Let A € L(V,V') be defined by a(§,&) =

(A€7g)(\/’7v), V (€,€) € V2. Assume that

(4.18) I\ @) € [0, +00) x (0,+00), al&,€) + MElF = allE|ly, ¥ Ee V.
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Let h € L*(0,T;H), & €V, & € H. Then there erists a unique solution & to

0%¢

Ag() + T2 =h(t), €€ POTV),
(4.19) o¢ , o¢
5 €L (0,75 H), £(0) = &, a(o)zfl-
Furthermore, we have
1 23 2 0 2
(4.20) £e€C(0,T;V)NCH([0,T]; H), — € L*(0,T;V), —= € L*0,T;V’).

ot ot?

Besides, setting

az) =g (G0 50) Faew.sm)]. v e,

the following holds

(4.22) e(r) =e(0) + /OT <h, gf)]{ dt, v 1 el0,T].

Problem (4.19) is equivalent to

/T< (£(8), n(t) + (£(1), ) @(t))dw( 812 0)
0 alelt) & §0):8)n 55 §0:8)H 5,

T

(4.23) ~ (€. 0m(0) = [ (. En(e)i
VEEV, VneD(-oo,T)); £€L?0,T;V), %ELQ(QT; H).

5. Asymptotic behavior of the solution to (3.5). In this section, we estab-
lish a series of estimates satisfied by the solution u. to (3.5) (see Proposition 5.2),
and investigate in lemmas 5.3, 5.4 , and 5.5, the asymptotic behavior of sequences
satisfying such estimates. These results are synthetized in Corollary 5.6. We start
with a key inequality.

LEMMA 5.1. We have

2
¥2

9012
i _l’_
r

ey f ( :

Proof. By (3.4) and (3.39), it is sufficient to show that for all j € J., and all
¢ € H'(BZ;R3) such that ¢ = 0 on 9B N 9,

(5.2) /B g <

By Korn’s inequality, we have

C
+ |Lp3|2> dme < ) / le(p)]>dm. Vo € H} (4 R?).
€

€ €

@12 @22
- _A'_i
T

Te

C
tlool)do< G [ et an

€ e JB]
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Loy ravse [ el vwew

W::{¢6H1< (ﬂf ) —Oonaﬂlx(fé;%)}.

By making the change of variable y = (21, 22, == - ) we get, for all ¢p € W,

J

T3 — W
e()P (1,22, 2 Yt

Y
63 [ (e B Jar <o
B

€ BI I3
(2 ;
Setting p(z) = | 2 (3:1, T3, mf%) , a straightforward computation yields
1 €
s
Te

£

2 2 2 x5 — wl
[ P+l + 2 sl) @ate = [ 1 (1,02 22 ) o
BZ BJ T

_ wg) de<C [ le(@))? (z)dx.

7”5 Bg

<0 [ Je@)P (er,m2

B

The inequality (5.2) is proved. O
PROPOSITION 5.2. There ezists a unique solution us to (3.5). Moreover,

ou, 9 /e o3 0%u,
5 € L*(0,T; Hy (% RY)), e

Under (3.6), (3.9), there exists a constant C > 0 such that

(5.4) € L*(0,T; H () R?)).

2
/ pioele(ue) () dz + / (pe el s |us2> (Nde<C  vre[0,T],
—1
/|e (ue)|” (1) + |uE| (T)dme < C( M15> Vr € [0,T],
73 -1
/|u€3|2 (r)dme < C <?€u16) ) /|u6 T)dm. < C V71 €[0,T].

Proof. Problem (3.5) is equivalent to (4.23), where H := L2(Q R3), (&, &)y =
Jo pe€ - €dw, V i= HY(QR?) (V) = H Y% R?)), al€,€) = [, 0-(€) : e()dz, and
(&o, &1, h) = (ag, by, f). By (3.7), (H, (.,.)r) is a Hilbert space and the assumptions of
Theorem 4.4 are satisfied. Therefore, Problem (3.5) has a unique solution. Assertion
(5.4) follows from (4.20). By (4.22) we have, for all 7 € [0, T,
ou. |?

)
2 Jo \7= | ot

1 / 9
= - Pe |bo|”™ + o<(ag) : e(ag dm—i—/ Pe
2 Ja ( %o (o) - e )> Qx(0,7) ot

+o-(ue): e(u5)> (T)dx
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We deduce from Cauchy-Schwarz Inequality that

| <[ st |
Qx (O,r) Qx(0,7") Qx(0, T)

Taking (3.9) into account, we infer

ou
Pe
Q

6u5

dzdt.

2
5

ot

dx + o.(u,) : e(u5)> (T)dx

<C|(1+ /
Qx(0, T)

By integrating (5.6) with respect to 7 over (0,7, we deduce that fo(o ) Pe %‘
dxdt < C and then, coming back to (5.6), that

(5.7) /Q pe

We infer from (3.5), (3.6), (3.39), and (5.7), that

(5.6) aug

da dt) Vr € [0,T).

Oou,
ot

(T)dx + /Q o-(u.):e(us)(r)de <C V7 e€0,T].

2

/ o Ou, (r) + ,u05|€(us)|2(7—)dx <C v € [0,T],
ot
(5.8) -1
/|e ’Us dms < C( uls) e [O,T].

By (3.7), (3.39), and (5.8), and by the continuity of ag (see (3.5)), we have

T 2
/|u5| dz+/|u5| dmsf/ a0+/ e
8u5
<C / Pe (t)dzdt | <C V71 €[0,T].
Qx(0,T)

ot
By (5.1) and (5.8), we have

d(ﬁ3 +me)(x)

2

2

Ueq Ue 2 C 9 Ce

+ | s 7'dm€§—/eu6 T)dm, < vr e [0,T],

J I+ 52| el (i < 55 [ et Pryam, < o= 0.7
which, combined with (5.8), (5.9) completes the proof of (5.5). O

LEMMA 5.3. Let (u.) be a sequence in WHo9(0, T; Hi (Q; R3), L2 (€; R3)) satisfying

2 3u5 2
(5.10) sup lue|” + + le(ue)|” (7)dme < +o00.
€>0,7€(0,T)

Then, up to a subsequence, the following holds
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Oue ~ x  Ov weakly* in L0, T; M(S;R?)),

*
U me — N,

ot e "o
(A1) gy 0y € L0, T L2(0, L; HY())), v € Wh(0,T; L2 (2 R?)),
e (ul)m. = ney (v') weakly* in L>°(0,T; M(S;S?)).

Furthermore,

nvy =nvy =0 if hm mf sup /|e (u)|” (1)dme = 0,

7€(0,T)

(5.12) ) ,

nv =20 if liminf sup / —e(ue)| (1)dme =0.

e—=0 7€(0,T) Te

Moreover, if

sup /uoEIE(us)\Z(T)dx<+007 £ << peo, and
(5.13) €>0,7€(0,T) /Q

ne — n strongly in L*(Q) and u. = w weakly* in L>°(0,T; L?(Q;R?)),

or if

sup / le(u:)|” (1)dz < 400, and
(5.14) €>0,7€(0,T)

w. —w  strongly in L*(0,T; L*(; R?)),
then nu = nv.
Proof. By applying Lemma 4.3 to 6. := ‘C’i(O,T) ®@me, K = (0,T)xQ, f. €
{u, %, e, (ul)}, taking (4.7) and (5.10) into account, we obtain the convergences

N Ou.
UM — N,

(5.15) ot
e (ul)m. 2 n=E weakly* in M((0,T) x Q;S%)),

me = ny  weakly* in M((0,T) x Q;R?)),

up to a subsequence, for some suitable v,v € L2(0,T; L2 (Q;R?)), E € L?(0,T; L?(Q;S?))
such that =;; = 0 if 3 € {4,5}. By (5.10), the sequences (u.m.), (%ms) and
(e (ul)m.) are bounded in L>(0,T; M(Q)), therefore the convergences (5.15) also
hold with respect to the weak* topology of L°°(0, T; M(f2)). Let us fix @ € C°°(Qx (0,T);
S?). By integration by parts, we have

2

Z /(ew/ (ul)apVags (@, t) dmedt = — /(uslel + uczes) - divy O (z,t) dm.dt.
a,f=1 Qx(0,T) Qx(0,T)

By passing to the limit as ¢ — 0, taking (5.15) into account, we obtain
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2

(5.16) Z / EagUapndrdt = —/ (vie1 + veeq) - div, ndxdt.
a,B=1 Qx(0,T) Qx(0,T)

By making ¥ vary in D(Qx (0,7);S?), we deduce that ne, (v')(= e, (nv')) = nE in
the sense of distributions on Qx (0,7, and then infer from Korn inequality in H* (')
that nvy, nvy € L>(0,T; L(0, L; H'(Y'))), that is vy, vy € L>(0,T; L? (0 L; Hl(Q )))-
By mtegratmg (5.16) by parts for ¥ € C>(Qx(0,7);S?), we get fo fo Joqu 0" - ¥V
dH'dws3dt = 0 and infer from the arbitrariness of ¥ that vy,ve € L°(0,7T; L2 (0, L;

HY(Q'))). We prove in a similar way that v € W1°°(0,T; L2(;R?)) and v = @

Assertion (5.11) is proved. Assertion (5.12) is a consequence of the following mequal—
ities (holding for « € {1,2}), deduced from (4.17), (5.1), (5.15)

/ v |*ndadt < hm mf/ [te|2dm(x)dt < lim inf/ le(u.)|? dme(z)dt,
Qx(0,T) 0 Jaxo,1) =0 Jax(o,1)

2

—e(us)| dmg(x)dt.

/ |v|*ndxdt < lim 1nf/ luc|2dm,. (z)dt < lim inf/
Qx(0,T) =0 Joxo,1) =0 Jaxo,1) | Te

It remains to show that under (5.13) or (5.14), nu = nv. To that aim, we set

3 — J . .
(517) ’l)g(ﬂi,t) = zJ: ug(xl,xg,we,t)]l(wgi%g’wﬁ%](xg).
J€Je

By Fubini’s Theorem, Jensen’s inequality and Korn’s inequality in Hg (£2; R?), we have

Te

J
5 2 .
/|u€—v5| Ydm,. = Z/ dx/ |u5 2 13, 7)— us(m',wg,7)|2dx3

UJJ+ w]+75
(5.18) < £ / / 2 / 2
7' ZJ /dx é e

< 67"5/ Ve *(7)dz < Csre/ le(ue)|*(7)dz.
Q Q

ou,
81'3

2
(2, s3, T)d83> dzs

Therefore, under (5.13) or (5.14), lim._,o [Ju. — 9-|*(7)dm. = 0. Hence, by (5.15),

(5.19) Veme v weakly* in L°°(0, T; M(Q; R?)).

We define (see (3.1, 3.15))

(520)  Te(x,t)= > e (@ Wl t) ) Uy Lipg)(@s).

€2 {ngwEﬁ(Eifg,siJr%]}

Noticing that by (3.2) and (3.15),
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(5.21) wec |J (ei-Gei+z],

1€Z,

we infer from (3.39) and (5.17) that

/ CARGI R > e |uc(a!,wl,7)[ds’

i€Z: {wlew.n(zi-5cits]}

= g, _
C’rE Z?"E/ |ue (2, w?, 1) 2da’ = C/\v5| T)dme.

JjEJ:

(5.22)

Therefore, by (5.10) and (5.18), under (5.13) or (5.14), the sequence (v.) is bounded
in L°°(0,T; L?(2;R?)). Thus the following convergence holds, up to a subsequence

(5.23) . 2w weakly* in L*(0,T; L*(Q; R?)).

To identify w, we fix ¢ € D(Qx(0,T);R?) and set @ (x,t) := > ez (2’ ci,t)
]1(6i7%75i+%](:r3). Noticing that |p. — @[z~ ax,1)r3) < Ce, we infer

(5.24) / w - pdzrdt = lim U, - pedrdt.
ax(0,7) =0 Jax(0,1)

On the other hand, by (3.39), (5.17) and (5.20), we have

/Qﬁs e (t)dr = Z Z // (us(wl’wgvt) ) go(sc’,si,t)dx

1€2: {wicw.n(ciogeitg]} ¥ ci—5,ci+5]

:Z Z /’x(w+

€2 {wiEwsﬁ(si—g,si—F%]}

(5.25)

Te

(z,t) - (', gi, t)dme.
-7 Te
wet+3

Y

Foralli € Z. and all w! € wsﬁ(ei S,ei+ ] we have |p(z1, 22,21, t) —p(x,t)| < Ce
in Q' x (w! +%,wl + %) x (0,T). Taking (5 21) into account, we deduce

Z Z /, (o 'va(x t) - (2’ ei, t)dm. —/'i)e(t)-go(t)dmE

1€, {wg€wam(6i7%’6i+%]} wl+e 5 We +' )
< C’a/|f)5|(t)dm5.

Therefore, by (5.19) and (5.25), the following holds

(5.26) lim V. - pedxdt = lim Ve - pdmdt = / nv - pdxdt.
=0 Jax(0,1) =0 Jax(0,1) Qx(0,T)
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Combining (5.24) and (5.26) we deduce, by the arbitrary choice of ¢,

(5.27) w = no.

On the other hand, by (3.14), (5.20), (5.21), Jensen’s inequality and Korn’s inequality
in H} (), we have

/ |neue — ﬁ5|2 (1)dz
Q

= Z/ Z ue —u (v, wl 7)) da
Q’X(eifg,azﬁré]

€2, {wgewsﬁ(si—%,ei-l-%]}

SCZ Z / ’us—ua(xw T’dm
Q' x (ei—§,cit 5]

€2 {wi Gwsﬁ(sifg,siJr%]}

(5.28)

Ouc |’
(9x3

< Ce? Z ng(ei)/

= "% (ei5.cit5]

)z < 052/Q|e(u8)|2 (7)dz.

We infer that, under either (5.13) or (5.14), the sequence (fo(o ) Incue —v.|? (1)
dzdt) converges to 0. Therefore, by (5.23) and (5.27),

(5.29) newe = nv  weakly* in L°°(0,T; L2 (Q;R3)).

Under (5.14), it easily follows from the strong convergence of (u.) to win L?(0,T; L?(£);
R?)) and the weak* convergence of (n.) ton in L>(Q) (see (3.16)), that (n.u.) weakly
converges to nu in L2(0,7T; L?(2; R?)), therefore nu = nv. The same conclusion holds
under (5.13), because (u.) weakly* converges to w in L>(0,T; L?(Q;R3)) and (n.) is
bounded in L°(Q) and strongly converges to n in L?(Q2). The proof of Lemma 5.3 is
concluded. O

LEMMA 5.4. Let (u.) be a sequence in L>=(0,T; Hi (;R3)) satisfying

(5.30) sup / ' Ou, |*

£>0,7€(0,T)

2
(1)dm. < 4o00.

—e(uc)

Te

Then, up to a subsequence, the convergences (5.11) take place. Moreover,

5.31 vy € L(0,T; L2(0, L; HZ(Y))).
n 0

Besides, up to a subsequence, the following convergences hold (see (4.10)):

,L’L:: A ga(x’t) - g%(.’ﬂ,t)yg (a € {1’2})’
1 me 1 (06, 0 0
(5.32) (%emg))af ! (aiﬁ L) ) - ot (s (@B e {1.2)),

1,6 € L>™(0,T; L2(0, L; Hy ().
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Proof. By (5.1) and (5.30), we have

(5.33) sup / (
e>0,7€(0,T)

By (5.30) and (5.33), assumption (5.10) of Lemma 5.3 is verified, hence, up to a
subsequence, the convergences (5.11) take place. By Lemma 4.2, (5.30) and (5.33),
there exist v € L>(0,T; L2 (4 R?)), (o1, Co2, (o3 € L°(0,T; L2(Q x 1)), and E €
L>(0,T; L2(Q x I;S?)), such that (see (2.1))

2 2
Uel Ue2

+

+ u53|2> dme < +o00.

Te Te

wm. = nv  weakly* in L0, T; M(; R?)); nv; = nvg = 0;
(5.34)

U 1 e =
U35 (o3; :a & Co (€ {1,2}); r—e$/(ug) Ao=mb,
£ 13

We will use the following assertion, which will be proved later,

(5.35) n(x)Cos(x,t,y3) = n(x)vs(z,t) ae. in Qx(0,T) x I.

Then, we fix a matrix field ¥ satisfying

(5.36) W e ™ (Qx (0,7);D(;S%)), Ws3=0.

Noticing that x — ¥ (x, t, %’:”) vanishes on the complement of the support of m,,
by integration by parts we get

/ e(u.) ¥ <x7t, ye(m?’)) dm.dt = —/ u, - div, ¥ (w,t, ye(x3)> dm.dt
Qx(0,T) Te Qx(0,T) Te
(5.37) 2

o 0¥,
— Z/ Uea 003 (x,t, yg(x3)> dmedt.
— Jaxor) Te Oys Te

By passing to the limit as ¢ — 0 in (5.37), taking (5.30), (5.34) and (5.35) into
account, we infer

2
(5.38) 0=— / v3(div, ®)sndrdtdys — » / gm
Qx(0,T)xI Qx(0,T) x

ndxdtdyg

Fixing a € {1,2}, ¢ € C®(Q x (0,T)), ¥ € D(I), and selecting in (5.38) a field of
the form W(x,t,ys) := p(z t)q/z(yg)(ea ®e3+e3Re,), we get

0= [l Gyt ([ )

oY
- /Qx(o,T) </1 COOé(x7t7y3)67y3(y3)dy3> o(x, t)ndzdt.
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Choosing 1 such that ([, 1(ys)dys) # 0, and making ¢ vary in C>(Q x (0,7)), we
deduce that

(5.39) vs € L0, T; Ly (0, L; Hy (2))),
then, by integration by parts with respect to z,, infer

ov 0
0= [t 10000s) 522 (o Onddtdys — [Con(i,t.15) 5 ()l )y
Qx(0,T) x I Lo Qx(0,T) x I Y3

We deduce, from the arbitrary choice of ¢ and v, that

Goa € 1 (0,73 L2 (0 H (I); 32 (11, y5) =m0 (2 1) i 0% (0,7) x .
3 T

«

and then that

61}3

(540) nCOoz (3?’ ta y3) = ngoz (l‘, t) - naxa

(x,t)ys in Qx(0,T) x I,

for some suitable &, € L>(0,T; L2(€2)). Next, we choose a matrix field ¥ satisfying
(5.36) and U3, =0V k € {1,2,3}. By multiplying (5.37) by i, we get

2
/ 76(15(”6) Vop (:c, t, LE(IS)) dmgdt =
Ox(0,T) Te

,
a,B=1 €
2

4o \I/a A
-y / Uea Yap (rat, Y (x")) dm.dt.
apge1/ox0,1) Te Ozg Te

By passing to the limit as ¢ — 0, thanks to (5.34) and (5.40), we find

2

Z / Ezﬂlllaﬁnda:dtdy
a,B=1 Qx(0,T)xI

2
8113

OV
= — alz,t) — z,t >
3 / . (&t Tt )

a,f=1

(z,t,y3)ndxdtdys.

By the arbitrary choice of the functions U,g(= ¥gq) in C (Q x (0,T); D(I)) and
(5.39), we deduce that for «, 8 € {1, 2}, the following holds

o € L%(0,T5 L7 (0, L; Hy (), vz € L(0,T; L (0, Ly HF ('),

- L (08 | 0% v3 .
b
n:aﬁ(x,t, y3) = QTL (6% + % (x,t) — naxaaxﬂ (I,t)y:; m QX(O,T) x I.

The proof of Lemma 5.4 is concluded.
Proof of (5.35). By (5.17) and (5.30), we have
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/|u537”[)53\2(7)alm5:i E /dx’ _ |ucs(x,7)— U53($I,wg,7)|2d$3
(5.41) Tejert Jwi-g
. UJ + 2 8“53 2 9 9 4
<er, E / / (z ,:cg,T)dzvggCrs/|e(u€)\ (T)dme <C'r;.

JEJ:

We easily deduce from (5.34) and (5.41) that

(5.42) Desme = nwg  weakly* in L°(0,T; M(Q)); De3—8 Cog.

Fixing v € D(Qx(0,T) x I), we set (see (4.9))

Ye(x3)
(5.43) s ( = (w L g iy rs)(@3)-
JjeJ: Te
We have
(5.44) e (x,u M) — (x,u yf(wg))‘ <Cr. in B..
Te Te
By making the change of variables y = ; , we get fw j 2 < s wlt, %7:3)) dxs =

re [; 9 (2wl t,ys) dys. We infer

/ @83{;&‘ <$, tv yE(xB)
Qx(0,T)

dx dt/ ues (', wl )y (x’,wﬁ,t, yg(:cg)) dxs
wl r

€

% (0,7

= retes(x,wl, t) (2wl t, ys) dys | da'dt
(5.45) :
I

wlt+F . .
dz dt/ u53(w/7wg7t) (/¢ ($/7W§a t7y3) dy3> d:ES
wi-T¢ I

x(0,T

= / ﬁ53(x,t)1/1€(x,t)dmadt,
Qx(0,T)

where ¥ (7,t) == Y (flw (x',wg,t7y3) dyg) ]l(wg_%swg%g)(xg). Noticing that
¢e x,t) (fI z,t,ys3 dyg)‘ < Cr. in B, we deduce successively from (5.42),

(5.45), (5.44), and again (5.42) that
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/U3 (z,t) /¢ (z,t,ys3 dy3 ndxdt—hm ﬁgg(x,t)(/¢ (z,t, y3)dy3)dm5dt
I

Qx(0, T)><I Qx(0,T)

(5.46) = lim ﬁsg(x,t)ng(x,t)dmgdt = lim ﬁsg(m,t)zzg (x,t, M) dmgdt
Te

=0 Jax(o,1) =0 Jax(0,1)
T . Ye (373) _
= lim U53($,t)¢ x7ta dmadt — COS(Iat7y3)w(x7t7y3)ndxdtdy3'
Qx(0,T7) Te Qx(0,T)x I

By the arbitrary choice of 1), assertion (5.35) is proved. O
The next Lemma is specific to the periodic case. Given a sequence (u.) satisfying
(5.10) and (5.47) (and possibly (5.30)), we establish some relations satisfied by its
two-scale limit ug and by the field v introduced in Lemma 5.3.

LEMMA 5.5. Assume that B is the e-periodic set defined by (3.35) and let (u.)
be a sequence in L>=(0,T; Hi(;R3)) satisfying (5.10) and

+ €2|e(us)| (1)dx < 400, u-(0) = ap.

0
(5.47) sup / luc|? + ‘us
r€[0,T), >0 ot

Then, up to a subsequence, the convergences (5.11) take place with n = 1. Moreover

U — ug and ece(u.)— ey(ugy) in accordance with (4.1),

(5.48) ug € L0, T; L*(; H (Y;R®))) N WH*(0,T; L*(2 x Y5 RY)),
ou, ou
o e ue(r) = wo(r) Vo €[0,7).

Furthermore,
(i) If ¥ > 0, then
(5.49) uo(x,t,y) =v(z,t) in Qx(0,T)x B.

(i) If 9 = 0 and if the estimate (5.30) is satisfied, then

(5.50) wo(z, t,y) =v(z,t) on Qx(0,T)x X

Proof. The convergences (5.11) are deduced from Lemma 5.3. Under (5.47), by
Lemma 4.1 (ii), the sequence (u) (resp. (ce(u.))) two-scale converges, up to a subse-
quence, to some ug € L>(0,T; L?(2 x Y;R?)) (resp. E™ € L>(0,T; L?(Q x Y;S?))).
Choosing ¥ € D(2x (0,T); C¢°(Y; S%)) and passing to the limit as € — 0 in the equa-
tion

T
ce(us) : ¥z, t,— ) dedt =
/Qx(o,T) (i) ( 5)

(5.51) i i
- g/ u. - div, ¥ (x,t, f) dedt — / u. - div, ¥ (m,t, 7) dadt,
Qx(0,T) € Ox(0,T) €
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we infer [o oo E™ 1 Wdzdtdy = — [o o 1. @0 divy®dzdtdy and deduce, by the
arbitrary choice of W, that ug € L>(0,T; L*(Q; H{ (Y;R?))) and e, (ug) = E™. By
Lemma 4.1 (i), ug € WH*°(0,T; L%(Q x Y;R?)) and the convergences of the last line
of (5.48) hold. Assertion (5.48) is proved.

If ¥ > 0, by (5.10) and (5.47), the sequence (ee(u.)1 5, ) strongly converges to 0 in
L2(2 x(0,T);R3). On the other hand, by (4.4), (5.48) and Lemma 4.1, (ce(u:)15.)
two-scale converges to e, (ug)lp, hence ey(up) = 0in Q x (0,7) x B and, for a. e.
(x,t) € 2x(0,T), the restriction of ug(z,t,.) to B is a rigid displacement. Since ug
is Y-periodic, we deduce that

(5.52) wo = a in Qx(0,T)x B,
for some a € L*°(0,T; L*(Q;R?)). By (4.4), (5.48) and Lemma 4.1 (i), the sequence

(uc1p,) two-scale converges to ug(x,t,y)1p(y). Fixing ¢ € D(Qx (0,T); R3), taking
(5.11), (5.47) and (5.52) into account, and noticing that ;= — ﬁ, we deduce

/ v - pdxdt = lim U - pdmedt = lim £ / U - plp_ (x)dzdt
ax(0,T) =0 Jax(0,1) =0 7Te Jaxo,1)
1

ug - p(z,t)15(y)dxdtdy = / a - pdxdt,

Bl Jaxo,rxs ax(0,T)

and infer, from the arbitrary choice of ¢, that v = a. Assertion (5.49) is proved.
Let us assume now that ¢ = 0 (i.e. that r. < ). Since the stiff layers are
periodicaly distributed, by (3.35) the field T, defined by (5.20) takes the form

(553) 65(37775) = Z u5($1,$27€i,t)1(6i7%,€i+%] (Jj?,),
1€EZ,:

and coincides in B, with the field ©. given by (5.17). Therefore, by (5.18),

(5.54) /I@ — u2(r)dm. < CT;/Qgﬂe(us)F(T)dx vr € [0,T].

Since r. < €, we deduce from (5.11), (5.47) and (5.54) that [ |v.|?(7)dm. < C. On

the other hand, taking (3.39), (3.35) and (5.53) into account, it is easy to check that

J o2 (r)dme = [, | *(7)dx, therefore the sequence (. ) is bounded in L>(0, T; L*(Q; R?)).
It then follows from Lemma 4.1 (ii) that

(5.55) Ty,

up to a subsequence, for some Ty € L>(0,T; L?(2 x Y;R3)). We establish below that
0y . _
(5.56) s 0 ae. inQx(0,7T)xY, ug =79 on 2x(0,7)x X,
3

and that (see (2.1))
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v (x,t) =vy(z,t,y) ae inQx(0,T)xY,

5.57 _
( ) ’113(337t) = /( 2UO3(xat7515827y3)d81d82'

11
272

The next equation (proved below)

O3

(5.58) B

=0 VYae{l,2}, if (5.30) holds true,

joined with (5.57), yields (5.50). It remains to prove (5.56), (5.57) and (5.58).
Proof of (5.56). Let us fix ¢ € D(2x(0,T); Dy(Y;R?)). By (5.53) we have

_ 0
/Qx(o,T) v, - a;/; ( )dwdt

8 /
= Z/ u(z1, T2, €0, 1) - / % (x t, = E) dxs | do'dt.
: Q% (0,T) (ci-5.eit+s) OU3 € ¢

1€

Since ¥ (z,t,.) € Dy(Y;R?), the following holds

/
/ 8—¢<x,t,m xg)d T3 = 1/ 671/)(1‘7757&7!@3) dy3:05
(ci-%.eit+s) O3 £ € J(-1.1) Oys €

therefore fo(o Ve % (z,t, %) dedt = 0. By passing to the limit as ¢ — 0, we infer

fo(O,T)xY vy - % (x,t,y) dedtdy = 0, and deduce from the arbitrary choice of ¥ that

(5.59) T o i 0x(0,7) x V.
Y3

We set Y1 := (-3, 1
i € Z. (defined by (3.
(0,7), and, for € sma
[ei — £,ei+ 5] x (0,

/Qee(ue):\ll<x,t ) ( da:dt Z// ce(ue) .OT)( ,t,g)dxdt

0,3) and fix ¥ € D(2x(0,7T); D4(Y;S?)). Then, for each
5)), the field ¥ (z,¢, £) vanishes on 9 (Q' x (ei — 5,ei + 5)) X
1 enough, the support of ¥ (ﬂc,t, %) is included in | J;cz € x
T). Hence, by integration by parts, we get

) x
1
al

x(0,T) ieZ. Ez git+5
/
(5.60) =—>» ¢ / (x,t, m—,O) esdH?(x)dt
ieZ. "% {ei}x (0, T) €
—/ cu, - div, ¥ (sc,t, f) Iy (f) + . - div, ¥ (x,t, f) 1y (f) dudt.
QX(O,T) 19 t 13 g # 13

We set ¥, (x ¢z O) = ier ¥ (Il,xg,sz ¢ ,O) ]l(m.fé 6Hé)(xg). Notice that
2 2

s e
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!
£ 0 )—\If(a:,t,xﬁ)’g(]a,
E &

8 x’ ) 0 ( x' )
= =0) - < .
o 5’0 8a‘Il 5,0 <Ce for a€{l,2}

(5.61) '
5 ;

By the definitions ¥, and v. (see (5.53)), there holds

/
5 62 Z /, ’ )e3dH2('r)dt:_/§a '@e (-T,t, %,O) esdxdt.

icZ. X{sz}x (o T) e’ x(0,T)

Taking (5.55) and (5.61) into account, and noticing that by (5.59) we have vg(x, t,y) =
Do(x,t,y',0) in Ox(0,T) x Y, we obtaln

lim — [w. - ¥, ( t, — O) esdxdt = f/ o ¥ (z,t,9,0) esdzdtdy
(5.63) e=0 Jax(o,1) Qx(0,T)xY

= —/ vy - \Ilegdxdtd”;'-lz(y).
Qx(0,T)x%

By passing to the limit as ¢ — 0 in (5.60), applying Lemma 4.1 (i) with he = Ly+ (£)
and taking (5.48), (5.62) and (5.63) into account, we get

/ e, (ug) : Wdzdtdy = /ﬁo - WezdrdtdH? (y) —/ uo - div, Wdzdtdy.
Qx(0,T)xY+ Qx(0,T)xX Qx(0,T)xY+

By integration by parts, we have

—/ uo - div, ¥dzdtdy :/ ug - WezdrdtdH?(y) +/ ey (ug) : Tdaxdtdy.
Qx(0,T)xY+ Qx(0,T)xX Qx(0,T)xY+

Joining the last two equations, we infer that fo(O,T)XE ug - WezdrdtdH?(y) =

fo(o 7)xx 00 WezdrdtdH?(y). By the arbitrary choice of ¥ (and by (5.59)), we
deduce that (5.56) holds.

Proof of (5.57). Let us fix ¢ € D(2x(0,7); R?) and set

(5.64) P(2,t) = Z ¢(CU179527Ei,t)]l(ai_%7ei+%](x3).

i€Z.

By (3.39) and (5.53) we have

€
— u(x' ety t) - p(a, ei, t)dxdt
> o

Te iz 51—7,sz+’5)><(0 T)

/ v, - Eadmsdt =
Qx(0,T)

= Z / u (2, gi,t) - (a g, t)drdt = / v, - P dadt.
'x (ei—5 it Qx(0,T)

€2, %)X(O,T)

(5.65)

We infer from (5.55) and from the estimate
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(5.66) % — .| L (ax(0,7)me) < Ce,

that

(5.67) lim .- Eedxdt = / (/ ﬁo(l‘, t, y)dy) ’(,b(af, t)dl‘dt.
e—0 Qx(0,T) Qx(0,T) Y

By (5.54) and (5.66), the following holds

(5.68) lim = 0.

e—0

/ U - Ydmdt — / v, -Egdmedt
x(0,T) Ox(0,T)

The weak* convergence of (u.m.) to v and (5.65), (5.67), (5.68), imply

/ v - pdrdt = lim ue - Ppdm.dt = / </ ﬁﬂx,t,y)dy) <p(x, t)dadt,
Q ax(0,1) My

x(0,T) =0 Jax(0,1)

yielding, by the arbitrary choice of 1,
(5.69) v(z,t) = / To(z,t,y)dy in Qx(0,T).
Y
By (5.59) and (5.69), the proof of (5.57) is achieved provided that we establish that

OTpq,
dys

(5.70) =0 Va,B€{1,2}.

To that aim, let us fix ¥ € D (Qx (0,T); Cge ((—%, %)2 ;83)). Since w. vanishes on

00 x (0,T), by integrating by parts with respect to z; and zo, we get (see (2.1))

/ /

/ ew(ul): (:c,t, %) dm.dt = — / ul - div), ¥ (az,t, %) dm.dt
Qx(0,T) Qx(0,T)
1 /
— 7/ ul - div), W (m,t, 3) dm.dt.
€ Jax(,T) €

By (5.10), the left-hand side and the first term on the right-hand side of the above
equation are bounded, therefore

/

x—) dmgdt = 0.

5.71 lim ul - div), ¥ | z,t,
€ Yy c

=0 Jax(o,1)
On the other hand, by (5.54) and (5.61), there holds

(5.72) lim = 0.

e—0

! !
/ ul - div), W (x,t, 5) dm.dt — / o, - div), . (x,t, 5) dm.dt
Qx(0,T") € x(0,T) €
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A computation analogous to (5.65) yields
e x' - x’
(5.73) / o, - div,, P, (x, t, —) dm.dt = / o, - div,, P, (ac, t, —) dzdt.
Qx(0,T') € Qx(0,T') €

By (5.61) and by the two-scale convergence of . to Dy (see (5.55)), there holds

/
(5.74) lim o, - div), ¥, (x, t, m—) drdt = / v, - div), W (z,t,y") dzedtdy.
=0 Jax(0,1) € Qx(0,T)xY’

Combining (5.71)-(5.74), we get

(5.75) / v, - div), ¥ (z,t,y") dedtdy = 0,
Qx(0,T)xY

hence e,/ (Tj,) = 0, in the sense of distributions. We deduce that y' — ©j(z,t,v', y3)
is a rigid displacement. By integrating (5.75) by parts, we infer

/ vy (x, t,y) - ¥ (x,t,y) vdzdtdH' (i) = 0,
x(0,T)x0(—%,3)?

and deduce from the arbitrary choice of ¥ € D (Qx (0,7); Cye ((—%, %)2 ;S3)>, that
v, € L? (Q x(0,T), H} ((—%, %)2 ;R3)>. The periodicity of ©;, with respect to ¢’ and
the fact that y' — vy (z,t, vy, y3) is a rigid displacement imply that vy’ — vj(z,t,y’) is
a constant field. Assertion (5.70) is proved. The proof of (5.57) is achieved.
2

Proof of (5.58). We assume (5.30), fix ¢ € D (Qx (0,T); Dy ((—%, 2 ))7 n € D),
and a € {1,2}. Noticing that the mapping * — 1 (x, t, %) n (y5£53)> is compactly
supported in B., by integration by parts we obtain

!
/ (8uw + 6%3) P <x,t, x—) n (LE(%)) dm.dt
Qx(0,T') 81'3 axa 3 Te
/ /
= f/ (uma—w (x,t, m—) + usga—w (:c,t, x—)) n (ys(xg)) dm.dt
x(0,T) Oz3 € 0T € re
/
_/ uaoz’(/} <x’t,£) ﬁ (yE(x?’) dm;.;dt
ax(0,7) Te e/ Oz Te

1 /
— f/ usgg—w (z,t, x—) n (ys(x3)> dm.dt.
€ Jax(,T) Yo € Te

(5.76)

By (5.1) we have

/ 8”6(1 + auES
Oxs 0xq

hence, by (5.30), all terms of the three first lines of (5.76) are bounded. We infer

/
lim ueg(a—w (ac,t7 %) n (yg(fﬂs)) dmgdt =0,

=0 Joxo,r)  Oa Te

2
+

uEOé

2
1
+ [ues|? (T)dm. < C/7ﬁ—2|e(u6)|2(7')dmg7

Te
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and then deduce from (5.54) and from an estimate analogous to (5.61) that

_ . ,
(5.77) lim Ves Uz (x t, %) 7 (M) dmedt = 0,
Te

=0 Jax(o,1) Yo

where Es is defined by (5.64). Taking (5. 03) and (5.64) into account, and noticing
that +- f(mii civiz)l (u) dxs = [, n(y)dy, we get

WA /
/ i63 a¢€ (J},t, 2) n (y6($3)> dmadt
x(0,T) Yo € Te

a /
== Z/ u§3(x/,si,t)i<x/,si,t, x*)n (ys(xg))d:c’dacgdt
Te /x(ai—%,si—&-%)x(o,T) Yo € Te

1€Z.

it (seit, ) wta o)
=¢ uegsg(x', et t)— |« Ezt— dz'dt d
> /Q’X(O,T) 3( )aya In(y) y

1€2:

= (/Qx(o,T) vggg;ij (x,t, %/) da:dt) (/In(y)dy) .

On the other hand, by (5.55) and an estimate analogous to (5.61), there holds

(5.78)

WA /
(5.79) lim 75 202 (33 ¢, 2 >d dt = / vos 2V ddtdy.
=0 Joxo,r)  OYa x5y OYa

Joining (5. 77) (5 78), (5.79), and choosing 7 such that [, ndys # 0, we infer that
fo(o Ty V03 By ay dxdtdy = 0. By the arbitraryness of ¢, Assertion (5.58) is proved. O
In the next Corollary, we derive from Proposition 5.2 and lemmas 5.3, 5.4, 5.5, a series
of convergences and identification relations for various sequences associated with the
solution to (3.5).

COROLLARY 5.6. Let u. be the solution to (3.5).
(i) Up to a subsequence, the convergences (5.11) hold and

(5.80) nvy=nve =0 if k=-4o0, nv=0 if k=-+oo.

Under (5.13) or (5.14), nu = nwv.

(i) If K > 0, the relation (5.31) and convergences (5.32) hold.

(iii) In the periodic case, that is under (3.34) and (3.35), the convergences and re-
lations (5.48) hold. If 9 > 0 (resp. 9 = 0), the relations (5.49) (resp. (5.50)) are
verified.

Proof. Noticing that by (3.8) and (5.5), the estimate (5.10) holds, Assertion (i)
follows from Lemma 5.3 ( Assertion (5.80) is a consequence of (3.8), (5.5), and (5.12)).
If k > 0, by (3.8) and (5.5) the estimate (5.30) holds, and Assertion (ii) follows from
Lemma 5.4. In the periodic case, by (3.34), (3.35), and (5.5), u. satisfies (5.10) and
(5.47) and by (3.8), (3.38) and (5.5) it satisfies (5.30) if ¥ = 0. Hence (iii) results
from Lemma 5.5. O
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6. Proof of theorems 3.1, 3.7, 3.12.

In the spirit of Tartar [53, 54], we will multiply (3.5) by an appropriate test field
&, integrate by parts, and, passing to the limit as € — 0 by means of the convergences
derived in Corollary 5.6, obtain a variational problem equivalent to the announced
limit problem, and also to (4.23) for some suitable H,V, a, h,&,&1. Theorem 4.4 will
yield existence, uniqueness, and regularity of the effective displacement. Uniqueness
implies that the convergences obtained in Corollary 5.6 for subsequences hold for the
complete sequences.

6.1. Proof of Theorem 3.12. We set

e {(wo,¢) € LX(Q x Y;R®) x L2(O;R), }
wy=1 inQxB it 90,

(wo, ), (o, %)) = /Q oo - Todady,

H:=L*(Q x Y;R3) x L*(Q; R?),

(6.1)

if 9=0.

((wOa 1/")7 (1,\507 'lp))H = /Q v pwy - ﬁdedy + Apl¢ ) 'l,/;/d.'lf,

We easily deduce from the positiveness of p and p; (see (3.7)) that H is a Hilbert
space. We fix a couple (wq, ) € L?(0,T; H) satisfying (see (3.37))

wo € CF([0, T); D(Q; G52 (Y5R?))), b € C=([0,T]; D(QRY)),

wo(1) = 220 (1) = (1) = %

)
)
A4) v =1 =0 if k= +oo, Y=0 if k=400,
) wol,y) =1(.) in2x(0,T)x A.

(T) =0,

We choose a sequence (o) of positive reals such that

(6.6) EKa k1 and [%<<%<<1 if 19:0},
and set
(6.7) C.:={x € Q, dist(z, B:) < a.r:}.

It is usefull to notice that

QeTe

(6.8) L3(C.\B.)<C —

and that, by (6.5), the following estimate holds for m € {1,2}:

(6.9) ’w(ac,t)—wo (x,t%)‘—&- aaz;llf(x’t)_ 8;;’:0 (x,té) <CP: in Cex(0,1),

fe=a. V>0, f.== ifd=0.
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By (6.7), we can fix a sequence (1.) in C>°(Q) satisfying

(6.10) 0<n. <1, ne=1 in B, ne=0 in Q\C, V| <

Telg

The sequence of test fields (¢.) mentioned above will be defined by

(6.11) b (,) = 0o (x) Do (2, 8) + (1 — 0o ())wo (x t, g) ,

t) = wo (z,6,2) in Q\ Ce x (0,T), we

where {/;\E is described in Section 7. As ¢.(x,
(7.4) that the following estimates hold in

deduce from (6.5), (6.9), (6.10), (6.11), and
Q x (0,T) for m € {1,2}:

be(w, t)—wo (.1, :)Ha;ﬁa (x,t)—a;fffo (8. %) ‘ < CBi.,

Bre=reta. if9>0, fro=-5 if 9=0.

€
3

(6.12)

It is also interesting to notice that by (6.10), (6.11), and (7.4),

0" . 0"
g &t = Hm

(6.13)  |pe(z,t) — Y(x,t)| + ‘ (x,t)‘ <Cr. in B.x(0,7).

By (3.5) and (3.6) we have |o-(¢)| < Cpoc|Vee| in (Q\ Be) x (0,T), therefore by
(6.9), (6.10), (6.12), (7.4), the next estimates are satisfied in (C: \ B:) x (0,7

‘0'5 (@) <Cuoc (|V77€|

Do) (ot 5) [0 )|+ |9 o (.2

(Ts + 55) + g) S CNOEﬂQS)

(6.14) < Crioe (

1 1
625: + - if19>0a 626:
Q€

()

ele

—_

if 9 =0.
Qe

Applying (4.5) to x. = p-1o\B., ho € {wo, %,wo(O)7 %(O)}7 we deduce from
(3.7), (4.4), (6.6), and (6.12), that the following convergences hold for m € {1,2}

am 0w
pedlo\p. — ply\a(y)wo, peatiisﬂﬂ\Bs — P]IY\A(y)aTmO>

0, ow
pe@<(0)1o\ . —ply\ 4 (y)wo(0), PE%(O)HQ\BE—»pﬂy\A(y)TtO(O)-

(6.15)

By multiplying (3.5) by ¢, after integrations by parts we obtain (see (6.3))

¢ -
Eug-—da:clt—I—/ ga-—de—/ by - @ (0)dx
/QX(O’T)P 12 QP 0 816() QP 0 ¢e(0)

(6.16)
+/ e(u.) : o (¢ )dadt = / pef - Ppedadt.
ax(0,T) ax(0,T)
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By (3.7) and (3.39), we have

0? 0?
/ Pl - qga dxdt = / plo\ B, e - —qzsdxdt
x(0,T) ot ax(0.T) ot

*pe
+/ D Ue - —=—dmg(x)dt.
x(0,T) Prtte g «(®)

We deduce from (5.48) (see Corollary 5.6), and (6.15) that

(6.17)

7. 0w
lim plo\ g U - dxdt :/ oLy 4 (y)ug - ——dzdtdy.
=0 Joxor) VBT g OX(0,T)XY’ ' ot
By (5.11), and (6.13), we have
02 0?
lim DU - —qgadms(:c)dt = / P10 - —gjdmdt.
€20 Jox(0,1) ot Qx(0,T) ot

The last three equations imply

0%, 0%w 0%
6.18) lim [ p-uc - dxdt = / pug- ———dxdtdy —|—/ PV - ——-dadt.
(6.18) =0 Joxor) O ax(0,T)xy\4 Ot? Q><(0,1T) ot?

As, by (3.5), ag, bg, and f are continuous, we obtain by the same argument

, e dwy /7 0?4
1 g - _ . 9% . ’
im Qp a5, (0)dz ~/Q><Yp\fl40 5t (0)dxdy + Qplao BT (0)dz

e—0

619) 1l [ pobo- 6 Ode= [ oy wo(O)dsdy + | pibo-(0)dz,
e=0/q QxY\A Q

lim pef - pedxdt = / pf - wodxdtdy + / nf- a—dedt.
e=0 Jox0,T) Ox(0,T) x Y\ A ax(.r) Ot

We split the 4*" term on the left-hand side of (6.16) into the sum of three terms:

1
/ e(ue) : oo(¢pe)daedt = e + Ine + I3e; L1 := / ce(ue) : —o:(¢pe)dxdt,
(6.20) x(0,T) O\C-x(0,T) €

I ::/ ce(ue) : éa’e(¢5)dmdt, I3 ::/ e(u.) : o-(¢)dxdt.
e} B

\B:x(0,T) «x(0,T)

By (6.10) and (6.11), we have ¢.1o\c, = wo (:v,t, f) 1g\¢,. Taking (3.5), (3.6), and
(3.34) into account, we deduce that

(6.21) ’ias (Pe)— O'Oy(’wo)(m,t, g) ‘ lIovc. < Ce,

where the operator o, is defined by (3.42). The following convergence
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(6.22) ]lQ\CE —» ]ly\A,

follows from (4.4) and from the strong convergence of 1¢ \p, to 0 in L?(), which
results from (6.6) and (6.8). By applying Assertion (4.5) of Lemma 4.1 to hy :=
ooy(wo) and x. := Lo\, taking (6.21) into account, we infer

(6.23) éae (¢) Lore. — ooy(wo)Ly\a(y).

We deduce from (5.48), (6.20), and (6.23) that

(6.24) lim I, = e, (ug) : ooy (wo)dzdtdy.

=0 /Qx(o,T)xY\A

By (3.34), (6.8) and (6.14), we have [, \ 5 o |20e(@c)|” dadt < C (ac+ ) if
¥ >0, and [, \Bex(0.T) Eag(q’)E)Fdxdt < Og= if ¥ = 0. Therefore, by (6.6), the

sequence (%0'5 (d)E)ILCE\BE) strongly converges to 0 in L?(2x (0,7);S?). Accordingly,
we infer from (5.47) and (6.20) that

(6.25) lim Ip. = 0.
e—=0

Finally, the limit of the sequence (I3.) defined by (6.20) is computed in Lemma 7.1
in terms of k and k. Passing to the limit as € — 0 in (6.16), collecting (6.4), (6.18),
(6.19), (6.20), (6.24), (6.25), and (7.5), we obtain the variational formulation given,
according to the order of magnitude of k¥ and &, by (6.26), (6.39), (6.41), or (6.32).
We distinguish 4 cases:

Case 0 <k < +oo. We find

02 0
[ puo- Ttdndedy+ [ pan- 00) ~ pb - wo(0)dody
ax(0,7)xy\a Ot axO,7)xy\a Ot

0? 0
+/ Zch #dﬂcdt + / p1ao - i(o) — p1bo - (0)dx

—|—/ ey(ug) : ooy (wo)dadtdy + k/ e, (V') : oy ()drdt
Qx(0,T)xY\A Qx(0,T)

= / pf - wodxdtdy + / i J - pdadt,
Qx(0,T)xY\A Qx(0,T)

for all (wo,) € L?(0,T; H) satisfying (6.2)-(6.5). We set (see (6.1))
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§= (UQ/U), §o = (U‘O?ao)a &= (bo,bo), h = (.f7f),

wo € L*(Q; H (Y;R?))
V.= (U)(),’l,b) eH 9 1/ 1f19>07
¢171/)2 € L (OaLvHO(Q ))
wo € L*(Q; H{ (V;R?)),
1,92 € L2(0, Ly Hy ()
V= (wo, %) € H| w(x,y) =4'(x) on Qx¥ ifre <e,

(6.27) /E wos (-, ) AH2(y) = s

a(v, ) == k/ﬂew/ (V') : o (Y')de,
a((ug,v), (we, ¥)) = /Q s ey(ug) : oy(wo)dady +a(v, ),

((UO,U),(WOW))V:: ((UO,’U), (w0,¢))H +5(va¢) + o Vyy\/ljo Vywodxdy

By (4.8), (5.11) and (5.48), we have & = (ug,v) € L2(0,T; V), % € L*(0, T; H), thus

by a density argument the variational formulation (6.26) is equivalent to (4.23). By
(6.1), (6.27), and the following Korn’s inequality (see [42], p. 14),

[ ks NwPay<c [ jwP ey vwe B\ AR,
y\4 Y\A

for all 5: (wo, 1) € V, the following holds

16113 = I€1% +a(w,v) + IV (wo)l|Z2 v\ ake)

(6.28) ~ - -
< CIE|H +Clley (wo)l|7 2wy amsy + @1, ¥) < CIEE + Cal€,€),

yielding (4.18). We deduce from Theorem 4.4 that & = (ug, v) is the unique solution
to (6.26). By (4.19), (4.20), (6.27), the following holds

23

(6.29) ¢ € C(0,T];V)n C([0,T1; H), £(0) = (a0, av), 5

(0) = (bo, bo).
It follows from (6.29), from the following inequalities (deduced from (6.1), (6.27))

[lwollL2asmp (vire)) + [[91lL2@ms) + 101l L2(0,Limg )
(6.30) + ||¢2||L2(0,L;H01(Q')) < Cll(wo, ¥)llv ¥ (wo, ) €V,
llwollz2(xyrs) + 11|22 (rs) < Clwo, ¥)|n YV (wo,%) € H,

and the following implication, holding for any couple (F1, E2) of Banach spaces

AGE(El,EQ)
BeC*(0,T]; Ey)

dS dS
L (AoB)=A
gs (Ao B)=Aeon

} = {AoBEC’“([O,T];Eg); BVs<k|,
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apphed with B = 5 = (U’Oav)? E, € {H7 V}7 (A(é-)?EQ) € { (UOaLz(QvH;(YvR?)))) )
(v,LZ(Q;R?’)) , (Ua, L?(0, L; H&(Q’))) , (uo,Lz(Q X Y;R?’)) , (v7L2(Q)) }, that

uo € O([0, TT;L(Q; Hy (Y3 R?)NCH([0, T]; L*(2 x Y3 RY)),

auo
up(0) = ag, ——(0) = by,
. 0(0) = ao, 52(0) = by a
v e C'(0. T L RY), v(0) = ag, 5/ (0) = bo,

v1,v9 € C([0, T); L2(0, L; HY(Y)))NCH([0, T]; L*(Q)).

Next we prove that the variational problem (6.26) is equivalent to (3.40). Setting
1 =0 in (6.26), noticing that e,(ug) : ooy (wo) = Toy(uo) : Vy(wp), we get

0%w 0
/ pug - 5 dxdtder/ pag - o (O)d:ﬂdy / pbo - wo(0)dzdy
(6 32) Qx(0,T)xY\A ot QxY\A ot QOxY\A

—|—/ ooy(uo) : Vy(wo)dedtdy = / pof - wodxdtdy,
Qx(0,T)xY\A Qx(0,T)xY\A
and, letting wq vary over D(Qx (0, T)xY \ A;R3), deduce

82u0
P or
By integrating (6.32) by parts with respect to (¢,y) for an arbitrary wq satisfying
(6.2), (6.3), (6.5), we infer from (6.33) that fo(O,T)xOY ooy (wo)v - wodzdtdH?(y) =0
(v := outward pointing normal to 9Y’). Noticing that oo, (ug)y = 0 H* a. e. on

dY N'A (because if ¥ > 0, then A = B and, by (5.49), oo, (uo) = 0 in B, whereas if
r. < ¢, then A =13 and H2(0Y NX) = 0), we deduce

(6.33) —divy(ooy(uo)) = pf in Qx(0,7)xY\ A.

(6.34) ooy(wo)v(z,t,y) = —ooy(uwo)v(z,t,—y) on Qx(0,T) x Y.
Fixing (wog, ) € L*(0,T; H) satisfying (6.2), (6.3), we infer from the Y-periodicity
of wy, (6.5), and (6.34), that (see (3.42))

—/ o0y (uo)v - wodzdtdH?(y) = —/ ooy (Uo)Vy\ 4 -apdxdtdH? (y)
Qx(0,T)xd(Y\A) Qx(0,T)xd(Y\A)NA

_ / g(u) - Pdadt.
Qx(0,T")

By multiplying (6.33) by wy and by integrating it by parts over  x (0,7) x Y \ A,
thanks to (6.31), (6.34), (6.35) we obtain

(6.35)

O?w ow
/ pug - —2dadtdy + / pag - (O)dacdy / pbo - wo(0)dzdy
(6 36) Qx(0,T) xY\Aa QOxY\A (9 QXY \A

+/ ey (ug) : ooy (wo)dzdtdy + / g(ug) - pdaedt= / pf - wodxdtdy.
Qx(0,T)xY\A Qx(0,7T) Qx(0,T)xY\A

By subtracting (6.36) from (6.26), we find
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2

/ Pv - aa’lfdxdt / g(uo) - pdrdt + k | ew (V') : o (Y )dzrdt
(6.37) Qx(0,T) Qx(0,T) Qx(0,T)

0
+ [ a0 G0t = [ by w0)da = | i s

Making 1 vary in D(Qx (0,T); R?), we infer
P1 8t2
By (6.31), (6.33), (6.34), (6.38), and Lemma 5.5, the couple (ug,v) is a solution to

(3.40), (3.45). Conversely, any solution to (3.40), (3.45) satisfies (6.26).
Case k = 400, £ =0. We obtain

(6.38) — kdivo, (v') =p,f +g(ug) in Qx(0,T).

2

0 0
/ pug - - dadtdy + / pay - 22 (0) — pbo - wo(0)dxdy
QxX(0,T)x Y\ A ot axy\a Ot

0? 0
(6.39) + / Pros L et + / 710052 (0) — Fybostis (0)da
Qx(0,T) Q

—|—/ ey(ug) : ooy (wo)dedtdy = / pf - wodzdtdy +/ P f3sdxdt.
Qx(0,T)x(Y'\A) Qx(0,T)xY\A Qx(0,T)

This variational formulation is satisfied for all (wo, ) € L?*(0,T; H) verifying (6.2)-
(6.5). We set (H and V being given by (6.1), (6.27))

f = (’ll;o,'l]), H(Q) = {(w07¢) € H7 ¢1 - ¢2 - O}a
(,)pe =00, VA =vnH? ( Jve:=0.)v,
h® = (fly\a+ fresla, faes),

(6.40)
a® (w0, v), (wo, ) = /Q oy o0 )y,

5(()2) = (aolly\a+ apzesl 4, apzes), 552) := (boly\ 4+ bozesl 4, bozes).

By (4.8), (5.10), (5.48) and (5.80), we have & € L?(0,T;V®) and ¢ € L?(0,T; H®).
Therefore, by a density argument, the variational problem (6.39) is equivalent to
(4.23). By (6.28), (6.40), the estimate (4.18) is satisfied. We deduce from Theorem
4.4 that &€ = (ug,v) is the unique solution to (6.39) and that ¢ € C([0,T]; V)N
C*([0,T); H®), £(0) = 5(()2), gﬁ( )= %2). Then, repeating the argument employed to
prove (6.31), we infer from (6.30) and (6.40) that the initial-boundary conditions and
regularity properties stated in (3.44), (3.46) are satisfied. Setting ¢35 = 0 in (6.39),
we get (6.32) and deduce (6.33), (6.34), (6.35), (6.36). Then, subtracting (6.36) from
(6.39), taking (6.4) into account, we find

02 0
/ P13 81/) dxdt — / (g(uO))gwgdl‘dt + / ﬁlaog%(())dl‘
Qx(0,T) Qx(0,T) Q

—\/ﬁﬂ)gs’@/]g(O)dl‘ :/ ﬁlf3¢3dxdt
Q Qx(0,T)
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Making 3 vary in D(Qx (0, T)), we deduce that 5, 2 8t2 =71 f3+(g(up))s in Qx(0,T)
and infer that (ug,v) is solution to (3.40), (3.46).
Case 0 < kK < +00.  Passing to the limit as ¢ — 0 in (6.16), we obtain

82 8’(1)0
Uy - ——2dadtdy + pag - ——(0) — pbg - wo(0)dxdy
<(0,T) X Y\ A ot? axy\a Ot
d d Ovs Pyb 0)d
+ 1U3 xdt+ [ praos— - 5 (0) = p1bosthos(0)dx
6 41 Qx(0,T)

+/ ey (ug) : ooy (wo)dadtdy + / H(v3) : H? (¢3)dxdt
Qx(0,T)x (Y \A) Qx(0,T)

/ pf - wodadidy + / 5y fobadadt,
Qx(0,T)xY\A Qx(0,T)

for all (wg,)e L?(0,T:H) verifying (6.2)-(6.5). We set (see (6.27), (6.40), (7.6))

H®) .= H®),
L*(0,L; H3 (Y
Ve = {(’woﬂ/)ge:i) cv® s € L7(0, L; Hy (') }
(6.42) wo(z,y) = Y3(x)es on Qx X
(((uo,v3es), (wo, P3e3)))y e = (((uo, vzes), (wo, V3e3)))v
621)3 82’(/J3, 621)3 82’(/J3, 621)3 82’(/J3, 621)3 a%/&;,)
+/ (356% dz?  0x3 Ox2 + 0% 0x3 + 0z% 0x? d,
a(‘3)(v363,1/)363 /H U3 Ha(ll)g)dl'dt

(643) 4™ ((ug, v), (wo, ) = / ey (uo) : oy (wo)dady +a™ (v,9),

Qx(Y\B)

(3) — (()2)’ §3) = 552)’ h(?r) = h(2)

By Corollary 5.6 (ii) and assertions (4.8), (5.10), (5.48), and (5.80), there holds £ =
(ug,v) € L*(0,T;V®)) and % € L?(0,T; H®) hence, by a density argument, the
variational formulation (6.41) is equivalent to (4.23). By (6.27), (6.28), (6.40), (6.42),
(6.43), and (7.6), for all £ = (wo, %) € V3, we have

€112 ) < |IEIZ + Ca® () < C(I€]mr + al€, &) +a® (3, )
< C(I€] g + a®(E,€)),

hence Assumption (4.18) is satisfied. We deduce from Theorem 4.4 that &= (ug, v) is
the unique solution to (6.41) and that & € C([0,T]; VE)NCL([0,T]; H®)), £(0) = (()3),
%(0) = §§3), yielding, by the inequality (6.30) joined with

[¥sllL2(0,:m2(01)) < Cll(wo, ¥)[|lv ), ¥V (wo, P) € v

the initial-boundary conditions and regularity properties stated in (3.44), (3.47). Re-
peating the argument for the case 0 < k < 400, we set )3 = 0 in (6.41), obtain (6.32),
deduce (6.33), (6.34), (6.35), (6.36), subtract (6.36) from (6.41), and get
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82
/ P1V3 Qg dxdt + / H (vs) : H? (¢3)dxdt
axo,ry Ot 6 Jox(o,1)

(6.44)
*/ (Q(Uo))3¢3di€dt*/ 71(bo)3v3(x, 0)dx :/ P1f3sdxdt.
Qx(0,T) Q

Qx(0,T)

y (7.6), the following equation holds in the sense of distributions in D'(2x (0,T))

2
" H(vs) - H () prp = oy o

31+2 83:283:2’1%

D', D

Making 3 vary in D(Q2x(0,T)) in (6.44), we infer

_ 62113 I+l o 0 V3 _ .
P1 8t2 3l+2 Z 8x28x% _p1f3+(g(u0))37 m QX(O?T)7

and deduce that (ug,v) satisfies (3.40), (3.47).

Case k = +00. By (7.5) we have Is. = 0. By passing to the limit as e — 0 in (6.16),
we obtain (6.32) and, taking (5.80) into account, deduce in a similar manner that
(ug, v) satisfies (3.40), (3.48). The proof of Theorem 3.12 is achieved.

6.2. Proofs of theorems 3.1 and 3.7. Under the assumptions of Theorem 3.1,
by (3.12) and (5.5), the sequence (u.) (resp. (2¥=)) is bounded in L*>(0, T; H} (Q; R?))
(resp. L*>(0,T;L*(Q; R?))), therefore by the Aubin-Lions-Simon lemma (see [51,
Corollary 6]), (u.) strongly converges in L?(0,T; L?(€;R?)) and weakly* converges
in L°°(0,T; Hi(Q;R3)), up to a subsequence, to some u € L*>(0,T; H}(Q;R?)). In
particular, assumption (5.14) of Lemma 5.3 is satisfied, hence nu = nwv.

Under the assumptions of Theorem 3.7, by the apriori estimates (5.5), the se-
quence (u.) is bounded in L>(0,T; L?(€;R?)), hence weakly* converges in L (0, T’;
L2(;R3)), up to a subsequence, to some u € L°(0,T; L*(Q;R?)). By (3.26) and
(3.27), Assumption (5.13) of Lemma 5.3 is satisfied, thus we also get nu = nv. Ap-
plying Corollary 5.6, we deduce in both cases from (5.11), (5.31), (5.80), and (7.5),
that

wome = nu weakly* in L>°(0, T; M(;R?)),

ur,up € L%(0,T3 L7 (0, Ly Hy(Y))),

er (ul)me = ney (u') weakly* in L>°(0,T; M(Q;S?)),
(6.45) nuy = nug = 0, if k=400,

uz € L>=(0,T; L2(0, L; H3(Y))) if x>0,

nu =0 if k=400,

Inkm(v "/") nkm(u "/")
Let us check that

(6.46) To\B. X1 —9n weakly* in L>(9),
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where 9 is defined by (3.10). If 9 = 0, (6.46) follows from the fact that |B:| — 0.
Otherwise, if ¥ > 0, then the sequence (:=1p,) is bounded in L>*(Q) and, by (4.7),
weakly* converges in L>(€2) to n. It then follows from (3.10) that (1 B.) weakly*
converges in L () to ¥n, yielding (6.46). Next, we check that

(6.47) u.lg\p. — u(l —9n) weakly in L*(Q x (0,7);R?).

If 9 = 0, Assertion (6.47) follows from the weak convergence of (u.) to u in L*(Q x
(0,T)) and the convergence of £3(B.) to 0. Otherwise, if ¥ > 0, then (iua]lBE) is

bounded in L?(2 x (0,7)), and weakly converges, by (6.45), to nu. Hence, by (3.10),
(u-1p,) weakly converges to ndu, yielding (6.47).
We fix a field 9 verifying (6.2), (6.3), and

(6.48) npy=npe =0 if k=+4o00; nip=0 if k=+occ.

The sequence of test fields (¢.) is defined by substituting 1 for wg in (6.11), that is

(6.49) e (,1) = 1 (x) e (2,8) + (1 = 1 (2)) (2, 1),

where 1, (x,t) is described in Section 7, and 7. satisfies (6.10), now with respect to
the non-periodic sets B, C. given by (3.4), (6.7). We assume that (see Remark 6.1)

e < a. <1 under the assumptions of Theorem 3.1,
(6.50) €

oe << ae << 1 under the assumptions of Theorem 3.7.

By (6.10), (6.49), and (7.4), the following estimates hold in Q x (0,7T) for m € {1,2}:

(6.51) G (x,t) — (x,t, %)‘ + ’8;25 (x,t) — %7:—;/] (x,t, g)

< Cr,.

We deduce from (6.8) and from the estimate o (¢.(z,t)) < CL= in C.\ B: x (0,7),
obtained in a similar manner as (6.14), that

Te

2
(6.52) / oo (e (2, 1)) dadt < CE2
C\B:x(0,T) &%

e€

We multiply Equation (3.5) by ¢. and integrate it by parts to get (see (6.16), (6.20))

2
/ paue'quedxdt+/psa0'%(o)dx_/pab0'¢5(0)d'r
(6.53) x(0,T) ot Q ot Q

+ I + 1o + I3 = / ps.f : d)gdl'dt
Qx(0,T)

By the same argument as the one used to get (6.18), (6.19), splitting each term as in
(6.17) and taking into account (3.7), (4.7), (6.46), (6.47), (6.51), we obtain
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82 62 2
lim Pelc - P dxdt = /p(l —In)u - ldmdt + /ﬁlu : %ndwdt,

e=0 J0ox(0,T) ot? x(0,T) ot? ax (0,10t
0. 9, 2
lim [peaq - i(O)dgc = /p(l —9n)ay - —w(O)dw —|—/71a0 . a—w(O)ndgcdt,
e—0 QO 8t Q 8t o) 6t2
(6.54)
lim | pebo - ¢ (0)dx = / p(1 —9In)bg - ¥ (0)dz + / p1bo - Y (0)ndzdt,
e—0 Jo Q Q

62
lim pef - dedxdt = / p(1 —9n)f - pdadt + / S —Zjndxdt.
€20 J0ox(0,7) x(0,T) ax@r) Ot

Under the assumptions of Theorem 3.1, by (3.12), (3.13) and (6.49) we have o.(¢:) =
o (1) in Q\C: x(0,T), and by (3.11) and (6.7), lim._,o |C.| = 0, therefore the sequence
(oc(¢pe)Lo\c.) strongly converges to o (vp) in L*(Q x (0,7);S?)). We deduce from
the weak* convergence of (u.) to w in L>(0,T; H}(Q;R?)) that

(6.55) lim ;. = / e(u) : o()dxdt.
Qx(0,T)

e—0

Under the assumptions of Theorem 3.7, noticing that |o(¢:)1ao\c. | = |o-(¥) 1o\ | <
Cuoe and taking (3.26), (5.5), (6.20) into account, we get

1
2

(6.56) limsup I1. < limsup Cuée (/ ,uoee(ug)(T)Qd:vdt> =0.
0 Qx(0,T)

e—0 e—

By (5.5), and (6.52), we have

1 1 1

2 3 3

Ize<</ |e(u€>|2dxdt> ( / |ag(¢5<w,t>>|2dxdt> gc(&”i) .
Qx(0,T) C-\B:x(0,T) Qe €

Under the assumptions of Theorem 3.1 (resp. Theorem 3.7), we deduce from (3.12)
and (6.50) that

(6.57) lim 5. = 0.

Collecting (6.54), (6.55), (6.56), (6.57), and (7.5), by passing to the limit as € — 0 in
(6.16), we obtain, under the assumptions of Theorem 3.1,

0? 1o}
/ (p+pin)u- a—fdxdt+/ (p+pin) (ao : %(0) - bo~¢(0)> dx
(6.58) Ox(0,T) t Ox(0.T) t

4 / e(u) : o ($)dadt + T (0, 1) = / (p+ Pun) f - udadt,
Qx(0,T) Qx(0,T)

and, under the assumptions of Theorem 3.7,
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2
/ (p(1 —In) +pn)u - a—zbdxdt
x(0,T) ot

(6.59) + o= om) +7im) (a0 2210) ~ by - 6(0) ) e + Ty a0, )

= / (p(1 —In) +pyn) f - udxdt.
Qx(0,T)

The variational formulation (6.59), joined with (6.45), is equivalent to (4.23), where

Hy o= {z/)eLQ(Q; R3)

nY; =nps =0 if k = +o0;
np =0 if K = 400 };
1,0 € L2(0, L; HY(Q)) if0<k

Y3 € L2(0,L; HZ(Q)) if 0 < /@,}

)

(660) Vn,k,/{: {¢€Hn,k,n

(), , . = / (p(1 — ) + Pr)u - bz

Q

((’LL, w))Vn,k,K - (u’ TI#)HW}Wi + In,k,fi(ua 1!’); an,k,n(ua 17[)) = In,k,n(ua 17b)a

hn,k,n = Hn,k,n(.f)a gO,n,k,m = Hn,k,n(ao)v fl,n,k,n = Hn,k‘,fi(bo)7

(6.61) g if 0 < k < 400,
' H?’L,k,fi(g) = (gl]]-{n:O}7g2]l{n:O}793)7 if k= +00, K < 400,
glin—o) if K = 4o00.

The variational formulation (6.58), joined with (6.45), is equivalent to (4.23), with

data deduced from (6.60), (6.61) by substituting Vi, x . and @y k , for Vi, i .. and ap  x,
where

Voo 3= Vi YR (), = (@ )yio + [ Vu- T,
(6.62) h &
) = ) + [ ela): o)
The assumptions of Theorem 4.4 are satisfied in both cases, guaranteeing existence,
uniqueness and regularity properties of the solution. Finally, by integrations by parts,
it is easy to check that the variational problems (6.58), (6.59), associated with (6.45),
are equivalent, under (3.17), to the problems announced in theorems 3.1, 3.7.
REMARK 6.1. The assumption stated in the first line of (6.50) is employed to
derive (6.25) and requires (3.11). The case po. = >0, 9 > 0, k = +00 is open.
REMARK 6.2 (Multiphase case). Theorems 3.1, 3.7 can be extended to the case of

m distributions BE} (s € {1,..,m}) of parallel disjoint homothetical layers of thickness
rf], Lamé coefficients A[l‘ﬂ,y[l‘ﬂ, and mass density %ﬁ[ls], defined in terms of a finite
subset wl of (0,L) and rll by a formula like (3.4). The sets Wt are disjoint and their

union we =i, wLS] satisfies (3.2), which implies that the minimal distance between
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two distincts points of we is equal to €. We suppose that € > TLS] (1496), Vs e {1,..,m}

[+]
for some § > 0 and set 9l¥ := =. The Lamé coefficients in Q\ | Jo=, B are
assume to be constant and denoted by Aoe, pHoe-

When Aoe, poe satisfy (3.26) and each sequence (n s ]) strongly converges to nls! in
LY(Q), the solution to (3.5) weakly* converges in L°(0,T; L?(Q;R3)) to the unique
solution to the problem (4.23), where the data are deduced from (6.60) as follows:

H = () Hye gt wie; (u,9) 5 = /Q(P(l — > oblnld) + vl u - pda
s=1

s=1

V= ﬂ weleiels (W )v = (W) + Y Tyl giel ot (U, ),
s=1

(6.63) a(u, 1) = ;an[5]7k[517m[51 (u, 1),

h=H(f), Eo =H(ag), & = H(bo),

0 ifIse{l,.,m}, n[S](x) >0 and k¥ = 40,
(H(g)(2))a = .
go otherwise, (a € {1,2}),

0 if 3s € {1,..,m}, nl¥(x) > 0 and k¥ = +o0,
(H(g)(z))s = .

gs(x) otherwise.

When Moe, poe satisfy (3.12), and when 9% = 0 for each s € {1,..,m}, the

solution to (3.5) weakly* converges in L°°(0,T; H}(Q;R?)) to the unique solution to

(4.23), with data ﬁ, '\7, a... deduced from H, V, a... defined in (6.63) as follows:

Hi=H; V=VAH(QR): ((u,)g = ((u,¢>>v+/ﬂw-wdx;

a(u, ) :a(u,ip)—i—/e(u):o(zp)dm; (h,&0,61) == (h, &, &)

REMARK 6.3 (Elliptic case). When Ao, poe satisfy (3.12), and when 95! = 0
for each s € {1,..,m}, the solution u. to the equilibrium problem (3.32) is bounded
in HY(Q;R3) and weakly converges to the unique field u € % satisfying a(u, ) =
(fih)z, Vi € V, where V is the Hilbert space and a(.,.) the continuous coercive
bilinear form on % given by (6.64).

If Moe, poe satisfy (3.26), each sequence (nL ]) strongly converges to nl*! in L?(Q),
and u. is bounded in L?(2;R?), then u. weakly converges, up to a subsequence, to
some u € V werifying a(u,v¥) = (f,¥)g Voo € V, with H,V,a(.,.) defined by (6.63).
In this case, the non-negative bilinear form a(.,.) may fail to be coercive on L?(Q;R3)
and the sequence u. to be bounded in L?(Q;R3). These coercivity and boundedness
are guaranteed by the existence of s € {1,..,m} and ¢ > 0 such that k¥ > 0 and

nk! 2 cae in Qe =, 00 (52' —5,ei+ %] (see (3.15)). (Notice that if the second

assumption in (3.2) is replaced by min; jic s jzjr |wi — wl'| = ne for some arbitrarily
fized m € (0, %), our proofs are unchanged and nfﬂ > clq. does not imply that Bés] 1

e-periodic).
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Sketch of the proof Let s be such that k!*! > 0. The bilinear form associated with

(3.32), namely a-(p,%) = [, e(p) : o(P)dz V(p, ) € (H&(Q;R:)’))Q, satisfies, by
(3.5), (3.8), and (3.26)

2
(6.65) a (¢, ¢) 20/952|6(90)2 Le(p)| dml.

Let u. be a sequence in Hi(Q;R3), and let m[ ], i)[ ], vLS] be defined by substituting
wh! for we in (3.39), (5.17), (5.20). We have, since nk > clg,_,

/|u5|2dm§/ lu.|? dx+C’/ s, —v[g]
Q Q\Q.

Looking back at (5.28), and using the fact that u. vanishes on 92, we obtain

/ lu|? dx—l—C/ ’n[j]ua — gl
Q\Q. Qe

3062/ Otz () 4 Z/
Q\Q. Q' x(ei—g

(9333 2,51+
< 052/ Vu.dz < 052/ le(u.)*dz,
0 Q

dx.

2

Oou, 2
3333

(1)dx

2
yielding [, lu|? dz < Ce2 [y le(ue)2dz + C [, || dz. On the other hand, by

(5.22), (5.18), (5.1),

de:/ ‘f)[;]

<C’5r[s]/ le(u.)|? dml

2
6[;] uE - Ls}

e(u,) m[j]

therefore, for all u. € Hg(:R?), [, lu.|?de < Cac(ue,u.). In the particular

case when u. is the solution to (3.32), we infer fQ \u5|2dx < Cfo cu dr <
1

C(fQ \u8|2dx)2, hence (u.) is bounded in L?(Q;R3). We choose a smooth field

Y €V and consider the associated sequence of test field ¢ used for the proof of the
multiphase case, whose construction is similar to (6.49). Repeating the argument of [8,

p. 40, (#i1) = (i)], we find that a(¢, 1) = lim._,0 ac(Pe, Pc) > clime_g fQ |¢)5|2 dx =
Jo |1/J|2dx. By a density argument, we deduce [, |’(/J|2 dx < Ca(, ) Vp € V.

7. Appendix. A common step in the proofs of theorems 3.1, 3.7, and 3.12 lies
in the computation of the limit of the sequence (I5.) defined by (see (6.11), (6.20))

(7.1) Is. ::/B o e(u.) : ag(as)dacdt,
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where u,. is the solution to (3.5) and the oscillating test fields ’lZe is defined bellow,
in terms of ¢ € C>([0,T]; D(Q; R?)) satisfying (6.4), of d given by (3.3), and of the
order of magnitude of the parameters k and x. We introduce the field ), given by

(7.2)  (z,t) = Z < _ 1/’(561,7582,837t)d83> ﬂ(wgfrgu;«s)ngysu;s))(953)~

. J_Te 4 Te
j€Je we— 3 Wet g

(i) If 0 < k < 400 and k = 0, we set

flj}\‘g(x’t) = Ee (CC, t) + reWie <5E, t, yg(‘r3)) 7

Te

o
(7.3) ~ 5y

2]
wla(xatvyl’:) = —%52393

R Iy
le+2 (arl + Oxo Y3

where the function y.(.) is defined by (4.9).
(i) If 0 < K < 400, we set

Be(w,1) = B (3,1) + rowre (x,t, ys(x3)) + r2uws, (x’t’ ye(xg)) ,

Te Te
a@eS a@ei’)
81‘1 Ya€1 8%‘2

ls (821/]53 + 52%3) 2

wie (T,t,y3) := ysez,

e , 0, = .
wae (7,1, Ys) 20. +2) \ 022 T oa2 ) V3

It is usefull to notice that 4. is continuously differentiable in C. x (0,T) (see (6.7)),
that ¥, = 0 if kK = 400 (because then, by (6.4), ¥ = 0) and that for m € {1, 2},

M ap.
otm

am
(@0) = S (w.)

(7001 wion| +

) ]ICE (l') < CT‘E,
(7.4)

‘V&E(x,t)‘ 1o, <C.
LEMMA 7.1. Let u. be the solution to (3.5). Let Is. be defined by (7.1) in terms
of V. described above. Then,

k e (V) ou (P ndedt  if 0 < k < +oo,

Qx(0,T)
(7:5) Dy Toe =T k(0 9) =9 5 [ pri0) . HO (0g)ndadt i 0 < i < oo,
6 Jox(o,1)
0 if (k, k) = (+00,0) or kK = +o0,

the operators H, H? being defined by
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82 8% 0
8a:§ Ox10x2
= 2’y 9%y :
H(y) = | ;v G 0]
-6 0 0 0
(7.6) QUL %% 1 9% 0%y 0
142 927 " 142 923 Ow1 0wy
4 = 9% 1 9%y 1+1 8%
H () : 21023 T3 osr T 200 02
0 0 0

Proof. Case 0 < k < +00. We easily check that

Oz,

<Cr. (ae€{l,2}),

L>(B.x(0,T))

L>(B:x(0,T)) H

[v—.

(7.7) T
‘ P —4.) <Cr. (a,8€{1,2).

0xo0zg

L>(B:x(0,T))

A straightforward computation yields (see (3.5), (3.6))

0-5 (¢5)]1B€:
IR 2. (0% , OY. oy OY,
2 89:11 + 1-+2 ( 8:1011 BI;) 8{1:21 8112 0
7.8 ey | Y. 9. 2. (9o | 9. 1
( ) Hie 8121 83712 2 8122 + le+2 ( 8.’1711 8r22) 0 B.
0 0 0

+ rep1:0(1).
Since =1 — k € (0,+00) and [ — [ € (0,00) (see (3.6)), we infer from (7.7) that

. Te o !
1 Te —_ . k ” 7t 0)
im - o (1) (') (,t) L (B % (0,T))

e—0
where o,/(1") is given by (2.1). By Corollary 5.6 (i), the convergences (5.11) are
verified, thus the sequence (e, (ul)m.) weakly* converges in L>(0,T; M (Q;S?)) to

7.1) into account, we deduce that

ne, (v'). Taking (3.39), (5.5), and (

lim I3 = lim key (ue) : oy (Y )dmedt = k:/ ey (V') : o (Y )ndxdt.
0% 7 250 Jor o0 x(0,T)

Case (k,k) = (+00,0). By (6.4), (7.8), we have |0'5(1/p\8)]135\ < Cuyere, thus, by
(3.8), the second line of (5.5), and (7.1), there holds

2
le(us)|dzdt = Cpy. = / le(ue)|dmedt
€ x(0,T)

I3 < C,ula'rs/

B.x(0,T)
2 2 3
< C’,ulgr—E / le(ue)|2dmedt < C’ulsr—s,/ c <C r—suls = o(1).

€ B.x(0,T) € V Tellel €

€
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Case 0 < kK < +00. A straightforward computation gives

2
_&

T‘ —_
c O: (we)]lBa =
2(l+1) %Y 5 le 9Py %Yy 0
3 le+2 Ox2 1.+2 0z2 Ox10xo
r T 1 2 _ _
— 2iu1€ys( 3) %y l. 9%y + 2(le+1) 8%y 0 15,
£ Te Ox10x2 l-+2 81% l-+2 Ozg
0 0 0

,,,3
#7:0(%Zuc).

We deduce from (3.6), (3.8), (7.6), and (7.7), that

2 —_
(7.9) lim | oo (3.) + 26 H (1b3) e (ws) —0.
e=0] € Te |Loo(B.x(0,T):83)
By (3.39) and (7.1), we have
Te — 1 7‘?
(7.10) I3 = . e(u.) : oz (Y )dmedt = —e(u:) : So(:)dmdt
x(0,7) ax(0,T) Te €

Taking Corollary 5.6 (ii) into account, we infer from (5.5), (5.30), (5.32), (7.9), (7.10),

that

0

1
lim J5. = lim — ey (we) s 26H (13) Y=(3) 4t
e—0 e—0 QX(O,T) Te Te
2
1/0¢, 0% 0%vs
=—2K /(H"(q/};;))a (7 (——i—— (z,t) — =———(z,t)ys ) ysndzdtdys
O(,ﬂz=1 Ox(0,T)x I A 2 61‘5 3xa 31‘a8$@
_— / H(vs) : HY (3)ndxdt.
6 Qx(0,T)
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