Homogenization of Stratified Elastic Composites with High Contrast
Michel Bellieud

To cite this version:

HAL Id: hal-01769898
https://hal.umontpellier.fr/hal-01769898
Submitted on 18 Apr 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
HOMOGENIZATION OF STRATIFIED ELASTIC COMPOSITES WITH HIGH CONTRAST

MICHEL BELLIEUD *

Abstract. We determine the asymptotic behavior of the solutions to the linear elastodynamic equations in a stratified media comprising an alternation of possibly very stiff layers with much softer ones, when the thickness of the layers tends to zero. The limit equations may depend on higher order terms, characterizing bending effects. A part of this work is set in the context of non-periodic homogenization and an extension to stochastic homogenization is presented.

Key words. homogenization, elasticity, non-local effects

AMS subject classifications. 35B27, 35B40, 35R60, 74B05, 74Q10

1. Introduction. In this paper we analyze the asymptotic behavior of the solution to the linear elastodynamic equations in a composite material wherein, at a microscopic scale, possibly very "stiff" layers alternate with a much "softer" medium. Stratified composite media have been intensively investigated over the last decades, especially in the context of diffusion equations [18, 27, 29, 30, 31, 32, 39, 52, 54]. As regards linear elasticity, layered elastic composites have been studied in [26, 28, 33, 38] under assumptions of uniform boundedness and uniform definite positiveness of the elasticity tensor guaranteeing that the effective equation is a standard linear elasticity equation. When these assumptions break down, as for instance in the so-called "high contrast case", the limit equilibrium equation may be of a quite different type: it may correspond, in theory, to the Euler equation associated to the minimization of any lower semi-continuous quadratic form on \(L^2 \) vanishing on rigid motions [20]. In particular, it may be non-local and depend on higher order derivatives of the displacement. Elastic media with high contrast have been studied under various geometrical assumptions. Composites with stiff grain-like inclusions have been investigated in [7, 8, 45], stiff fibered structures in [8, 12, 13, 46, 50], and stiff media with holes filled with a soft material in [22, 24, 47]. Our aim is to complement this body of work in the context of stratified media. Our approach is based on the two-scale convergence method [3, 5, 19, 23, 40, 41], which yields the convergence to an effective solution. It also yields a first order corrector result in \(L^2 \) (see Remark 3.14), but not the rigorous error estimates of higher order with respect to small parameters provided by the asymptotic expansions method [1, 2, 6, 15, 16, 21, 43, 44, 45, 48, 49].

For a given bounded smooth open subset \(\Omega \) of \(\mathbb{R}^3 \), we consider a linear elastodynamic problem like (3.5). We assume that the Lamé coefficients take possibly large values in a subset \(B_\varepsilon \) of \(\Omega \) and much smaller values elsewhere. The set \(B_\varepsilon \) consists of a non-periodic distribution of parallel disjoint homothetic layers of thickness \(r_\varepsilon \), whose median planes are orthogonal to \(e_3 \) and separated by a minimal distance \(\varepsilon \), where \(\varepsilon, r_\varepsilon \) are positive reals converging to zero (see fig. 3.1). The effective volume fraction of the stiff phase \(B_\varepsilon \) is characterized by the parameter \(\vartheta \) defined by (3.10). Both cases \(\vartheta = 0 \) and \(0 < \vartheta < 1 \) are investigated. The order of magnitude of the Lamé coefficients in the stiff phase is determined by the parameters \(k \) and \(\kappa \) defined by (3.8).

When the elasticity coefficients in the soft phase are of order 1 and the effective

* Université Montpellier 2, Case courrier 048, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France. (michel.bellieud@univ-montp2.fr).
volume fraction of the stiff phase vanishes the limit behavior of the composite is
governed, if $0 < k < +\infty$, by the equation

\begin{equation}
(1.1) \quad (\rho + n\bar{\rho}_1) \frac{\partial^2 u}{\partial t^2} - \text{div}\sigma (u) - nk \text{div}\sigma_x'(u') = (\rho + n\bar{\rho}_1) f \quad \text{in } \Omega \times (0, T),
\end{equation}

where ρ denotes the mass density in the softer phase, and u', σ_x', σ and $\bar{\rho}_1$ are
defined, respectively, by (2.1), (3.13), and (3.7). The function n characterizes the
recalled effective number of sections of stiff layers per unit length in the e_3 direction
and is obtained as the weak* limit in $L^\infty(\Omega)$ of the sequence (n_ε) defined by (3.14).

When the order of magnitude of the elasticity coefficients in the stiff layers is larger,
that is when $k = +\infty$, the functions u_1 and u_2 vanish on the set \{\(n > 0\)\} and the
behavior of u_3 is governed by the equation (3.19), (3.20) or (3.21), depending on the
order of magnitude of κ. In the case $0 < \kappa < +\infty$, this equation involves the 4^th partial
derivatives of u_3 with respect to x_1, x_2:

\begin{equation}
(1.2) \quad (\rho + n\bar{\rho}_1) \frac{\partial^2 u_3}{\partial t^2} - (\text{div}\sigma (u))_3 + n \kappa l + 1 \sum_{\alpha, \beta=1}^2 \frac{\partial^4 u_3}{\partial x_\alpha \partial x_\beta} = (\rho + n\bar{\rho}_1) f_3 \quad \text{in } \Omega \times (0, T),
\end{equation}

revealing bending effects. The effective behavior on the set \{\(n = 0\)\} is that of a homo-
geneous material without stiff layers. In Theorem 3.5, we extend these results to the
stochastic case. The set $\mathcal{B}_\varepsilon(\omega)$ then depends on a random element ω of some sample
space $\mathcal{D} \subset 2^\mathcal{F}$ equipped with a probability P satisfying (3.23). The limit problem as
$\varepsilon \to 0$ is deduced from the above equations, P-almost surely, by substituting for n
the conditional expectation $E_P^n n_0(\omega)$ with respect to P given the σ-algebra \mathcal{F} of the
periodic sets, of the random variable n_0 defined by (3.24).

If the order of magnitude of the elasticity coefficients in the soft interlayers is
strictly smaller than 1 and strictly larger than ε^2, the effective equations are deduced
from (1.1), (1.2), formally, by removing the term $\text{div}\sigma (u)$ (see Theorem 3.7).

When the elastic moduli in the soft phase are of order ε^2, the effective behavior of the
composite turns sensitive to the slightest geometrical perturbation (see Remark
3.20). The effective equation can not be expressed simply in terms of the function n
as in the other cases. This characteristic renders the study of non-periodic homoge-
nization a very difficult task: we only treat the case of an
ε-periodic distribution of stiff layers. The homogenized problem then takes the form of a system of equations
coupling some field v, characterizing the effective displacement in the stiff layers, with
the two-scale limit $u_0 : \Omega \times (0, T) \times (-\frac{1}{2}, \frac{1}{2})^3 \to \mathbb{R}^3$ of the solution (u_ε) to (3.5) (see
[3, 41]). This field v is obtained as the limit of the sequence $(u_\varepsilon m_\varepsilon)$, where m_ε is the
measure supported by the stiff layers defined by (3.39). If $0 < k < +\infty$, the effective
behavior of the displacement in the stiff medium is governed by the equation

\begin{equation}
(1.3) \quad \bar{\rho}_1 \frac{\partial^2 v}{\partial t^2} - k \text{div}\sigma_x'(v') = \bar{\rho}_1 f + g(u_0) \quad \text{in } \Omega \times (0, T),
\end{equation}

associated with the boundary and initial conditions given in (3.45). This equation
displays stretching vibrations with regard to the transversal components v_1, v_2 of v.
It is coupled with the soft phase through the field $g(u_0)$ which represents the sum of
the surface forces applied on each stiff layer by the adjacent soft medium. This field is defined by (3.42), in terms of the restriction of \(u_0 \) to \(\Omega \times (0, T) \times Y \setminus A \), which characterizes the effective displacement in the soft interstitial layers. The letters \(Y \) and \(A \) denote, respectively, the unit cell and the rescaled stiff layer (see (3.36), (3.37)). The effective displacement in the soft phase is governed by the equation

\[
\rho \frac{\partial^2 u_0}{\partial t^2} - \text{div}_y (\sigma_{0y}(u_0)) = \rho f \quad \text{in} \; \Omega \times (0, T) \times Y \setminus A,
\]

where \(\sigma_{0y} \) is defined by (3.42). This equation is coupled with the variable \(v \) by the relation (3.41) on \(\Omega \times (0, T) \times A \). The weak limit of \((u_\varepsilon) \) in \(L^2(\Omega \times (0, T)) \) is given by

\[
u(x, t) = \int_Y u_0(x, t, y) \, dy.
\]

When the order of magnitude of the elasticity coefficients in the stiff layers is larger, the functions \(v_1 \) and \(v_2 \) vanish and the effective displacement in the stiff phase is governed by the equation of \(v_3 \) given by (3.46), (3.47) or (3.48), depending on the order of magnitude of \(\kappa \). In the case \(0 < \kappa < +\infty \), this equation,

\[
\rho_1 \frac{\partial^2 v_3}{\partial t^2} + \kappa \frac{l+1}{3} \sum_{\alpha, \beta = 1}^{2} \frac{\partial^4 v_3}{\partial x_\alpha \partial x_\beta^3} = \rho_1 f_3 + (g(u_0))_3 \quad \text{in} \; \Omega \times (0, T),
\]

involves the \(4^{th} \) partial derivatives of \(v_3 \) with respect to \(x_1, x_2 \), characterizing bending vibrations. Otherwise, the stiff layers display the behavior of a collection of unstretchable membranes if \((k, \kappa) = (+\infty, 0) \) and that of fixed bodies if \(\kappa = \infty \).

Our results apply as well to equilibrium equations (see remarks 3.11, 3.19) and can be extended to multiphase composites (see remarks 3.10, 3.16, 3.17). Multiphase homogenized models have been studied in [8, 44, 45, 47, 48, 49].

As occurs in the case of fibers or grain-like inclusions embedded in a soft matrix (see [8, p.3]), the two-phase stratified composites modeled above by homogenization prove to be, in general, unsufficiently reinforced to "resist" to body forces. Accordingly, some of the components of the effective displacement may exhibit a quadratic behavior with respect to time, describing a motion of collapse. The whole displacement \(u \) does so, for instance, on the set \(\{n = 0\} \) in (3.28)-(3.30). If \(\kappa = 0 \), a similar behavior is shown by \(u_3 \) in (3.28), (3.29), and by \(v_3 \) in (3.45), (3.46), if \(f \) is not parallel to the layers. In these cases, the sequence of the solutions to the associated equilibrium problems (see (3.32)) may fail to be bounded in \(L^2 \), and the effective equilibrium problem to be well-posed. Boundedness in \(L^2 \) is achieved by considering suitable multiphase media. If the fibered case, the choice of such media has been discussed in [8, Proposition 5.2]. We extend this discussion in remarks 3.11, 3.19, 6.3.

The paper is organized as follows: in Section 2 we specify the notations and in Section 3 we state our main results. In Section 4, we recall some classical results and introduce a non-periodic variant of the two-scale convergence for which we establish a compactness result. The effective equations are derived in Section 6 by employing a priori estimates demonstrated in Section 5, and a technical lemma proved in the appendix.

2. Notations. In this article, \(\{e_1, \ldots, e_N\} \) stands for the canonical basis of \(\mathbb{R}^N \). Points in \(\mathbb{R}^N \) or in \(\mathbb{Z}^N \) and real-valued functions are represented by symbols beginning by a lightface lowercase (example \(x, i, \det A \ldots \)) and vectors and vector-valued functions by symbols beginning by a boldface lowercase (examples: \(x, i, u, f, g, \text{div} \sigma, \ldots \)).
Matrices and matrix-valued functions are represented by symbols beginning by a boldface uppercase with the following exceptions: \(\nabla u \) (displacement gradient), \(e(u) \) (linearized strain tensor). We denote by \(u_i \) or \((u)_i \) the components of a vector \(u \) and by \(A_{ij} \) or \((A)_{ij} \) those of a matrix \(A \) (that is \(u = \sum_{i=1}^{N} u_i e_i = \sum_{i=1}^{N} (u)_i e_i ; A = \sum_{i,j=1}^{N} A_{ij} e_i \otimes e_j = \sum_{i,j=1}^{N} (A)_{ij} e_i \otimes e_j \)). We do not employ the usual repeated index convention for summation. We denote by \(A : B = \sum_{i,j=1}^{N} A_{ij} B_{ij} \) the inner product of two matrices, by \(\varepsilon_{ijk} \) the three-dimensional alternator, by \(u \wedge v = \sum_{i,j,k=1}^{3} \varepsilon_{ijk} u_j v_k e_i \) the exterior product in \(\mathbb{R}^3 \), by \(S^M \) \((M \in \mathbb{N}) \) the set of all real symmetric matrices of order \(M \), by \(I_M \) the \(M \times M \) identity matrix. The symbol \(\sharp D \) denotes the cardinality of a finite set \(D \). The letter \(C \) stands for different constants independent of \(\varepsilon \) whose precise values may vary. For any weakly differentiable vector field \(\psi : \Omega \subset \mathbb{R}^3 \to \mathbb{R}^3 \), we set

\[
\psi' := \psi_1 e_1 + \psi_2 e_2; \quad e_x'(\psi) := \sum_{\alpha,\beta=1}^{2} \frac{1}{2} \left(\frac{\partial \psi_{\alpha}}{\partial x_{\beta}} + \frac{\partial \psi_{\beta}}{\partial x_{\alpha}} \right) e_\alpha \otimes e_\beta \quad (= e_x'(\psi')); \\
(2.1) \quad \sigma_x'(\psi) := \left(\begin{array}{ccc}
2 \frac{\partial \psi_1}{\partial x_1} + 2l \frac{\partial \psi_2}{\partial x_2} & \frac{\partial \psi_1}{\partial x_2} + \frac{\partial \psi_2}{\partial x_1} & 2 \frac{\partial \psi_1}{\partial x_2} + 2l \frac{\partial \psi_2}{\partial x_1} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
\]

where the non-negative parameter \(l \) is defined in (3.6). We reproduce and modify here some notations from [8]: we denote by \(C_{\sharp}^\infty(Y) \) (resp. \(C(Y) \)) the set of \(Y \)-periodic functions from \(C^\infty(\mathbb{R}^3) \) (resp. \(C(\mathbb{R}^3) \)), by \(C_{\sharp}^\infty(Y \setminus B) \) the set of the restrictions of the elements of \(C_{\sharp}^\infty(Y) \) to \(Y \setminus B \), by \(H_{\sharp}^1(Y) \) (resp. \(H_{\sharp}^1(Y \setminus B) \)) the completion of \(C^\infty(Y) \) (resp. \(C^\infty(Y \setminus B) \)) with respect to the norm \(w \to \left(\int_Y (|w|^2 + |\nabla w|^2)dy \right)^{1/2} \) (resp. \(w \to \left(\int_{Y \setminus B} (|w|^2 + |\nabla w|^2)dy \right)^{1/2} \)). For any subset \(Q \) of the unit cell \(Y \), the symbol \(Q_{\sharp} \) stands for the periodization on all \(\mathbb{R}^3 \) of \(Q \), that is

\[
(2.2) \quad Q_{\sharp} := \bigcup_{z \in \mathbb{Z}^3} z + Q.
\]

3. Setting of the problem and results. We consider a cylindrical domain \(\Omega := \Omega' \times (0, L) \), where \(\Omega' \) is a bounded smooth domain of \(\mathbb{R}^2 \). Given a small positive real \(\varepsilon \), the non-periodic distribution \(B_\varepsilon \) of disjoint homothetical stiff layers \(B_\varepsilon' \) will be described in terms of a finite subset \(\omega_\varepsilon \) of \(\mathbb{R} \)

\[
(3.1) \quad \omega_\varepsilon := \left\{ \omega_\varepsilon^j, j \in J_\varepsilon \right\}, \quad J_\varepsilon := \{ 1, \ldots, \sharp \omega_\varepsilon \},
\]
satisfying

\[
(3.2) \quad \omega_\varepsilon \subset (0, L), \quad \min_{j,j' \in J_\varepsilon, j \neq j'} |\omega_\varepsilon^j - \omega_\varepsilon^{j'}| = \varepsilon, \quad \text{dist}(\omega_\varepsilon, \{0, L\}) > \frac{\varepsilon}{2},
\]

and of a small parameters \(r_\varepsilon \) verifying

\[
(3.3) \quad \varepsilon > r_\varepsilon (1 + \delta) \quad \text{for some } \delta > 0,
\]
by setting (see Fig. 3.1)

\[B_\varepsilon := \bigcup_{j \in J_\varepsilon} B^j_\varepsilon; \quad B^j_\varepsilon := \Omega' \times (\omega^j_\varepsilon + r_\varepsilon I); \quad I := \left(-\frac{1}{2}, \frac{1}{2}\right). \]

As in [8], we consider the vibration problem

\[
\begin{aligned}
\rho_\varepsilon \frac{\partial^2 u_\varepsilon}{\partial t^2} - \text{div} (\sigma_\varepsilon(u_\varepsilon)) &= \rho_\varepsilon f \quad \text{in } \Omega \times (0, T), \\
\sigma_\varepsilon(u_\varepsilon) &= \lambda_\varepsilon \text{tr}(e(u_\varepsilon)) I + 2\mu_\varepsilon e(u_\varepsilon), \quad e(u_\varepsilon) = \frac{1}{2}(\nabla u_\varepsilon + \nabla^T u_\varepsilon), \\
u_\varepsilon &\in C([0, T]; H^1_0(\Omega, \mathbb{R}^3)) \cap C^1([0, T]; L^2(\Omega, \mathbb{R}^3)), \\
u_\varepsilon(0) &= a_0, \quad \frac{\partial u_\varepsilon}{\partial t}(0) = b_0, \quad f \in C(\Omega \times (0, T); \mathbb{R}^3), \\
(a_0, b_0) &\in (H^1_0(\Omega, \mathbb{R}^3) \times L^2(\Omega, \mathbb{R}^3)) \cap C(\Omega, \mathbb{R}^3)^2.
\end{aligned}
\]

The Lamé coefficients \(\mu_\varepsilon, \lambda_\varepsilon \) and the mass density \(\rho_\varepsilon \) are assumed to take constant values of possibly different orders of magnitude in the set of layers \(B_\varepsilon \) and in the set of interlayers \(\Omega \setminus B_\varepsilon \). More precisely, we suppose that

\[
\begin{aligned}
\mu_\varepsilon(x) &= \mu_{1\varepsilon} \mathbb{1}_{B_\varepsilon}(x) + \mu_0 \mathbb{1}_{\Omega \setminus B_\varepsilon}(x), \quad \lambda_\varepsilon(x) = \lambda_{1\varepsilon} \mathbb{1}_{B_\varepsilon}(x) + \lambda_0 \mathbb{1}_{\Omega \setminus B_\varepsilon}(x), \\
\mu_{1\varepsilon} &\geq c > 0, \quad l_\varepsilon := \frac{\lambda_{1\varepsilon}}{\mu_{1\varepsilon}}, \quad \lim_{\varepsilon \to 0} l_\varepsilon = l \in [0, +\infty), \quad 0 \leq \lambda_0 < C\mu_0 \ll \mu_{1\varepsilon}, \\
\rho_\varepsilon(x) &= \rho \mathbb{1}_{\Omega \setminus B_\varepsilon} + \frac{\varepsilon}{r_\varepsilon} \mathbb{1}_{B_\varepsilon}, \quad \rho, \rho_1 \in (0, +\infty).
\end{aligned}
\]
The weak* relative compactness in $L^\infty(0,T;L^2(\Omega;\mathbb{R}^3))$ of the sequence of the solutions to (3.5) is ensured by the following hypothesis:

\begin{equation}
\sup_{\varepsilon>0} \int_{\Omega} (\rho_\varepsilon |b_0|^2 + \sigma_\varepsilon (a_0) : e(a_0)) \, dx + \int_{\Omega \times (0,T)} \rho_\varepsilon |f|^2 \, dx dt < +\infty.
\end{equation}

3.1. Case of interlayers with Lamé coefficients of order 1

We consider the case of extremely thin layers of extremely large stiffness alternating with interlayers of elastic moduli of order 1. The effective volume fraction of the stiff layers is characterized by:

\begin{equation}
\vartheta := \lim_{\varepsilon \to 0} \frac{r_\varepsilon}{\varepsilon}.
\end{equation}

We assume in this subsection that

\begin{equation}
\vartheta = 0.
\end{equation}

\begin{equation}
\mu_0 = \mu > 0; \quad \lambda_0 = \lambda \geq 0.
\end{equation}

We introduce the operator $\sigma : H^1(\Omega;\mathbb{R}^3) \to L^2(\Omega;\mathbb{S}^3)$ and $n_\varepsilon \in L^\infty(\Omega)$ defined by

\begin{equation}
\sigma(\varphi) := \lambda \text{tr}(e(\varphi)) I + 2 \mu e(\varphi) \quad \forall \varphi \in H^1(\Omega;\mathbb{R}^3),
\end{equation}

\begin{equation}
n_\varepsilon(x) := \sum_{i \in Z_\varepsilon} \delta_{\varepsilon i} \mathbb{I}(\varepsilon i - \frac{\varepsilon}{2}, \varepsilon i + \frac{\varepsilon}{2}) (x_3),
\end{equation}

\begin{equation}
Z_\varepsilon := \left\{ i \in \mathbb{Z}, \left(\varepsilon i - \frac{\varepsilon}{2}, \varepsilon i + \frac{\varepsilon}{2} \right) \subset (0,L) \right\}.
\end{equation}

Assumption (3.2) implies that $|n_\varepsilon|_{L^\infty(\Omega)} \leq 1$, therefore, up to a subsequence,

\begin{equation}
n_\varepsilon \rightharpoonup n \text{ weakly* in } L^\infty(\Omega) \text{ for some } n \in L^\infty(\Omega).
\end{equation}

The scalar $\frac{1}{n} n_\varepsilon(x)$ is an approximation at x of the local number of stiff layers per unit length in the e_3 direction. For simplicity (see Remark 3.3), we assume that

\begin{equation}
\{ n > 0 \} \text{ is a finite union of open connected subsets of } \Omega \text{ if } k = +\infty.
\end{equation}

Under these assumptions, we prove that the solution to (3.5) weakly* converges in $L^\infty(0,T; H^1_0(\Omega;\mathbb{R}^3))$ to the unique solution to \((P_{\text{hom}}^{n,k,\kappa})\) defined, in terms of k, κ, n given by (3.8), (3.16), as follows: if $0 < k < +\infty$, we get (see (2.1))

\begin{equation}
(P_{\text{hom}}^{n,k,\kappa}) : \begin{cases}
(\rho + n \bar{p}_1) \frac{\partial^2 u}{\partial t^2} - \text{div} \sigma(u) \\
- n k \text{div} \sigma_c(u') = (\rho + n \bar{p}_1) f & \text{in } \Omega \times (0,T),
\end{cases}
\end{equation}

\begin{align*}
&u \in C([0,T]; H^1_0(\Omega;\mathbb{R}^3)) \cap C^1([0,T]; L^2(\Omega;\mathbb{R}^3)), \\
&u(0) = a_0, \quad \frac{\partial u}{\partial t}(0) = b_0.
\end{align*}
If $k = +\infty$ and $\kappa = 0$, the limit problem is deduced from (3.18), formally, by substituting $(0,0)$ for $(u_1(x), u_2(x))$ when $n(x) > 0$:

\[
\begin{cases}
\rho \frac{\partial^2 u_3}{\partial t^2} - (\text{div}(\mathbf{u}))_3 = (\rho + n \rho_1) f_3 & \text{in } \Omega \times (0,T), \\
\rho \frac{\partial^2 u_\alpha}{\partial t^2} - (\text{div}(\mathbf{u}))_\alpha = \rho f_\alpha & \text{in } \{n = 0\} \times (0,T),
\end{cases}
\]

(3.19) $(\mathcal{P}^{\text{hom}}_{(n, +\infty, \infty)})$:

\[
\begin{cases}
u_\alpha = 0 & \text{on } \partial\{n = 0\} \times (0,T) \quad (\alpha \in \{1, 2\}), \\
nu_1 = nu_2 = 0, \quad \mathbf{u} \in C([0, T]; H^1_0(\Omega; \mathbb{R}^3)) \cap C^1([0, T]; L^2(\Omega; \mathbb{R}^3)), \\
\mathbf{u}(0) = (a_{01} \mathbb{I}_{\{n = 0\}}, a_{02} \mathbb{I}_{\{n = 0\}}, a_{03}), \\
\frac{\partial \mathbf{u}}{\partial t}(0) = (b_{01} \mathbb{I}_{\{n = 0\}}, b_{02} \mathbb{I}_{\{n = 0\}}, b_{03}).
\end{cases}
\]

The case $0 < \kappa < +\infty$ is characterized by the emergence of fourth order derivatives with respect to x_1, x_2 in the limit equations, revealing bending effects:

\[
\begin{cases}
\rho \frac{\partial^2 u_3}{\partial t^2} - (\text{div}(\mathbf{u}))_3 + \frac{n \kappa l + 1}{3 l + 2} \sum_{\alpha, \beta = 1}^2 \frac{\partial^4 u_3}{\partial x_\alpha^2 \partial x_\beta^2} & = (\rho + n \rho_1) f_3 & \text{in } \Omega \times (0,T), \\
\rho \frac{\partial^2 u_\alpha}{\partial t^2} - (\text{div}(\mathbf{u}))_\alpha = \rho f_\alpha & \text{in } \{n = 0\} \times (0,T),
\end{cases}
\]

(3.20) $(\mathcal{P}^{\text{hom}}_{(n, +\kappa, +\infty)})$:

\[
\begin{cases}
u_\alpha = 0 & \text{on } \partial\{n = 0\} \times (0,T) \quad (\alpha \in \{1, 2\}), \\
nu_1 = nu_2 = 0, \quad \mathbf{u} \in C([0, T]; H^1_0(\Omega; \mathbb{R}^3)) \cap C^1([0, T]; L^2(\Omega; \mathbb{R}^3)), \\
\mathbf{u}(0) = (a_{01} \mathbb{I}_{\{n = 0\}}, a_{02} \mathbb{I}_{\{n = 0\}}, a_{03}), \\
\frac{\partial \mathbf{u}}{\partial t}(0) = (b_{01} \mathbb{I}_{\{n = 0\}}, b_{02} \mathbb{I}_{\{n = 0\}}, b_{03}).
\end{cases}
\]

If $\kappa = +\infty$, we get:

\[
\begin{cases}
\rho \frac{\partial^2 \mathbf{u}}{\partial t^2} - \text{div}(\mathbf{u}) = \rho \mathbf{f} & \text{in } \{n = 0\} \times (0,T), \\
\mathbf{u} = 0 & \text{on } \partial\{n = 0\} \times (0,T), \\
n \mathbf{u} = 0, \quad \mathbf{u} \in C([0, T]; H^1_0(\Omega; \mathbb{R}^3)) \cap C^1([0, T]; L^2(\Omega; \mathbb{R}^3)), \\
\mathbf{u}(0) = a_0 \mathbb{I}_{\{n = 0\}}, \frac{\partial \mathbf{u}}{\partial t}(0) = b_0 \mathbb{I}_{\{n = 0\}}.
\end{cases}
\]

Theorem 3.1. Assume (3.11), (3.12), (3.16), then the sequence (\mathbf{u}_ϵ) of the solutions to (3.5) weakly* converges in $L^\infty(0,T; H^1_0(\Omega; \mathbb{R}^3))$ to the unique solution of the problem $(\mathcal{P}^{\text{hom}}_{(n,k,\kappa)})$ given by (3.18)-(3.21).

Remark 3.2. (i) When stiff fibers [9, 13] (resp. grain-like inclusions [7]) embedded in a matrix of stiffness of order 1 are considered, the fibers (resp. the inclusions) disappear from the limit problem if $r_\epsilon \ll \exp^{-\frac{1}{\epsilon^2}}$ (resp. $r_\epsilon \ll \epsilon^3$), where r_ϵ denotes
the diameter of the sections of the fibers (resp. of the inclusions). This never occurs in the stratified case, whatever the choice of \((r_z)\). This is related to the fact that the harmonic capacity of a surface in \(\Omega\) is always positive, whereas that of a line or a point are equal to zero.

(ii) Under \((3.12)\), the case \(0 < k < +\infty\) has been studied in \([27], [38]\). In the case \(0 > k = +\infty\), we came up against technical complications (see Remark 6.1).

Remark 3.3. If \((3.17)\) is not satisfied, the sequence \((u_k)\) of the solutions to \((3.5)\) weakly* converges in \(L^\infty(0,T; H^1_0(\Omega; \mathbb{R}^3))\) to the unique solution of the variational problem \((4.23)\) with data deduced from \((6.60), (6.61)\), for \(V_{n,k,k}\) and \(a_{n,k,k}\). Assumption \((3.17)\) ensures the equivalence between \((3.19-3.21)\) and the last mentioned variational problem.

3.2. Stochastic case. Fix \(d > 0\) and set

\[
\mathcal{D} := \{ \omega \in 2^\mathbb{R}, \; \forall (\omega_1, \omega_2) \in \omega \times \omega, \; \omega_1 \neq \omega_2 \Rightarrow |\omega_1 - \omega_2| \geq d \},
\]

where \(2^\mathbb{R}\) denotes the set of all subsets of \(\mathbb{R}\). Let \(\mathcal{B}_\mathcal{D}\) be the Borel \(\sigma\)-algebra generated by the Hausdorff distance on \(\mathcal{D}\) (see Remark 3.6), and \(P\) be a probability on \((\mathcal{D}, \mathcal{B}_\mathcal{D})\) satisfying

\[
P(A + z) = P(A) \quad \forall \; z \in \mathbb{Z}, \; \forall \; A \in \mathcal{B}_\mathcal{D}.
\]

We consider the random distribution of stiff homothetical layers \(B_z(\omega_z(\omega))\) and the problem \((\mathcal{P}_z(\omega))\) obtained by substituting \(\omega_z(\omega)\) for \(\omega_z\) in \((3.4), (3.5)\). In what follows, \(\mathcal{F}\) represents the \(\sigma\)-algebra of the \(Y\)-periodic elements of \(\mathcal{B}_\mathcal{D}, E_P^0 X\) the conditional expectation of a random variable \(X\) given \(\mathcal{F}\) with respect to \(P\), \(n_z(\omega)\) the element of \(L^\infty(\Omega)\) defined by substituting \(\omega_z(\omega)\) for \(\omega_z\) in \((3.14)\), and \(n_0 : \mathcal{D} \to \mathbb{N}\) the random variable given by

\[
n_0(\omega) := \sharp \left(\omega \cap \left[-\frac{1}{2}, \frac{1}{2} \right] \right) \quad \forall \omega \in \mathcal{D}.
\]

The following theorem is proved in \([10]\):

Theorem 3.4. Under the assumptions stated above, there exists a sequence of reals \((\varepsilon_k)\) converging to 0 and a \(P\)-negligible subset \(\mathfrak{N}\) of \(\mathcal{D}\), such that for all \(\omega \in \mathcal{D} \setminus \mathfrak{N}\),

\[
n_{\varepsilon_k}(\omega) \xrightarrow{\text{weakly*}} E_P^0 n_0(\omega) \quad \text{weakly* in} \quad L^\infty(\Omega).
\]

The following result straightforwardly follows from theorems 3.1, 3.4:

Theorem 3.5. Assume \((3.11), (3.12)\), and let \((\varepsilon_k)\) and \(\mathfrak{N}\) be the sequence and the \(P\)-negligible set given by Theorem 3.4. Then, for all \(\omega \in \mathcal{D} \setminus \mathfrak{N}\), the solution to \((\mathcal{P}_{\varepsilon_k}(\omega))\), weakly* converges in \(L^\infty(0,T; H^1_0(\Omega; \mathbb{R}^3))\) to the unique solution to the problem \((\mathcal{P}_{\text{hom}}^{(E_P^0 n_0(\omega),\kappa,k)}))\) defined by \((3.18-3.21)\).

Remark 3.6. The restriction of the Hausdorff distance \(d_H\) to \(\mathcal{D}\) is an extended metric on \(\mathcal{D}\), and the mapping \(d_{\mathcal{D}} : \mathcal{D}^2 \to [0,1]\) defined by \(d_{\mathcal{D}}(\omega, \omega') := \min\{1, d_H(\omega, \omega')\}\) is a finite metric on \(\mathcal{D}\) which turns \(\mathcal{D}\) into a complete metric space.
3.3. Intermediate case. Under the assumptions

\[
\varepsilon^2 \ll \mu_0e \ll 1, \quad 0 \leq \lambda_0 \leq C \mu_0e,
\]

and (3.17) (see Remark 3.9), we show that the solution to (3.5) weakly* converges in
\(L^\infty(0,T; L^2(\Omega; \mathbb{R}^3))\) to the unique solution to \((P_{\text{hom}}^{(n,k,\kappa)})\) defined by

\[
\begin{align*}
\text{(3.28)} \quad & (P_{\text{hom}}^{(n,k,\kappa)}) : \\
& (0 < k < +\infty) \\
& \left\{ \begin{array}{l}
(\rho(1 - \vartheta n) + n\overline{p}_1) \frac{\partial^2 u}{\partial t^2} - nk \text{div} \sigma_x(u') \\
= (\rho(1 - \vartheta n) + n\overline{p}_1) f \quad \text{in} \quad \Omega \times (0, T), \\
u_1, u_2 \in C([0, T]; L^2_n(0; L; H^1_0(\Omega'))), \\
u \in C^1([0, T]; L^2(\Omega; \mathbb{R}^3)), \quad u(0) = a_0, \quad \frac{\partial u}{\partial t}(0) = b_0,
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
\text{(3.29)} \quad & (P_{\text{hom}}^{(n, +\infty, \kappa)}) : \\
& (0 < \kappa < +\infty) \\
& \left\{ \begin{array}{l}
(\rho(1 - \vartheta n) + n\overline{p}_1) \frac{\partial^2 u_3}{\partial t^2} = (\rho(1 - \vartheta n) + n\overline{p}_1) f_3 \quad \text{in} \quad \Omega \times (0, T), \\
\rho \frac{\partial^2 u_\alpha}{\partial t^2} = \rho f_\alpha \quad \text{in} \quad \{n = 0\} \times (0, T), \quad (\alpha \in \{1, 2\}), \\
u_1 = nu_2 = 0, \quad u_3 \in C([0, T]; L^2_n(0; L; H^2_0(\Omega'))), \\
u \in C^1([0, T]; L^2(\Omega; \mathbb{R}^3)), \\
u(0) = (a_{01} \mathbb{1}_{\{n=0\}}, a_{02} \mathbb{1}_{\{n=0\}}, a_{03}), \\
\frac{\partial u}{\partial t}(0) = (b_{01} \mathbb{1}_{\{n=0\}}, b_{02} \mathbb{1}_{\{n=0\}}, b_{03}),
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
\text{(3.30)} \quad & (P_{\text{hom}}^{(n, +\infty, \kappa)}) : \\
& (0 < \kappa < +\infty) \\
& \left\{ \begin{array}{l}
(\rho(1 - \vartheta n) + n\overline{p}_1) \frac{\partial^2 u_3}{\partial t^2} + n \frac{\kappa}{L^2_n(0; L; H^2_0(\Omega'))}), \\
u \in C^1([0, T]; L^2(\Omega; \mathbb{R}^3)), \\
u(0) = (a_{01} \mathbb{1}_{\{n=0\}}, a_{02} \mathbb{1}_{\{n=0\}}, a_{03}), \\
\frac{\partial u}{\partial t}(0) = (b_{01} \mathbb{1}_{\{n=0\}}, b_{02} \mathbb{1}_{\{n=0\}}, b_{03}),
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
\text{(3.31)} \quad & (P_{\text{hom}}^{(n, +\infty, +\infty)}) : \\
& \left\{ \begin{array}{l}
\rho \frac{\partial^2 u}{\partial t^2} = \rho f \quad \text{in} \quad \{\overline{n} = 0\} \times (0, T), \\
u = 0, \quad u \in C^1([0, T]; L^2(\Omega; \mathbb{R}^3)), \\
u(0) = a_0 \mathbb{1}_{\{n=0\}}, \quad \frac{\partial u}{\partial t}(0) = b_0 \mathbb{1}_{\{n=0\}}.
\end{array} \right.
\end{align*}
\]
Theorem 3.7. Under (3.17), (3.26), (3.27), the solution to (3.5) weakly* converges in $L^\infty(0,T;L^2(\Omega;\mathbb{R}^3))$ to the unique solution to $(P_{\text{hom}}^{(n,k,\kappa)})$ given by (3.28-3.31).

Remark 3.8. (i) Problems (3.28-3.31) are formally deduced from (3.18-3.21) by removing the term “$\text{div}\sigma(u)$” (see (3.11)). This indicates that no strain energy is stored in the softer phase.

(ii) Assumption (3.27), stronger than (3.16), precludes the application of Theorem 3.4 and the extension of Theorem 3.7 to the setting of stochastic homogenization.

Remark 3.9. If (3.17) is not satisfied, the sequence (u_ε) of the solutions to (3.5) weakly* converges in $L^\infty(0,T;L^2(\Omega;\mathbb{R}^3))$ to the unique solution of the variational problem (4.23), (6.60), (6.61). Under (3.17), this variational problem is equivalent to (3.29-3.31).

Remark 3.10. Theorems 3.1, 3.7 can be extended to the case of a multiphase stratified elastic composite comprising several distributions of stiff layers of various stiffness and thickness (see Remark 6.2 for more details). Combining our results with those established in [8], [13], [14], one can also derive the effective equations governing the behavior of a composite comprising disjoint distributions of stiff layers alternating with softer interlayers in which fibers or grain-like inclusions are embedded (see also Remark 3.17).

Remark 3.11. Under the assumptions of theorems 3.1, 3.7, the limit problem associated to the sequence of equilibrium problems

\begin{equation}
-\text{div}(\sigma_\varepsilon(u_\varepsilon)) = f \quad \text{in} \quad \Omega, \quad u_\varepsilon \in H^1_0(\Omega,\mathbb{R}^3), \quad f \in L^2(\Omega,\mathbb{R}^3),
\end{equation}

is given by

\begin{equation}
\mathbf{u} \in V \quad \text{and} \quad a(u,w) = (f,w)_H, \quad \forall w \in V,
\end{equation}

where the Hilbert spaces V and H and the non-negative symmetric bilinear form $a(.,.)$ are specified in Remark 6.3. Under the assumptions of Theorem 3.7, this bilinear form fails to be coercive on $L^2(\Omega;\mathbb{R}^3)$ if $\kappa = 0$ and may fail to be so if the function n is not bounded from below by a positive constant. Remark 6.3 states conditions ensuring coerciveness in stratified multiphase media. Coerciveness can also be achieved by reinforcing the composite by stiff fibers embedded in the soft phase (see [8, Proposition 5.2]).

3.4. Case of soft interlayers with Lamé coefficients of order ε^2. We assume that

\begin{equation}
\mu_0 = \varepsilon^2\mu_0, \quad \lambda_0 = \varepsilon^2\lambda_0, \quad \mu_0 > 0, \quad \lambda_0 \geq 0,
\end{equation}

and that the stiff layers are periodically distributed (see (3.15)):

\begin{equation}
B_\varepsilon := \bigcup_{i \in \mathbb{Z}}B^1_i; \quad B^1_i := \Omega' \times (\varepsilon i + r_i I).
\end{equation}

Under these hypotheses, setting (see Remark 3.13)
(3.36) \[Y := \left(-\frac{1}{2}, \frac{1}{2} \right) ; \quad B := \left(-\frac{1}{2}, \frac{1}{2} \right) \times \left(-\frac{1}{2}, \frac{1}{2} \right) ; \quad \Sigma := \left(-\frac{1}{2}, \frac{1}{2} \right) \times \{0\}, \]

(3.37) \[A := B \quad \text{if} \quad \vartheta > 0, \quad A := \Sigma \quad \text{if} \quad \vartheta = 0, \]

(3.38) \[\vartheta > 0 \quad \text{if} \quad \kappa = 0, \]

and denoting by \(\mathcal{M}(\Omega; \mathbb{R}^3) \) the set of \(\mathbb{R}^3 \)-valued Radon measures on \(\Omega \), we show that the solution \(u_\varepsilon \) to (3.5) two-scale converges to \(u_0 \in C([0, T]; L^2(\Omega, H^1_2(Y; \mathbb{R}^3))) \) (see Section 4 for the definition of this convergence), and the sequence \((u_\varepsilon m_\varepsilon) \), where \(m_\varepsilon \) is the measure defined by

(3.39) \[m_\varepsilon := \frac{\varepsilon}{r_\varepsilon} 1_{B}(x)L^3_{\Omega}, \]

weakly* converges in \(L^\infty(0, T; \mathcal{M}(\Omega; \mathbb{R}^3)) \) to \(v \in C^1([0, T]; L^2(\Omega; \mathbb{R}^3)) \), where \((u_0, v) \) is the unique solution to the coupled system of equations (comparable in certain respects with [8, (2.17)])

(3.40) \[\left\{ \begin{array}{ll} (\mathcal{P}_{\text{hom}}), \\ (\mathcal{P}_{\text{stiff}}(k, \kappa)), \end{array} \right. \]

defined below in terms of \(k, \kappa, \) and \(\vartheta \) given, respectively, by (3.8) and (3.10). The fields \(u_0 \) and \(v \) are linked by the following relation in \(\Omega \times (0, T) \times A: \)

(3.41) \[v(x, t) = u_0(x, t, y) \quad \text{in} \quad \Omega \times (0, T) \times A. \]

We introduce the operators \(e_y, \sigma_{0y} : H^1(Y; \mathbb{R}^3) \to L^2(Y; \mathbb{S}^3), \) \(g : \mathcal{H} \to \mathbb{R}^3 \) defined by

(3.42) \[(e_y(w))_{ij} = \frac{1}{2} \left(\frac{\partial w_i}{\partial y_j} + \frac{\partial w_j}{\partial y_i} \right), \quad \sigma_{0y}(w) := \lambda_0 \text{tr}(e_y(w))I + 2\mu_0 e_y(w), \]

\[g(w) := \left\{ \begin{array}{ll} -\int_{\partial(Y \setminus B) \cap B} \sigma_{0y}(w)\nu_{Y \setminus B}d\mathcal{H}^2(y), & \text{if} \quad A = B, \\ \int_{\Sigma} (\sigma_{0y}(w^+) - \sigma_{0y}(w^-)) \cdot e_3d\mathcal{H}^2(y) & \text{if} \quad A = \Sigma, \end{array} \right. \]

where \(\nu_{Y \setminus B} \) stands for the outward normal to \(\partial(Y \setminus B) \) and

(3.43) \[\mathcal{H} := \{ w \in H^1(Y \setminus A; \mathbb{R}^3), \quad \text{div}(\sigma_{0y}(w)) \in (H^1(Y \setminus A; \mathbb{R}^3))' \}, \]

denoting by \(E' \) the topological dual of a Banach space \(E \), and by \(w^+ \) (resp. \(w^- \)) the restriction of \(w \) to \(\left(\frac{-1}{2}, \frac{1}{2} \right) \times (0, \frac{1}{2}) \) (resp. \(\left(\frac{-1}{2}, \frac{1}{2} \right) \times (\frac{1}{2}, 0) \)). Problem \((\mathcal{P}_{\text{stiff}}) \) in (3.40) is the equation of \(u_0 \) in \(\Omega \times (0, T) \times (Y \setminus A) \) coupled with \(v \) through (3.41) and given by (denoting by \(\nu \) the outward normal to \(\partial Y \)):
\[\rho \frac{\partial^2 u_0}{\partial t^2} - \text{div}_y(\sigma_{0y}(u_0)) = \rho f \quad \text{in} \quad \Omega \times (0, T) \times Y \setminus A, \]

\[(u_0, v) \text{ satisfies } (3.41), \]

\[(\partial_{xy})_{\text{soft}}; \]

\[(3.44) \quad (\mathcal{P}_{\text{hom}}^{\text{soft}}) : \begin{cases}
\frac{\partial^2 \nu}{\partial t^2} - \text{div}_x(\sigma_{0y}(u_0)) = \rho f & \text{in} \quad \Omega \times (0, T), \\
(0, \nabla \cdot (\nu)) & \text{on} \quad \Omega \times (0, T), \\
u_0 \in C([0, T]; L^2(\Omega; H^1_y(\Omega))) \cap C^1([0, T]; L^2(\Omega \times y; \mathbb{R}^3)), \\
u_0(0)1_{y \setminus A} = a_01_{y \setminus A}, & \frac{\partial u_0}{\partial t}(0)1_{y \setminus A} = b_0.
\end{cases} \]

Equation (3.44) governs the effective behavior of the displacement in the soft phase. Problem \((\mathcal{P}_{\text{stiff}}^{\text{hom}}(k, \kappa)) \) in (3.40) is an equation of \(v \) in \(\Omega \times (0, T) \) coupled with \((\mathcal{P}_{\text{soft}}^{\text{hom}})\) through the source term \(g(u_0) \) defined by (3.42). This equation rules the effective behavior of the displacement in the stiff layers. Its form is determined by the order of magnitude of the coefficients \(k, \kappa \). If \(0 < k < +\infty \), we get (see (2.1))

\[(\mathcal{P}_{\text{stiff}}^{\text{hom}}(k, \kappa)) : \]

\[(3.45) \quad (0 < k < +\infty) \]

\[\begin{cases}
\bar{\rho} \frac{\partial^2 v_0}{\partial t^2} - k \text{div}_x(\sigma_{0y}(v')) = \bar{\rho} f + g(u_0) & \text{in} \quad \Omega \times (0, T), \\
v_1, v_2 \in C([0, T]; L^2(0, L; H^1_y(\Omega'))) \cap C^1([0, T]; L^2(\Omega)), \\
v \in C^1([0, T]; L^2(\Omega; \mathbb{R}^3)), & v(0) = a_0, \frac{\partial v}{\partial t}(0) = b_0.
\end{cases} \]

If \((k, \kappa) = (+\infty, 0) \), we obtain

\[(\mathcal{P}_{\text{stiff}}^{\text{hom}}(+\infty, 0)) : \]

\[(3.46) \quad (0 < k < +\infty) \]

\[\begin{cases}
\bar{\rho} \frac{\partial^2 v_0}{\partial t^2} = \bar{\rho} f_3 + (g(u_0))_3 & \text{in} \quad \Omega \times (0, T), \\
v_1 = v_2 = 0, \\
v_3 \in C^1([0, T], L^2(\Omega)), & v_3(0) = a_{03}, \frac{\partial v_3}{\partial t}(0) = b_{03}.
\end{cases} \]

If \(0 < \kappa < +\infty \), the emergence of fourth derivatives of \(v_3 \) reveal bending effects:

\[(\mathcal{P}_{\text{stiff}}^{\text{hom}}(+\infty, \kappa)) : \]

\[(3.47) \quad (0 < \kappa < +\infty) \]

\[\begin{cases}
\bar{\rho} \frac{\partial^2 v_0}{\partial t^2} + \kappa l + 1 \sum_{\alpha, \beta=1}^2 \partial^4 v_3 \notag \\
\bar{\rho} \frac{\partial v_3}{\partial t^2} = \bar{\rho} f_3 + (g(u_0))_3 & \text{in} \quad \Omega \times (0, T), \\
v_1 = v_2 = 0, \\
v_3 \in C([0, T]; L^2(0, L; H^2_y(\Omega'))) \cap C^1([0, T]; L^2(\Omega)), \\
v_3(0) = a_{03}, & \frac{\partial v_3}{\partial t}(0) = b_{03}.
\end{cases} \]

If \(\kappa = +\infty \), the displacement in the stiff layers asymptotically vanishes:

\[(\mathcal{P}_{\text{stiff}}^{\text{hom}}(+\infty, +\infty)) : \]

\[(3.48) \quad v = 0. \]

Theorem 3.12. Under (3.34), (3.35), the solution \(u_x \) to (3.5) two-scale converges to \(u_0 \) with respect to \(x \) and weakly* converges in \(L^\infty(0, T; L^2(\Omega, \mathbb{R}^3)) \) to \(u = \)
Stratified Elastic Composites with High Contrast

Let \(\varepsilon \) be a small parameter, and consider the following system of equations:

\[
\begin{align*}
\int_Y u_0(\cdot, y) dy, \quad \text{and the sequence } (u_\varepsilon, m_\varepsilon), \quad \text{where } m_\varepsilon \text{ is defined by } (3.39), \text{ weakly* converges in } L^\infty(0, T; M(\Omega, \mathbb{R}^3)) \text{ to } vL^3_\Omega, \quad \text{where } (u_0, v) \text{ is the unique solution to } (3.40).
\end{align*}
\]

Moreover, \(u_\varepsilon(\tau) \) two-scale converges to \(u_0(\tau) \) with respect to \(x \), for each \(\tau \in [0, T] \).

Remark 3.13. When \(\vartheta = 0 \), \(k \in (0, +\infty) \), additional sub-regimes are likely to appear in the cases \(r_\varepsilon = c_\varepsilon^2 \) and \(\varepsilon^2 \ll r_\varepsilon \ll \varepsilon \), possibly attended by the emergence of bending effects. Similar phenomena have been studied by V. V. Zhikov \([55]\) and V. V. Zhikov and S. E. Pastukhova \([56]\) in the context of periodic singular structures.

Remark 3.14. One can show (see \([8, \text{p.2548}]\) for more details), that if \(a_0 = 0 \) and if the fields \(b_0, f \) are sufficiently regular, the following corrector result holds

\[
\lim_{\varepsilon \to 0} \left\| u_\varepsilon - u_0 \left(x, \frac{x}{\varepsilon} \right) \right\|_{L^2(0(0,T) ; \mathbb{R}^3)} = 0.
\]

Remark 3.15. The effective problem \((3.40)\) is non-local in space and time. Non-local effects \([3, 5]-[19], [20, 21, 23, 34, 44], [47]-[50]\), and memory effects \([1, 4, 37, 53]\) are typical of composite media with high contrast.

Remark 3.16 (Multiphase stratified elastic media). In the same way as in \([8, \text{Section 4}]\), we can extend Theorem 3.12 to the case of a multiphase medium whereby \(m \varepsilon \)-periodic disconnected families \(B_\varepsilon^1, \ldots, B_\varepsilon^m \) of parallel layers are embedded in a soft matrix. The limit problem then takes the following form

\[
\left\{ \begin{array}{ll}
(P_{\text{hom}}^{\text{soft}}), \\
(P_{\text{hom}}^{\text{stiff}}[j]), & j \in \{1, \ldots, m\},
\end{array} \right.
\]

and can be written under the variational form \((4.23)\) for some suitable choice of data \(H, V, a, h, \xi_0, \xi_1 \). Each family \(B_\varepsilon^j \) is associated to some subset \(A^j \) of \(Y \) like in \((3.37)\). The system \((P_{\text{hom}}^{\text{soft}})\) governs the effective displacement in the soft phase, and only differs from \((3.44)\) by the relation \((3.41)\) which is replaced by a series of relations on each set \(\Omega \times (0, T) \times A^j \) between \(u_0 \) and some auxiliary variable \(v^j \) characterizing the effective displacement in \(B_\varepsilon^j \). Each problem \((P_{\text{hom}}^{\text{stiff}}[j])\) consists of an equation of \(v^j \) of the same form as \((P_{\text{stiff}}^{\text{hom}})\) in \((3.40)\), coupled with \(u_0 \) through the operator \(g^j \) deduced from \((3.42)\) by replacing \(A \) by \(A^j \).

Remark 3.17. Multiphase composites comprising, besides stiff layers, periodic distributions of fibers or grain-like inclusions, can also be considered. By way of illustration, let us examine the case of a composite consisting of an \(\varepsilon \)-periodic family \(B_\varepsilon^1 \) of parallel stiff layers of thickness \(\vartheta \varepsilon \) \((\vartheta > 0)\) alternating with a softer medium in which an \(\varepsilon \)-periodic family \(B_\varepsilon^2 \) of parallel stiff fibers and an \(\varepsilon \)-periodic family \(B_\varepsilon^3 \) of stiff grain-like inclusions are embedded. The disconnected families \(B_\varepsilon^j \) are defined in terms of three connected subsets \(B^1, B^2, B^3 \) of \(Y \) with disjoint closure by setting

\[
B^j:=\varepsilon \left(\bigcup_{j \in \mathbb{Z}^2} j + B^j \right) \cap \Omega \quad \text{(see figure 3.2).}
\]

We assume that the Lamé coefficients take constant values of order at least 1 in each \(B^j \), and constant values \(\varepsilon^2 \lambda_0, \varepsilon^2 \mu_0 \) in \(\Omega \setminus \bigcup_{i=1}^3 B^i \). The limit problem then takes the form

\[
\left\{ \begin{array}{ll}
(P_{\text{hom}}^{\text{soft}}), \\
(P_{\text{stiff}}^{\text{hom}}[i]), & i \in \{1, 2, 3\},
\end{array} \right.
\]

where, setting \(B := \bigcup_{i=1}^3 B^i \), \(y_B[i] := \frac{1}{|B^i|} \int_{B^j} y dy \),
field locally approximating the displacement in the fibers or the grain-like inclusions of an helicoidal vector.

\(\mathbf{u} \) is the effective displacement in the fibers if \(i \), in the stiff layers as described in Remark 3.16. For \(i \in \{2,3\} \), the problem \(\mathcal{P}^{\text{hom}}_{\text{stiff}} \) is a system of equations of \(\mathbf{v}^{[i]} \), \(r^{[i]} \) defined in [8, Section 4], governing the effective displacement in the fibers if \(i = 2 \), in the grain-like inclusions if \(i = 3 \). The couple \((\mathbf{v}^{[i]}, \frac{1}{2} r^{[i]})\) represents the reduction elements (on the principal axes of the fibers or at the geometrical center of gravity of the inclusions) of an helicoidal vector field locally approximating the displacement in the fibers or the grain-like inclusions.

\[
\mathbf{v}(x,t) = \mathbf{u}_0(x,t,y) \quad \text{in} \quad \Omega \times (0,T) \times I \]

Remark 3.18. The solution to (3.44) is actually independent of \(y_1, y_2 \). We have \(\mathbf{u}_0(x,y) = \mathbf{u}_0(x,y_3) \), where, setting \(I := (-\frac{1}{2}, \frac{1}{2}) \), \(\mathbf{u}_0(x,y_3) \) is the unique solution to

\[
\mathcal{P}^{\text{hom}}_{\text{soft}} : \begin{cases}
\rho \frac{\partial^2 \mathbf{u}_0}{\partial t^2} - \nabla_y (\mathbf{f}^{[y]}(\mathbf{u}_0)) = \rho \mathbf{f} & \text{in} \quad \Omega \times (0,T) \times I \setminus \left[-\frac{\vartheta}{2}, \frac{\vartheta}{2} \right], \\
\mathbf{u}_0(x,t,y) = \mathbf{u}_0^{[1]}(x,t) & \text{in} \quad \Omega \times (0,T), \\
\mathbf{u}_0(y_3) = \mathbf{u}_0(y_3) & \text{in} \quad \Omega \times (0,T), \\
\mathbf{u}_0 \in C([0,T]; L^2(\Omega; H^1_2(I; \mathbb{R}^3))) \cap C^1([0,T]; L^2(\Omega \times I; \mathbb{R}^3)), \\
\mathbf{u}_0(0) I_{-\frac{\vartheta}{2}, \frac{\vartheta}{2}} = \mathbf{a}_0 I_{-\frac{\vartheta}{2}, \frac{\vartheta}{2}}, \quad \mathbf{\partial u}_0(0) I_{-\frac{\vartheta}{2}, \frac{\vartheta}{2}} = \mathbf{b}_0 I_{-\frac{\vartheta}{2}, \frac{\vartheta}{2}}.
\end{cases}
\]
We retained the dependence on y_1, y_2 in (3.44) in order to extend our results to such multiphase media as described in Remark 3.17 and derive (3.50).

Remark 3.19 (Equilibrium equations). The conclusions of [8, Corollary 5.1] remain valid in the stratified case: if the solution to the equilibrium problem (3.32) two-scale converges to $u_0 \in L^2(\Omega \times Y; \mathbb{R}^3)$, then u_0 is a solution to the problem

\[(3.51) \quad u_0 \in V \quad \text{and} \quad a(u_0, w_0) = (f, w_0)_H, \quad \forall w_0 \in V,
\]

where V, H, $a(\cdot, \cdot)$ are specified in Remark 3.16. The form $a(\cdot, \cdot)$ may fail to be coercive on $L^2(\Omega \times Y; \mathbb{R}^3)$, and problem (3.51) may then have no solution. The same conditions stated in Remark 6.3 for Theorem 3.7 also ensure the coercivity of $a(\cdot, \cdot)$ in the present context. Coerciveness is also achieved in the composite described in Remark 3.17 provided the Lamé coefficients of the fibers are at least of order $\frac{1}{2}$ (see [8, Proposition 5.2]). Note in passing that one should substitute 1 for ρ_ε in [8, Formula 5.1], otherwise the proof of "(iii) \Rightarrow (iv)" in [8, p. 2552] is false.

Remark 3.20. Under Assumption (3.34), the slightest perturbation of periodicity leads to a complete change of the form of the effective problem. For instance, if $m \in \mathbb{N}$ and $\omega^j = \varepsilon (j + \frac{1}{2})$ if j is a multiple of m, and $\omega^j = \varepsilon j$ otherwise in (3.35), then the limit problem is a system of equations coupling u_0 with m auxiliary variables $v^{(1)}, ..., v^{(m)}$ as described in Remark 3.16, which can not be expressed, as in theorems 3.1, 3.7, simply in terms of the function n defined by (3.16). The extension of Theorem 3.12 to the non-periodic case is far beyond the scope of this paper.

4. Two-scale convergence and other analysis tools. In Section 4.1, we recall some properties of the two-scale convergence of G. Allaire [3] and G. Nguetseng [41] and reproduce some statements of [8] in a suitable form for the present context. In Section 4.2, we introduce a non-periodic notion of two-scale convergence with respect to a sequence of measures and establish a compactness result (Lemma 4.2). Two classical analysis results are recalled in Section 4.3.

4.1. Two-scale convergence. A sequence (f_ε) in $L^2(0, T; L^2(\Omega))$ is said to two-scale converge to $f_0 \in L^2(0, T; L^2(\Omega \times Y))$ with respect to x if, for all $\varphi_0 \in \mathcal{D}(\Omega \times (0, T), C_0^\infty(Y))$,

\[(4.1) \quad \lim_{\varepsilon \to 0} \int_{\Omega \times (0, T)} f_\varepsilon(x, t) \varphi_0 \left(x, t, \frac{x}{\varepsilon}\right) dx dt = \int_{\Omega \times (0, T) \times Y} f_0 \varphi_0 dx dt dy,
\]

(notation: $f_\varepsilon \rightharpoonup f_0$).

A sequence $(\varphi_\varepsilon) \subset L^2(0, T; L^2(\Omega))$ strongly two-scale converges to $\varphi_0 \in L^2(0, T; L^2(\Omega \times Y))$ with respect to x if

\[(4.2) \quad \varphi_\varepsilon \rightharpoonup \varphi_0 \quad \text{and} \quad \lim_{\varepsilon \to 0} ||\varphi_\varepsilon||_{L^2(0, T; L^2(\Omega))} = ||\varphi_0||_{L^2(0, T; L^2(\Omega \times Y))},
\]

(notation: $\varphi_\varepsilon \rightharpoonup \varphi_0$).

The symbols \rightharpoonup and \rightharpoonup will also denote the two-scale convergence and the strong two-scale convergence of sequences (f_ε) in $L^2(\Omega)$ independent of t, defined by formally considering them as constant in t. Any bounded sequence in $L^2(0, T; L^2(\Omega))$ has a
two-scale convergent subsequence \[41\]. An admissible sequence with respect to two-scale convergence is a sequence \((\varphi_\varepsilon) \subset L^2(0, T; L^2(\Omega))\) that two-scale converges to some \(\varphi_0 \in L^2(0, T; L^2(\Omega \times Y))\) and such that, for every two-scale convergent sequence \((f_\varepsilon)\),

\[
\lim_{\varepsilon \to 0} \int_{\Omega(0, T)} f_\varepsilon \varphi_\varepsilon dx dt = \int_{\Omega(0, T)} f_0 \varphi_0 dx dt dy.
\]

A sequence \((\varphi_\varepsilon)\) is admissible if and only if it strongly two-scale converges to some \(\varphi_0\) (see \[8, p.2528\]). For all \(\psi_0 \in L^2(0, T; L^2(\Omega, C_{\text{loc}}^\infty(Y))) \cup L^2_0(Y, C(\overline{\Omega} \times (0, T)))\), the sequence \((\psi_0(x, t, \frac{\varepsilon}{\varepsilon}))\) strongly two-scale converges to \(\psi_0\) (see \[3\], Lemma 5.2, Corollary 5.4). In particular, if \(Q\) is a Borel subset of \(Y\), and \(Q_\sharp\) is its periodization on \(\mathbb{R}^3\) defined by \(2.2\), then the sequence \((I_{Q_\sharp}(\frac{\varepsilon}{\varepsilon}))\) strongly two-scale converges to \(I_Q(y)\). Under \(3.35\), if \(\vartheta > 0\), then \([I_{Q_r}(\varepsilon) - I_{(Y \setminus B_y}(\frac{\varepsilon}{\varepsilon}))|_{L^2(\Omega)} \to 0\), therefore \(I_{Q_r} \to I_{Y \setminus B_\varepsilon}\). If \(\vartheta = 0\), \((I_{Q_r}(\varepsilon))\) strongly converges to 1 in \(L^2(\Omega)\), hence strongly two-scale converges to 1. We deduce that (see \(3.37\))

\[
\tag{4.4}
I_{Q_r} \to I_{Y \setminus A}, \quad I_{B_\varepsilon} \to I_A.
\]

The next Lemma is a straightforward variant of \[8, Lemma 6.1\].

Lemma 4.1. (i) Let \(h_\varepsilon\) be a bounded sequence in \(L^\infty(\Omega \times (0, T) \times Y)\) such that \(h_\varepsilon \to h_0\). Then, for every sequence \((\chi_\varepsilon) \subset L^2(0, T; L^2(\Omega))\), the following implications hold:

\[
\tag{4.5}
\chi_\varepsilon \to \chi_0 \quad \implies \quad \chi_\varepsilon h_\varepsilon \to \chi_0 h_0,
\]

\[
\tag{4.6}
\chi_\varepsilon \to \chi_0 \quad \implies \quad \chi_\varepsilon h_\varepsilon \to \chi_0 h_0.
\]

(ii) If \((f_\varepsilon)\) is bounded in \(L^\infty(0, T; L^2(\Omega))\), then \((f_\varepsilon)\) two-scale converges, up to a subsequence, to some \(f_0 \in L^\infty(0, T; L^2(\Omega \times Y))\). If in addition \((f_\varepsilon)\) is bounded in \(W^{1, \infty}(0, T; L^2(\Omega))\), then \(f_0 \in W^{1, \infty}(0, T; L^2(\Omega \times Y))\) and \((\frac{\partial f_\varepsilon}{\partial t})\) two-scale converges to \(\frac{\partial f_0}{\partial t}\). Besides, if \(f_\varepsilon(0) \to a_0\), then \(a_0 = f_0(0)\) and \(f_\varepsilon(\tau) \to f_0(\tau), \forall \tau \in [0, T]\). Furthermore, if \((\frac{\partial f_\varepsilon}{\partial t})\) \(\to \frac{\partial f_0}{\partial t}\) and \(f_\varepsilon(0) \to a_0\), then \(f_\varepsilon(\tau) \to f_0(\tau), \forall \tau \in [0, T]\).

4.2. Two-scale convergence with respect to \((m_\varepsilon)\). One can easily check that the sequence \((m_\varepsilon)\) defined by \(3.39\) is bounded in \(\mathcal{M}(\Omega)\) and satisfies

\[
\tag{4.7}
m_\varepsilon \to nL^3_{\Omega} \text{ weakly* in } \mathcal{M}(\Omega),
\]

where \(n\) is defined by \(3.16\). Notice that

\[
\tag{4.8}
n = 1 \text{ under } 3.35.
\]

In what follows, the symbol \(L^2_n(\Omega; \mathbb{R}^3)\) stands for the set of all Borel fields \(w : \Omega \to \mathbb{R}^3\) such that \(\int_\Omega |w|^2 dx < +\infty\). Similarly, for any Hilbert space \(H\), we denote by \(L^2_n(0, L; H)\) the set of all Borel fields \(w : (0, L) \to H\) such that \(\int_0^L |w|^2_H dx < +\infty\). We set (see \(3.3\), \(3.4\))

\[
\tag{4.9}
y_\varepsilon(z) := \sum_{j \in J_\varepsilon} (z - \omega_\varepsilon^j) 1_{\omega_\varepsilon^j + r_\varepsilon(1+\varepsilon)f}(z).
\]
We say that a sequence \((f_\varepsilon)\) in \(L^2(0,T;L^2(\Omega))\) two-scale converges to \(f_0 \in L^2(0,T;L^2(\Omega \times I))\) with respect to the sequence of measures \((m_\varepsilon)\) if for each \(\psi \in \mathcal{D}(\Omega \times (0,T);C_0^\infty(I))\), the following holds

\[
\lim_{\varepsilon \to 0} \int_{\Omega \times (0,T)} f_\varepsilon(x,t)\psi(x,t,\frac{y_\varepsilon(x_3)}{r_\varepsilon}) \, dm_\varepsilon \, dt = \int_{\Omega \times (0,T) \times I} f_0 \psi \, ndx \, dt \, dy_3.
\]

(Noteation: \(f_\varepsilon \overset{m_\varepsilon}{\to} f_0\).)

Lemma 4.2. Let \((f_\varepsilon)\) be a sequence in \(L^2(0,T;L^2(\Omega))\) satisfying

\[
\sup_{\varepsilon > 0} \int_{\Omega \times (0,T)} |f_\varepsilon|^2 \, dm_\varepsilon \, dt < +\infty.
\]

Then \((f_\varepsilon)\) two-scale converges with respect to \((m_\varepsilon)\), up to a subsequence, to some \(f_0 \in L^2(0,T;L^2(\Omega \times I))\). In addition, if

\[
\sup_{\varepsilon > 0, \tau > 0} \int_{\Omega} |f_\varepsilon|^2(\tau) \, dm_\varepsilon < +\infty,
\]

then \(f_0 \in L^\infty(0,T;L^2(\Omega \times I))\).

Proof. By Cauchy-Schwarz Inequality and by (4.11), we have

\[
\left| \int_{\Omega \times (0,T)} f_\varepsilon(x,t)\psi(x,t,\frac{y_\varepsilon(x_3)}{r_\varepsilon}) \, dm_\varepsilon \, dt \right| \\
\leq C \left(\int_{\Omega \times (0,T)} |f_\varepsilon|^2 \, dm_\varepsilon \, dt \right)^{\frac{1}{2}} ||\psi||_{L^\infty(\Omega \times (0,T) \times I)} \\
\leq C ||\psi||_{L^\infty(\Omega \times (0,T) \times I)} \quad \forall \psi \in C(\Omega \times (0,T) \times I).
\]

Hence, by the Riesz representation theorem, for each \(\varepsilon > 0\) there exists a finite Radon measure \(\theta_\varepsilon \in \mathcal{M}(\Omega \times (0,T) \times I)\) such that

\[
\int \psi \, d\theta_\varepsilon = \int_{\Omega \times (0,T)} f_\varepsilon(x,t)\psi(x,t,\frac{y_\varepsilon(x_3)}{r_\varepsilon}) \, dm_\varepsilon \, dt \quad \forall \psi \in C(\Omega \times (0,T) \times I).
\]

By (4.13) and (4.14), the sequence \((\theta_\varepsilon)\) is bounded in \(\mathcal{M}(\Omega \times (0,T) \times I)\), thus weakly* converges, up to a subsequence, to some \(\theta \in \mathcal{M}(\Omega \times (0,T) \times I)\). By Cauchy-Schwarz inequality, we have

\[
\left| \int \psi \, d\theta \right| \leq \left(\int_{\Omega \times (0,T)} |f_\varepsilon|^2 \, dm_\varepsilon \, dt \right)^{\frac{1}{2}} \left(\int_{\Omega \times (0,T)} \left| \psi \left(x, t, \frac{y_\varepsilon(x_3)}{r_\varepsilon} \right) \right|^2 \, dm_\varepsilon \, dt \right)^{\frac{1}{2}}.
\]

The proof of the next statement is similar to that of [3, Lemma 1.3]:

\[
\lim_{\varepsilon \to 0} \int_{\Omega} \left| \varphi \left(x, \frac{y_\varepsilon(x_3)}{r_\varepsilon} \right) \right|^2 \, dm_\varepsilon = \int_{\Omega \times I} |\varphi|^2 \, ndx \, dy_3 \quad \forall \varphi \in C(\overline{\Omega \times I}).
\]
We deduce from (4.11), (4.14), (4.15), (4.16), and from the weak* convergence in $\mathcal{M}(\Omega \times (0, T) \times I)$ of (θ_ε) to θ, that

$$\left| \int \psi d\theta \right| = \lim_{\varepsilon \to 0} \left| \int \psi d\theta_\varepsilon \right| \leq C \|\psi\|_{L^2_\varepsilon(\Omega \times (0, T) \times I)} \quad \forall \psi \in C(\Omega \times (0, T) \times I).$$

Thus, the linear form $\psi \mapsto \int \psi d\theta$ is continuous on $C(\Omega \times (0, T) \times I)$ with respect to the strong topology of $L^2_\varepsilon(\Omega \times (0, T) \times I)$. By a density argument, this linear form can be extended to a continuous linear form on $L^2_\varepsilon(\Omega \times (0, T) \times I)$ which, by the Riesz representation theorem, takes the form $\psi \mapsto \int_{\Omega \times (0, T) \times I} \int f_0 n dx dy$ for some $f_0 \in L^2_\varepsilon(\Omega \times (0, T) \times I)$. We infer that $\theta = n f_0 L^2_\varepsilon(\Omega \times (0, T) \times I)$, and then, taking (4.14) and the weak* convergence of (θ_ε) to θ into account, deduce (4.10). Under (4.12), by Fubini’s Theorem and Cauchy-Schwarz inequality, we have

$$\int_{\Omega \times (0, T)} f_\varepsilon(x, t) \psi(x, t, \frac{y(x, t)}{r_\varepsilon}) dm_\varepsilon dt \leq C \int_{(0, T)} \left(\int_{(0, T)} \left| \psi(x, t, \frac{y(x, t)}{r_\varepsilon}) \right|^2 dm_\varepsilon \right)^{\frac{1}{2}} dt.$$

By passing to the limit as $\varepsilon \to 0$ in the last inequality, thanks to (4.16) and to the Dominated Convergence Theorem, we get $\int_{\Omega \times (0, T) \times I} f_0 \psi n dx dy \leq C \|\psi\|_{L^1(0, T; L^2_\varepsilon(\Omega \times I))}$
and deduce, by the arbitrary choice of ψ, that $f_0 \in L^\infty(0, T; L^2_\varepsilon(\Omega \times I))$. \[\square \]

4.3. Two classical results. For the reader’s convenience, we reproduce below Lemma A2 of [11] (see also [17] for a more general version) and Theorem 6.2 of [8], which collects some abstract results proved in [25, 35, 36]. The lemma will be employed to identify the limit of the sequence $(u_\varepsilon, m_\varepsilon)$, where u_ε is the solution to (3.5). The theorem will be applied to check the existence, the uniqueness, and some regularity properties of the solution to Problem (3.5) and of the associated limit problems. In what follows, we denote by E' the continuous dual space of a Banach space E and by $\sigma(E', E)$ the weak* topology on E'.

Lemma 4.3. Let K be a compact subset of \mathbb{R}^N and (θ_ε) a bounded sequence of positive Radon measures on K, weakly* converging in $\mathcal{M}(K)$ to some $\theta \in \mathcal{M}(K)$. Let (f_ε) be a sequence of θ-measurable functions such that $\sup_\varepsilon \|f_\varepsilon\|^2 d\theta_\varepsilon < \infty$. Then the sequence $(f_\varepsilon, \theta_\varepsilon)$ is sequentially relatively compact in the weak* topology $\sigma(\mathcal{M}(K), C(K))$ and every cluster point is of the form $f \theta$, with $f \in L^2_\varepsilon$. Moreover, if $f_\varepsilon \theta_\varepsilon \rightharpoonup f \theta$, then

$$\liminf_{\varepsilon \to 0} \int |f_\varepsilon|^2 d\theta_\varepsilon \geq \int |f|^2 d\theta. \quad (4.17)$$

Theorem 4.4. Let V and H be separable Hilbert spaces such that $V \subset H = H' \subset V'$, with continuous and dense imbeddings. Let $\|\cdot\|_V$, $\|\cdot\|_H$, $((\cdot, \cdot))_V$, $(\cdot, \cdot)_H$ denote their respective norm and inner product. Let $a : V \times V \to \mathbb{R}$ be a continuous bilinear symmetric form on V. Let $A \in \mathcal{L}(V, V')$ be defined by $a(\xi, \tilde{\xi}) = \langle A\xi, \tilde{\xi} \rangle_{(V', V)}$, $\forall \ (\xi, \tilde{\xi}) \in V^2$. Assume that

$$\exists (\lambda, \alpha) \in [0, +\infty) \times (0, +\infty), \ a(\xi, \xi) + \lambda |\xi|_H^2 \geq \alpha |\xi|_V^2, \ \forall \ \xi \in V. \quad (4.18)$$
Let \(h \in L^2(0,T;H) \), \(\xi_0 \in V \), \(\xi_1 \in H \). Then there exists a unique solution \(\xi \) to
\[
A\xi(t) + \frac{\partial^2 \xi}{\partial t^2}(t) = h(t), \quad \xi \in L^2(0,T;V),
\]
(4.19)
\[
\frac{\partial \xi}{\partial t} \in L^2(0,T;H), \quad \xi(0) = \xi_0, \quad \frac{\partial \xi}{\partial t}(0) = \xi_1.
\]
Furthermore, we have
\[
\xi \in C([0,T];V) \cap C^1([0,T];H), \quad \frac{\partial \xi}{\partial t} \in L^2(0,T;V), \quad \frac{\partial^2 \xi}{\partial t^2} \in L^2(0,T;V').
\]
(4.20)
Besides, setting
\[
e(\tau) := \frac{1}{2} \left[\left(\frac{\partial \xi}{\partial t}(\tau), \frac{\partial \xi}{\partial t}(\tau) \right)_H + a(\xi(\tau), \xi(\tau)) \right], \quad \forall \tau \in [0,T],
\]
(4.21)
the following holds
\[
e(\tau) = e(0) + \int_0^\tau \left(h, \frac{\partial \xi}{\partial t} \right)_H dt, \quad \forall \tau \in [0,T].
\]
(4.22)
Problem (4.19) is equivalent to
\[
\int_0^T \left(a(\xi(t), \tilde{\xi}) \eta(t) + \langle \xi(t), \tilde{\xi} \rangle_H \frac{\partial^2 \eta}{\partial t^2}(t) \right) dt + \langle \xi_0, \tilde{\xi} \rangle_H \frac{\partial \eta}{\partial t}(0)
\]
(4.23)
\[- \langle \xi_1, \tilde{\xi} \rangle_H \eta(0) = \int_0^T (h, \tilde{\xi})_H \eta(t) dt,
\]
\forall \tilde{\xi} \in V, \quad \forall \eta \in D([-\infty,T]); \quad \xi \in L^2(0,T;V), \quad \frac{\partial \xi}{\partial t} \in L^2(0,T;H).

5. Asymptotic behavior of the solution to (3.5). In this section, we establish a series of estimates satisfied by the solution \(u_\varepsilon \) to (3.5) (see Proposition 5.2), and investigate in lemmas 5.3, 5.4, and 5.5, the asymptotic behavior of sequences satisfying such estimates. These results are synthetized in Corollary 5.6. We start with a key inequality.

Lemma 5.1. We have
\[
\int \left(\left| \frac{\varphi_1}{r_\varepsilon} \right|^2 + \left| \frac{\varphi_2}{r_\varepsilon} \right|^2 + \left| \frac{\varphi_3}{r_\varepsilon} \right|^2 \right) dm_\varepsilon \leq \frac{C}{r_\varepsilon^2} \int |e(\varphi)|^2 dm_\varepsilon \quad \forall \varphi \in H^1_0(\Omega;\mathbb{R}^3).
\]
(5.1)

Proof. By (3.4) and (3.39), it is sufficient to show that for all \(j \in J_\varepsilon \), and all \(\varphi \in H^1(B^\varepsilon_\Omega;\mathbb{R}^3) \) such that \(\varphi = 0 \) on \(\partial B^\varepsilon_\Omega \cap \partial \Omega \),
\[
\int_{B^\varepsilon_\Omega} \left(\left| \frac{\varphi_1}{r_\varepsilon} \right|^2 + \left| \frac{\varphi_2}{r_\varepsilon} \right|^2 + \left| \frac{\varphi_3}{r_\varepsilon} \right|^2 \right) dx \leq \frac{C}{r_\varepsilon} \int_{B^\varepsilon_\Omega} |e(\varphi)|^2 dx.
\]
(5.2)
By Korn’s inequality, we have
Under (3.6), (3.9), there exists a constant C, such that

$$\int_{\Omega \times (-\frac{1}{2}; \frac{1}{2})} |\psi|^2 dy \leq C \int_{\Omega \times (-\frac{1}{2}; \frac{1}{2})} |e(\psi)|^2 dy \quad \forall \psi \in W,$$

$W := \left\{ \psi \in H^1 \left(\Omega' \times \left(-\frac{1}{2}, \frac{1}{2}\right); \mathbb{R}^3 \right), \right. \psi = 0 \text{ on } \partial \Omega' \times \left(-\frac{1}{2}, \frac{1}{2}\right) \left. \right\}.$

By making the change of variable $y = (x_1, x_2, \frac{x_3 - \omega_z}{r_\varepsilon})$, we get, for all $\psi \in W,$

$$\int_{B_1} |\psi|^2 \left(x_1, x_2, \frac{x_3 - \omega_z}{r_\varepsilon} \right) dx \leq C \int_{B_1} |e(\psi)|^2 \left(x_1, x_2, \frac{x_3 - \omega_z}{r_\varepsilon} \right) dx. \quad \text{(5.3)}$$

Setting $\varphi(x) = \left(\begin{smallmatrix} \psi_1 \\ \psi_2 \\ 1 \end{smallmatrix} \right) \left(x_1, x_2, \frac{x_3 - \omega_z}{r_\varepsilon} \right)$, a straightforward computation yields

$$\int_{B_1} \left(|\varphi_1|^2 + |\varphi_2|^2 + r_\varepsilon^2 |\varphi_3|^2 \right) dx = \int_{B_1} |\psi|^2 \left(x_1, x_2, \frac{x_3 - \omega_z}{r_\varepsilon} \right) dx \leq C \int_{B_1} |e(\varphi)|^2 \left(x_1, x_2, \frac{x_3 - \omega_z}{r_\varepsilon} \right) dx.$$

The inequality (5.2) is proved. □

Proposition 5.2. There exists a unique solution u_ε to (3.5). Moreover,

$$\frac{\partial u_\varepsilon}{\partial t} \in L^2(0, T; H_0^1(\Omega; \mathbb{R}^3)), \quad \frac{\partial^2 u_\varepsilon}{\partial t^2} \in L^2(0, T; H^{-1}(\Omega; \mathbb{R}^3)). \quad \text{(5.4)}$$

Under (3.6), (3.9), there exists a constant $C > 0$ such that

$$\int_{\Omega} \mu_\varepsilon |e(u_\varepsilon)|^2 (\tau) dx + \int_{\Omega} \left(\rho_\varepsilon \left| \frac{\partial u_\varepsilon}{\partial t} \right|^2 + |u_\varepsilon|^2 \right) (\tau) dx \leq C \quad \forall \tau \in [0, T], \quad \text{(5.5)}$$

$$\int u_{\varepsilon; 3}^2 (\tau) dm_\varepsilon \leq C \left(\frac{r_\varepsilon}{\varepsilon \mu_\varepsilon} \right)^{-1}, \quad \int |u_\varepsilon|^2 (\tau) dm_\varepsilon \leq C \quad \forall \tau \in [0, T].$$

Proof. Problem (3.5) is equivalent to (4.23), where $H = L^2(\Omega; \mathbb{R}^3)$, $(\xi, \tilde{\xi})_H := \int_{\Omega} \rho_\varepsilon \xi \cdot \tilde{\xi} dx$, $V := H_0^1(\Omega; \mathbb{R}^3)$ ($V' = H^{-1}(\Omega; \mathbb{R}^3)$), $a(\xi, \tilde{\xi}) := \int_{\Omega} \sigma_\varepsilon(\xi) \cdot e(\tilde{\xi}) dx$, the $H(\varepsilon, (\varepsilon)_{\varepsilon} H)$ is a Hilbert space and the assumptions of Theorem 4.4 are satisfied. Therefore, Problem (3.5) has a unique solution. Assertion (5.4) follows from (4.20). By (4.22) we have, for all $\tau \in [0, T],$

$$\frac{1}{2} \int_{\Omega} \left(\rho_\varepsilon \left| \frac{\partial u_\varepsilon}{\partial t} \right|^2 + \sigma_\varepsilon(u_\varepsilon) : e(u_\varepsilon) \right) (\tau) dx \quad = \quad \frac{1}{2} \int (\rho_\varepsilon |b_\varepsilon|^2 + \sigma_\varepsilon(a_\varepsilon) : e(a_\varepsilon)) dx + \int_{\Omega \times (0, T)} \rho_\varepsilon f \cdot \frac{\partial u_\varepsilon}{\partial t} dx dt.$$
We deduce from Cauchy-Schwarz Inequality that

\[\left| \int_{\Omega \times (0, \tau)} \rho_\varepsilon f \cdot \frac{\partial u_\varepsilon}{\partial t} \, dx \, dt \right| \leq \sqrt{\int_{\Omega \times (0, T)} \rho_\varepsilon |f|^2 \, dx \, dt} \sqrt{\int_{\Omega \times (0, T)} \rho_\varepsilon \left| \frac{\partial u_\varepsilon}{\partial t} \right|^2 \, dx \, dt}. \]

Taking (3.9) into account, we infer

\[\int_{\Omega} \left(\rho_\varepsilon \left| \frac{\partial u_\varepsilon}{\partial t} \right|^2 + \sigma_\varepsilon(u_\varepsilon) : e(u_\varepsilon) \right)(\tau) \, dx \leq C \left(1 + \int_{\Omega \times (0, T)} \rho_\varepsilon \left| \frac{\partial u_\varepsilon}{\partial t} \right|^2 \, dx \, dt \right) \quad \forall \tau \in [0, T]. \] (5.6)

By integrating (5.6) with respect to \(\tau \) over \((0, T)\), we deduce that

\[\int_{\Omega \times (0, T)} \rho_\varepsilon \left| \frac{\partial u_\varepsilon}{\partial t} \right|^2 \, dx \, dt \leq C \quad \text{and then, coming back to (5.6), that} \]

\[\int_{\Omega} \rho_\varepsilon \left| \frac{\partial u_\varepsilon}{\partial t} \right|^2(\tau) \, dx + \int_{\Omega} \sigma_\varepsilon(u_\varepsilon) : e(u_\varepsilon)(\tau) \, dx \leq C \quad \forall \tau \in [0, T]. \] (5.7)

We infer from (3.5), (3.6), (3.39), and (5.7), that

\[\int_{\Omega} \rho_\varepsilon \left| \frac{\partial u_\varepsilon}{\partial t} \right|^2(\tau) \, dx + \mu_0 \varepsilon |e(u_\varepsilon)|^2(\tau) \, dx \leq C \quad \forall \tau \in [0, T], \] (5.8)

\[\int_{\Omega} |e(u_\varepsilon)|^2(\tau) \, dx \leq C \left(\frac{r_\varepsilon}{\mu_1 \varepsilon} \right)^{-1} \quad \forall \tau \in [0, T]. \] (5.9)

By (3.7), (3.39), and (5.8), and by the continuity of \(a_0 \) (see (3.5)), we have

\[\int_{\Omega} |u_\varepsilon|^2(\tau) \, dx + \int_{\Omega} |e(u_\varepsilon)|^2(\tau) \, dx = \int_{\Omega} a_0 + \int_{0}^{\tau} \frac{\partial u_\varepsilon}{\partial t}(t) \, dt^2 \, d(L^3 + m_\varepsilon)(x) \leq C \left(1 + \int_{\Omega \times (0, T)} \rho_\varepsilon \left| \frac{\partial u_\varepsilon}{\partial t} \right|^2(t) \, dx \, dt \right) \leq C \quad \forall \tau \in [0, T]. \] (5.10)

By (5.1) and (5.8), we have

\[\int \left| \frac{u_{e1}}{r_\varepsilon} \right|^2 + \left| \frac{u_{e2}}{r_\varepsilon} \right|^2 + \left| \frac{u_{e3}}{r_\varepsilon} \right|^2(\tau) \, dx \leq C \frac{r_\varepsilon}{r_\varepsilon^2} \int |e(u_\varepsilon)|^2(\tau) \, dx \leq C \frac{\varepsilon}{r_\varepsilon^3 \mu_1 \varepsilon} \quad \forall \tau \in [0, T], \]

which, combined with (5.8), (5.9) completes the proof of (5.5). \(\square \)

Lemma 5.3. Let \((u_\varepsilon)\) be a sequence in \(W^{1, \infty}(0, T; H_0^1(\Omega; \mathbb{R}^3), L^2(\Omega; \mathbb{R}^3))\) satisfying

\[\sup_{\varepsilon > 0, \tau \in (0, T)} \int |u_\varepsilon|^2 + \left| \frac{\partial u_\varepsilon}{\partial t} \right|^2 + |e(u_\varepsilon)|^2(\tau) \, dx < +\infty. \] (5.10)

Then, up to a subsequence, the following holds
\[u_\varepsilon m_\varepsilon \rightharpoonup n v, \quad \frac{\partial u_\varepsilon}{\partial t} m_\varepsilon \rightharpoonup n \frac{\partial v}{\partial t} \quad \text{weakly* in } L^\infty(0, T; \mathcal{M}(\overline{\Omega}; \mathbb{R}^3)), \]
\[v_1, v_2 \in L^\infty(0, T; L^2(0, L; H^1_0(\Omega'))), \quad \mathbf{v} \in W^{1,\infty}(0, T; L^2(\Omega; \mathbb{R}^3)), \]
\[e_{x'}(u_\varepsilon') m_\varepsilon \rightharpoonup n e_x'(v') \quad \text{weakly* in } L^\infty(0, T; \mathcal{M}(\overline{\Omega}; \mathbb{S}^3)). \]

Furthermore,
\[n v_1 = n v_2 = 0 \quad \text{if} \quad \liminf_{\varepsilon \to 0} \sup_{\tau \in (0, T)} \int_\Omega |e(u_\varepsilon)|^2(\tau) dm_\varepsilon = 0, \]
\[n v = 0 \quad \text{if} \quad \liminf_{\varepsilon \to 0} \sup_{\tau \in (0, T)} \int_\Omega \frac{1}{\tau_\varepsilon} |e(u_\varepsilon)|^2(\tau) dm_\varepsilon = 0. \]

Moreover, if
\[\sup_{\varepsilon > 0, \tau \in (0, T)} \int_\Omega \mu_\varepsilon |e(u_\varepsilon)|^2(\tau) dx < +\infty, \quad \varepsilon^2 \ll \mu_\varepsilon, \quad \text{and} \]
\[n_\varepsilon \to n \quad \text{strongly in } L^2(\Omega) \quad \text{and} \quad u_\varepsilon \rightharpoonup u \quad \text{weakly* in } L^\infty(0, T; L^2(\Omega; \mathbb{R}^3)), \]
or if
\[\sup_{\varepsilon > 0, \tau \in (0, T)} \int_\Omega |e(u_\varepsilon)|^2(\tau) dx < +\infty, \quad \text{and} \]
\[u_\varepsilon \to u \quad \text{strongly in } L^2(0, T; L^2(\Omega; \mathbb{R}^3)), \]

then \(n u = n v. \)

Proof. By applying Lemma 4.3 to \(\theta_\varepsilon := \mathcal{L}^1_{(0, T) \otimes m_\varepsilon}, K := (0, T) \times \overline{\Omega}, \ f_\varepsilon \in \{u_\varepsilon, \frac{\partial u_\varepsilon}{\partial t}, e_{x'}(u_\varepsilon')\}, \) taking (4.7) and (5.10) into account, we obtain the convergences
\[u_\varepsilon m_\varepsilon \rightharpoonup n v, \quad \frac{\partial u_\varepsilon}{\partial t} m_\varepsilon \rightharpoonup n \gamma \quad \text{weakly* in } \mathcal{M}((0, T) \times \overline{\Omega}; \mathbb{R}^3)), \]
\[e_{x'}(u_\varepsilon') m_\varepsilon \rightharpoonup n \Xi \quad \text{weakly* in } \mathcal{M}((0, T) \times \overline{\Omega}; \mathbb{S}^3)), \]

up to a subsequence, for some suitable \(v, \gamma \in L^2(0, T; L^2(\Omega; \mathbb{R}^3)), \ \Xi \in L^2(0, T; L^2(\Omega; \mathbb{S}^3)) \) such that \(\Xi_{ij} = 0 \) if \(3 \notin \{i, j\}. \) By (5.10), the sequences \((u_\varepsilon m_\varepsilon), (\frac{\partial u_\varepsilon}{\partial t} m_\varepsilon) \) and \((e_{x'}(u_\varepsilon') m_\varepsilon) \) are bounded in \(L^\infty(0, T; \mathcal{M}(\overline{\Omega})), \) therefore the convergences (5.15) also hold with respect to the weak* topology of \(L^\infty(0, T; \mathcal{M}(\overline{\Omega})). \) Let us fix \(\Psi \in C^\infty(\Omega \times (0, T); \mathbb{S}^3). \) By integration by parts, we have
\[\sum_{\alpha, \beta=1}^2 \int_{(0, T)} (e_{x'}(u_\varepsilon'))_{\alpha \beta} \Psi_{\alpha \beta}(x, t) dm_\varepsilon dt = - \int_{(0, T)} (u_{e_1} e_1 + u_{e_2} e_2) \cdot \text{div}_x \Psi(x, t) dm_\varepsilon dt. \]

By passing to the limit as \(\varepsilon \to 0, \) taking (5.15) into account, we obtain
By making Ψ vary in $\mathcal{D}(\Omega \times (0, T); \mathbb{S}^2)$, we deduce that $n e_{x'}(v')(= e_{x'}(nv')) = n\Xi$ in the sense of distributions on $\Omega \times (0, T)$, and then infer from Korn inequality in $H^1(\Omega')$ that $nv_1, nv_2 \in L^\infty(0, T; L^2(0, L; H^1(\Omega')))$. By integrating (5.16) by parts for $\Psi \in C^\infty(\overline{\Omega \times (0, T)}; \mathbb{S}^2)$, we get $\int_0^T \int_{\partial\Omega'} nv' \cdot \Psi \nu dH^1 dx_3 dt = 0$ and infer from the arbitrariness of Ψ that $v_1, v_2 \in L^\infty(0, T; L^2_0(0, L; H^1_0(\Omega'))).$ We prove in a similar way that $v \in W^{1, \infty}(0, T; L^2_0(\Omega; \mathbb{R}^3))$ and $\gamma = \frac{\partial v}{\partial t}$.

Assertion (5.11) is proved. Assertion (5.12) is a consequence of the following inequalities (holding for $\alpha \in \{1, 2\}$), deduced from (4.17), (5.1), (5.15)

$$\int_{\Omega \times (0, T)} |v_{\alpha}'|^2 n dx dt \leq \liminf_{\varepsilon \to 0} \int_{\Omega \times (0, T)} |u_{\alpha\varepsilon}'|^2 d\mu_{\varepsilon}(x) dx dt,$$

$$\int_{\Omega \times (0, T)} |v|^2 n dx dt \leq \liminf_{\varepsilon \to 0} \int_{\Omega \times (0, T)} |u_{\varepsilon}'|^2 d\mu_{\varepsilon}(x) dx dt.$$

It remains to show that under (5.13) or (5.14), $nu = nv$. To that aim, we set

$$\hat{v}_\varepsilon(x, t) := \sum_{j \in J_\varepsilon} u_e(x_1, x_2, \omega_j^\varepsilon, t) 1_{(\omega_j^\varepsilon - \varepsilon^\varepsilon, \omega_j^\varepsilon + \varepsilon^\varepsilon)}(x_3).$$

By Fubini’s Theorem, Jensen’s inequality and Korn’s inequality in $H^1_0(\Omega; \mathbb{R}^3)$, we have

$$\int |u_{\varepsilon} - \hat{v}_\varepsilon|^2(\tau) d\mu_{\varepsilon} = \sum_{j \in J_\varepsilon} \int_{\Omega'} dx' \int_{\omega_j^\varepsilon - \varepsilon^\varepsilon}^{\omega_j^\varepsilon + \varepsilon^\varepsilon} \int_{\omega_j^\varepsilon - \varepsilon^\varepsilon}^{\omega_j^\varepsilon + \varepsilon^\varepsilon} \left| u_{\varepsilon}(x', x_3, \tau) - u_{\varepsilon}(x', \omega_j^\varepsilon, \tau) \right|^2 dx_3$$

$$\leq \frac{\varepsilon}{r_{\varepsilon}} \sum_{j \in J_\varepsilon} \int_{\Omega'} dx' \int_{\omega_j^\varepsilon - \varepsilon^\varepsilon}^{\omega_j^\varepsilon + \varepsilon^\varepsilon} \int_{\omega_j^\varepsilon - \varepsilon^\varepsilon}^{\omega_j^\varepsilon + \varepsilon^\varepsilon} \left| \frac{\partial u_{\varepsilon}}{\partial x_3} \right|^2 (x', s_3, \tau) ds_3 dx_3$$

$$\leq \varepsilon r_{\varepsilon} \int_\Omega |\nabla u_{\varepsilon}|^2(\tau) dx \leq C\varepsilon r_{\varepsilon} \int_\Omega |e(u_{\varepsilon})|^2(\tau) dx.$$

Therefore, under (5.13) or (5.14), $\lim_{\varepsilon \to 0} \int |u_{\varepsilon} - \hat{v}_\varepsilon|^2(\tau) d\mu_{\varepsilon} = 0$. Hence, by (5.15),

$$\hat{v}_\varepsilon m_\varepsilon \rightharpoonup \nu v \quad \text{weakly* in} \quad L^\infty(0, T; \mathcal{M}(\overline{\Omega}; \mathbb{R}^3)).$$

We define (see (3.1), (3.15))

$$\varphi_{\varepsilon}(x, t) := \sum_{j \in J_\varepsilon} \sum_{i \in Z_\varepsilon} u_e(x_1, x_2, \omega_j^\varepsilon, t) 1_{(\omega_j^\varepsilon - \varepsilon^\varepsilon, \omega_j^\varepsilon + \varepsilon^\varepsilon)}(x_3).$$

Noticing that by (3.2) and (3.15),
we infer from (3.39) and (5.17) that

\[
\int_{\Omega} |\varphi_{\varepsilon}|^2(\tau) \, dx \leq C \sum_{i \in Z_{\varepsilon}} \sum_{\omega_j' \in \omega_i \cap (\varepsilon_1, \varepsilon_i + \frac{3}{2})} \varepsilon \int_{\Omega'} |u_{\varepsilon}(x', \omega_j', \tau)|^2 \, dx'
\]

\[
= C \frac{\varepsilon}{r_{\varepsilon}} \sum_{j \in J_{\varepsilon}} \int_{\Omega'} |u_{\varepsilon}(x', \omega_j', \tau)|^2 \, dx' = C \int |\varphi_{\varepsilon}|^2(\tau) \, dm_{\varepsilon}.
\]

Therefore, by (5.10) and (5.18), under (5.13) or (5.14), the sequence \((\varphi_{\varepsilon})\) is bounded in \(L^\infty(0, T; L^2(\Omega; \mathbb{R}^3))\). Thus the following convergence holds, up to a subsequence

\[
\varphi_{\varepsilon} \rightharpoonup w \quad \text{weakly* in} \quad L^\infty(0, T; L^2(\Omega; \mathbb{R}^3)).
\]

To identify \(w\), we fix \(\varphi \in D(\Omega \times (0, T); \mathbb{R}^3)\) and set \(\varphi_{\varepsilon}(x, t) := \sum_{i \in Z_{\varepsilon}} \varphi(x', \varepsilon_i, t) \mathbb{1}_{\omega_i} \varepsilon_1, \varepsilon_i + \frac{3}{2})(x, t)\). Noticing that \(|\varphi_{\varepsilon} - \varphi|_{L^\infty(\Omega \times (0, T); \mathbb{R}^3)} \leq C\varepsilon\), we infer

\[
\int_{\Omega \times (0, T)} w \cdot \varphi \, dx dt = \lim_{\varepsilon \to 0} \int_{\Omega \times (0, T)} \varphi_{\varepsilon} \cdot \varphi \, dx dt.
\]

On the other hand, by (3.39), (5.17) and (5.20), we have

\[
\int_{\Omega} \varphi_{\varepsilon}(t) \, dx = \sum_{i \in Z_{\varepsilon}} \sum_{\omega_j' \in \omega_i \cap (\varepsilon_1, \varepsilon_i + \frac{3}{2})} \int_{\Omega' \times (\varepsilon_1, \varepsilon_i + \frac{3}{2})} u_{\varepsilon}(x', \omega_j', t) \cdot \varphi(x', \varepsilon_i, t) \, dx \, dx'
\]

\[
= \sum_{i \in Z_{\varepsilon}} \sum_{\omega_j' \in \omega_i \cap (\varepsilon_1, \varepsilon_i + \frac{3}{2})} \int_{\Omega' \times (\varepsilon_1, \varepsilon_i + \frac{3}{2})} \hat{u}_{\varepsilon}(x, t) \cdot \varphi(x', \varepsilon_i, t) \, dx \, dx'.
\]

For all \(i \in Z_{\varepsilon}\) and all \(\omega_j' \in \omega_i \cap (\varepsilon_1, \varepsilon_i + \frac{3}{2})\), we have \(|\varphi(x_1, x_2, \varepsilon_i, t) - \varphi(x, t)| \leq C\varepsilon\) in \(\Omega' \times (\omega_j' + \frac{\varepsilon_1}{2}, \omega_j' + \frac{\varepsilon_1}{2}) \times (0, T)\). Taking (5.21) into account, we deduce

\[
\left| \sum_{i \in Z_{\varepsilon}} \sum_{\omega_j' \in \omega_i \cap (\varepsilon_1, \varepsilon_i + \frac{3}{2})} \int_{\Omega' \times (\varepsilon_1, \varepsilon_i + \frac{3}{2})} \hat{u}_{\varepsilon}(x, t) \cdot \varphi(x', \varepsilon_i, t) \, dx \, dx' - \int \hat{u}_{\varepsilon}(t) \cdot \varphi(t) \, dx \, dx' \right|
\]

\[
\leq C\varepsilon \int |\hat{u}_{\varepsilon}(t)| \, dx \, dx'.
\]

Therefore, by (5.19) and (5.25), the following holds

\[
\lim_{\varepsilon \to 0} \int_{\Omega \times (0, T)} \varphi_{\varepsilon} \cdot \varphi \, dx dt = \lim_{\varepsilon \to 0} \int_{\Omega \times (0, T)} \hat{u}_{\varepsilon} \cdot \varphi \, dx dt = \int_{\Omega \times (0, T)} n v \cdot \varphi \, dx dt.
\]
Combining (5.24) and (5.26) we deduce, by the arbitrary choice of \(\varphi \),

\[
\begin{align*}
(5.27) & \quad w = n v.
\end{align*}
\]

On the other hand, by (3.14), (5.20), (5.21), Jensen’s inequality and Korn’s inequality in \(H_0^1(\Omega) \), we have

\[
\int_\Omega |n_z u_z - \overline{v_z}|^2 (\tau) \, dx \\
= \sum_{i \in Z_z} \int_{\Omega'} (\epsilon_i \overline{v_z} \overline{\omega_i}) \left\{ \sum_{\omega_i' \in \omega_i \cap (\epsilon_i \overline{v_z} + \tilde{\xi}_i)} u_z - u_z(x', \omega_z', \tau) \right\} \, dx \\
\leq C \sum_{i \in Z_z} \left\{ \sum_{\omega_i' \in \omega_i \cap (\epsilon_i \overline{v_z} + \tilde{\xi}_i)} \int_{\Omega'} (\epsilon_i \overline{v_z} \overline{\omega_i}) \left| u_z - u_z(x', \omega_z', \tau) \right|^2 \, dx \right\} \\
\leq C \varepsilon^2 \sum_{i \in Z_z} n_z(\epsilon_i) \int_{\Omega'} (\epsilon_i \overline{v_z} \overline{\omega_i}) \left| \frac{\partial u_z}{\partial x_i} \right|^2 (\tau) \, dx \leq C \varepsilon^2 \int_\Omega |e(u_z)|^2 (\tau) \, dx.
\]

We infer that, under either (5.13) or (5.14), the sequence \(\int_{\Omega(0,T)} |n_z u_z - \overline{v_z}|^2 (\tau) \, dx dt \) converges to 0. Therefore, by (5.23) and (5.27),

\[
(5.29) \quad n_z u_z \overset{\text{weakly*}}{\rightharpoonup} n v \quad \text{weakly* in} \quad L^\infty(0,T; L^2(\Omega; \mathbb{R}^3)).
\]

Under (5.14), it easily follows from the strong convergence of \((u_z) \) to \(u \) in \(L^2(0,T; L^2(\Omega; \mathbb{R}^3)) \) and the weak* convergence of \((n_z) \) to \(n \) in \(L^\infty(\Omega) \) (see (3.16)), that \((n_z u_z) \) weakly converges to \(n u \) in \(L^2(0,T; L^2(\Omega; \mathbb{R}^3)) \), therefore \(n u = n v \). The same conclusion holds under (5.13), because \((u_z) \) weakly* converges to \(u \) in \(L^\infty(0,T; L^2(\Omega; \mathbb{R}^3)) \) and \((n_z) \) is bounded in \(L^\infty(\Omega) \) and strongly converges to \(n \) in \(L^2(\Omega) \). The proof of Lemma 5.3 is concluded. \(\square \)

Lemma 5.4. Let \((u_z) \) be a sequence in \(L^\infty(0,T; H_0^1(\Omega; \mathbb{R}^3)) \) satisfying

\[
(5.30) \quad \sup_{\epsilon > 0, \tau \in (0,T)} \int \left| \frac{\partial u_z}{\partial t} \right|^2 + \left| \frac{1}{r_z} e(u_z) \right|^2 (\tau) \, dm_z < +\infty.
\]

Then, up to a subsequence, the convergences (5.11) take place. Moreover,

\[
(5.31) \quad v \in L^\infty(0,T; L^2(0,L; H_0^1(\Omega'))).
\]

Besides, up to a subsequence, the following convergences hold (see (4.10)):

\[
(5.32) \quad \frac{u_{z\alpha}}{r_z} \to \xi_\alpha(x,t) - \frac{\partial v_3}{\partial x_\alpha} (x,t)y_3 \quad (\alpha \in \{1,2\}),
\]

\[
(5.33) \quad \frac{1}{r_z} e(u_z) \to \frac{1}{\alpha \beta} \left(\frac{\partial \xi_\alpha}{\partial x_\beta} + \frac{\partial \xi_\beta}{\partial x_\alpha} \right) (x,t) - \frac{\partial^2 v_3}{\partial x_\alpha \partial x_\beta} (x,t)y_3 \quad (\alpha, \beta \in \{1,2\}),
\]

\(\xi_1, \xi_2 \in L^\infty(0,T; L^2(0,L; H_0^1(\Omega'))) \).
Proof. By (5.1) and (5.30), we have

\begin{equation}
\sup_{\varepsilon > 0, \tau \in (0,T)} \int \left(\frac{|u_{\varepsilon 1}|}{r_\varepsilon} + \frac{|u_{\varepsilon 2}|}{r_\varepsilon} + |u_{\varepsilon 3}|^2 \right) \, dm_\varepsilon < +\infty.
\end{equation}

By (5.30) and (5.33), assumption (5.10) of Lemma 5.3 is verified, hence, up to a subsequence, the convergences (5.11) take place. By Lemma 4.2, (5.30) and (5.33), there exist \(v \in L^\infty(0,T; L^2(\Omega; \mathbb{R}^3)), \) \(\zeta_{01}, \zeta_{02}, \zeta_{03} \in L^\infty(0,T; L^2(\Omega \times I)) \), and \(\Xi^b \in L^\infty(0,T; L^2(\Omega \times I; \mathbb{S}^3)) \), such that (see (2.1))

\begin{equation}
\begin{split}
\text{Fixing } &\, \alpha = 1, 2, \text{ and selecting in (5.38) a field of } \\
\Psi \in C^\infty \left(\overline{\Omega \times (0,T)}; \mathcal{D}(I; \mathbb{S}^3) \right), \quad \Psi_{33} = 0.
\end{split}
\end{equation}

Noticing that \(x \rightarrow \Psi \left(x, t, \frac{y_\varepsilon(x_3)}{r_\varepsilon} \right) \) vanishes on the complement of the support of \(m_\varepsilon \), by integration by parts we get

\begin{equation}
\begin{aligned}
\int_{\Omega \times (0,T)} e(u_\varepsilon) \cdot \Psi \left(x, t, \frac{y_\varepsilon(x_3)}{r_\varepsilon} \right) \, dm_\varepsilon dt &\quad = \int_{\Omega \times (0,T)} u_\varepsilon \cdot \nabla_x \Psi \left(x, t, \frac{y_\varepsilon(x_3)}{r_\varepsilon} \right) \, dm_\varepsilon dt \\
&\quad - \sum_{\alpha=1}^2 \int_{\Omega \times (0,T)} \frac{u_{\varepsilon m_\varepsilon}}{r_\varepsilon} \partial_{y_\alpha} \Psi_{03} \left(x, t, \frac{y_\varepsilon(x_3)}{r_\varepsilon} \right) \, dm_\varepsilon dt.
\end{aligned}
\end{equation}

By passing to the limit as \(\varepsilon \to 0 \) in (5.37), taking (5.30), (5.34) and (5.35) into account, we infer

\begin{equation}
\begin{aligned}
0 = &\quad -\int_{\Omega \times (0,T)} v_3(\nabla_x \Psi)_{3} \, dx \, dy_3 - \sum_{\alpha=1}^2 \int_{\Omega \times (0,T) \times I} \zeta_{0\alpha} \partial_{y_3} \Psi_{03} \, dx \, dy_3
\end{aligned}
\end{equation}

Fixing \(\alpha \in \{1, 2\} \), \(\varphi \in C^\infty(\overline{\Omega \times (0,T)}) \), \(\psi \in \mathcal{D}(I) \), and selecting in (5.38) a field of the form \(\Psi(x, t, y_3) := \varphi(x, t) \psi(y_3)(e_\alpha \otimes e_3 + e_3 \otimes e_\alpha) \), we get

\begin{equation}
0 = -\int_{\Omega \times (0,T)} v_3(x, t) \frac{\partial \varphi}{\partial x_\alpha}(x, t) \, dy_3 \left(\int_{I} \psi(y_3) \, dy_3 \right)
\end{equation}

\begin{equation}
- \int_{\Omega \times (0,T)} \zeta_{0\alpha}(x, t, y_3) \frac{\partial \psi}{\partial y_3}(y_3) \, dy_3 \varphi(x, t) \, dxdt.
\end{equation}
Choosing ψ such that \(\int_I \psi(y_3) dy_3 \neq 0 \), and making φ vary in $C^\infty(\Omega \times (0, T))$, we deduce that

\begin{equation}
(5.39) \quad v_3 \in L^\infty(0, T; L^2_n(0, L; H^1_0(\Omega'))),
\end{equation}

then, by integration by parts with respect to x_α, infer

\begin{align*}
0 = \int_{\Omega \times (0, T) \times I} \varphi(x, t) \psi(y_3) \frac{\partial v_3}{\partial x_\alpha}(x, t) ndxdt - \int_{\Omega \times (0, T) \times I} \zeta_{0\alpha}(x, t, y_3) \frac{\partial \psi}{\partial y_3}(y_3) \varphi(x, t) ndxdt.
\end{align*}

We deduce, from the arbitrary choice of φ and ψ, that

\begin{align*}
\zeta_{0\alpha} \in L^\infty(0, T; L^2_0(\Omega; H^1(I))); \quad n \frac{\partial \zeta_{0\alpha}}{\partial y_3}(x, t, y_3) = -n \frac{\partial v_3}{\partial x_\alpha}(x, t) \quad \text{in} \quad \Omega \times (0, T) \times I,
\end{align*}

and then that

\begin{equation}
(5.40) \quad n \zeta_{0\alpha}(x, t, y_3) = n \xi_\alpha(x, t) - n \frac{\partial v_3}{\partial x_\alpha}(x, t)y_3 \quad \text{in} \quad \Omega \times (0, T) \times I,
\end{equation}

for some suitable $\xi_\alpha \in L^\infty(0, T; L^2_n(\Omega))$. Next, we choose a matrix field Ψ satisfying (5.36) and $\Psi_{3k} = 0 \ \forall \ k \in \{1, 2, 3\}$. By multiplying (5.37) by $\frac{1}{\varepsilon}$, we get

\begin{equation}
2 \sum_{\alpha, \beta = 1}^2 \int_{\Omega \times (0, T)} \frac{e_{\alpha\beta}(u_\varepsilon)}{\varepsilon} \Psi_{\alpha\beta} \left(x, t, \frac{y_3(x_3)}{\varepsilon} \right) dm_x dt = -2 \sum_{\alpha, \beta = 1}^2 \int_{\Omega \times (0, T)} \frac{u_{\varepsilon\alpha}}{\varepsilon} \Psi_{\alpha\beta} \left(x, t, \frac{y_3(x_3)}{\varepsilon} \right) dm_x dt.
\end{equation}

By passing to the limit as $\varepsilon \to 0$, thanks to (5.34) and (5.40), we find

\begin{align*}
2 \sum_{\alpha, \beta = 1}^2 \int_{\Omega \times (0, T) \times I} \mathbb{E}_{\alpha\beta}^b \Psi_{\alpha\beta} ndxdt = -2 \sum_{\alpha, \beta = 1}^2 \int_{\Omega \times (0, T) \times I} \left(\xi_\alpha(x, t) - \frac{\partial v_3}{\partial x_\alpha}(x, t)y_3 \right) \frac{\partial \Psi_{\alpha\beta}}{\partial x_\beta}(x, t, y_3) ndxdt.
\end{align*}

By the arbitrary choice of the functions $\Psi_{\alpha\beta}(= \Psi_{\beta\alpha})$ in $C^\infty(\Omega \times (0, T); D(I))$ and (5.39), we deduce that for $\alpha, \beta \in \{1, 2\}$, the following holds

\begin{align*}
& \xi_\alpha \in L^\infty(0, T; L^2_n(0, L; H^1(\Omega'))), \quad v_3 \in L^\infty(0, T; L^2_n(0, L; H^2_0(\Omega'))), \\
& n \mathbb{E}_{\alpha\beta}^b(x, t, y_3) = \frac{1}{2} n \left(\frac{\partial \xi_\alpha}{\partial x_\beta} + \frac{\partial \xi_\beta}{\partial x_\alpha} \right)(x, t) - n \frac{\partial^2 v_3}{\partial x_\alpha \partial x_\beta}(x, t)y_3 \quad \text{in} \quad \Omega \times (0, T) \times I.
\end{align*}

The proof of Lemma 5.4 is concluded.

Proof of (5.35). By (5.17) and (5.30), we have
By making the change of variables
\[
\psi(\frac{x_3}{r_\varepsilon}, t, y_3) := \sum_{j \in J_\varepsilon} \psi \left(x', \omega_1^j, t, \frac{y_3}{r_\varepsilon} \right) \mathbb{I}_{(\omega_1^j - \frac{\omega_1}{2}, \omega_1^j + \frac{\omega_1}{2})}(x_3).
\]
We have
\[
\left| \frac{\varepsilon}{r_\varepsilon} \sum_{j \in J_\varepsilon} \int_{\Omega'} dx' \int_{\omega_1^j - \frac{\omega_1}{2}}^{\omega_1^j + \frac{\omega_1}{2}} u_{33}(x', \omega_1^j, t, \frac{y_3}{r_\varepsilon}) dx_3 \right| \leq C r_\varepsilon \int \int |e(u)|^2 d\varepsilon \leq C r_\varepsilon^4.
\]

We easily deduce from (5.34) and (5.41) that
\[
\hat{v}_{33} \to \nu_3 \text{ weakly* in } L^\infty(0, T; \mathcal{M}(\Omega)), \quad \hat{v}_{33} \to \zeta_{03}.
\]
Fixing \(\psi \in \mathcal{D}(\Omega \times (0, T) \times I) \), we set (see (4.9))
\[
\bar{\psi}_\varepsilon \left(x, t, \frac{y_3}{r_\varepsilon} \right) := \sum_{j \in J_\varepsilon} \psi \left(x', \omega_1^j, t, \frac{y_3}{r_\varepsilon} \right) \mathbb{I}_{(\omega_1^j - \frac{\omega_1}{2}, \omega_1^j + \frac{\omega_1}{2})}(x_3).
\]
We have
\[
\left| \bar{\psi}_\varepsilon \left(x, t, \frac{y_3}{r_\varepsilon} \right) - \psi \left(x, t, \frac{y_3}{r_\varepsilon} \right) \right| \leq C r_\varepsilon \quad \text{in } B_\varepsilon.
\]
By making the change of variables \(y = \frac{x_3 - \omega_1^j}{r_\varepsilon} \), we get
\[
\int_{\Omega} \hat{v}_{33} \bar{\psi}_\varepsilon \left(x, t, \frac{y_3}{r_\varepsilon} \right) d\varepsilon dt = r_\varepsilon \int \int \hat{v}_{33} \bar{\psi}_\varepsilon \left(x, t, \frac{y_3}{r_\varepsilon} \right) d\varepsilon dt.
\]
where \(\bar{\psi}_\varepsilon \left(x, t \right) := \sum_{j \in J_\varepsilon} \left(\int \psi \left(x', \omega_1^j, t, y_3 \right) dy_3 \right) \mathbb{I}_{(\omega_1^j - \frac{\omega_1}{2}, \omega_1^j + \frac{\omega_1}{2})}(x_3). \) Noticing that
\[
\int \int \left| \bar{\psi}_\varepsilon \left(x, t \right) - \left(\int \psi \left(x, t, y_3 \right) dy_3 \right) \right| \leq C r_\varepsilon \quad \text{in } B_\varepsilon,
\]
we deduce successively from (5.42), (5.45), (5.44), and again (5.42) that
\[
\int |u_{33} - \hat{v}_{33}|^2 (\tau) d\varepsilon = \frac{\varepsilon}{r_\varepsilon} \sum_{j \in J_\varepsilon} \int_{\Omega} dx' \int_{\omega_1^j - \frac{\omega_1}{2}}^{\omega_1^j + \frac{\omega_1}{2}} |u_{33}(x, \tau) - u_{33}(x', \omega_1^j, \tau)|^2 dx_3
\]
\[
\leq \frac{\varepsilon}{r_\varepsilon} \sum_{j \in J_\varepsilon} \int_{\Omega} dx' \int_{\omega_1^j - \frac{\omega_1}{2}}^{\omega_1^j + \frac{\omega_1}{2}} \left| \frac{\partial u_{33}}{\partial x_3} \right|^2 (x', x_3, \tau) dx_3 \leq C r_\varepsilon \int |e(u)|^2 d\varepsilon \leq C r_\varepsilon^4.
\]
If $\vartheta > 0$, then

$$
\vartheta \xrightarrow{\varepsilon \to 0} 0.50
$$

Furthermore, assertions (5.35) is proved. □

The next Lemma is specific to the periodic case. Given a sequence (u_ε) satisfying (5.10) and (5.47) (and possibly (5.30)), we establish some relations satisfied by its two-scale limit u_0 and by the field ψ introduced in Lemma 5.3.

Lemma 5.5. Assume that B_ε is the ε-periodic set defined by (3.35) and let (u_ε) be a sequence in $L^\infty(0, T; H^1_0(\Omega; \mathbb{R}^3))$ satisfying (5.10) and

$$
\sup_{\tau \in [0, T], \varepsilon > 0} \int_\Omega |u_\varepsilon |^2 + \frac{1}{2} \left| \frac{\partial u_\varepsilon}{\partial t} \right|^2 + \varepsilon^2 |e(u_\varepsilon) |^2 d\tau < +\infty, \quad u_\varepsilon(0) = a_0.
$$

Then, up to a subsequence, the convergences (5.11) take place with $n = 1$. Moreover

$$
\frac{\partial u_\varepsilon}{\partial t} \xrightarrow{\varepsilon \to 0} \frac{\partial u_0}{\partial t}, \quad u_\varepsilon(\tau) \xrightarrow{\varepsilon \to 0} u_0(\tau) \forall \tau \in [0, T].
$$

Furthermore,

(i) If $\vartheta > 0$, then

$$
\vartheta \xrightarrow{\varepsilon \to 0} 0.50
$$

(ii) If $\vartheta = 0$ and if the estimate (5.30) is satisfied, then

$$
\vartheta \xrightarrow{\varepsilon \to 0} 0.50
$$

Proof. The convergences (5.11) are deduced from Lemma 5.3. Under (5.47), by Lemma 4.1 (ii), the sequence (u_ε) (resp. $(\varepsilon e(u_\varepsilon))$) two-scale converges, up to a subsequence, to some $u_0 \in L^\infty(0, T; L^2(\Omega; H^1_\varepsilon(Y; \mathbb{R}^3))) \cap W^{1, \infty}(0, T; L^2(\Omega \times Y; \mathbb{R}^3))$, $\varepsilon \neq 0$ in the equation

$$
\int_{\Omega \times (0, T)} \varepsilon e(u_\varepsilon) : \Psi \left(x, t, \frac{x}{\varepsilon} \right) dxdt =
$$

$$
- \varepsilon \int_{\Omega \times (0, T)} u_\varepsilon \cdot \text{div}_x \Psi \left(x, t, \frac{x}{\varepsilon} \right) dxdt - \int_{\Omega \times (0, T)} u_\varepsilon \cdot \text{div}_y \Psi \left(x, t, \frac{x}{\varepsilon} \right) dxdt,
$$

where Σ is the boundary of Ω. The proof can be completed by using compactly supported functions $\tilde{\psi}$ and $\tilde{\psi}$. □
Lemma 4.1 (ii), of (5.48) hold. Assertion (5.48) is proved. L
(5.52) is Y (Ψ arbitrary choice of ∂
Since r
(5.54) B and coincides in
for some ε
we infer ∂y
30
M. BELLIEUD
Let us assume now that ϑ = 0 (i.e. that rε ≪ ε). Since the stiff layers are peri-
periodically distributed, by (3.35) the field ̃vε defined by (5.20) takes the form
(5.53)

vε(x, t) := \sum_{i \in Z_ε} u_ε(x_1, x_2, εi, t) 1_{(εi− \frac{1}{2}, εi+ \frac{1}{2})}(x_3),

and coincides in Bε with the field ̃vε given by (5.17). Therefore, by (5.18),

(5.54)

\int |v_ε − u_ε|^2(τ)dm_ε \leq \frac{C_ε}{ε} \int_Ω ε^2|e(u_ε)|^2(τ)dx \quad ∀τ ∈ [0, T].

Since rε ≪ ε, we deduce from (5.11), (5.47) and (5.54) that \int |v_ε|^2(τ)dm_ε \leq C. On
the other hand, taking (3.39), (3.35) and (5.53) into account, it is easy to check that
\int |v_ε|^2(τ)dm_ε = \int_Ω |v_ε|^2(τ)dx, therefore the sequence (v_ε) is bounded in L∞(0, T; L^2(Ω; R^3)).

It then follows from Lemma 4.1 (ii) that

(5.55)

v_ε → v_0,

up to a subsequence, for some v_0 ∈ L∞(0, T; L^2(Ω × Y; R^3)). We establish below that

(5.56)

\frac{∂v_0}{∂y_3} = 0 \text{ a.e. in } Ω × (0, T) × Y, \quad u_0 = v_0 \text{ on } Ω × (0, T) × Σ,

and that (see (2.1))
\[\boldsymbol{v}'(x, t) = \nabla \Psi(x, t, y) \quad \text{a.e. in } \Omega \times (0, T) \times Y, \]

\[v_3(x, t) = \int_{(-\frac{1}{2}, \frac{1}{2})^2} \tilde{v}_{03}(x, t, s_1, s_2, s_3) ds_1 ds_2. \]

The next equation (proved below)

\[\frac{\partial \pi_{03}}{\partial y_3} = 0 \quad \forall \alpha \in \{1, 2\}, \quad \text{if (5.30) holds true,} \]

joined with (5.57), yields (5.50). It remains to prove (5.56), (5.57) and (5.58).

Proof of (5.56). Let us fix \(\psi \in D(\Omega \times (0, T); D_2^2(Y; \mathbb{R}^3)) \). By (5.53) we have

\[
\int_{\Omega \times (0, T)} \nabla_\varepsilon \cdot \frac{\partial \psi}{\partial y_3} (x, t, x, \varepsilon) \, dxdt = \sum_{i \in \mathbb{Z}_e} \int_{\Omega' \times (0, T)} \mathbf{u}_e(x_1, x_2, \varepsilon i, t) \cdot \left(\int_{(\varepsilon i - \frac{1}{2}, \varepsilon i + \frac{1}{2})^3} \frac{\partial \psi}{\partial y_3} \right) (x, t, \varepsilon x, x_3) \, dx_3 \, dxdt.
\]

Since \(\psi(x, t, .) \in D_2^2(Y; \mathbb{R}^3) \), the following holds

\[
\int_{(\varepsilon i - \frac{1}{2}, \varepsilon i + \frac{1}{2})^3} \frac{\partial \psi}{\partial y_3} (x, t, x, \varepsilon) \, dx_3 = \frac{1}{\varepsilon} \int_{(-\frac{1}{2}, \frac{1}{2})^3} \frac{\partial \psi}{\partial y_3} (x, t, \varepsilon x, y_3) \, dy_3 = 0,
\]

therefore \(\int_{\Omega \times (0, T)} \nabla_\varepsilon \cdot \frac{\partial \psi}{\partial y_3} (x, t, x, \varepsilon) \, dxdt = 0 \). By passing to the limit as \(\varepsilon \to 0 \), we infer

\[
\int_{\Omega \times (0, T)} \nabla_\varepsilon \cdot \frac{\partial \psi}{\partial y_3} (x, t, y) \, dxdt \, dy = 0,
\]

and deduce from the arbitrary choice of \(\psi \) that

\[\frac{\partial \pi_0}{\partial y_3} = 0 \quad \text{in } \Omega \times (0, T) \times Y. \]

We set \(Y^+ := (-\frac{1}{2}, \frac{1}{2})^2 \times (0, \frac{1}{2}) \) and fix \(\Psi \in D(\Omega \times (0, T); D_2^2(Y; \mathbb{S}^3)) \). Then, for each \(i \in \mathbb{Z}_e \) (defined by (3.15)), the field \(\Psi(x, t, \varepsilon i) \) vanishes on \(\partial (\Omega' \times (\varepsilon i - \frac{1}{2}, \varepsilon i + \frac{1}{2})) \times (0, T) \), and, for \(\varepsilon \) small enough, the support of \(\Psi(x, t, \varepsilon i) \) is included in \(\bigcup_{i \in \mathbb{Z}_e} \Omega' \times [\varepsilon i - \frac{1}{2}, \varepsilon i + \frac{1}{2}] \times (0, T) \). Hence, by integration by parts, we get

\[
\int_{\Omega \times (0, T)} \varepsilon \mathbf{e}(\mathbf{u}_e) : \Psi(x, t, \varepsilon x) Y^{+}_{\varepsilon} \left(\frac{x}{\varepsilon} \right) \, dxdt = \sum_{i \in \mathbb{Z}_e} \int_{\Omega' \times (\varepsilon i - \frac{1}{2}, \varepsilon i + \frac{1}{2}) \times (0, T)} \varepsilon \mathbf{e}(\mathbf{u}_e) : \Psi(x, t, \varepsilon x) \, dxdt
\]

(5.60)

\[
= -\sum_{i \in \mathbb{Z}_e} \varepsilon \int_{\Omega' \times (\varepsilon i) \times (0, T)} \mathbf{u}_e \cdot \Psi(x, t, \varepsilon x) \, dxdt + \sum_{i \in \mathbb{Z}_e} \int_{\Omega' \times (\varepsilon i) \times (0, T)} \varepsilon \mathbf{u}_e \cdot \mathbf{d} \Psi(x, t, \varepsilon x) \, dxdt.
\]

We set \(\bar{\Psi}_e(x, t, \varepsilon x) := \sum_{i \in \mathbb{Z}_e} \Psi(x_1, x_2, \varepsilon i, t, \varepsilon x) \, Y^{+}_{\varepsilon} \left(\frac{x}{\varepsilon} \right) \). Notice that
We infer from (5.55) and from the estimate
\[
\left| \nabla \epsilon \Psi \left(x, t, \frac{x'}{\epsilon}, 0 \right) - \Psi \left(x, t, \frac{x'}{\epsilon}, 0 \right) \right| \leq C \epsilon,
\]
\[
\left| \frac{\partial}{\partial y_\alpha} \nabla \epsilon \Psi \left(x, t, \frac{x'}{\epsilon}, 0 \right) - \frac{\partial}{\partial y_\alpha} \Psi \left(x, t, \frac{x'}{\epsilon}, 0 \right) \right| \leq C \epsilon \quad \text{for } \alpha \in \{1, 2\}.
\]

By the definitions \(\nabla \epsilon \) and \(\Psi \) (see (5.53)), there holds
\[
- \sum_{i \in Z_\epsilon} \epsilon \int_{\Omega \times (\epsilon i) \times (0, T)} u_\epsilon \cdot \Psi (x, t, \frac{x'}{\epsilon}, 0) e_3 dH^2(x) dt = - \int_{\Omega \times (0, T)} \nabla \epsilon \cdot \nabla \epsilon \Psi \left(x, t, \frac{x'}{\epsilon}, 0 \right) e_3 dx dt.
\]

Taking (5.55) and (5.61) into account, and noticing that by (5.59) we have \(\nabla_\epsilon (x, t, y', 0) \in \Omega \times (0, T) \times Y \), we obtain
\[
\lim_{\epsilon \to 0} - \int_{\Omega \times (0, T) \times Y} \nabla \epsilon \cdot \nabla \epsilon \Psi \left(x, t, \frac{x'}{\epsilon}, 0 \right) e_3 dx dt = - \int_{\Omega \times (0, T) \times Y} \nabla_\epsilon \cdot \nabla_\epsilon \Psi \left(x, t, y', 0 \right) e_3 dx dt
\]
\[
= - \int_{\Omega \times (0, T) \times \Sigma} \nabla_\epsilon \cdot \nabla_\epsilon e_3 dx dH^2(y).
\]

By passing to the limit as \(\epsilon \to 0 \) in (5.60), applying Lemma 4.1 (i) with \(h_\epsilon = \mathbb{1}_{Y+} \left(\frac{\epsilon}{\epsilon} \right) \) and taking (5.48), (5.62) and (5.63) into account, we get
\[
\int_{\Omega \times (0, T) \times Y^+} e_\gamma(u_0) : \Psi dx dt dy = - \int_{\Omega \times (0, T) \times \Sigma} \nabla_\epsilon \cdot \nabla_\epsilon e_3 dx dH^2(y) - \int_{\Omega \times (0, T) \times Y^+} u_0 \cdot \nabla y \Psi dx dt dy.
\]

By integration by parts, we have
\[
- \int_{\Omega \times (0, T) \times Y^+} u_0 \cdot \nabla y \Psi dx dt dy = \int_{\Omega \times (0, T) \times \Sigma} u_0 \cdot \nabla_\epsilon e_3 dx dH^2(y) + \int_{\Omega \times (0, T) \times Y^+} e_\gamma(u_0) : \Psi dx dt dy.
\]

Joining the last two equations, we infer that \(\int_{\Omega \times (0, T) \times \Sigma} u_0 \cdot \Psi e_3 dx dH^2(y) = \int_{\Omega \times (0, T) \times \Sigma} \nabla_\epsilon \cdot \nabla_\epsilon e_3 dx dH^2(y) \). By the arbitrary choice of \(\Psi \) (and by (5.59)), we deduce that (5.56) holds.

Proof of (5.57). Let us fix \(\psi \in \mathcal{D}(\Omega \times (0, T); \mathbb{R}^3) \) and set
\[
\nabla \epsilon (x, t) := \sum_{i \in Z_\epsilon} \psi(x_1, x_2, \epsilon i, t) \mathbb{1}_{\left(\epsilon i - \frac{\epsilon}{2}, \epsilon i + \frac{\epsilon}{2} \right)}(x_3).
\]

By (3.39) and (5.53) we have
\[
\int_{\Omega \times (0, T)} \nabla \epsilon \cdot \nabla \epsilon dm_\epsilon dt = \frac{\epsilon}{\epsilon} \int_{\Omega' \times (\epsilon i - \frac{\epsilon}{2}, \epsilon i + \frac{\epsilon}{2}) \times (0, T)} u_\epsilon(x', \epsilon i, t) \cdot \psi(x', \epsilon i, t) dx dt
\]
\[
= \sum_{i \in Z_\epsilon} \int_{\Omega' \times (\epsilon i - \frac{\epsilon}{2}, \epsilon i + \frac{\epsilon}{2}) \times (0, T)} u_\epsilon(x', \epsilon i, t) \cdot \psi(x', \epsilon i, t) dx dt = \int_{\Omega \times (0, T)} \nabla \epsilon \cdot \nabla \epsilon dm_\epsilon dt.
\]

We infer from (5.55) and from the estimate
\[|\psi - \overline{\psi}_\varepsilon|_{L^\infty(\Omega \times (0,T);\mathbb{R}^3)} \leq C\varepsilon, \]

that

\[\lim_{\varepsilon \to 0} \int_{\Omega \times (0,T)} \mathbf{v}_\varepsilon \cdot \overline{\mathbf{v}}_\varepsilon \, dx \, dt = \int_{\Omega \times (0,T)} \left(\int_Y \mathbf{v}_0(x,t,y) \, dy \right) \psi(x,t) \, dx \, dt. \]

By (5.54) and (5.66), the following holds

\[\lim_{\varepsilon \to 0} \left| \int_{\Omega \times (0,T)} \mathbf{u}_\varepsilon \cdot \psi \, dm_\varepsilon \, dt - \int_{\Omega \times (0,T)} \mathbf{v}_\varepsilon \cdot \overline{\mathbf{v}}_\varepsilon \, dm_\varepsilon \, dt \right| = 0. \]

The weak* convergence of \((\mathbf{u}_\varepsilon, m_\varepsilon)\) to \(\mathbf{v}\) and (5.65), (5.67), (5.68), imply

\[\int_{\Omega \times (0,T)} \mathbf{v} \cdot \psi \, dx \, dt = \lim_{\varepsilon \to 0} \int_{\Omega \times (0,T)} \mathbf{u}_\varepsilon \cdot \psi \, dm_\varepsilon \, dt = \int_{\Omega \times (0,T)} \left(\int_Y \mathbf{v}_0(x,t,y) \, dy \right) \cdot \psi(x,t) \, dx \, dt, \]

yielding, by the arbitrary choice of \(\psi\),

\[\mathbf{v}(x,t) = \int_Y \mathbf{v}_0(x,t,y) \, dy \quad \text{in} \quad \Omega \times (0,T). \]

By (5.59) and (5.69), the proof of (5.57) is achieved provided that we establish that

\[\frac{\partial \sigma_{0\alpha}}{\partial y_\beta} = 0 \quad \forall \alpha, \beta \in \{1, 2\}. \]

To that aim, let us fix \(\Psi \in \mathcal{D} \left(\Omega \times (0,T); C^\infty_t \left((-1/2, 1/2)^2 \times \mathbb{S}^3 \right) \right)\). Since \(\mathbf{u}_\varepsilon\) vanishes on \(\partial \Omega \times (0,T)\), by integrating by parts with respect to \(x_1\) and \(x_2\), we get (see (2.1))

\[\int_{\Omega \times (0,T)} e_{x'}(\mathbf{u}'_\varepsilon) : \Psi \left(x, t, \frac{x'}{\varepsilon} \right) \, dm_\varepsilon \, dt = -\int_{\Omega \times (0,T)} \mathbf{u}'_\varepsilon \cdot \text{div}' \Psi \left(x, t, \frac{x'}{\varepsilon} \right) \, dm_\varepsilon \, dt \]

\[- \frac{1}{\varepsilon} \int_{\Omega \times (0,T)} \mathbf{u}'_\varepsilon \cdot \text{div}' \Psi \left(x, t, \frac{x'}{\varepsilon} \right) \, dm_\varepsilon \, dt. \]

By (5.10), the left-hand side and the first term on the right-hand side of the above equation are bounded, therefore

\[\lim_{\varepsilon \to 0} \int_{\Omega \times (0,T)} \mathbf{u}'_\varepsilon \cdot \text{div}' \Psi \left(x, t, \frac{x'}{\varepsilon} \right) \, dm_\varepsilon \, dt = 0. \]

On the other hand, by (5.54) and (5.61), there holds

\[\lim_{\varepsilon \to 0} \left| \int_{\Omega \times (0,T)} \mathbf{u}'_\varepsilon \cdot \text{div}' \Psi \left(x, t, \frac{x'}{\varepsilon} \right) \, dm_\varepsilon \, dt - \int_{\Omega \times (0,T)} \mathbf{v}'_\varepsilon \cdot \text{div}' \overline{\mathbf{v}}_\varepsilon \left(x, t, \frac{x'}{\varepsilon} \right) \, dm_\varepsilon \, dt \right| = 0. \]
A computation analogous to (5.65) yields

\[\int_{\Omega \times (0, T)} \mathbf{v}_\varepsilon' \cdot \text{div}' y_\varepsilon \mathbf{v}_\varepsilon(x, t, \frac{x'}{\varepsilon}) \, dm_\varepsilon dt = \int_{\Omega \times (0, T)} \mathbf{v}_0' \cdot \text{div}' y_\varepsilon \mathbf{v}_\varepsilon(x, t, \frac{x'}{\varepsilon}) \, dx dt. \]

By (5.61) and by the two-scale convergence of \(\mathbf{v}_\varepsilon \) to \(\mathbf{v}_0 \) (see (5.55)), there holds

\[\lim_{\varepsilon \to 0} \int_{\Omega \times (0, T)} \mathbf{v}_\varepsilon' \cdot \text{div}' y_\varepsilon \mathbf{v}_\varepsilon(x, t, \frac{x'}{\varepsilon}) \, dx dt = \int_{\Omega \times (0, T) \times Y} \mathbf{v}_0' \cdot \text{div}' y_\varepsilon \mathbf{v}(x, t, y') \, dx dt. \]

Combining (5.71)-(5.74), we get

\[\int_{\Omega \times (0, T) \times Y} \mathbf{v}_0' \cdot \text{div}' y_\varepsilon \mathbf{v}(x, t, y') \, dx dt = 0, \]

hence \(e \psi(\mathbf{v}_0') = 0 \), in the sense of distributions. We deduce that \(y' \to \mathbf{v}_0'(x, t, y', y_3) \) is a rigid displacement. By integrating (5.75) by parts, we infer

\[\int_{\Omega \times (0, T) \times \partial(-\frac{1}{2}, \frac{1}{2})^2} \mathbf{v}_0'(x, t, y) \cdot \mathbf{v}(x, t, y') \, vu \, dx dt = 0, \]

and deduce from the arbitrary choice of \(\mathbf{v} \in D(\Omega \times (0, T); C^\infty(\Omega \times (0, T); \mathbb{H}^1(\Omega \times (0, T))). \) The periodicity of \(\mathbf{v}_0' \) with respect to \(y' \) and the fact that \(y' \to \mathbf{v}_0'(x, t, y', y_3) \) is a rigid displacement imply that \(y' \to \mathbf{v}_0'(x, t, y') \) is a constant field. Assertion (5.70) is proved. The proof of (5.57) is achieved.

Proof of (5.58). We assume (5.30), fix \(\psi \in D(\Omega \times (0, T); D_1(\Omega \times (0, T); \mathbb{H}^1(\Omega \times (0, T)) \}, \eta \in D(I), \) and \(\alpha \in \{1, 2\} \). Noticing that the mapping \(x \to \psi(x, t, \frac{x'}{\varepsilon}) \eta \left(\frac{y(x)}{r_\varepsilon} \right) \) is compactly supported in \(B_\varepsilon \), by integration by parts we obtain

\[\int_{\Omega \times (0, T)} \left(\frac{\partial u_\varepsilon}{\partial x_3} + \frac{u_\varepsilon^2}{\partial x_\alpha} \right) \psi \left(x, t, \frac{x'}{\varepsilon} \right) \eta \left(\frac{y(x)}{r_\varepsilon} \right) \, dm_\varepsilon dt \]

\[= - \int_{\Omega \times (0, T)} \left(\frac{\partial \psi}{\partial x_3} \left(x, t, \frac{x'}{\varepsilon} \right) + \frac{u_\varepsilon^2}{\partial x_\alpha} \left(x, t, \frac{x'}{\varepsilon} \right) \right) \eta \left(\frac{y(x)}{r_\varepsilon} \right) \, dm_\varepsilon dt \]

\[- \int_{\Omega \times (0, T)} \frac{u_\varepsilon}{r_\varepsilon} \left(x, t, \frac{x'}{\varepsilon} \right) \frac{\partial \eta}{\partial x_3} \left(\frac{y(x)}{r_\varepsilon} \right) \, dm_\varepsilon dt \]

\[- \frac{1}{\varepsilon} \int_{\Omega \times (0, T)} u_\varepsilon \frac{\partial \psi}{\partial y_\alpha} \left(x, t, \frac{x'}{\varepsilon} \right) \eta \left(\frac{y(x)}{r_\varepsilon} \right) \, dm_\varepsilon dt. \]

By (5.1) we have

\[\int_{\Omega \times (0, T)} \left(\frac{\partial u_\varepsilon}{\partial x_3} + \frac{u_\varepsilon^2}{\partial x_\alpha} \right)^2 \frac{u_\varepsilon}{r_\varepsilon} \, dm_\varepsilon + |u_\varepsilon^2|^2 \, dm_\varepsilon \leq C \int_{\Omega \times (0, T)} |e(u_\varepsilon)|^2 \, dm_\varepsilon, \]

hence, by (5.30), all terms of the three first lines of (5.76) are bounded. We infer

\[\lim_{\varepsilon \to 0} \int_{\Omega \times (0, T)} u_\varepsilon \frac{\partial \psi}{\partial y_\alpha} \left(x, t, \frac{x'}{\varepsilon} \right) \eta \left(\frac{y(x)}{r_\varepsilon} \right) \, dm_\varepsilon dt = 0, \]
and then deduce from (5.54) and from an estimate analogous to (5.61) that

\[\lim_{\varepsilon \to 0} \int_{\Omega(0,T)} \overline{v}_3 \partial \psi_\varepsilon \left(x, t, \frac{x'}{\varepsilon} \right) \eta \left(\frac{y_3(x_3)}{r_\varepsilon} \right) \, dm_\varepsilon \, dt = 0, \]

where \(\overline{v}_\varepsilon \) is defined by (5.64). Taking (5.53) and (5.64) into account, and noticing that

\[\frac{1}{r_\varepsilon} \int_{(\varepsilon \iota - \varepsilon \iota + \varepsilon \iota)} \eta \left(\frac{y_3(x_3)}{r_\varepsilon} \right) \, dx_3 = \int_I \eta(y) \, dy, \]

we get

\[\int_{\Omega(0,T)} \overline{v}_3 \partial \psi_\varepsilon \left(x, t, \frac{x'}{\varepsilon} \right) \eta \left(\frac{y_3(x_3)}{r_\varepsilon} \right) \, dm_\varepsilon \, dt \]

\[= \varepsilon \sum_{i \in \mathbb{Z}} \int_{(\varepsilon \iota - \varepsilon \iota + \varepsilon \iota)} u_{\varepsilon 3}(x', \varepsilon t, t) \partial \psi_\varepsilon \left(x', \varepsilon t, \frac{x'}{\varepsilon} \right) \eta \left(\frac{y_3(x_3)}{r_\varepsilon} \right) \, dx' \, dx_3 \, dt \]

\[= \varepsilon \sum_{i \in \mathbb{Z}} \int_{(\varepsilon \iota - \varepsilon \iota + \varepsilon \iota)} u_{\varepsilon 3}(x', \varepsilon t, t) \partial \psi_\varepsilon \left(x', \varepsilon t, \frac{x'}{\varepsilon} \right) \, dx' \, dt \left(\int_I \eta(y) \, dy \right) \]

\[= \left(\int_{\Omega(0,T)} \overline{v}_3 \partial \psi_\varepsilon \left(x, t, \frac{x'}{\varepsilon} \right) \, dx \, dt \right) \left(\int_I \eta(y) \, dy \right). \]

On the other hand, by (5.55) and an estimate analogous to (5.61), there holds

\[\lim_{\varepsilon \to 0} \int_{\Omega(0,T)} \overline{v}_3 \partial \psi_\varepsilon \left(x, t, \frac{x'}{\varepsilon} \right) \, dx \, dt = \int_{\Omega(0,T) \times Y} v_{03} \partial \psi \, dx \, dy. \]

Joining (5.77), (5.78), (5.79), and choosing \(\eta \) such that \(\int_I \eta(y) \, dy \neq 0 \), we infer that \(\int_{\Omega(0,T) \times Y} v_{03} \partial \psi \, dx \, dy = 0 \). By the arbitraryness of \(\psi \), Assertion (5.58) is proved. \(\square \)

In the next Corollary, we derive from Proposition 5.2 and lemmas 5.3, 5.4, 5.5, a series of convergences and identification relations for various sequences associated with the solution to (3.5).

Corollary 5.6. Let \(u_\varepsilon \) be the solution to (3.5).

(i) Up to a subsequence, the convergences (5.11) hold and

\[n v_1 = n v_2 = 0 \quad \text{if} \quad k = +\infty, \quad n v = 0 \quad \text{if} \quad \kappa = +\infty. \]

Under (5.13) or (5.14), \(n u = n v \).

(ii) If \(\kappa > 0 \), the relation (5.31) and convergences (5.32) hold.

(iii) In the periodic case, that is under (3.34) and (3.35), the convergences and relations (5.48) hold. If \(\vartheta > 0 \) (resp. \(\vartheta = 0 \)), the relations (5.49) (resp. (5.50)) are verified.

Proof. Noticing that by (3.8) and (5.5), the estimate (5.10) holds, Assertion (i) follows from Lemma 5.3 (Assertion (5.80) is a consequence of (3.8), (5.5), and (5.12)). If \(\kappa > 0 \), by (3.8) and (5.5) the estimate (5.30) holds, and Assertion (ii) follows from Lemma 5.4. In the periodic case, by (3.34), (3.35), and (5.5), \(u_\varepsilon \) satisfies (5.10) and (5.47) and by (3.8), (3.38) and (5.5) it satisfies (5.30) if \(\vartheta = 0 \). Hence (iii) results from Lemma 5.5. \(\square \)

In the spirit of Tartar [53, 54], we will multiply (3.5) by an appropriate test field \(\phi_\varepsilon \), integrate by parts, and, passing to the limit as \(\varepsilon \to 0 \) by means of the convergences derived in Corollary 5.6, obtain a variational problem equivalent to the announced limit problem, and also to (4.23) for some suitable \(H, V, a, h, \xi_0, \xi_1 \). Theorem 4.4 will yield existence, uniqueness, and regularity of the effective displacement. Uniqueness implies that the convergences obtained in Corollary 5.6 for subsequences hold for the complete sequences.

6.1. Proof of Theorem 3.12. We set

\[
H := \left\{ (w_0, \psi) \in L^2(\Omega \times Y; \mathbb{R}^3) \times L^2(\Omega; \mathbb{R}^3) \right\},
\]

if \(\vartheta > 0 \),

\[
((w_0, \psi), (\tilde{w}_0, \tilde{\psi}))_H := \int_{\Omega \times Y} \rho w_0 \cdot \tilde{w}_0 dxdy,
\]

\[
H := L^2(\Omega \times Y; \mathbb{R}^3) \times L^2(\Omega; \mathbb{R}^3),
\]

if \(\vartheta = 0 \).

We easily deduce from the positiveness of \(\rho \) and \(\rho_1 \) (see (3.7)) that \(H \) is a Hilbert space. We fix a couple \((w_0, \psi)\) \(\in L^2(0, T; H) \) satisfying (see (3.37))

\[
\begin{align*}
&w_0 \in C^\infty([0, T]; \mathcal{D}(\Omega; C^\infty_2(Y; \mathbb{R}^3))), \quad \psi \in C^\infty([0, T]; \mathcal{D}(\Omega; \mathbb{R}^3)),
\end{align*}
\]

\[
\begin{align*}
&w_0(T) = \frac{\partial w_0}{\partial t}(T) = \psi(T) = \frac{\partial \psi}{\partial t}(T) = 0,
\end{align*}
\]

\[
\psi_1 = \psi_2 = 0 \quad \text{if} \quad k = +\infty, \quad \psi = 0 \quad \text{if} \quad \kappa = +\infty,
\]

\[
\begin{align*}
&w_0(. , y) = \psi(.) \quad \text{in} \quad \Omega \times (0, T) \times A.
\end{align*}
\]

We choose a sequence \((\alpha_\varepsilon)\) of positive reals such that

\[
\varepsilon \ll \alpha_\varepsilon \ll 1 \quad \text{and} \quad \left[\frac{r_\varepsilon}{\varepsilon} \ll \alpha_\varepsilon \ll 1 \quad \text{if} \quad \vartheta = 0 \right],
\]

and set

\[
C_\varepsilon := \{ x \in \Omega, \ \text{dist}(x, B_\varepsilon) < \alpha_\varepsilon r_\varepsilon \}.
\]

It is useful to notice that

\[
L^3(C_\varepsilon \setminus B_\varepsilon) \leq C \frac{\alpha_\varepsilon r_\varepsilon}{\varepsilon},
\]

and that, by (6.5), the following estimate holds for \(m \in \{1, 2\}\):

\[
\left| \psi(x, t) - w_0(x, t, \frac{x}{\varepsilon}) + \frac{\partial^m \psi}{\partial t^m}(x, t) - \frac{\partial^m w_0}{\partial t^m}(x, t, \frac{x}{\varepsilon}) \right| \leq C \beta_\varepsilon \quad \text{in} \quad C_\varepsilon \times (0, T),
\]

\[
\beta_\varepsilon = \alpha_\varepsilon \quad \text{if} \quad \vartheta > 0, \quad \beta_\varepsilon = \frac{r_\varepsilon}{\varepsilon} \quad \text{if} \quad \vartheta = 0.
\]
By (6.7), we can fix a sequence \((\eta_\varepsilon)\) in \(C^\infty(\Omega)\) satisfying

\[
0 \leq \eta_\varepsilon \leq 1, \quad \eta_\varepsilon = 1 \text{ in } B_\varepsilon, \quad \eta_\varepsilon = 0 \text{ in } \Omega \setminus C_\varepsilon, \quad |\nabla \eta_\varepsilon| < \frac{C}{r_\varepsilon \alpha_\varepsilon}.
\]

The sequence of test fields \((\phi_\varepsilon)\) mentioned above will be defined by

\[
\phi_\varepsilon(x, t) := \eta_\varepsilon(x) \tilde{\psi}_\varepsilon(x, t) + (1 - \eta_\varepsilon(x))w_0 \left(x, t, \frac{x}{\varepsilon}\right),
\]

where \(\tilde{\psi}_\varepsilon\) is described in Section 7. As \(\phi_\varepsilon(x, t) = w_0 \left(x, t, \frac{x}{\varepsilon}\right)\) in \(\Omega \setminus C_\varepsilon \times (0, T)\), we deduce from (6.5), (6.9), (6.10), (6.11), and (7.4) that the following estimates hold in \(\Omega \times (0, T)\) for \(m \in \{1, 2\}\):

\[
|\phi_\varepsilon(x, t) - \psi(x, t)| + \left| \frac{\partial m}{\partial t} \phi_\varepsilon(x, t) - \frac{\partial m}{\partial t} \psi(x, t) \right| \leq C \beta_1 \varepsilon, \quad \beta_1 \varepsilon = r_\varepsilon + \alpha_\varepsilon \quad \text{if } \vartheta > 0, \quad \beta_1 \varepsilon = \frac{r_\varepsilon}{\varepsilon} \quad \text{if } \vartheta = 0.
\]

It is also interesting to notice that by (6.10), (6.11), and (7.4),

\[
|\phi_\varepsilon(x, t) - \psi(x, t)| + \left| \frac{\partial m}{\partial t} \phi_\varepsilon(x, t) - \frac{\partial m}{\partial t} \psi(x, t) \right| \leq C r_\varepsilon \quad \text{in } B_\varepsilon \times (0, T).
\]

By (3.5) and (3.6) we have \(|\sigma_\varepsilon(\phi_\varepsilon)| \leq C \mu_0 |\nabla \phi_\varepsilon|\) in \((\Omega \setminus B_\varepsilon) \times (0, T)\), therefore by (6.9), (6.10), (6.12), (7.4), the next estimates are satisfied in \((C_\varepsilon \setminus B_\varepsilon) \times (0, T)\)

\[
|\sigma_\varepsilon(\phi_\varepsilon)| \leq C \mu_0 \left(|\nabla \eta_\varepsilon| \left| \tilde{\psi}_\varepsilon(x, t) - w_0 \left(x, t, \frac{x}{\varepsilon}\right) \right| + |\nabla \tilde{\psi}_\varepsilon(x, t)| + \left| \nabla \left(w_0 \left(x, t, \frac{x}{\varepsilon}\right) \right) \right| \right)
\]

\[
\beta_2 \varepsilon = \frac{1}{\alpha_\varepsilon} + \frac{1}{\varepsilon} \quad \text{if } \vartheta > 0, \quad \beta_2 \varepsilon = \frac{1}{\alpha_\varepsilon \varepsilon} \quad \text{if } \vartheta = 0.
\]

Applying (4.5) to \(\chi_\varepsilon = \rho_\varepsilon \mathbb{1}_{\Omega \setminus B_\varepsilon}, \ h_0 \in \{w_0, \frac{\partial^2 w_0}{\partial x^2}, w_0(0), \frac{\partial^2 w_0}{\partial x^2}(0)\}\), we deduce from (3.7), (4.4), (6.6), and (6.12), that the following convergences hold for \(m \in \{1, 2\}\)

\[
\rho_\varepsilon \phi_\varepsilon \mathbb{1}_{\Omega \setminus B_\varepsilon} \rightarrow \rho \mathbb{1}_{Y \setminus A}(y) w_0, \quad \rho_\varepsilon \frac{\partial m}{\partial t} \phi_\varepsilon \mathbb{1}_{\Omega \setminus B_\varepsilon} \rightarrow \rho \frac{\partial m}{\partial t} \mathbb{1}_{Y \setminus A}(y) \frac{\partial m}{\partial t} w_0,
\]

\[
\rho_\varepsilon \phi_\varepsilon(0) \mathbb{1}_{\Omega \setminus B_\varepsilon} \rightarrow \rho \mathbb{1}_{Y \setminus A}(y) w_0(0), \quad \rho_\varepsilon \frac{\partial \phi_\varepsilon}{\partial t}(0) \mathbb{1}_{\Omega \setminus B_\varepsilon} \rightarrow \rho \mathbb{1}_{Y \setminus A}(y) \frac{\partial \phi_\varepsilon}{\partial t}(0).
\]

By multiplying (3.5) by \(\phi_\varepsilon\), after integrations by parts we obtain (see (6.3))

\[
\int_{\Omega \setminus B(0, T)} \rho_\varepsilon u_\varepsilon \cdot \frac{\partial^2 \phi_\varepsilon}{\partial t^2} dx \, dt + \int_{\Omega} \rho_\varepsilon a_0 \cdot \frac{\partial \phi_\varepsilon}{\partial t}(0) dx - \int_{\Omega} \rho_\varepsilon b_0 \cdot \phi_\varepsilon(0) dx
\]

\[
+ \int_{\Omega \setminus B(0, T)} e(u_\varepsilon) : \sigma_\varepsilon(\phi_\varepsilon) dx \, dt = \int_{\Omega \setminus B(0, T)} \rho_\varepsilon f \cdot \phi_\varepsilon dx \, dt.
\]
By (3.7) and (3.39), we have
\begin{equation}
\int_{\Omega_0(T)} \rho \Delta \phi \, dxdt = \int_{\Omega_0(T)} \rho_0 \Delta \phi_0 \, dxdt + \int_{\Omega_0(T)} \rho \frac{\partial^2 \phi}{\partial t^2} \, dxdt.
\end{equation}
(6.17)

We deduce from (5.48) (see Corollary 5.6), and (6.15) that
\begin{equation}
\lim_{\varepsilon \to 0} \int_{\Omega_0(T)} \rho \Delta \phi \, dxdt = \int_{\Omega_0(T)} \rho_0 \Delta \phi_0 \, dxdt.
\end{equation}
By (5.11), and (6.13), we have
\begin{equation}
\lim_{\varepsilon \to 0} \int_{\Omega_0(T)} \rho \frac{\partial^2 \phi}{\partial t^2} \, dxdt = \int_{\Omega_0(T)} \rho_0 \frac{\partial^2 \phi}{\partial t^2} \, dxdt.
\end{equation}
The last three equations imply
\begin{equation}
\lim_{\varepsilon \to 0} \int_{\Omega_0(T)} \rho \Delta \phi \, dxdt = \int_{\Omega_0(T)} \rho_0 \Delta \phi_0 \, dxdt + \int_{\Omega_0(T)} \rho \frac{\partial^2 \phi}{\partial t^2} \, dxdt.
\end{equation}
(6.18)

As, by (3.5), \(a_0\), \(b_0\), and \(f\) are continuous, we obtain by the same argument
\begin{equation}
\lim_{\varepsilon \to 0} \int_0 T \rho \frac{\partial \phi}{\partial t} (0) \, dx = \int_{\Omega_0(T)} \rho a_0 \frac{\partial w}{\partial t} (0) \, dx + \int_{\Omega_0(T)} \rho b_0 \cdot \psi (0) \, dy,
\end{equation}
(6.19)
\begin{equation}
\lim_{\varepsilon \to 0} \int_0 T \rho f \cdot \phi \, dxdt = \int_{\Omega_0(T)} \rho f \cdot w \, dxdt + \int_{\Omega_0(T)} \rho \phi \, dxdt.
\end{equation}
(6.20)

We split the 4th term on the left-hand side of (6.16) into the sum of three terms:
\begin{equation}
\int_{\Omega_0(T)} \varepsilon e(u_\varepsilon) : \sigma (\phi_\varepsilon) \, dxdt = I_{1\varepsilon} + I_{2\varepsilon} + I_{3\varepsilon}; \quad I_{1\varepsilon} := \int_{\Omega} \varepsilon e(u_\varepsilon) : \frac{1}{\varepsilon} \sigma (\phi_\varepsilon) \, dxdt,
\end{equation}
(6.21)
\begin{equation}
I_{2\varepsilon} := \int_{\Omega \setminus C \times (0,T) \times (0,T)} \varepsilon e(u_\varepsilon) : \frac{1}{\varepsilon} \sigma (\phi_\varepsilon) \, dxdt, \quad I_{3\varepsilon} := \int_{B \times (0,T)} \varepsilon e(u_\varepsilon) : \sigma (\phi_\varepsilon) \, dxdt.
\end{equation}
By (6.10) and (6.11), we have \(\phi_\varepsilon \mathbb{I}_{\Omega \setminus C} = w_0 (x, t, \frac{x}{\varepsilon}) \mathbb{I}_{\Omega \setminus C}\). Taking (3.5), (3.6), and (3.34) into account, we deduce that
\begin{equation}
\int \frac{1}{\varepsilon} \sigma (\phi_\varepsilon) - \sigma_{0y}(w_0) \left(x, t, \frac{x}{\varepsilon} \right) \mathbb{I}_{\Omega \setminus C} \leq C \varepsilon,
\end{equation}
where the operator \(\sigma_{0y}\) is defined by (3.42). The following convergence
follows from (4.4) and from the strong convergence of \(1_{C_\varepsilon B_\varepsilon} \) to 0 in \(L^2(\Omega) \), which results from (6.6) and (6.8). By applying Assertion (4.5) of Lemma 4.1 to \(h_0 := \sigma_{0y}(w_0) \) and \(\chi_\varepsilon := 1_{\Omega\setminus C_\varepsilon} \), taking (6.21) into account, we infer

\[(6.23) \quad \frac{1}{\varepsilon} \sigma_{\varepsilon}(\phi_\varepsilon) \rightarrow \sigma_{0y}(w_0) 1_{Y\setminus A}(y).\]

We deduce from (5.48), (6.20), and (6.23) that

\[(6.24) \quad \lim_{\varepsilon \to 0} I_{1\varepsilon} = \int_{\Omega \times (0,T)} e_y(u_0) : \sigma_{0y}(w_0) dxdty.\]

By (3.34), (6.8) and (6.14), we have

\[\int_{C_\varepsilon B_\varepsilon \times (0,T)} \|\frac{1}{\varepsilon} \sigma_{\varepsilon}(\phi_\varepsilon)\|^2 dxdt \leq C \left(\alpha_\varepsilon + \frac{\varepsilon^2}{\alpha_\varepsilon} \right) \text{ if } \vartheta > 0, \quad \text{and} \quad \int_{C_\varepsilon B_\varepsilon \times (0,T)} \|\frac{1}{\varepsilon} \sigma_{\varepsilon}(\phi_\varepsilon)\|^2 dxdt \leq C \frac{\varepsilon}{\alpha_\varepsilon} \text{ if } \vartheta = 0.\]

Therefore, by (6.6), the sequence \(\left\{ \frac{1}{\varepsilon} \sigma_{\varepsilon}(\phi_\varepsilon) 1_{C_\varepsilon B_\varepsilon} \right\} \) strongly converges to 0 in \(L^2(\Omega \times (0,T); S^3) \). Accordingly, we infer from (5.47) and (6.20) that

\[(6.25) \quad \lim_{\varepsilon \to 0} I_{2\varepsilon} = 0.\]

Finally, the limit of the sequence \((I_{3\varepsilon}) \) defined by (6.20) is computed in Lemma 7.1 in terms of \(k \) and \(\kappa \). Passing to the limit as \(\varepsilon \to 0 \) in (6.16), collecting (6.4), (6.18), (6.19), (6.20), (6.24), (6.25), and (7.5), we obtain the variational formulation given, according to the order of magnitude of \(k \) and \(\kappa \), by (6.26), (6.39), (6.41), or (6.32).

We distinguish 4 cases:

Case 0 < k < +\infty. We find

\[(6.26) \quad \int_{\Omega \times (0,T) \times Y \setminus A} \rho u_0 \cdot \frac{\partial^2 w_0}{\partial t^2} dxdtdy + \int_{\Omega \times (0,T) \times Y \setminus A} \rho a_0 \cdot \frac{\partial w_0}{\partial t}(0) - \rho b_0 \cdot w_0(0) dxdy + \int_{\Omega \times (0,T)} \vec{p}_1 v \cdot \frac{\partial^2 \psi}{\partial t^2} dxdt + \int_{\Omega} \vec{p}_1 a_0 \cdot \frac{\partial \psi}{\partial t}(0) - \vec{p}_1 b_0 \cdot \psi(0) dx
+ \int_{\Omega \times (0,T) \times Y \setminus A} e_y(u_0) : \sigma_{0y}(w_0) dxdtdy + k \int_{\Omega \times (0,T)} e_{x'}(v') : \sigma_{x'}(\psi') dxdt
= \int_{\Omega \times (0,T) \times Y \setminus A} \rho f \cdot w_0 dxdtdy + \int_{\Omega \times (0,T)} \vec{p}_1 f \cdot \psi dxdt,
\]

for all \((w_0, \psi) \in L^2(0,T; H) \) satisfying (6.2)-(6.5). We set (see (6.1))
\[\xi = (u_0, v), \quad \xi_0 = (a_0, a_0), \quad \xi_1 = (b_0, b_0), \quad h = (f, f), \]
\[V := \begin{cases} (w_0, \psi) \in H & w_0 \in L^2(\Omega; H_0^1(Y; \mathbb{R}^3)) \quad \psi_1, \psi_2 \in L^2(0, L; H_0^1(Y')) \text{ if } \theta > 0, \\ (w_0, \psi) \in H & \psi_1, \psi_2 \in L^2(0, L; H_0^1(Y')) \quad w_0(x, y) = \psi'(x) \text{ on } \Omega \times \Sigma \end{cases} \]
(6.27)
\[\pi(v, \psi) := k \int_{\int} e_{\psi}(v') : \sigma_x(\psi') \, dx, \]
\[a((u_0, v), (w_0, \psi)) := \int_{\Omega \times Y \setminus A} e_g(u_0) : \sigma_g(w_0) \, dx \, dy + \bar{\pi}(v, \psi), \]
\[((u_0, v), (w_0, \psi)) \in (\Omega \times Y \setminus A) \]
By (4.8), (5.11) and (5.48), we have \(\xi = (u_0, v) \in L^2(0, T; V), \frac{\partial \xi}{\partial t} \in L^2(0, T; H) \), thus by a density argument the variational formulation (6.26) is equivalent to (4.23). By (6.1), (6.27), and the following Korn’s inequality (see [42], p. 14),
\[\int_{Y \setminus A} |w|^2 + |\nabla (w)|^2 \, dy \leq C \int_{Y \setminus A} |w|^2 + |e(w)|^2 \, dy \quad \forall w \in H^1(Y \setminus A; \mathbb{R}^3), \]
for all \(\bar{\xi} = (w_0, \psi) \in V \), the following holds
\[\|\bar{\xi}\|^2_V = \bar{\xi}_H^2 + \bar{\pi}(\psi, \psi) + \|\nabla (w_0)\|^2_{L^2(\Omega \times Y \setminus A; \mathbb{R}^3)} \leq C|\bar{\xi}_H|^2 + C\|e_g(w_0)\|^2_{L^2(\Omega \times Y \setminus A; \mathbb{R}^3)} + \bar{\pi}(\psi, \psi) \leq C|\bar{\xi}_H|^2 + C\bar{\pi}(\bar{\xi}, \bar{\xi}), \]
yielding (4.18). We deduce from Theorem 4.4 that \(\xi = (u_0, v) \) is the unique solution to (6.26). By (4.19), (4.20), (6.27), the following holds
\[\xi \in C([0, T]; V) \cap C^1([0, T]; H), \quad \xi(0) = (a_0, a_0), \quad \frac{\partial \xi}{\partial t}(0) = (b_0, b_0). \]
It follows from (6.29), from the following inequalities (deduced from (6.1), (6.27))
\[\|w_0\|_{L^2(\Omega; H_0^1(Y; \mathbb{R}^3))} + \|\psi\|_{L^2(\Omega; \mathbb{R}^3)} + \|\psi_1\|_{L^2(0, L; H_0^1(Y'))} \]
\[+ \|\psi_2\|_{L^2(0, L; H_0^1(Y'))} \leq C\|(w_0, \psi)\|_V \quad \forall (w_0, \psi) \in V, \]
\[\|w_0\|_{L^2(\Omega \times Y; \mathbb{R}^3)} + \|\psi\|_{L^2(\Omega; \mathbb{R}^3)} \leq C\|(w_0, \psi)\|_H \quad \forall (w_0, \psi) \in H, \]
and the following implication, holding for any couple \((E_1, E_2)\) of Banach spaces
\[A \in \mathcal{L}(E_1, E_2) \quad B \in C^k([0, T]; E_1) \quad \Rightarrow \quad A \circ B \in C^k([0, T]; E_2) ; \quad \frac{d^s}{dt^s}(A \circ B) = A \circ \frac{d^s}{dt^s} B \forall s \leq k, \]
applied with $B = \xi = (u_0, v), E_1 \in \{H, V\}$, $(A(\xi), E_2) \in \left\{ \left(u_0, L^2(\Omega; H^1_0(Y; \mathbb{R}^3)) \right), (v, L^2(\Omega; \mathbb{R}^3)) \right\}, (v_0, L^2(0, L; H^1_0(\Omega'))), (u_0, L^2(\Omega \times Y; \mathbb{R}^3)) , (v, L^2(\Omega)) \right\}$, that

$$u_0 \in C([0, T]; L^2(\Omega; H^1_0(Y; \mathbb{R}^3))) \cap C^1([0, T]; L^2(\Omega \times Y; \mathbb{R}^3)),
$$

$$u_0(0) = a_0, \frac{\partial u_0}{\partial t}(0) = b_0,
$$

$$\nu \in C^1([0, T]; L^2(\Omega; \mathbb{R}^3)), \nu(0) = a_0, \frac{\partial \nu}{\partial t}(0) = b_0,
$$

$$v_1, v_2 \in C([0, T]; L^2(0, L; H^1_0(\Omega')))) \cap C^1([0, T]; L^2(\Omega)).$$

Next we prove that the variational problem (6.26) is equivalent to (3.40). Setting $\psi = 0$ in (6.26), noticing that $e_y(u_0) : \sigma_{0y}(u_0) = \sigma_{0y}(u_0) : \nabla_y(w_0)$, we get

$$\int_{\Omega < (0, T) \times Y \setminus A} \rho u_0 \cdot \frac{\partial^2 w_0}{\partial t^2} dx dy + \int_{\Omega \times Y \setminus A} \rho a_0 \cdot \frac{\partial w_0}{\partial t}(0) dx dy - \int_{\Omega \times Y \setminus A} \rho b_0 \cdot w_0(0) dx dy
$$

$$+ \int_{\Omega \times (0, T) \times Y \setminus A} \sigma_{0y}(u_0) : \nabla_y(w_0) dx dt dy = \int_{\Omega \times (0, T) \times Y \setminus A} \rho f \cdot w_0 dx dt dy,
$$

and, letting w_0 vary over $D(\Omega \times (0, T) \times Y \setminus A; \mathbb{R}^3)$, deduce

$$\rho \frac{\partial^2 u_0}{\partial t^2} - \text{div}_y(\sigma_{0y}(u_0)) = \rho f \quad \text{in} \quad \Omega \times (0, T) \times Y \setminus A.$$

By integrating (6.32) by parts with respect to (t, y) for an arbitrary w_0 satisfying (6.2), (6.3), (6.5), we infer from (6.33) that $\int_{\Omega \times (0, T) \times \partial Y} \sigma_{0y}(u_0) \nu \cdot w_0 dx dt d\mathcal{H}^2(y) = 0$ (ν := outward pointing normal to ∂Y). Noticing that $\sigma_{0y}(u_0) \nu = 0$ \mathcal{H}^2 a.e. on $\partial Y \cap A$ (because if $\nu > 0$, then $A = B$ and, by (5.49), $\sigma_{0y}(u_0) = 0$ in B, whereas if $r_\epsilon < \varepsilon$, then $A = \Sigma$ and $\mathcal{H}^2(\partial Y \cap \Sigma) = 0$), we deduce

$$\sigma_{0y}(u_0) \nu \cdot \nu(x, t, y) = -\sigma_{0y}(u_0) \nu(x, t, -y) \quad \text{on} \quad \Omega \times (0, T) \times \partial Y.$$

Fixing $(w_0, \psi) \in L^2(0, T; H)$ satisfying (6.2), (6.3), we infer from the Y-periodicity of u_0, (6.5), and (6.34), that (see (3.42))

$$-\int_{\Omega \times (0, T) \times \partial (Y \setminus A)} \sigma_{0y}(u_0) \nu \cdot w_0 dx dt d\mathcal{H}^2(y) = -\int_{\Omega \times (0, T) \times \partial (Y \setminus A) \cap \Sigma} \sigma_{0y}(u_0) \nu \cdot \psi dx dt d\mathcal{H}^2(y)
$$

$$= \int_{\Omega \times (0, T) \times \partial Y} g(u_0) \cdot \psi dx dt.
$$

By multiplying (6.33) by w_0 and by integrating it by parts over $\Omega \times (0, T) \times Y \setminus A$, thanks to (6.31), (6.34), (6.35) we obtain

$$\int_{\Omega \times (0, T) \times Y \setminus A} \rho u_0 \cdot \frac{\partial^2 w_0}{\partial t^2} dx dy + \int_{\Omega \times Y \setminus A} \rho a_0 \cdot \frac{\partial w_0}{\partial t}(0) dx dy - \int_{\Omega \times Y \setminus A} \rho b_0 \cdot w_0(0) dx dy
$$

$$+ \int_{\Omega \times (0, T) \times Y \setminus A} e_y(u_0) : \sigma_{0y}(w_0) dx dt dy + \int_{\Omega \times (0, T)} g(u_0) \cdot \psi dx dt = \int_{\Omega \times (0, T) \times Y \setminus A} \rho f \cdot w_0 dx dt dy.
$$

By subtracting (6.36) from (6.26), we find
Making ψ vary in $D(\Omega \times (0, T); \mathbb{R}^3)$, we infer
\begin{equation}
\tilde{p}_1 \frac{\partial^2 \psi}{\partial t^2} - k \text{div} \sigma_x (\psi') = \tilde{p}_1 f + g(u_0) \quad \text{in} \quad \Omega \times (0, T).
\end{equation}

By (6.31), (6.33), (6.34), (6.38), and Lemma 5.5, the couple (u_0, v) is a solution to (3.40), (3.45). Conversely, any solution to (3.40), (3.45) satisfies (6.26).

\textbf{Case} $k = +\infty$, $\kappa = 0$. We obtain
\begin{equation}
\int_{\Omega \times (0, T)} \rho u_0 \frac{\partial^2 w_0}{\partial t^2} dxdy + \int_{\Omega \times Y \setminus A} \rho a_0 \frac{\partial w_0}{\partial t}(0) - \rho b_0 \cdot w_0(0) dxdy
\end{equation}
\begin{equation}
+ \int_{\Omega \times (0, T)} \tilde{p}_1 v_3 \frac{\partial^2 \psi_3}{\partial t^2} dxdt + \int_{\Omega} \tilde{p}_1 a_{03} \frac{\partial \psi_3}{\partial t}(0) - \tilde{p}_1 b_{03} \psi_3(0) dxdy
\end{equation}
\begin{equation}
+ \int_{\Omega \times (0, T) \times (Y \setminus A)} e_y(u_0) : \sigma_y(w_0) dxdy = \int_{\Omega \times (0, T) \times Y \setminus A} \rho f : w_0 dxdy + \int_{\Omega \times (0, T)} \tilde{p}_1 f_3 \psi_3 dxdt.
\end{equation}

This variational formulation is satisfied for all $(w_0, \psi) \in L^2(0, T; H)$ verifying (6.2)-(6.5). We set H and V being given by (6.1), (6.27))

$\xi = (u_0, v), \quad H^{(2)} := \{(w_0, \psi) \in H, \psi_1 = \psi_2 = 0\},$

$(\cdot, \cdot)_H^{(2)} := \langle \cdot, \cdot \rangle_H, \quad V^{(2)} := V \cap H^{(2)}, \quad (\cdot, \cdot)_V^{(2)} := \langle \cdot, \cdot \rangle_V,$

\begin{equation}
h^{(2)} := (f_1 1_{Y \setminus A} + f_2 e_3 1_A, f_3 e_3),
\end{equation}

\begin{equation}
a^{(2)}((u_0, v), (w_0, \psi)) := \int_{\Omega \times Y \setminus A} e_y(u_0) : \sigma_y(w_0) dxdy,
\end{equation}

\begin{equation}
\xi_0^{(2)} := (a_0 1_{Y \setminus A} + a_{03} e_3 1_A, a_{03} e_3), \quad \xi_1^{(2)} := (b_0 1_{Y \setminus A} + b_{03} e_3 1_A, b_{03} e_3).
\end{equation}

By (4.8), (5.10), (5.48) and (5.80), we have $\xi \in L^2(0, T; V^{(2)})$ and $\xi' \in L^2(0, T; H^{(2)})$. Therefore, by a density argument, the variational problem (6.39) is equivalent to (4.23). By (6.28), (6.40), the estimate (4.18) is satisfied. We deduce from Theorem 4.4 that $\xi = (u_0, v)$ is the unique solution to (6.39) and that $\xi \in C([0, T]; V^{(2)}) \cap C^1([0, T]; H^{(2)})$, $\xi(0) = \xi_0^{(2)}$, $\frac{\partial \xi}{\partial t}(0) = \xi_1^{(2)}$. Then, repeating the argument employed to prove (6.31), we infer from (6.30) and (6.40) that the initial-boundary conditions and regularity properties stated in (3.44), (3.46) are satisfied. Setting $\psi_3 = 0$ in (6.39), we get (6.32) and deduce (6.33), (6.34), (6.35), (6.36). Then, subtracting (6.36) from (6.39), taking (6.4) into account, we find
\begin{equation}
\int_{\Omega \times (0, T)} \tilde{p}_1 \psi_3 \frac{\partial^2 \psi_3}{\partial t^2} dxdt - \int_{\Omega \times (0, T)} g(u_0) \psi_3 dxdt + \int_{\Omega} \tilde{p}_1 a_{03} \frac{\partial \psi_3}{\partial t}(0) dxdy
\end{equation}
\begin{equation}
- \int_{\Omega} \tilde{p}_1 b_{03} \psi_3(0) dxdy = \int_{\Omega \times (0, T)} \tilde{p}_1 f_3 \psi_3 dxdt.
\end{equation}
Making ψ_3 vary in $D(\Omega \times (0,T))$, we deduce that $\rho_1 \frac{\partial^2 \psi_3}{\partial t^2} = \rho_1 f_3 + (g(u_0))_3$ in $\Omega \times (0,T)$ and infer that (u_0, v) is solution to (3.40), (3.46).

Case 0 < $\kappa < +\infty$. Passing to the limit as $\varepsilon \to 0$ in (6.16), we obtain

$$
\begin{align*}
\int_{\Omega \times (0,T)} \rho_0 \cdot \frac{\partial^2 w_0}{\partial t^2} dxdt + \int_{\Omega \times (0,T)} \rho_0 \cdot \frac{\partial w_0}{\partial t}(0) - \rho_b_0 \cdot w_0(0) dxdy & \\
+ \int_{\Omega \times (0,T)} \rho_1 v_3 \frac{\partial^2 \psi_3}{\partial t^2} dxdt + \int_{\Omega} \rho_1 a_{03} \frac{\partial \psi_3}{\partial t}(0) - \rho_1 b_{03} \psi_0(0) dx & \\
+ \int_{\Omega \times (0,T) \times (\Omega \setminus A)} e_y(u_0) : \sigma_y(w_0) dxdt dy + \frac{\kappa}{\rho} \int_{\Omega \times (0,T)} H(\psi_3) : H^\sigma(\psi_3) dxdt & \\
= \int_{\Omega \times (0,T) \times (\Omega \setminus A)} \rho_0 f_3 dxdt + \int_{\Omega \times (0,T)} \rho_1 f_3 \psi_3 dxdt,
\end{align*}

(6.41) for all $(w_0, \psi) \in L^2(0,T;H)$ verifying (6.2)-(6.5). We set (see (6.27), (6.40), (7.6))

$$H^{(3)} := H^{(2)},$$

$$V^{(3)} := \left\{ (w_0, \psi_3) \in V^{(2)} \mid \psi_3 \in L^2(0,L;H^2_\tau(\Omega)) \quad \text{and} \quad w_0(x, y) = \psi_3(x) e_3 \quad \text{on} \quad \Omega \times \Sigma \right\},$$

$$(((u_0, v_3 e_3), (w_0, \psi_3 e_3)))_{V^{(3)}} := (((u_0, v_3 e_3), (w_0, \psi_3 e_3)))_V + \int_{\Omega} \left(\frac{\partial^2 v_3}{\partial x_1^2} \frac{\partial^2 \psi_3}{\partial x_1^2} + \frac{\partial^2 v_3}{\partial x_2^2} \frac{\partial^2 \psi_3}{\partial x_2^2} + \frac{\partial^2 v_3}{\partial x_3^2} \frac{\partial^2 \psi_3}{\partial x_3^2} \right) dx,$$

$$\pi^{(3)}(v_3 e_3, \psi_3 e_3) := \frac{\kappa}{\rho} \int_{\Omega} H(\psi_3) : H^\sigma(\psi_3) dxdt,$$

(6.43)

$$a^{(3)}((u_0, v), (w_0, \psi)) := \int_{\Omega \times (0,T) \times (\Omega \setminus A)} e_y(u_0) : \sigma_y(w_0) dxdt dy + \pi^{(3)}(v, \psi),$$

$$\xi^{(3)} := \xi^{(2)}, \quad \xi^{(3)} := \xi^{(2)}, \quad h^{(3)} := h^{(2)}.$$

By Corollary 5.6 (ii) and assertions (4.8), (5.10), (5.48), and (5.80), there holds $\xi = (u_0, v) \in L^2(0,T;V^{(3)})$ and $\frac{\partial}{\partial \tau} \in L^2(0,T;H^{(3)})$ hence, by a density argument, the variational formulation (6.41) is equivalent to (4.23). By (6.27), (6.28), (6.40), (6.42), (6.43), and (7.6), for all $\tilde{\xi} = (w_0, \psi) \in V^{(3)}$, we have

$$\|\tilde{\xi}\|_{V^{(3)}}^2 \leq \|\tilde{\xi}\|_{V^{(3)}}^2 + C \pi^{(3)}(\psi, \psi) \leq C(\|\tilde{\xi}\|_H + a(\tilde{\xi}, \tilde{\xi}) + \pi^{(3)}(\psi, \psi))$$

$$\leq C(\|\tilde{\xi}\|_H + a^{(3)}(\tilde{\xi}, \tilde{\xi})).$$

hence Assumption (4.18) is satisfied. We deduce from Theorem 4.4 that $\xi = (u_0, v)$ is the unique solution to (6.41) and that $\xi \in C([0,T];V^{(3)}) \cap C^1([0,T];H^{(3)})$, $\xi(0) = \xi^{(3)}$, $\frac{\partial}{\partial \tau}(0) = \xi^{(3)}$, yielding, by the inequality (6.30) joined with

$$\|\psi_3\|_{L^2(0,L;H^2_\tau(\Omega))} \leq C\|(w_0, \psi)\|_{V^{(3)}}, \forall (w_0, \psi) \in V^{(3)},$$

the initial-boundary conditions and regularity properties stated in (3.44), (3.47). Repeating the argument for the case $0 < k < +\infty$, we set $\psi_3 = 0$ in (6.41), obtain (6.32), deduce (6.33), (6.34), (6.35), (6.36), subtract (6.36) from (6.41), and get
\begin{align*}
\int_{\Omega \times (0, T)} \bar{\rho}_1 \partial^2 \psi_3 - \partial_t^2 dx dt + \frac{\kappa}{6} \int_{\Omega \times (0, T)} H(v_3) : H^\sigma(\psi_3) dx dt \\
- \int_{\Omega \times (0, T)} (g(u_0))_3 \psi_3 dx dt - \int_{\Omega} \bar{\rho}_1 (b_0)_3 \psi_3(x, 0) dx = \int_{\Omega \times (0, T)} \bar{\rho}_1 f_3 \psi_3 dx dt.
\end{align*}

By (7.6), the following equation holds in the sense of distributions in $D'((\Omega \times (0, T))$
\begin{align*}
\frac{\kappa}{6} H(v_3) : H^\sigma(\psi_3) |_{D', D} = \frac{\kappa l + 1}{3 l + 2} \left(\sum_{\alpha, \beta = 1}^{2} \frac{\partial^4 v_3}{\partial x_\alpha^2 \partial x_\beta^2} \psi_3 \right) |_{D', D}.
\end{align*}

Making ψ_3 vary in $D((\Omega \times (0, T))$ in (6.44), we infer
\begin{align*}
\bar{\rho}_1 \partial^2 v_3 - \frac{\kappa l + 1}{3 l + 2} \sum_{\alpha, \beta = 1}^{2} \frac{\partial^4 v_3}{\partial x_\alpha^2 \partial x_\beta^2} = \bar{\rho}_1 f_3 + (g(u_0))_3, \text{ in } \Omega \times (0, T),
\end{align*}
and deduce that (u_0, v) satisfies (3.40), (3.47).

Case $\kappa = +\infty$. By (7.5) we have $\rho_{3\delta} = 0$. By passing to the limit as $\varepsilon \to 0$ in (6.16), we obtain (6.32) and, taking (5.80) into account, deduce in a similar manner that (u_0, v) satisfies (3.40), (3.48). The proof of Theorem 3.12 is achieved.

6.2. Proofs of theorems 3.1 and 3.7. Under the assumptions of Theorem 3.1, by (3.12) and (5.5), the sequence (u_ε) (resp. $(\frac{\partial u_\varepsilon}{\partial x})$) is bounded in $L^\infty(0, T; H^1_0(\Omega; \mathbb{R}^3))$ (resp. $L^\infty(0, T; L^2(\Omega; \mathbb{R}^3))$), therefore by the Aubin-Lions-Simon lemma (see [51, Corollary 6]), (u_ε) strongly converges in $L^2(0, T; L^2(\Omega; \mathbb{R}^3))$ and weakly* converges in $L^\infty(0, T; H^1_0(\Omega; \mathbb{R}^3))$, up to a subsequence, to some $u \in L^\infty(0, T; H^1_0(\Omega; \mathbb{R}^3))$. In particular, assumption (5.14) of Lemma 5.3 is satisfied, hence $nu = \varrho u$.

Under the assumptions of Theorem 3.7, by the apriori estimates (5.5), the sequence (u_ε) is bounded in $L^\infty(0, T; L^2(\Omega; \mathbb{R}^3))$, hence weakly* converges in $L^\infty(0, T; L^2(\Omega; \mathbb{R}^3))$, up to a subsequence, to some $u \in L^\infty(0, T; L^2(\Omega; \mathbb{R}^3))$. By (3.26) and (3.27), Assumption (5.13) of Lemma 5.3 is satisfied, thus we also get $nu = \varrho u$. Applying Corollary 5.6, we deduce in both cases from (5.11), (5.31), (5.80), and (7.5), that

\begin{align*}
\begin{aligned}
&u_\varepsilon m_\varepsilon \rightharpoonup nu \quad \text{weakly* in } L^\infty(0, T; \mathcal{M}(\Omega; \mathbb{R}^3)), \\
&u_1, u_2 \in L^\infty(0, T; L^2(\Omega; H^1_0(\Omega'))), \\
&e_\varepsilon'(u'_\varepsilon)m_\varepsilon \rightharpoonup ne_\varepsilon'(u') \quad \text{weakly* in } L^\infty(0, T; \mathcal{M}(\Omega'; S^3)), \\
&\nu_1 = \nu_2 = 0, \quad \text{if } k = +\infty, \\
&u_3 \in L^\infty(0, T; L^2(\Omega; H^1_0(\Omega'))), \quad \text{if } \kappa > 0, \\
&nu = 0, \quad \text{if } \kappa = +\infty, \\
&\mathbf{I}_{n, \varepsilon}(nu, \psi) = \mathbf{I}_{n, \varepsilon}(u, \psi).
\end{aligned}
\end{align*}

Let us check that

\begin{align*}
\mathbf{I}_{\Omega \setminus B_\varepsilon} \rightharpoonup 1 - \varrho n \quad \text{weakly in } L^\infty(\Omega),
\end{align*}

\begin{align*}
\mathbf{I}_{\Omega \setminus B_\varepsilon} \rightharpoonup 1 - \varrho n \quad \text{weakly in } L^\infty(\Omega),
\end{align*}
where ϑ is defined by (3.10). If $\vartheta = 0$, (6.46) follows from the fact that $|B_\varepsilon| \to 0$. Otherwise, if $\vartheta > 0$, then the sequence $(\frac{\varepsilon}{r_\varepsilon} u_{\varepsilon, B_\varepsilon})$ is bounded in $L^\infty(\Omega)$ and, by (4.7), weakly* converges in $L^\infty(\Omega)$ to n. It then follows from (3.10) that (1_B_ε) weakly* converges in $L^\infty(\Omega)$ to ϑn, yielding (6.46). Next, we check that

\begin{equation}
\mathbf{u}_\varepsilon 1_{\Omega \setminus B_\varepsilon} \rightharpoonup \mathbf{u}(1 - \vartheta n) \quad \text{weakly in} \quad L^2(\Omega \times (0, T); \mathbb{R}^3).
\end{equation}

If $\vartheta = 0$, Assertion (6.47) follows from the weak convergence of (\mathbf{u}_ε) to \mathbf{u} in $L^2(\Omega \times (0, T))$ and the convergence of $\mathbf{L}^2(B_\varepsilon)$ to 0. Otherwise, if $\vartheta > 0$, then \mathbf{u}_ε weakly converges, by (6.45), to $n\mathbf{u}$. Hence, by (3.10), $(u_\varepsilon 1_{B_\varepsilon})$ weakly converges to $n\vartheta u$, yielding (6.47).

We fix a field ψ verifying (6.2), (6.3), and (6.48) $n\psi_1 = n\psi_2 = 0$ if $k = +\infty$; $n\psi = 0$ if $\kappa = +\infty$.

The sequence of test fields (ϕ_ε) is defined by substituting ψ for w_0 in (6.11), that is

\begin{equation}
\phi_\varepsilon(x, t) := \eta_\varepsilon(x) \tilde{\psi}_\varepsilon(x, t) + (1 - \eta_\varepsilon(x))\psi(x, t),
\end{equation}

where $\tilde{\psi}_\varepsilon(x, t)$ is described in Section 7, and η_ε satisfies (6.10), now with respect to the non-periodic sets $B_\varepsilon, C_\varepsilon$ given by (3.4), (6.7). We assume that (see Remark 6.1)

\begin{equation}
r_\varepsilon \ll \alpha_\varepsilon \ll 1 \quad \text{under the assumptions of Theorem 3.1},
\end{equation}

\begin{equation}
\mu_0 \ll \alpha_\varepsilon \ll 1 \quad \text{under the assumptions of Theorem 3.7}.
\end{equation}

By (6.10), (6.49), and (7.4), the following estimates hold in $\Omega \times (0, T)$ for $m \in \{1, 2\}$:

\begin{equation}
\left| \phi_\varepsilon(x, t) - \psi(x, t, \frac{x}{\varepsilon}) \right| + \left| \frac{\partial^m \phi_\varepsilon}{\partial t^m}(x, t) - \frac{\partial^m \psi}{\partial t^m}(x, t, \frac{x}{\varepsilon}) \right| \leq C r_\varepsilon.
\end{equation}

We deduce from (6.8) and from the estimate $\sigma_\varepsilon(\phi_\varepsilon(x, t)) \leq C \frac{\mu_0}{\alpha_\varepsilon}$ in $C_\varepsilon \setminus B_\varepsilon \times (0, T)$, obtained in a similar manner as (6.14), that

\begin{equation}
\int_{C_\varepsilon \setminus B_\varepsilon \times (0, T)} |\sigma_\varepsilon(\phi_\varepsilon(x, t))|^2 \, dxdt \leq C \frac{\mu_0^2 r_\varepsilon^2}{\alpha_\varepsilon \varepsilon}.
\end{equation}

We multiply Equation (3.5) by ϕ_ε and integrate it by parts to get (see (6.16), (6.20))

\begin{equation}
\int_{\Omega \times (0, T)} \rho_\varepsilon \mathbf{u}_\varepsilon \cdot \frac{\partial^2 \phi_\varepsilon}{\partial t^2} dxdt + \int_{\Omega} \rho_\varepsilon \mathbf{a}_0 \cdot \frac{\partial \phi_\varepsilon}{\partial t}(0) dx - \int_{\Omega} \rho_\varepsilon \mathbf{b}_0 \cdot \phi_\varepsilon(0) dx
\end{equation}

\begin{equation}
+ I_{1\varepsilon} + I_{2\varepsilon} + I_{3\varepsilon} = \int_{\Omega \times (0, T)} \rho_\varepsilon \mathbf{f} \cdot \phi_\varepsilon dxdt.
\end{equation}

By the same argument as the one used to get (6.18), (6.19), splitting each term as in (6.17) and taking into account (3.7), (4.7), (6.46), (6.47), (6.51), we obtain
\[
\lim_{\varepsilon \to 0} \int_{\Omega \times (0,T)} \rho \phi \cdot \frac{\partial^2 \phi}{\partial t^2} \, dxdt = \int_{\Omega \times (0,T)} \rho (1 - \partial n) \phi \cdot \frac{\partial^2 \psi}{\partial t^2} \, dxdt + \int_{\Omega \times (0,T)} \rho \phi \cdot \frac{\partial^2 \psi}{\partial t^2} \, dxdt
\]

(6.54)

\[
\lim_{\varepsilon \to 0} \int_{\Omega} \rho \phi \cdot \frac{\partial \phi}{\partial t} \, dx = \int_{\Omega} \rho (1 - \partial n) \phi \cdot \frac{\partial \psi}{\partial t} \, dx + \int_{\Omega} \rho \phi \cdot \frac{\partial \psi}{\partial t} \, dx
\]

\[
\lim_{\varepsilon \to 0} \int_{\Omega} \rho \phi \cdot \frac{\partial \phi}{\partial t} \, dx = \int_{\Omega} \rho (1 - \partial n) \phi \cdot \psi \, dx
\]

\[
\lim_{\varepsilon \to 0} \int_{\Omega} \rho \phi \cdot \phi \, dx = \int_{\Omega} \rho (1 - \partial n) \phi \cdot \psi \, dx + \int_{\Omega} \rho \phi \cdot \psi \, dx
\]

Under the assumptions of Theorem 3.1, by (3.12), (3.13) and (6.49) we have \(\sigma_\varepsilon(\phi_\varepsilon) = \sigma(\varepsilon)\) in \(\Omega \setminus C_\varepsilon \times (0, T)\), and by (3.11) and (6.7), \(\lim_{\varepsilon \to 0} |C_\varepsilon| = 0\), therefore the sequence \((\sigma_\varepsilon(\phi_\varepsilon))\) strongly converges to \(\sigma(\varepsilon)\) in \(L^2(\Omega \times (0, T); \mathbb{S}^3)\). We deduce from the weak* convergence of \((u_\varepsilon)\) to \(u\) in \(L^\infty(0, T; H^1_0(\Omega; \mathbb{R}^3))\) that

\[
\lim_{\varepsilon \to 0} I_{1\varepsilon} = \int_{\Omega \times (0,T)} e(u) : \sigma(\varepsilon) \, dxdt.
\]

(6.55)

Under the assumptions of Theorem 3.7, noticing that \(|\sigma_\varepsilon(\phi_\varepsilon)I_{\Omega \setminus C_\varepsilon}| = |\sigma_\varepsilon(\psi)I_{\Omega \setminus C_\varepsilon}| \leq C_\mu_0\varepsilon\) and taking (3.26), (5.5), (6.20) into account, we get

\[
\limsup_{\varepsilon \to 0} I_{1\varepsilon} \leq \limsup_{\varepsilon \to 0} C_\mu_0\varepsilon \left(\int_{\Omega \times (0,T)} \mu_0\varepsilon |e(u_\varepsilon)(\tau)|^2 \, dxdt \right)^{\frac{1}{2}} = 0.
\]

(6.56)

By (5.5), and (6.52), we have

\[
I_{2\varepsilon} \leq \left(\int_{\Omega \times (0,T)} |e(u_\varepsilon)|^2 \, dxdt \right)^{\frac{1}{2}} \left(\int_{\Omega \times (0,T)} |\sigma_\varepsilon(\phi_\varepsilon(x, t))|^2 \, dxdt \right)^{\frac{1}{2}} \leq C \left(\frac{\mu_0\varepsilon r_\varepsilon}{\varepsilon^2} \right)^{\frac{1}{2}}.
\]

(6.57)

Under the assumptions of Theorem 3.1 (resp. Theorem 3.7), we deduce from (3.12) and (6.50) that

\[
\lim_{\varepsilon \to 0} I_{2\varepsilon} = 0.
\]

Collecting (6.54), (6.55), (6.56), (6.57), and (7.5), by passing to the limit as \(\varepsilon \to 0\) in (6.16), we obtain, under the assumptions of Theorem 3.1,

\[
\int_{\Omega \times (0,T)} (\rho + \overline{p}_1 n) u \cdot \frac{\partial^2 \psi}{\partial t^2} \, dxdt + \int_{\Omega \times (0,T)} (\rho + \overline{p}_1 n) \left(a_0 \cdot \frac{\partial \psi}{\partial t} (0) - b_0 \cdot \psi(0) \right) \, dx
\]

\[
+ \int_{\Omega \times (0,T)} e(u) : \sigma(\psi) \, dxdt + I_{n,k,k}(\mu, \psi) = \int_{\Omega \times (0,T)} (\rho + \overline{p}_1 n) f \cdot u \, dxdt,
\]

and, under the assumptions of Theorem 3.7,
union ω_n,k,κ from (6.60) by substituting
The variational formulation (6.58), joined with (6.45), is equivalent to (4.23), where
The assumptions of Theorem 4.4 are satisfied in both cases, guaranteeing existence, uniqueness and regularity properties of the solution. Finally, by integrations by parts, it is easy to check that the variational problems (6.58), (6.59), associated with (6.45), are equivalent, under (3.17), to the problems announced in Theorems 3.1, 3.7.

Remark 6.1. The assumption stated in the first line of (6.50) is employed to derive (6.25) and requires (3.11). The case \(\mu_{0c} = \mu > 0, \vartheta > 0, \kappa = +\infty \) is open.

Remark 6.2 (Multiphase case). Theorems 3.1, 3.7 can be extended to the case of m distributions \(\mathcal{B}^{[s]}_c \) (s \(\in \{1, \ldots, m\} \)) of parallel disjoint homothetical layers of thickness \(r_c^{[s]} \), Lamé coefficients \(\lambda_c^{[s]}, \mu_c^{[s]} \), and mass density \(\rho_c^{[s]} \), defined in terms of a finite subset \(\omega_c^{[s]} \) of (0, L) and \(r_c^{[s]} \) by a formula like (3.4). The sets \(\omega_c^{[s]} \) are disjoint and their union \(\omega_c := \bigcup_{s=1}^{m} \omega_c^{[s]} \) satisfies (3.2), which implies that the minimal distance between
two distinct points of ω_ε is equal to ε. We suppose that $\varepsilon > \min_{s \geq 0} r_1^{[s]}(1+\delta)$, $\forall s \in \{1,\ldots,m\}$ for some $\delta > 0$ and set $\vartheta^{[s]} := \lim_{\varepsilon \to 0} \frac{r_1^{[s]}}{\varepsilon}$. The Lamé coefficients in $\Omega \setminus \bigcup_{s=1}^m B_\varepsilon^{[s]}$ are assumed to be constant and denoted by λ_0, μ_0.

When λ_0, μ_0 satisfy (3.26) and each sequence $(n_\varepsilon^{[s]})$ strongly converges to $n^{[s]}$ in $L^1(\Omega)$, the solution to (3.5) weakly* converges in $L^\infty(0,T;L^2(\Omega;\mathbb{R}^3))$ to the unique solution to the problem (4.23), where the data are deduced from (6.60) as follows:

\[
H := \bigcap_{s=1}^m H_{n^{[s]},k^{[s]},\kappa^{[s]}}, \quad (u, \psi)_H = \int_\Omega \left(\rho(1 - \sum_{s=1}^m \vartheta^{[s]} n^{[s]}_s) + p^{[s]}_1 n^{[s]}_s\right) u \cdot \psi \, dx
\]

\[
V := \bigcap_{s=1}^m V_{n^{[s]},k^{[s]},\kappa^{[s]}}, \quad ((u, \psi))_V = (u, \psi)_H + \sum_{s=1}^m I_{n^{[s]},k^{[s]},\kappa^{[s]}}(u, \psi),
\]

\[
a(u, \psi) = \sum_{s=1}^m a_{n^{[s]},k^{[s]},\kappa^{[s]}}(u, \psi),
\]

\[
h = \mathcal{H}(f), \quad \xi_0 = \mathcal{H}(a_0), \quad \xi_1 = \mathcal{H}(b_0),
\]

\[
(\mathcal{H}(g(x))_\alpha = \begin{cases} 0 & \text{if } \exists s \in \{1,\ldots,m\}, n^{[s]}_s(x) > 0 \text{ and } k^{[s]} = +\infty, \\ g_\alpha & \text{otherwise,} \quad (\alpha \in \{1,2\}), \end{cases}
\]

\[
(\mathcal{H}(g(x))_3 = \begin{cases} 0 & \text{if } \exists s \in \{1,\ldots,m\}, n^{[s]}_s(x) > 0 \text{ and } \kappa^{[s]} = +\infty, \\ g_3(x) & \text{otherwise.} \end{cases}
\]

When λ_0, μ_0 satisfy (3.12), and when $\vartheta^{[s]} = 0$ for each $s \in \{1,\ldots,m\}$, the solution to (3.5) weakly* converges in $L^\infty(0,T;H^1_0(\Omega;\mathbb{R}^3))$ to the unique solution to (4.23), with data \tilde{H}, \tilde{V}, $a\ldots$ deduced from H, V, $a\ldots$ defined in (6.63) as follows:

\[
\tilde{H} := H; \quad \tilde{V} = V \cap H^1_0(\Omega;\mathbb{R}^3); \quad ((u, \psi))_{\tilde{V}} := ((u, \psi))_V + \int_\Omega \nabla u \cdot \nabla \psi \, dx;
\]

\[
\tilde{a}(u, \psi) = a(u, \psi) + \int_\Omega e(u) : \sigma(\psi) \, dx; \quad (\tilde{h}, \tilde{\xi}, \tilde{\xi}) := (h, \xi_0, \xi_1).
\]

Remark 6.3 (Elliptic case). When λ_0, μ_0 satisfy (3.12), and when $\vartheta^{[s]} = 0$ for each $s \in \{1,\ldots,m\}$, the solution u_ε to the equilibrium problem (3.32) is bounded in $H^1_0(\Omega;\mathbb{R}^3)$ and weakly converges to the unique field $u \in \tilde{V}$ satisfying $\tilde{a}(u, \psi) = (f, \psi)_{\tilde{H}} \forall \psi \in \tilde{V}$, where \tilde{V} is the Hilbert space and $\tilde{a}(\cdot,\cdot)$ the continuous coercive bilinear form on \tilde{V} given by (6.64).

If λ_0, μ_0 satisfy (3.26), each sequence $(n_\varepsilon^{[s]})$ strongly converges to $n^{[s]}$ in $L^2(\Omega)$, and u_ε is bounded in $L^2(\Omega;\mathbb{R}^3)$, then u_ε weakly converges, up to a subsequence, to some $u \in V$ verifying $a(u, \psi) = (f, \psi)_H \forall \psi \in V$, with $H,V,a(\cdot,\cdot)$ defined by (6.63). In this case, the non-negative bilinear form $a(\cdot,\cdot)$ may fail to be coercive on $L^2(\Omega;\mathbb{R}^3)$ and the sequence u_ε to be bounded in $L^2(\Omega;\mathbb{R}^3)$. These coercivity and boundedness are guaranteed by the existence of $s \in \{1,\ldots,m\}$ and $c > 0$ such that $k^{[s]} > 0$ and $n_\varepsilon^{[s]} \geq c$ a.e. in $\Omega_\varepsilon := \bigcup_{s \in \mathbb{Z}_0^m} \left(\bar{\varepsilon}_s - \frac{\varepsilon}{2}, \bar{\varepsilon}_s + \frac{\varepsilon}{2}\right]$ (see (3.15)). (Notice that if the second assumption in (3.2) is replaced by $\min_{j,j' \in \mathbb{Z}_0^m} |\omega_{j'\varepsilon} - \omega_j^{\varepsilon}| = \eta \varepsilon$ for some arbitrarily fixed $\eta \in (0,\frac{1}{2})$, our proofs are unchanged and $n_\varepsilon^{[s]} \geq c \Omega$ does not imply that $B_\varepsilon^{[s]}$ is ε-periodic).
Sketch of the proof. Let s be such that $n^{[s]} > 0$. The bilinear form associated with (3.32), namely $a_{\varepsilon}(\varphi, \psi) = \int_{\Omega} e(\varphi) : \sigma_{\varepsilon}(\psi) dx \forall (\varphi, \psi) \in (H_{0}^{1}(\Omega; \mathbb{R}^{3}))^{2}$, satisfies, by (3.5), (3.8), and (3.26)

\begin{equation}
(6.65) \quad a_{\varepsilon}(\varphi, \varphi) \geq C \int_{\Omega} \varepsilon^{2} |e(\varphi)|^{2} dx + C \int_{\Omega} \left| \frac{1}{r_{\varepsilon}} e(\varphi) \right|^{2} dm^{[s]}.
\end{equation}

Let u_{ε} be a sequence in $H_{0}^{1}(\Omega; \mathbb{R}^{3})$, and let $m^{[s]}$, $\tilde{u}^{[s]}$, $\overline{u}^{[s]}$ be defined by substituting $\omega^{[s]}$ for ω_{ε} in (3.39), (5.17), (5.20). We have, since $n^{[s]} \geq c_{1} x_{\varepsilon}$,

$$
\int_{\Omega} |u_{\varepsilon}|^{2} dx \leq \int_{\Omega_{x}} |u_{\varepsilon}|^{2} dx + C \int_{\Omega_{x}} |n^{[s]} u_{\varepsilon} - \tilde{u}^{[s]}|^{2} dx + C \int_{\Omega} |\overline{u}^{[s]}|^{2} dx.
$$

Looking back at (5.28), and using the fact that u_{ε} vanishes on $\partial \Omega$, we obtain

$$
\int_{\Omega_{x}} |u_{\varepsilon}|^{2} dx + C \int_{\Omega_{x}} |n^{[s]} u_{\varepsilon} - \tilde{u}^{[s]}|^{2} dx
\leq C \varepsilon^{2} \int_{\Omega} \frac{\partial u_{\varepsilon}}{\partial x^{3}}^{2} (\tau) dx + C \varepsilon^{2} \sum_{i \in Z_{\varepsilon}^{3}} \int_{\Omega \times (\varepsilon i - \frac{1}{2}, \varepsilon i + \frac{1}{2})} \left| \frac{\partial u_{\varepsilon}}{\partial x^{3}} \right|^{2} (\tau) dx
\leq C \varepsilon^{2} \int_{\Omega} |\nabla u_{\varepsilon}|^{2} dx \leq C \varepsilon^{2} \int_{\Omega} |e(u_{\varepsilon})|^{2} dx,
$$

yielding $\int_{\Omega} |u_{\varepsilon}|^{2} dx \leq C \varepsilon^{2} \int_{\Omega} |e(u_{\varepsilon})|^{2} dx + C \int_{\Omega} |\overline{u}^{[s]}|^{2} dx$. On the other hand, by (5.22), (5.18), (5.1),

$$
\int_{\Omega} |\tilde{u}^{[s]}|^{2} dx = \int_{\Omega} |\tilde{u}^{[s]}|^{2} dm^{[s]} \leq C \int_{\Omega} |u_{\varepsilon} - \tilde{u}^{[s]}|^{2} dm^{[s]} + C \int_{\Omega} |u_{\varepsilon}|^{2} dm^{[s]}
\leq C \varepsilon^{2} \int_{\Omega} |e(u_{\varepsilon})|^{2} dm^{[s]} + C \int_{\Omega} \left| \frac{1}{r_{\varepsilon}} e(u_{\varepsilon}) \right|^{2} dm^{[s]},
$$

therefore, for all $u_{\varepsilon} \in H_{0}^{1}(\Omega; \mathbb{R}^{3})$, $\int_{\Omega} |u_{\varepsilon}|^{2} dx \leq C a_{\varepsilon}(u_{\varepsilon}, u_{\varepsilon})$. In the particular case when u_{ε} is the solution to (3.32), we infer $\int_{\Omega} |u_{\varepsilon}|^{2} dx \leq C \int_{\Omega} f \cdot u_{\varepsilon} dx \leq C \left(\int_{\Omega} |u_{\varepsilon}|^{2} dx \right)^{\frac{1}{2}}$, hence (u_{ε}) is bounded in $L^{2}(\Omega; \mathbb{R}^{3})$. We choose a smooth field $\psi \in V$ and consider the associated sequence of test field ϕ_{ε} used for the proof of the multiphase case, whose construction is similar to (6.49). Repeating the argument of [8, p. 40, (iii) \Rightarrow (i)], we find that $a(\psi, \psi) = \lim_{\varepsilon \to 0} a_{\varepsilon}(\phi_{\varepsilon}, \phi_{\varepsilon}) \geq c \lim_{\varepsilon \to 0} \int_{\Omega} |\phi_{\varepsilon}|^{2} dx = \int_{\Omega} |\psi|^{2} dx$. By a density argument, we deduce $\int_{\Omega} |\psi|^{2} dx \leq C a(\psi, \psi) \forall \psi \in V$.

7. Appendix. A common step in the proofs of theorems 3.1, 3.7, and 3.12 lies in the computation of the limit of the sequence $(I_{3\varepsilon})$ defined by (see (6.11), (6.20))

\begin{equation}
(7.1) \quad I_{3\varepsilon} := \int_{B_{\varepsilon} \times (0, T)} e(u_{\varepsilon}) : \sigma_{\varepsilon}(\tilde{\psi}_{\varepsilon}) dx dt,
\end{equation}
where u_ε is the solution to (3.5) and the oscillating test fields $\tilde{\psi}_\varepsilon$ is defined below, in terms of $\psi \in C^\infty([0,T];D(\Omega;\mathbb{R}^3))$ satisfying (6.4), of δ given by (3.3), and of the order of magnitude of the parameters k and κ. We introduce the field $\overline{\psi}_\varepsilon$ given by

\begin{equation}
(7.2) \quad \overline{\psi}_\varepsilon(x, t) := \sum_{j \in J_\varepsilon} \left(\int_{(\omega_j^\varepsilon - \frac{r_\varepsilon(1+\delta)}{2}, \omega_j^\varepsilon + \frac{r_\varepsilon(1+\delta)}{2})} \psi(x_1, x_2, s_3, t) ds_3 \right) \mathbf{1}_{(\omega_\varepsilon^\varepsilon - \frac{r_\varepsilon(1+\delta)}{2}, \omega_\varepsilon^\varepsilon + \frac{r_\varepsilon(1+\delta)}{2})}(x_3).
\end{equation}

(i) If $0 < k \leq +\infty$ and $\kappa = 0$, we set

\begin{equation}
(7.3) \quad \tilde{\psi}_\varepsilon(x, t) := \overline{\psi}_\varepsilon(x, t) + r_\varepsilon w_{1\varepsilon}(x, t, \frac{y_\varepsilon(x_3)}{r_\varepsilon}),
\end{equation}

where the function $y_\varepsilon(.)$ is defined by (4.9).

(ii) If $0 < \kappa \leq +\infty$, we set

\begin{align*}
\tilde{\psi}_\varepsilon(x, t) &:= \overline{\psi}_\varepsilon(x, t) + r_\varepsilon w_{1\varepsilon}(x, t, \frac{y_\varepsilon(x_3)}{r_\varepsilon}) + r_\varepsilon^2 w_{2\varepsilon}(x, t, \frac{y_\varepsilon(x_3)}{r_\varepsilon}), \\
 w_{1\varepsilon}(x, t, y_3) &:= -\frac{\partial \overline{\psi}_\varepsilon}{\partial x_1} y_3 e_1 - \frac{\partial \overline{\psi}_\varepsilon}{\partial x_2} y_3 e_2, \\
 w_{2\varepsilon}(x, t, y_3) &:= \frac{l_\varepsilon}{2(l_\varepsilon + 2)} \left(\frac{\partial^2 \overline{\psi}_\varepsilon}{\partial x_1^2} + \frac{\partial^2 \overline{\psi}_\varepsilon}{\partial x_2^2} \right) y_3^2 e_3.
\end{align*}

It is useful to notice that $\tilde{\psi}_\varepsilon$ is continuously differentiable in $C_\varepsilon \times (0,T)$ (see (6.7)), that $\tilde{\psi}_\varepsilon = 0$ if $\kappa = +\infty$ (because then, by (6.4), $\psi = 0$) and that for $m \in \{1, 2\}$,

\begin{equation}
(7.4) \quad \left(|\tilde{\psi}_\varepsilon(x, t) - \psi(x, t)| + \left| \frac{\partial^m \tilde{\psi}_\varepsilon(x, t)}{\partial t^m} - \frac{\partial^m \psi(x, t)}{\partial t^m} \right| \right) \mathbf{1}_{C_\varepsilon}(x) \leq Cr_\varepsilon,
\end{equation}

\begin{equation}
(7.5) \quad \lim_{\varepsilon \to 0} I_{3\varepsilon} = I_{n,k,\alpha}(\varepsilon, \psi) := \begin{cases}
\int_{\Omega(0,T)} e_{x'}(\psi') : \sigma_{x'}(\psi') ndxdt & \text{if } 0 < k < +\infty, \\
\frac{\kappa}{6} \int_{\Omega(0,T)} H(\psi_3) : H^\sigma(\psi_3) ndxdt & \text{if } 0 < \kappa < +\infty, \\
0 & \text{if } (k, \kappa) = (+\infty, 0) \text{ or } \kappa = +\infty,
\end{cases}
\end{equation}

the operators H, H^σ being defined by

\text{Lemma 7.1.} Let u_ε be the solution to (3.5). Let $I_{3\varepsilon}$ be defined by (7.1) in terms of $\tilde{\psi}_\varepsilon$ described above. Then,
A straightforward computation yields (see (3.5), (3.6))
\[
\begin{pmatrix}
\frac{\partial^2 \psi}{\partial x_1^2} & \frac{\partial^2 \psi}{\partial x_1 \partial x_2} & \frac{\partial^2 \psi}{\partial x_2^2} & 0 \\
\frac{\partial^2 \psi}{\partial x_1 \partial x_2} & \frac{\partial^2 \psi}{\partial x_1^2} & \frac{\partial^2 \psi}{\partial x_2^2} & 0 \\
\frac{\partial^2 \psi}{\partial x_2 \partial x_1} & \frac{\partial^2 \psi}{\partial x_2 \partial x_2} & \frac{\partial^2 \psi}{\partial x_1^2} & 0 \\
0 & 0 & \frac{\partial^2 \psi}{\partial x_1^2} & 0
\end{pmatrix}.
\]

Proof. Case \(0 < k < +\infty\). We easily check that
\[
\begin{align*}
\left\| \psi - \bar{\psi}_\varepsilon \right\|_{L^\infty(B_\varepsilon \times (0, T))} + \left\| \frac{\partial (\psi - \bar{\psi}_\varepsilon)}{\partial x} \right\|_{L^\infty(B_\varepsilon \times (0, T))} & \leq C r_\varepsilon \ (\alpha \in \{1, 2\}), \\
\left\| \frac{\partial^2 (\psi - \bar{\psi}_\varepsilon)}{\partial x_\alpha \partial x_\beta} \right\|_{L^\infty(B_\varepsilon \times (0, T))} & \leq C r_\varepsilon \ (\alpha, \beta \in \{1, 2\}).
\end{align*}
\]

A straightforward computation yields (see (3.5), (3.6))
\[
\sigma_\varepsilon(\bar{\psi}_\varepsilon) \mathbf{1}_{B_\varepsilon} = \mu_1 \left(\begin{array}{cccc}
2 \frac{\partial \bar{\psi}_\varepsilon}{\partial x_1} + \frac{l + 2 l_1}{l + 2} \left(\frac{\partial \bar{\psi}_\varepsilon}{\partial x_1} + \frac{\partial \bar{\psi}_\varepsilon}{\partial x_2}\right) & 0 & 0 \\
\frac{\partial \bar{\psi}_\varepsilon}{\partial x_1} & 0 & 0 \\
\frac{\partial \bar{\psi}_\varepsilon}{\partial x_2} & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \mathbf{1}_{B_\varepsilon} + r_\varepsilon \mu_1 \varepsilon O(1).
\]

Since \(\frac{r_\varepsilon}{\varepsilon} \mu_1 \varepsilon \to k \in (0, +\infty)\) and \(l_\varepsilon \to l \in (0, \infty)\) (see (3.6)), we infer from (7.7) that
\[
\lim_{\varepsilon \to 0} \left| \frac{r_\varepsilon}{\varepsilon} \sigma_\varepsilon(\bar{\psi}_\varepsilon) - k \sigma_x(\psi')(x, t) \right|_{L^\infty(B_\varepsilon \times (0, T))} = 0,
\]
where \(\sigma_x(\psi')\) is given by (2.1). By Corollary 5.6 (i), the convergences (5.11) are verified, thus the sequence \(\left(\mathbf{e}_x(u_\varepsilon) \mu_1\right)\) weakly* converges in \(L^\infty(0, T; \mathcal{M}(\bar{\Omega}, \mathbb{S}^3))\) to \(n \mathbf{e}_x'(v')\). Taking (3.39), (5.5), and (7.1) into account, we deduce that
\[
\lim_{\varepsilon \to 0} I_{3\varepsilon} = \lim_{\varepsilon \to 0} \int_{\Omega \times (0, T)} k \mathbf{e}_x'(u_\varepsilon) : \sigma_x(\psi') dm_\varepsilon dt = k \int_{\Omega \times (0, T)} \mathbf{e}_x'(v') : \sigma_x(\psi') n dx dt.
\]

Case \((k, \kappa) = (+\infty, 0)\). By (6.4), (7.8), we have \(|\sigma_\varepsilon(\bar{\psi}_\varepsilon) \mathbf{1}_{B_\varepsilon}| \leq C \mu_1 r_\varepsilon\), thus, by (3.8), the second line of (5.5), and (7.1), there holds
\[
I_{3\varepsilon} \leq C \mu_1 r_\varepsilon \int_{B_\varepsilon \times (0, T)} |\mathbf{e}(u_\varepsilon)| dx dt = C \mu_1 \frac{r_\varepsilon^2}{\varepsilon} \int_{B_\varepsilon \times (0, T)} |\mathbf{e}(u_\varepsilon)| dm_\varepsilon dt \\
\leq C \mu_1 \frac{r_\varepsilon^2}{\varepsilon} \int_{B_\varepsilon \times (0, T)} |\mathbf{e}(u_\varepsilon)|^2 dm_\varepsilon dt \leq C \mu_1 \frac{r_\varepsilon^2}{\varepsilon} \int_{\Omega \times (0, T)} \frac{\varepsilon}{r_\varepsilon m_\varepsilon} \leq C \sqrt{r_\varepsilon^3 \varepsilon} \mu_1 = o(1).
\]
Case 0 < \kappa < +\infty. A straightforward computation gives

\[
\frac{r_3^2}{\varepsilon} \sigma_\varepsilon(\psi_\varepsilon)1_{B_\varepsilon} = \frac{-2r_3^3}{\varepsilon \mu_1^\varepsilon} \frac{y_\varepsilon(x_3)}{r_\varepsilon} \left(\begin{array}{ccc}
\frac{l_{\varepsilon}+1}{l_{\varepsilon}+2} \frac{\partial^2 v_3}{\partial x_3^2} + \frac{l_{\varepsilon}}{l_{\varepsilon}+2} \frac{\partial^2 v_3}{\partial x_1^2} & 0 & 0 \\
0 & \frac{l_{\varepsilon}+2}{l_{\varepsilon}+2} \frac{\partial^2 v_3}{\partial x_1^2} + \frac{l_{\varepsilon}}{l_{\varepsilon}+2} \frac{\partial^2 v_3}{\partial x_3^2} + \frac{2(l_{\varepsilon}+1)}{l_{\varepsilon}+2} & 0 & 0 \\
0 & 0 & 0
\end{array} \right) 1_{B_\varepsilon} + r_\varepsilon O \left(\frac{r_3^3}{\varepsilon \mu_1^\varepsilon} \right).
\]

We deduce from (3.6), (3.8), (7.6), and (7.7), that

\[
\lim_{\varepsilon \to 0} \frac{r_3^2}{\varepsilon} \sigma_\varepsilon(\psi_\varepsilon) + 2\kappa \mathbf{H}^\sigma(\psi_3) \frac{y_\varepsilon(x_3)}{r_\varepsilon} \left| 1_{B_\varepsilon} \right|_{L^\infty(B_\varepsilon \times (0,T) ; \mathbb{R}^3)} = 0.
\]

By (3.39) and (7.1), we have

\[
i_{3\varepsilon} = \frac{r_\varepsilon}{\varepsilon} \int_{\Omega \times (0,T)} e(u_\varepsilon) : \sigma_\varepsilon(\psi_\varepsilon) d\varepsilon dt = \int_{\Omega \times (0,T)} \frac{1}{\varepsilon} e(u_\varepsilon) : \frac{r_3^2}{\varepsilon} \sigma_\varepsilon(\psi_\varepsilon) d\varepsilon dt.
\]

Taking Corollary 5.6 (ii) into account, we infer from (5.5), (5.30), (5.32), (7.9), (7.10), that

\[
\lim_{\varepsilon \to 0} i_{3\varepsilon} = \lim_{\varepsilon \to 0} -\int_{\Omega \times (0,T)} \frac{1}{\varepsilon} e(u_\varepsilon) : 2\kappa \mathbf{H}^\sigma(\psi_3) \frac{y_\varepsilon(x_3)}{r_\varepsilon} d\varepsilon dt
\]

\[
= -2\kappa \sum_{\alpha,\beta=1}^{2} \int_{\Omega \times (0,T) \times I} \left(\mathbf{H}^\sigma(\psi_3) \right)_{\alpha\beta} \left(\frac{1}{2} \frac{\partial x_\alpha}{\partial x_\beta} + \frac{\partial x_\beta}{\partial x_\alpha} \right) (x,t) - \frac{\partial^2 v_3}{\partial x_\alpha \partial x_\beta} (x,t) y_3 \right) y_3 d\varepsilon dt dy_3
\]

\[
= \frac{\kappa}{6} \int_{\Omega \times (0,T)} \mathbf{H}(v_3) : \mathbf{H}^\sigma(\psi_3) d\varepsilon dt.
\]

\[\square\]

Acknowledgments. The research of the author is supported by the French National Research Agency (ANR-13-BS03-0009-03).

REFERENCES

doubly high contrasts, Networks and heterogeneous Media, 3 (3) (2008), 413–436.
[10] M. BELLEUD, Quelques problèmes d’homogénéisation à fort contraste en élasticité. Habilitation
à diriger les recherches, Université Montpellier Ii, (2013).
[12] M. BELLEUD, G. BOUCHITTÉ, Homogenization of a soft elastic material reinforced by fibers,
[13] M. BELLEUD, I. GUESS, Homogenization of an elastic material reinforced by very stiff or
55-96.
into account. Approximation of solutions in the Sobolev class $H^2(\mathbb{R}^d)$. (Russian) Algebra
6, pp. 857–955
[16] M. SH. BIRMAN, T. A. SUSLINA, Averaging of periodic elliptic differential operators taking a
corrector into account. (Russian) Algebra i Analiz 17 (2005), no. 6, pp. 1–104; translation
[18] G. BOUCHITTÉ, C. PICARD, Singular perturbations and homogenization in stratified media,
[19] A. Braides, M. Briane, Homogenization of non-linear variational problems with thin low-
[20] M. Camar-Eddine, P. Seppecher, Determination of the closure of the set of elasticity func-
[21] K. B. CHEREDNICHENKO, Two-scale asymptotics for non-local effects in composites with highly
[22] K. B. CHEREDNICHENKO, M. Cherednichenko, Two-scale Γ-convergence of integral functional-
as and its application to homogenisation of nonlinear high-contrast periodic composites.
[23] K. B. CHEREDNICHENKO, V. P. SMYSHLAIEV, V. V. ZIKOV, Non-local homogenised limits for
composite media with highly anisotropic fibres, Proceedings of the Royal Society of
[24] S. Cooper, Homogenisation and spectral convergence of a periodic elastic composite with
[27] B. Gustafsson, J. Mossino, Γ-convergence of stratified media with measure-valued limits,
[28] B. Gustafsson, J. Mossino, Compensated compactness for homogenization and reduction of
[29] B. Gustafsson, J. Mossino, C. Picard, H-convergence for stratified structures with high
[30] B. Heron, J. Mossino, H-convergence and regular limits for stratified media with low and high
[31] B. Heron, J. Mossino, C. Picard, Homogenization of some quasilinear problems for stratified
media with low and high conductivities, Differential and Integral Equations, 7,n° 1, (1994),
pp. 157–178
[32] M. Hnid, Étude de transmission à travers des inclusions minces faiblement conductrices de
“codimension un”: homogénéisation et optimisation des structures, RAIRO, Modélisation