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ABSTRACT This article is the summary of a workshop, which took place in November 2013, on the
roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways
were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be
identified in distal airway secretions from patients with various respiratory diseases, including cystic
fibrosis (CF) and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic
airway diseases (e.g. post-transplantation bronchiolitis obliterans). These microorganisms were sometimes
considered as infectious agents that triggered host immune responses and contributed to disease onset
and/or progression; alternatively, microorganisms were often considered as colonisers, which were
considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time
when the identification of microorganisms relied on culture-based methods. Importantly, the majority of
microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent
methods that rely on the identification of microorganism genomes has revealed that healthy distal airways
display a complex flora called the airway microbiota. The present article reviews some aspects of current
literature on host–microbe (mostly bacteria and viruses) interactions in healthy and diseased airways, with
a special focus on distal airways.

@ERSpublications
Understanding host–microbe interactions in distal airways may lead to novel therapies for
chronic airway diseases http://ow.ly/HfENz

Introduction
This review is the summary of the fourth of a series of workshops exploring the roles of distal airways in
chronic airway diseases, including asthma [1], chronic obstructive pulmonary disease (COPD) [2] and other
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respiratory diseases [3]. The focus of this workshop, which took place in Avignon, France, in November
2013, was the roles of microorganisms in chronic respiratory diseases, with a special interest on distal airways.

Inhaled air is contaminated with pollutants, particles and microorganisms (e.g. viruses, bacteria and fungi)
that enter the airways during breathing. Until recently, it was assumed that lower airways were sterile in
healthy individuals, although it was recognised that upper airways could be colonised by microorganisms.
However, it has long been acknowledged that microorganisms could be identified in distal airway
secretions from patients with various respiratory diseases, including cystic fibrosis (CF) and non-CF
bronchiectasis, COPD, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis
obliterans). These microorganisms were sometimes considered as infectious agents that triggered host
immune responses and contributed to disease onset and/or progression; alternatively, microorganisms
were often considered as colonisers, which were considered unlikely to play roles in disease
pathophysiology. Importantly, these concepts were developed at a time when the identification of
microorganisms exclusively relied on culture-based methods. It is now clear that the majority of
microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent
methods that rely on the identification of microorganism genomes has revealed that healthy distal airways
display a complex flora called the airway microbiota. Recent studies have focused on changes in the airway
microbiota under various pathophysiological conditions. The objective of the present article was to review
some aspects of current literature on host–microbe (mostly bacteria and viruses) interactions in healthy
and diseased airways, with a special focus on distal airways.

Importance of distal airways in chronic airway diseases
Distal airways, which are usually defined as non-cartilaginous bronchioles with an internal diameter
<2 mm, are considered an important component of chronic airway diseases, including asthma [1], COPD
[2], CF [4] and chronic bronchiolitis [3]. Thus, distal airways are the main site of airflow limitation in
asthma [5], COPD [6, 7] and post-transplantation bronchiolitis obliterans [8], and these airways appears
particularly vulnerable to inhaled pollutants (e.g. cigarette smoke) [7, 9].

Although reviewing immune mechanisms in the lung is beyond the scope of this article, there is evidence
of innate and adaptive immune mechanisms in distal airways [1–3]. For example, chronic airway diseases
are characterised by recruitment of phagocytes (e.g. neutrophils and macrophages) in distal airways and
alveoli, and lymphoid follicles have been described in distal airways of COPD patients with severe airflow
limitation [10]. These latter structures have been suggested to reflect viral or bacterial infection in distal
airways [11]. Importantly, bronchiolar and alveolar epithelium and lung macrophages express
pathogen-recognition receptors (e.g. Toll-like receptors) that are necessary to recognise specific
pathogen-associated molecular patterns for developing an immune response. Although little data exists on
differential response to pathogens in patients with various airway diseases, there is evidence that alveolar
macrophages of exacerbation-prone COPD patients are more refractory to cytokine induction by common
pathogens (e.g. nontypeable Haemophilus influenza (NTHi), Streptococcus pneumoniae and Moraxella
catarrhalis), presumably due to diminished Toll-like receptor-2 and -4 signalling [12]. These data suggest
that the immune response to specific microbes could be impaired in disease due to host-specific factors.

From gut to lung microbiome
The Human Microbiome Project was launched in 2007 to study microbial inhabitants of the human body
[13]. At that time, it was realised that human biology may depend, in a large part, on interaction with
microbes that live on human mucosal surfaces including skin, mouth and throat, vagina, nostrils and
gastrointestinal tracts [13]. Because the human lung was believed to be sterile, it was not included in the
original Human Microbiome Project [14, 15], although it was later realised that microbial communities also
existed in the lung [16]. As a result, knowledge in this field has evolved more rapidly in the gastrointestinal
tract than in the lung, and much has to be learnt from studies performed in the gastrointestinal tract.

The human gastrointestinal tract hosts more than 100 trillion bacteria and archaea, which together make
up the gut microbiota. The human gut microbiota can be considered an organ within an organ that
co-evolved with humans to achieve a symbiotic relationship leading to physiological homeostasis. The
human host provides a nutrient-rich environment and the microbiota provides indispensable functions
that humans cannot exert themselves. Since most of the bacteria inhabiting the gut are uncultivable, their
functions cannot be inferred from composition data. Knowing which microbes are there is not sufficient.
Meta-omics has been developed to answer essential questions such as “What is the genetic potential of the
non-cultured bacterial fraction of the gut microbiota?” and “What are these microbes really doing?”

Advances in cultivation-independent methods based on analysis of the sequence of the bacterial 16S
ribosomal small subunit rRNA gene (which is present in bacterial but not in mammalian genome) quickly
expanded our knowledge about the diversity of the microbial ecosystems. First applied to the human gut
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in the late 1990s [17], the actual number of gastrointestinal tract phylotypes (molecular species) detected
using molecular techniques has far outnumbered the cultivated gut species. From more than 1200
microbes described, only 12% were recovered by application of both molecular and cultivation-based
approaches, while the vast majority (∼75%) were only detected through 16S rRNA gene sequencing [18].
Chaotic in the early stages of human life [19], the sequential assembly of the human gut microbiota leads
to bacterial communities that remain stable over time in healthy conditions in the absence of external
perturbations [20]. The average total number of bacterial species was estimated to be close to 1000 per
individual, whereas 10000–40000 are predicted for the whole microbiota population [21].

While culture-independent approaches, mainly based on the 16S rRNA gene, provided a better description
of the human gut microbiota and the wide diversity of their 100 trillion inhabitants (i.e. the microbiota),
recently developed meta-omics allowed the microbiome to be described, originally defined as the totality of
microbes, their genetic elements (genomes) and environmental interactions in a defined environment. In
this sense, the human microbiome would represent the collection of microorganisms associated with the
human body, and their collective genomes would constitute a metagenome. However, the term microbiome
is now commonly used to refer to the collective genomes present in members of a given microbiota.

Within the field of meta-omics, metagenomics refers to the genomic analysis applied to all the
microorganisms of a microbial ecosystem without previous identification. It encompasses culture-independent
studies of the structures and functions of microbial communities and their interactions with the habitats they
occupy to understand their biological diversity [22]. Metagenomics provided the evidence that the human gut
microbiome contains more than 100 times the number of genes encoded by our own genome [23]. Moreover,
human populations can be clustered into three main groups, i.e. enterotypes, based on their microbiome.
These enterotypes are characterised by dominant genera and their co-occurring phylogenetic groups that
significantly separated the population into three distinct clusters [24].

Remarkably, shifts in the bacterial make-up of the human gut microbiota have been associated with digestive
tract dysfunctions such as inflammatory bowel disease (IBD), irritable bowel syndrome and obesity. 10 years
ago, the concept of dysbiosis or unbalanced composition of the intestinal microbiota was introduced in the
research field of IBD [25]. Even though a tremendous number of specific bacteria have been shown to be
modulated in the IBD microbiota [26], no relevant specific triggering agent has been highlighted,
emphasising a clear role of this broad dysbiosis in bacterial communities. A decrease in commensals and
symbiotic bacteria belonging to the Firmicutes phylum and associated with an increase in pathobionts (or
opportunistic pathogens), mostly from the Proteobacteria phylum, seem to be present in most of these
inflammatory conditions. Moreover, a decrease in microbial diversity has repeatedly been described in IBD
patients in terms of both bacteria and bacterial genes richness. If this is true for IBD, a similar dysbiosis
associated with a drastic loss of diversity may be crucial in other pathologies, such as obesity or metabolic
syndrome [27].

The discovery of the lung microbiome has led to a growing number of studies over the past 5 years, and
understanding the roles of the lung microbiome in health and disease is now the subject of many studies
that have been summarised in recent perspective articles [16, 28, 29]. Although progresses have been made
regarding methodological issue (e.g. techniques used for sampling) and descriptions of the main
characteristics of the lung microbiome in health and some chronic airway diseases, much is still to be
learnt regarding the factors associated with changes in microbial communities and the relevance of these
changes to specific host response and disease mechanisms. Figure 1 highlights the possible host–microbe
interactions and their relevance to chronic airways disease.

Host-bacteria interactions in chronic airway diseases
In the next section, we examine the relevance of bacteria to chronic airway disease summarising
knowledge obtained using both culture-dependent and culture-independent methods.

Cystic fibrosis
CF is a genetic disease characterised by abnormal ion transport, leading to a multi-organ disease
predominantly involving the lungs with prominent airway inflammation, leading to bronchiectasis and
chronic respiratory failure [30]. Chronic airway infection with specific Gram-negative (e.g. Pseudomonas
aeruginosa and/or Burkholderia cepacia) and Gram-positive bacteria (e.g., Staphylococcus aureus) are
well-recognised features of CF lung disease [30, 31], explaining the major interest in host–microbe
interaction in this disease. At the time of lung transplantation in CF patients, studies of lung explants have
revealed that most distal airways show structural abnormalities with mucous plugs [4] containing bacteria
macrocolonies [32, 33]. However, in earlier stages of the disease, microbiological data were mostly
obtained using bacterial culture of sputum, which are easy to obtain in older children and adult CF
patients but do not specifically reflect distal airways.
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Distal airways in CF neonates, in whom lung structure and function were considered normal at birth, were
considered sterile when no pathogen was cultured in upper airway samples [34]. Studies that used cultures
of bronchoalveolar lavage (BAL) in young children diagnosed by newborn screening revealed that bacterial
infection (e.g. by S. aureus, P. aeruginosa or H. influenzae) in distal airways often occurred early in life
in CF children [35–37]. In the AREST-CF (Australian Respiratory Early Surveillance Team for Cystic
Fibrosis) study, detection of proinflammatory bacteria (e.g. P. aeruginosa, S. aureus, H. influenzae and
S. pneumoniae) in BAL fluid in the first 2 years of life was associated with a clinically significant reduction
in lung function measured by forced expiratory volume in 0.75 s (FEV0.75) [38]. The roles of bacteria
cultured in CF airways appear different among different bacteria, although most bacteria cultured in usual
aerobic conditions have been associated with significant clinical impact. Chronic airway infection with P.
aeruginosa and/or B. cepacia [30] is clearly associated with increased airway inflammation, faster lung
function decline and poorer prognosis, whereas the impact of other Gram-negative pathogens, including
Stenotrophomonas maltophilia [39, 40] or Achromobacter xylosoxidans [41–43], is more controversial.
Chronic S. aureus airway infection has been independently associated with haemoptysis in CF patients [44]
and recent studies showed that positive sputum cultures for small colony variants (slow-growing
antibiotic-resistant mutants) of S. aureus [45] or methicillin-resistant S. aureus [46] were independently
associated with disease progression in CF patients. Positive cultures for S. aureus in the BAL fluid of young
CF children was associated with a greater rate of decline in lung function [47], further indicating the role of
S. aureus infection in CF distal airways. Finally, distal airway infection with P. aeruginosa, S. aureus or other
microbes (mixed oral flora and A. fumigatus) was associated with increased IL-8 levels and neutrophil
elastase activity in the BAL fluid of young children with CF [48]. Neutrophil elastase activity in BAL fluid is
associated with early bronchiectasis in CF children [49].

Because anaerobic conditions exist in mucous plugs in CF airways [32], TUNNEY et al. [50] hypothesised
that anaerobic bacteria, which are not detected by routine aerobic culture methods, could contribute to the
pathophysiology of CF lung disease. These authors found that anaerobic species (Prevotella, Veillonella,
Propionibacterium and Actinomyces) were cultured in large numbers from the sputum of adults with CF
and the BAL fluid of children with CF [50]. Colonisation with P. aeruginosa significantly increased the
likelihood that anaerobic bacteria would be present in the sputum, thus suggesting interspecies
interactions. This latter suggestion was sustained by the fact that all of the anaerobic isolates tested were

Non-microbial environmental factors:
cigarette smoke/allergens/pollutants/antibiotics

Host

Microbial recognition:
    Airway/alveolar epithelium
  Alveolar macrophages

Effector mechanisms:
  Innate/adaptive immunity
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FIGURE 1 Schematic representation of host–microbe interactions in airways. Bacterial airway microbiome is composed
of multiple and interacting bacterial communities. Bacteria may interact with other microbes (e.g. mycobacteria, viruses
and fungi) and with the host, modulating immune responses. These interactions can be modulated by the effects of
environmental factors on the host and/or the microbiome. The role of other bacterial communities, including gut and
skin microbiome, in modulating airway diseases is also emerging.
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susceptible to meropenem, a common antibiotic used in the treatment of P. aeruginosa exacerbation where
it shows some superiority over other antipseudomonal antibiotics [50, 51]. However, the role of anaerobic
bacteria in CF lung disease remains to be established.

Recently, studies have relied on culture-independent methods to examine bacterial contents in CF airways
[52]. An important aspect in studies assessing the microbiome in CF patients relates to variability of
results in samples obtained in different airway compartments. Sputum may be difficult to obtain in
children and paediatric microbiome studies are often based on oral swabs [53, 54]. GODDARD et al. [55]
performed molecular identification of microbiome in oral swabs, sputum and pulmonary explants of CF
patients: oral swabs and sputum were discordant in term of diversity and composition, whereas sputum
analysis identified prominent lung pathogens found in pulmonary explant analysis. End-stage CF lungs are
heterogeneous in terms of tissue damage, suggesting the possibility of topographical variations in
microbiota composition. GODDARD et al. [55] analysed lung microbiota in pulmonary explants from
different pulmonary lobes, and found an absence of topographical significant change in microbiota
composition in 10 patients with end-stage CF lung disease.

The CF microbiome is a complex and dynamic bacterial community [54, 56, 57]. The microbiome is less
diverse and much richer in patients with severe CF compared to patients with severe COPD [58]. With the
use of culture-independent methods for microbial detection [52, 59], emerging pathogens are becoming of
interest. Dynamic microbial composition, richness and diversity in CF airways is now better characterised
[53, 54, 57, 60–63]. The composition of the CF microbiome can be altered due to clinical (e.g. age and
FEV1 decline) and environmental factors (e.g. presence of P. aeruginosa, antibiotic exposure, CFTR
genotype and gut microbiome) [53, 54, 57, 60–63]. Initially, the airways of children with CF display a rich
and diverse microbiome and over time and disease progression the bacterial community decreases in term
of diversity, often displaying a predominant pathogen (e.g. P. aeruginosa and/or B. cepacia) [53, 54, 57, 60].

Experimental studies are only beginning to explore the role of microbiome in CF lung disease. A novel CF
neonate pig model showed earlier and richer bronchial colonisation and a decrease in bacterial clearance
[64, 65], suggesting a predisposition for airway microbiome dysbiosis in CF lungs. Exposure of drosophila
to various airway microbiota (obtained from sputum in 44 CF patients) showed three different profiles of
fly survival: 1) a synergistic effect of both CF microbiota and P. aeruginosa with a diminution of fly
survival compared to flies exposed to P. aeruginosa alone; 2) no effect of CF microbiota with or without
P. aeruginosa; and 3) a protective effect of CF microbiota when associated to P. aeruginosa [66]. This
study suggests a clear impact of bacterial interactions in microbiota which may exhibit protective or
deleterious effects on the host.

The role of antibiotics on airway microbiome is controversial with studies indicating that airway
microbiome is highly resilient with a return to basal composition soon after exacerbation and intravenous
antibiotics [60, 61], whereas other studies describe a significant change in microbiome composition
(decreased diversity) linked to antibiotic exposure [53, 67]. These contradictory findings could be related to
a threshold in antibiotic exposure after which the microbiome loses its resilience capacity, a phenomenon
which has already been described in the gut microbiome [68]. Overall, antibiotic treatments for recurrent
exacerbations have been proven to have a favourable impact on the life expectancy of a CF patient [69].
Nevertheless, understanding the long-term impact of modified microbiome composition due to recurrent
antibiotic treatment and/or studying the effect of targeted antibiotic treatments against prominent
pathogens as well as non-cultivable bacteria could help in developing novel therapeutic strategies.

Non-CF bronchiectasis
P. aeruginosa and H. influenzae are prominent pathogens in patients with non CF-bronchiectasis, and
chronic colonisation with P. aeruginosa in sputum was associated with poorer prognosis [70]. Recent
studies have explored the airway microbiota in patients with non-CF bronchiectasis and a positive
correlation between bacterial diversity and FEV1 was reported [71]. ROGERS et al. [72] observed a
correlation between microbiota composition and clinical outcome. These authors proposed that patients
could be classified into three groups according to the composition of their airway microbiota:
1) P. aeruginosa dominated; 2) H. influenzae dominated; and 3) other taxa dominated. Patients with
P. aeruginosa- and H. influenzae-dominated communities had significantly worse lung function.
Predominance of P. aeruginosa, followed by Veillonella species, was the best predictor of future
exacerbation frequency [72]. Detection of P. aeruginosa was associated with poor lung function and
exacerbation frequency, irrespective of analytical strategy [72]. The hypothesis that disruption of the lung
microbial ecosystem by infection, inflammation and/or antibiotic therapy creates a disturbed, less
diversified microbial community with downstream consequences for immune function remains to be
further investigated. For example, direct and/or indirect interactions between the predominant species and
the wider bacterial community could be implicated in disease outcome [73].
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COPD
The role of bacteria in the lower airways of patients with COPD has long been suspected, but has been
difficult to establish [74]. To date, most studies have been performed using culture-based techniques with
only a few studies being performed using new molecular techniques. Furthermore, many studies relied
on sputum examination whereas only a few studies have sampled distal airways using bronchoscopy.
SETHI et al. [75] studied BAL in 26 ex-smokers with stable COPD, 20 ex-smokers without COPD and 15
healthy nonsmokers. The authors reported that potentially pathogenic bacteria were cultured (⩾100 colony
forming units·mL−1) in approximately one-third of stable COPD patients, whereas potentially pathogenic
bacteria were not recovered in ex-smokers without COPD and were cultured in only one of the healthy
nonsmokers [75]. Other bronchoscopic studies have also used culture-based techniques and have reported
the presence of potentially pathogenic bacteria in the distal airways in ∼30% of stable COPD patients
[76–78]. The most frequently isolated potentially pathogenic bacteria was H. influenzae, but S. pneumonia,
M. catarrhalis and P. aeruginosa were also found in some COPD patients. One study further described
intracellular NTHi in proximal airways of COPD patients by performing in situ hybridisation and
immunofluorescence microscopy in bronchial biopsies [78]. An important finding was that colonised
COPD (i.e. COPD patients with potentially pathogenic bacteria in distal airways) had greater neutrophil
counts and increased concentrations of inflammatory biomarkers (e.g. IL-8 and active matrix
metalloproteinase-9) compared with non-colonised COPD patients or ex-smokers and nonsmokers,
suggesting that bacterial colonisation could contribute to progression of airway disease in COPD [75].
ZHANG et al. [79] collected sputum samples at baseline and after 1 year in 46 COPD patients and found
that 37% of these patients had bacterial colonisation (defined by ⩾106 colony forming units·mL−1) at
baseline. COPD patients with lower airway bacterial colonisation had increased sputum concentration of
IL-8, IL-6 and tumour necrosis factor (TNF)-α compared with COPD patients without colonisation [79].
Interestingly, lower airway bacterial colonisation at baseline was associated with greater decline in
lung function and with increased numbers of COPD exacerbations [79]. In a study of 54 COPD patients,
PATEL et al. [80] further suggested that the presence of potentially pathogenic bacteria and inflammatory
biomarkers (IL-6 and IL-8) in sputum were increased in COPD patients with bronchiectasis and were
associated with more frequent and more severe COPD exacerbations.

Another major finding came from molecular characterisation of bacterial strains cultured in sputum of
COPD patients. SETHI et al. [81] reported that culture of a new strain of H. influenzae, M. catarrhalis or
S. pneumonia in sputum was more often associated with the occurrence of COPD exacerbations than
when previously isolated strains of these bacteria were cultured. Interestingly, exacerbations associated with
new bacterial strains showed increased levels of sputum TNF-α and neutrophil elastase compared with
exacerbations associated with pre-existing strains, other pathogens or no pathogens [82].

More recently, studies have focused on describing the airway microbiome in smokers with and without
COPD [58, 83–85]. Results of the sequencing in the BAL fluid showed high bacterial diversity; Prevotella,
Sphingomonas, Pseudomonas, Acinetobacter, Fusobacterium, Megasphaera, Veillonella, Staphylococcus and
Streptococcus constituted the major part of the core microbiome found in healthy subjects and COPD
patients [85]. At least two studies suggested that smoking alone did not alter the lung microbiome [83,
84]. One study examined the effect of experimental rhinovirus infection and showed an increase in
bacterial burden and a significant outgrowth of H. influenzae from the existing microbiota in some, but
not all, subjects with COPD [86].

Asthma
The impact of environmental microbiota on allergic sensitisation leading to asthma onset has been well
described [87–91]. Based on data obtained in the PARSIFAL (Prevention of Allergy Risk factors for
Sensitization In children related to Farming and Anthroposophic Lifestyle) [92] and GABRIELA [90]
cohorts, it is now clear that children who grow up in a rural environment are less likely to develop asthma
or any other atopic- or autoimmune-related disease. In a murine model of asthma (ovalbumin
sensitisation), mice raised in a sterile environment were more likely to develop airway hyperresponsiveness
in comparison to control mice raised in a normal environment [93]. These studies suggest that exposure to
a rich and diverse environment microbiota early in life is a strong protective factor against asthma onset.

Airway microbiota has been studied in the BAL fluid of asthmatic children. HILTY et al. [94] suggested that
the distal airway microbiota of asthmatic children contained a higher proportion of Proteobacteria (e.g.
Haemophilus, Neisseria, etc.) and Staphylococcus whereas Bacteroidetes were increased in healthy children.
HUANG et al. [95] demonstrated that bronchial epithelial brushings of adult asthmatic patients presented a
richer and less diverse microbiota than control subjects; bronchial hyperresponsiveness was negatively
correlated to microbiome diversity. In contrast with these data, MARRI et al. [96] reported a lower diversity
in the induced sputum of nonasthmatic subjects and that Proteobacteria were present in higher proportions
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in the sputum of asthmatic patients, whereas Firmicutes and Actinobacteria were more frequently found in
nonasthmatic subjects.

The possible impact of bacterial colonisation on asthma onset and asthma exacerbations has been the focus
of many studies. Studies have investigated bacterial colonisation in patients with preschool asthma [97–100]
and reported colonisation prevalence ranging from 12.5% to 61%, with the large variations being ascribed to
differences in patient characteristics, sampling and threshold in bacterial culture positivity. Bacterial
colonisation was also reported in the sputum of older children and adult patients during exacerbations or
under basal conditions [101, 102]. In the Copenhagen Prospective Study on Asthma in Childhood
(COPSAC) cohort [103], asthma, prevalence of wheezing, exacerbation severity, eosinophil blood count
and total serum IgE were measured at 4 years of age. 1-month-old children were cultured for the presence
of H. influenzae, M. catarrhalis and/or S. pneumoniae in hypopharyngeal aspiration and 21% had
colonisation with one or a combination of these organisms [103]. No correlation was found with S. aureus
colonisation (61% of patients) in older patients (1 year-old). When analysing immune response profiles in
the COPSAC cohort, T-helper cell (Th)1/Th2/Th17 profiles were associated with H. influenzae and
M. catarrhalis colonisation for 1 month, whereas colonisation with S. aureus was associated with Th17
profile, suggesting a bacterial colonisation-specific immunomodulation with unknown consequences [104].
Only one retrospective study on the effect of antibiotic treatment in asthma exacerbation of preschool
children showed an improvement in severe asthma control in children receiving antibiotic treatment [100].
These findings suggest that, along with the fact that high environmental microbiota diversity is associated
with a decrease in the risk of developing asthma, colonisation with selected prominent bronchial bacteria is
correlated with a higher risk of asthma. In a recent study, GOLEVA et al. [105] studied the effect of airway
microbiota composition on corticosteroid response in asthmatic subjects. Corticosteroid-resistant asthmatic
patients demonstrated airway expansion of specific Gram-negative bacteria, which induced corticosteroid
resistance through transforming growth factor-β activated kinase-1/mitogen-activated protein kinase
activation [105], highlighting possible effects of the airway microbiome on response to therapy.

Post-transplantation bronchiolitis obliterans
The outcome of lung transplantation is mainly impaired by infections and the development of
bronchiolitis obliterans syndrome (BOS), also called chronic allograft dysfunction [106]. De novo airway
colonisation with P. aeruginosa in transplanted patients is an independent risk factor for BOS
development [107, 108]. Studies using culture-independent methods have revealed that lung transplant
patients have a specific lung microbiome which differs from pre-transplant lung microbiome and changes
over time [109]. WILLNER et al. [110] found that recolonisation of the allograft by P. aeruginosa in
individuals with CF is not associated with BOS (in contrast to findings with de novo colonisation) and that
re-establishment of pretransplant lung populations in the allograft seems to have a protective effect against
BOS. These intriguing and novel findings suggest important roles for bacterial microbiome in the
development of BOS involving host-bacterial interactions.

Non-tuberculous mycobacteria
Airway infection with non-tuberculous mycobacteria (NTM) can develop in patients without previous
immunodepression status and/or pulmonary disease. KUBO et al. [111] compared lung function and
high-resolution computed tomography (CT) scans in 12 women diagnosed with Mycobacterium avium
pulmonary infection versus nine healthy controls. Whereas no difference was observed in FEV1,
M. avium-infected patients demonstrated a significant decrease in forced expiratory flow at 25–50% of
forced vital capacity and showed significant increases in residual volume (% predicted) and residual
volume/total lung capacity (%), indicating lung hyperinflation. Analysis of inspiratory and expiratory CT
scans revealed that gas trapping was increased in patients with M. avium pulmonary infection [111].

NTM may also occur in patients with previous airway disease, including COPD, asthma or CF. In a case–
control study comparing 332 patients with pulmonary NTM infection versus 3320 controls [112]. COPD
(OR 15.7, 95% CI 11.4–21.5) was described as a risk factor for NTM pulmonary infection; the association
was even stronger in COPD patients who received previous or ongoing inhaled corticosteroid treatment
(OR 19.6, 95% CI 9.7–39.6) [112]. NTM pulmonary infection was further identified as a risk factor for
lung function decline in COPD patients [113]. ANDRÉJAK et al. [112] also identified asthma as an
independent risk factor for NTM pulmonary infection (OR 7.8, 95% CI 5.2–11.6), and inhaled
corticosteroids have also been associated with NTM infection in asthmatic patients [114]. CF appears to be
an independent risk factor for NTM pulmonary infection [112]. ESTHER et al. [115] followed 1216 CF
patients for 8 years, 536 had positive sputum cultures for Mycobacterium abscessus (55.6%) and M. avium
(35.4%). M. abscessus infection was an independent risk factor for FEV1 decline. OLIVIER et al. [116]
followed 159 patients for 15 months; 60 patients had positive sputum culture for NTM (75% M. avium).
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No difference was found in FEV1 decline but CT scan impairments and progression were increased in the
NTM infected group.

Hypersensitivity pneumonitis is one of the most frequent causes of small airways diseases and is usually due
to the inhalation of organic dust (e.g. mouldy hay or straw) or chemical compounds (e.g. isocyanates) [3].
Hypersensitivity pneumonitis also occurred after exposure to M. avium in hot tubs (hot tub lung)
[117, 118] or to Mycobacterium immunogenum in metal working fluids used in the industrial sector
(machine operator’s lung) [119]. In both cases of NTM-induced hypersensitivity pneumonitis, patients
have no history of previous pulmonary disease. Treatment was based on exposure avoidance without any
NTM-specific therapy.

Viruses
Cystic fibrosis
Respiratory viruses are commonly found in CF airways. A recent prospective study among 100 adult CF
patients followed up for 12 months, in whom sputum, nose and throat swabs were collected every
2 months and at onset of pulmonary exacerbation, concluded that respiratory viruses were detected at
30.5% of visits and human rhinovirus accounted for 72.5% of viruses [120]. These findings confirm the
prevalence of rhinovirus found in previous studies in CF children [121–123]. The effects of seasonal
changes on CF exacerbation occurrence remain unclear [124], but viral infections can trigger pulmonary
exacerbations in adult and paediatric CF patients. RAMIREZ et al. [125] studied the antiviral response gene
expression in CF patients with positive viral PCR in sputum and concluded that virus-induced
exacerbations were associated with virus-specific immune responses. The relationship between viral
infection and disease progression has been described in several studies [126–128], suggesting a possible
role for viral infection on bacterial colonisation. JOHANSEN et al. [129] described a seasonal distribution of
P. aeruginosa chronic infection onset with a peak in incidence in November in Danish CF children. In
addition, studies have shown that acquisition of P. aeruginosa in CF patients is often preceded by a viral
respiratory infection [126, 130]. VAN EWIJK et al. [131] studied the possible interactions between
P. aeruginosa and rhinovirus in vitro and found that respiratory syncytial virus (RSV) infection of cultured
epithelial cells enhanced pseudomonal cell adherence as RSV possibly acts as a coupling between
P. aeruginosa and epithelial cells. These data suggest a role of specific viral–bacterial interactions in
exacerbations of CF lung disease.

Asthma
Understanding the relationship between childhood-onset asthma and viral bronchiolitis is an important
aim. In mice, viral infection promotes a Th2 inflammation and proallergic response to allergen exposure
[132]. Parinfluenzae type 1 virus induced persistent distal airway lesions (at 3 and 14 months after
inoculation) in rodents, which correlated to functional abnormalities [133]. These experimental data
suggest that bronchiolitis could be the first step in childhood-onset asthma. Nevertheless, an observational
study of a monozygotic twin cohort with discordant history of bronchiolitis showed no difference in terms
of frequency of asthma, sensitisation or respiratory function [134].

Wheezing episodes early in life are mostly consequences of viral infection [135], especially with RSV
(children aged <1 year) or huamn rhinovirus (hRV). RSV-related bronchiolitis in children aged <1 year
justifies hospital intake in <5% of cases. hRV infection frequency increases with age [136], and hRV A and
C are associated with severe respiratory exacerbations [137, 138]. RSV involvement in the origin of asthma
has been the focus of several investigations. Presentation of RSV-associated bronchiolitis (severity,
recurrence of wheezing and asthma) differs depending on studied populations [139]. RSV bronchiolitis
is considered a risk factor for developing asthma in childhood [140, 141], and only one study has
described no increase in asthma frequency in 13-year-old children after RSV infection in early life [142].
BACHARIER et al. [141] described other factors associated with asthma onset after RSV infection including
maternal asthma, airway allergen sensitisation at 3 years of age, recurrent episodes of wheezing before the
age of 3 years, and exposure to canine allergens. In the same study, the authors suggested that
overexpression of CCL5 in nasal epithelium cells during bronchiolitis episodes could be another predictive
factor for asthma during childhood [141]. Finally, in a population of 260000 children, JAMES et al. [143]
estimated that 13% of asthma cases were direct consequences of a previous episode of RSV bronchiolitis.
RSV-related bronchiolitis is a risk factor for asthma onset in childhood depending on the severity of the
episode and frequency is higher in susceptible populations.

hRV infection is involved in recurrent episodes of childhood wheezing and asthma onset; this implication is
even more frequent in the case of associated risk factors not linked to the severity of hRV-related
bronchiolitis [144–147]. In the Childhood Origins of ASThma (COAST) cohort, which studied 285 neonates
with at least one atopic and/or asthmatic parent, the prevalence of wheezing episodes during the first 6 years
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of life in relation to history of RSV- and hRV-related bronchiolitis was studied [136, 148]. hRV-related
bronchiolitis was identified as a risk factor for onset of wheezing episodes at 3 years of age (OR 10, 95% CI
4.1–26), and this association was maintained at 6 years of age (OR 9.8, 95% CI 4.3–22). Unlike other viruses,
hRV-related bronchiolitis seems to be related to a decline in respiratory function [149].

Genetic background involvement in asthma onset after viral infection has been described previously by
CARROLL et al. [139], who showed that maternal asthma was a risk factor for childhood onset asthma after
hRV bronchiolitis. CALISKAN et al. [150] described that variants at the 17q21 locus were associated with
asthma in children who had hRV wheezing illnesses with expression of two genes at this locus (OR 26.1,
95% CI 5.1–133.0). The risk of developing asthma was significantly higher in comparison to neonates with
only hRV infection or with only the variant genotype [150]. In addition, IL-10 polymorphisms have been
described to be associated with hRV bronchiolitis-induced asthma [151], suggesting interactions between
viruses and immunity maturation leading to childhood-onset asthma.

Early sensitisation to aero-allergens has been described as being associated with HRV bronchiolitis-induced
asthma [152, 153]. Innate immunity represented by interferon production has been studied in association
with childhood wheezing illnesses, early respiratory tract infections, asthma and viral stimulations (mainly
hRV) [154–156]. Decrease of interferon-gamma production by mitogen-stimulated mononuclear cells
determined from peripheral blood samples in a subset of 9-month-old healthy infants enrolled in the
Tucson Children’s Respiratory Study was associated with a significantly higher risk of wheezing between 2
and 13 years of age (relative risk 2.29, 95% CI 1.35–3.89) [154]. The association between impaired basal
respiratory function (before any wheezing exacerbation) and the risk of bronchiolitis has been studied
previously and the results showed that early obstruction or higher bronchial reactivity was associated with
higher risk of hRV-related bronchiolitis [157] or severity of viral exacerbation [158].

Future directions
Advance in technology, including the discovery of the human airway microbiome, open a new era for the
understanding of chronic respiratory diseases. Given the importance of distal airways in chronic airway
diseases, it appears essential to understand how changes in composition of the airway microbiome are
associated with disease onset, exacerbation and progression. Current challenges are related to sampling of
the distal airway microbiome without contamination of the oropharyngeal microbiome and/or proximal
airway microbiome. To date, most studies have been performed in relatively small numbers of patients and
have mostly described the microbial communities in proximal and distal airways, but the role of the airway
microbiome in disease is far from understood. Human data will be usefully complemented by
experimental models, including animal studies. The role of specific microbes in modulating the effects of
other microbes in disease is starting to emerge: for example, P. aeruginosa has been suggested to
contribute to S. aureus eradication in CF airways by stimulating synthesis secretory phospholipase A2-IIA
(a host enzyme with bactericidal activity) [159]. Furthermore, most studies have focussed on a single
group of microbes (e.g. bacteria), whereas interactions between various infectious agents (e.g. viruses and
bacteria [86] or fungi [160]) are probably important in chronic respiratory diseases. Mycobacteria have
also been suggested to act on the immune system with potential therapeutic use in asthmatic patients
[161]. Furthermore, the role of the microbial community outside of the lung (e.g. gut and skin
microbiome) in modulating airway disease is emerging [88, 89]. These discoveries have the potential to
change the understanding of host–microbe interactions and their relevance in respiratory disease, which
may lead to novel therapeutic approaches of chronic airway disease.
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