

The reuse of reclaimed water for irrigation around the Mediterranean Rim: a step towards a more virtuous cycle?

Nassim Ait-Mouheb, Akiça Bahri, Bechir Ben Thayer, Boumediene Benyahia, Guilhem Bourrie, Brahim Cherki, Nicolas Condom, Rémi Declercq, Adem Gunes, Marc Héran, et al.

▶ To cite this version:

Nassim Ait-Mouheb, Akiça Bahri, Bechir Ben Thayer, Boumediene Benyahia, Guilhem Bourrie, et al.. The reuse of reclaimed water for irrigation around the Mediterranean Rim: a step towards a more virtuous cycle? Regional Environmental Change, 2018, 18 (3), pp.693 - 705. 10.1007/s10113-018-1292-z . hal-01767840

HAL Id: hal-01767840 https://hal.umontpellier.fr/hal-01767840

Submitted on 16 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The reuse of reclaimed water for irrigation around the Mediterranean Rim: a step towards a more virtuous cycle?

Nassim Ait-Mouheb^a, Akiça Bahri^b, Bechir Ben Thayer^c, Boumediene Benyahia^d, Guilhem Bourrié^e, Brahim Cherki^d, Nicolas Condom^f, Rémi Declercq^f, Adem Gunes^{g,h}, Marc Héranⁱ, Nurgul Kitir^g, Bruno Molle^a, Dominique Patureau^j, Alfieri Pollice^k, Alain Rapaport^l, Pierre Renault^e, Khalifa Riahi^e, Bruno Romagny^m, Tewfik Sari^{n,o}, Carole Sinfortⁿ, Jean-Philippe Steyerⁱ, Samer Talozi^p, Bulent Topcuoglu^q, Metin Turan^g, Nathalie Wéryⁱ, Ertan Yıldırım^r, Jérôme Harmand^{j,1}

^aG-EAU, Irstea, CIRAD, IRD, AgroParisTech, Montpellier SupAgro, Univ Montpellier, Montpellier, France, nassim.ait-mouheb@irstea.fr, bruno.molle@irstea.fr

^bNational Water Research Institute for Rural Engineering, Water and Forestry, Tunis, Tunisia, akica.bahri@gmail.com

^cEcole Supérieure des Ingénieurs de l'Equipement Rural de Medjez El Bab, Tunisie, bechirbenthayer@gmail.com, khalifa_riahi31@yahoo.fr

^dUniversité de Tlemcen, Tlemcen, Algérie, b.benyahia.ut1@gmail.com, b_cherki@yahoo.fr

^eUMR 1114 Emmah, INRA – UAPV, Domaine Saint-Paul, Site Agroparc, CS 40509, F-84914 Avignon cedex 9,

France, guilhem.bourrie@inra.fr, pierre.renault@inra.fr

^fEcofilae, 9 av de L'Europe, 34930 Clapiers, France, nicolas.condom@ecofilae.fr, remi.declercq@ecofilae.fr

^gYeditepe University, Department of Genetics and Bioengineering, Istanbul, Turkey, nurgul_kitir@hotmail.com,

m_turan25@hotmail.com, adem_gunes25@hotmail.com

^hErciyes University, Soil Science and Plant Nutrition Department, Kayseri, Turkey, adem_gunes25@hotmail.com

ⁱIEM Université Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5, France, marc.heran@umontpellier.fr

¹ Corresponding author

Doi: 10.1007/s10113-018-1292-z

^jLBE, Univ Montpellier, INRA, 102, Avenue des étangs, 11100 Narbonne, France, dominique.patureau@inra.fr,

jean-philippe.steyer@inra.fr, nathalie.wery@inra.fr, jerome.harmand@inra.fr, (+33) 468.425.159

kIRSA CNR, Viale F. De Blasio 5, 70132 Bari, Italy, alfieri.pollice@cnr.it

¹MISTEA, INRA, Montpelier SupAgro, Univ Montpelier, Montpellier, France, alain.rapaport@inra.fr

^mAix Marseille Univ, IRD, LPED, Aix Marseille Université, 13331 Marseille, France. LMI Mediter, Maroc,

bruno.romagny@ird.fr

ⁿITAP, Irstea, Montpellier SupAgro, Univ Montpellier, Montpellier, France, tewfik.sari@irstea.fr,

carole.sinfort@supagro.fr

^oUniversité de Haute Alsace, LMIA, Mulhouse, France

^pJordan University of Science and Technology, Civil Engineering Department, Irbid, Jordan,

samer_talozi@yahoo.com

^qAkdeniz University, Vocational School of Technical Sciences, Antalya- Turkey, btoglu@akdeniz.edu.tr

^rAtaturk University, Faculty of Agriculture, Department of Horticulture, 25240 Erzurum- Turkey,

ertanyil@atauni.edu.tr

Length of the manuscript:

- 8127 words including abstract, keywords and aknowledgements

Corresponding author: Jérôme HARMAND, LBE, Université de Montpellier, INRA, 102 Avenue

des étangs, 11100 Narbonne, France, Jerome.harmand@inra.fr

Abstract

Climate change and a growing population around the Mediterranean Rim are increasing the need for water and,

consequently, the pressure on resources in terms of both quantity and quality. High-quality water should be

primarily reserved to drinking water while reclaimed water (RW) is an alternative for other usages. A review of

situations in Tunisia, Jordan, France and Italy involving the use of reclaimed water highlights the disparity in

national regulations governing this alternative water resource and in its management. On the first hand, the use

of recycled water for irrigation can have an adverse impact on public health and the environment, depending on

treatment and irrigation practices. On the other hand, it may also represent a new source of water: wastewater

should no longer be considered as waste but, rather, as a new resource to be handled in a circular economy type

Doi: 10.1007/s10113-018-1292-z

loop. Current scientific knowledge in agronomic and environmental sciences, as well as in the economic and

social sciences, can be integrated and used to lower the associated risk through the effective management of

irrigation using recycled water and to address the following questions: i) how can the time-varying nutrient

needs of crops could be managed to operate safe environmental reuse within an adapted risk assessment

framework, ii) what socio-economic models can render this integrated approach sustainable? iii) what treatment

systems and irrigation technology can be used to support these ideas and with what information? iv) what

changes in the regulations are needed?

Keywords: Wastewater reuse, irrigation in agriculture, environmental impacts, sanitary and environmental

impacts, systemic approach, integrated treatment systems.

Introduction

The Mediterranean region is particularly exposed to the consequences of various changes: climate, reduction in

biodiversity, global warming and population growth. This means increased pressure by human societies on

renewable but limited natural resources, notably surface water, along with an increased need for food (mostly

from irrigated areas) and drinking water. According to the International Water Management Institute (IWMI), by

2025, 1.8 billion people will live in countries or regions suffering from absolute water scarcity, which means

water availability below 100 m³/inhabitant/year. Today, most countries in the Middle East and North Africa can

be classified as facing absolute water scarcity (IWMI 1998), thus creating a very strong pressure on water

resources as well as a competition for water between the various end-users. Mediterranean societies are among

the most vulnerable to the effects of climate change due to the increasing degradation of their water resources

(overuse, pollution, salinization, etc.) and increasing water demand in agriculture as well as in the urban,

industry and energy sectors. Agriculture is the largest water user. The 2017 UN-World Water and Development

Report (UNWWDR, 2017), based on FAO-Aquastat data², states that the water consumption for crop irrigation

amounts to 70%, on average, of the world water requirements that locally could reach 90% of resources. On the

30% remaining that is used by cities and industry, about 6% is consumed and the rest discharged into the

environment, of which only 5% is considered treated; the remaining 19% is discharged with little to no

treatment. Thebo et al. (2017), through a GIS based analysis on the portions of river basins influenced by

metropoles of more than half a million inhabitants, estimates that about 6 Mha are irrigated using controlled

² http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=eng

Doi: 10.1007/s10113-018-1292-z

TWW and about 30 Mha with diluted or untreated WW. This roughly corresponds to 10% of the world irrigation

surface area and to 277 km³ of waste water over the 864 km³ (treated or not) disposed annually. The potential of

WW reuse, and the fact it could easily serve to replace good water quality resources is increasingly recognized,

provided management (volume and nutrients) and pollution issues are addressed.

To reduce the pressure on freshwater resources, and to preserve them for the provision of drinking water, it is

urgent to rethink how these resources are managed and improve water use efficiency by combining better

management and policy reforms. In this context, reclaimed water reuse has become common practice in many

Mediterranean countries since the mid-twentieth century³. Here the term "reuse" means the use of wastewater, be

it raw or partially treated, for beneficial purposes. It involves different sources of wastewater of variable quality,

and the main, but not exclusive, wastewater application is irrigation. Many countries see water reuse as an

important aspect of water resource management, mainly destined for irrigation purposes. In addition, the

development of irrigated agriculture in rural areas as well as around - but also within - urban centers offers a new

opportunity to consider the reuse of reclaimed water in enhancing the water supply for agriculture, and thus the

improvement of food safety and security, as well as the reduction of poverty in rural communities (Jhansi and

Mishra 2013; Lazarova et al. 2013; Kihila et al. 2014). Countries such as Israel, where about 75% of reclaimed

water is reused, and Tunisia, where about 25% of reclaimed water is reused, have become real "champions" of

the practice (Kellis et al. 2013; Nasr-Abroug 2014). In the USA, about 7% of reclaimed water is reused, and

represents 29% and 11% of reclaimed water in, California and Florida respectively. Millions of hectares of crop-

land are irrigated with sewage effluent in China, India, Mexico and Mediterranean Rim, in many cases without

adequate treatment (Lazarova and Bahri 2005; Jiménez and Asano 2008; Thebo et al. 2017). For this reason, the

choice of appropriate and cost-effective wastewater treatments, and the adoption of suitable irrigation practices

are the two major undertakings necessary to protect public health and prevent adverse conditions and damage to

crops, soils, and groundwater. In fact, the use of wastewater for agricultural purposes can pose significant risks

to farmers and, more generally, to public health. There are many risk factors associated with the reuse of water

for vegetable irrigations purposes. Other risk factors, such as soil salinization or the accumulation of toxic

chemicals, have harmful effects that are only measurable over longer periods, and these risks increase with the

continuous use of wastewater (Kukul et al. 2007) whether it be controlled (reclaimed) or not (raw). The quality

of irrigation water has been shown to potentially affect: soils, crops, food quality, safety (Khan et al. 2008),

³ This practice refers to the use of non-conventional waters

Doi: 10.1007/s10113-018-1292-z

groundwater, the management of water (Batarseh et al. 2011), and populations exposed to the irrigation water

(farmers, consumers, etc.). In fact, one of the main problems is that there are no common regulations, even at the

European level.

Despite the well-recognized uses of TWW around the Mediterranean Rim, scientific knowledge on the topic

needs to be improved, and the analysis of practical experience using recycled water for irrigation needs to be

increased in order to lower the associated risks and to implement effective management practices. The first

objective of this article is to provide a review of a number of situations in different Mediterranean countries

involving the reuse of TWW in irrigation in terms of their respective treatment and irrigation practices. From

these reviews of specific situations, the second objective is to identify different scientific issues related to water

reuse in irrigation and to analyze them with respect to agronomic, environmental and technological aspects. In

particular, we promote here an integrated approach in which wastewater is viewed as a new resource to be

treated in order to match the demand for water, while also taking into account the constraints related to its health

and environmental impacts. Such an approach requires a shift from a vision in which wastewater is treated in

WasteWater Treatment Plants (WWTP) to another one in which wastewater is considered as a raw material to be

processed in Waste Resource Recovery Facilities (WRRF), thus replacing the classic WWTP (see Online

Resource 1). Finally, to assess the technical benefits of WRRF, and, in more general terms, of a comprehensive

and integrated approach to water management including the use of reclaimed water, a sustainability approach

integrating environmental, economic, as well as social considerations, is presented.

OVERVIEW OF WATER REUSE PRACTICES AND STATE OF THE ART IN FOUR COUNTRIES

REPRESENTATIVE OF THE SITUATION AROUND THE MEDITERRANEAN RIM

In the following, we have compiled the main points regarding REUSE in four Mediterranean countries (Italy,

Jordan, France & Tunisia) - both from a practical perspective and from a number of environmental and human

sciences viewpoints - to highlight the diversity of experiences and bottlenecks. For Italy, Jordan, France and

Tunisia, respectively, these experiences are described in four parts: a) Elements of Context & Figures, b)

Treatment and Irrigation Technology, c) Agriculture, Soils & Groundwater Levels, d) Regulation & Socio-

5

economic aspects.

Italian experience

Doi: 10.1007/s10113-018-1292-z

a) A survey of Italian treatment plants estimated the total effluent flow (potentially available for reuse) at

about 2400 Mm³/yr (TYPSA 2013). Nowadays, reclaimed water is used in Italy mainly for agricultural

irrigation, covering over 4,000 ha. Although there is no organized national network of "WW reusers",

several case studies on the practical implementation of the reuse of TWW in Italy include relevant

applications in both the north and south of the country. In regions like Emilia Romagna (WWTP of

Reggio Emilia), Lombardia (WWTP of Milano-Nosedo) and Piemonte (WWTP of Torino), large

volumes of treated effluent are currently produced and delivered to local users. In southern regions such

as Puglia and Sicily, a number of pilot-scale projects and actual applications have been carried out that

are specifically aimed at compensating for the lack of natural resources typical of Mediterranean areas

(Lopez et al. 2006; Lonigro et al. 2015).

The controlled reuse of municipal wastewater in agriculture has not yet been developed in many Italian

regions. Compliance with new Italian standards requires advanced treatment, entailing consequences on

the economic viability of reclamation. Another negative aspect is the plethora of parameters to be

monitored - more than 50 items - that often require high measurement frequencies. Furthermore, no

regulatory distinction has been made between the different crops to be irrigated with reclaimed

wastewater (restricted/unrestricted irrigation) and no attention has been paid to the influence of different

irrigation options in reducing sanitary risks (e.g.: subsurface, drip or sprinkle irrigation).

c) In coastal areas, treated wastewater reuse is recognized as a possible tool to mitigate groundwater

salinization caused by overexploitation of underground water resources and consequent seawater

intrusion. However, injection of treated effluents into deep aquifers is forbidden in Italy, therefore

groundwater recharge can only be achieved through surface spreading and infiltration systems.

Water reuse for irrigation in Italy has been regulated since 1977 by the Water Protection Act (CITAI),

but a new set of regulations was promulgated in 2003 (Decree of the Ministry of Environment 185

2003), applicable to agriculture, non-potable urban and industrial water reuse. A rather restrictive

approach was adopted such that many quality standards for reclaimed water are the same as for drinking

water. The relevance of nutrient recovery, and the advisability of adopting standards and technologies

tailored to the different reuse applications, have been highlighted as important findings of the recent

6

pilot experiments (Vergine et al. 2015, 2016).

Jordanian experience

Doi: 10.1007/s10113-018-1292-z

The scarcity of water in Jordan, which has always already attained one of the highest four levels of water poverty worldwide, has motivated governmental and non-governmental efforts to promote the reuse of treated wastewater as an additional water resource. By 2017, more than 30 WWTPs were already operating all over the country that has an area of 89,341 km² with a total population of 9,531,712 (MWI 2016). Safe sanitation is provided for more than 93% of the population of which 63% avail of sewer and treatment systems. The latter percentage is expected to increase to 80% by 2030. Almost 91% of the TWW is reused in agriculture and this water contributes 17% (175 Mm³) to the annual water budget that is currently 1027 Mm³. The TWW covers approximately 25% of the irrigation needs, which is estimated to be 700 Mm³ and around 60% of the annual water budget. The TWW (up to 30%) is primarily used to irrigate the cultivated areas at the premises and vicinities of the WWTPs, and is regulated by agreements signed with farmers and other official entities. The remaining TWW flows down wadis and reaches downstream water bodies such as dams. The biggest WWTPs (Khirbet As Samra, Jerash, Baq'a) release more than 70% of the total Jordanian TWW to the King Talal Reservoir (KTR) where it mixes with the annual rainfalls. The farmers in the middle-south Jordan Valley, where most irrigated agriculture occurs, rely on the KTR dam as they do not receive any other surface water. This dam plays, therefore, a crucial role for agriculture in Jordan Valley. The TWW is only used for irrigation of non-edible crops like forage crops, and for nurseries and trees (MWI 2016).

b) The most commonly used WW treatment technologies are activated sludge systems and, to a lesser extent, trickling filters and extended aeration. Most WWTPs are carefully designed and operated to produce effluent compliant with Jordanian reclaimed water standards. In addition, any potential pathogen-based contamination is very limited due to the natural purification that occurs while TWW is transported along wadis and into the reservoirs till the point of use. However, the TWW with high salt content is an issue that needs to be addressed at WWTPs that receive a share of industrial WW and brine from desalination. Farmers mainly use mulch (plastic cover on soil) and drip irrigation to avoid excessive evaporation and effectively enhance the microbiological quality of the crops as well as preventing microbiological contamination. The locations where pure TWW obtained directly from the WWPTs, such as Wadi Musa, also apply drip irrigation, but the TWW can only be used for the cultivation of forage crops. Agriculture will be allowed to expand in Jordan, but only if additional TWW becomes available (MWI 2016).

Doi: 10.1007/s10113-018-1292-z

The use of treated wastewater has significantly reduced pressure on the endangered renewable fresh-

water sources. The ongoing shift towards sewer systems, wastewater treatment and reuse has

diminished the prospect of soil and groundwater contamination that was previously a threat due to the

widespread use of household septic pits. Although the Jordanian WWTPs do not produce significant

amounts of sewage sludge, it is of high-quality and can be used as a soil conditioner or fertilizer.

However, any beneficial use of this sludge will only be made possible in the near future if effective

legislation on sludge reuse comes into force.

Several sets of standards and guidelines for wastewater, sludge, soil, and crops were established by

various organizations such as the Water Authority of Jordan and the Ministry of Water and Irrigation. In

addition, the Jordanian Policies and Laws governing TWW is enhanced year after year and are aimed at

promoting higher TWW quantities of ever improving quality (MWI 2016). Jordan has made also great

advances in wastewater collection and, in order to advance further, the country has embarked on a

strategy aimed at rural communities, and not only major population centers. The national framework for

decentralized wastewater management was built to achieve the UN Sustainable Development Goal, i.e.

providing "access to water and sanitation for all." To achieve this, the framework provides the

regulatory, managerial and technical foundations for implementing a decentralized approach to

wastewater management in Jordan. This approach consists in: extending wastewater services to rural

communities, enhancing the potential of freshwater substitution, and improving sanitation and public

health (MWI 2015). A National Water Reuse Coordination Committee (NWRCC) was formed in 2003

by the Ministry of Water and Irrigation. It is made up of, among others, the Secretary-General of Water

Authority of Jordan, a representative from the Royal Court, the Secretary-General of the Ministry of the

Environment, the Director General of NCARTT and the Unit Director of the Ministry of Water &

Irrigation. The NWRCC discusses all issues involving water reuse in order to enhance coordination and

to avoid overlapping between ministries.

French Experience

France only faces local and seasonal episodes of water resource deficits. Therefore, the reuse of

wastewater is restricted to particular regions, and only about 40 TWW reuse projects have been

identified, essentially for golf courses, turf production and gardens or agricultural irrigation. The

average daily volume of TWW reused in France was estimated at 19,200 m³ (about 7 Mm³ per year) in

2014 representing about 0.1% of the produced TWW and less than 0.3% of the total water used in

Doi: 10.1007/s10113-018-1292-z

irrigation. The most important agricultural projects are located in Clermont-Ferrand (center of France)

and on the Noirmoutier Island (Western Oceanic France). In Clermont-Ferrand, 700 ha of seed maize,

maize, beetroots, and wheat are irrigated with 0.9 Mm³ of TWW per year. In Noirmoutier, 320 ha of

labeled potatoes are irrigated with TWW representing an average yearly volume of 0.38 Mm³. In the

Mediterranean area, pilot irrigation projects have been implemented before an expected expansion to a

broader scale. In Gruissan (Southern France), about 1 ha of vineyard is irrigated with TWW in order to

characterize long term impacts of pollutants on agricultural production and on the quantity and quality

of the wine produced. Almost 20 golf courses are irrigated with TWW in France. Many are located on

the Atlantic coast where the main driver to these projects is often the need to limit TWW discharge into

the sea and the environment. Rhuys-Kerver golf course (in Brittany) reuses TWW. Discharges into sea

bathing areas are therefore curtailed. The golf courses have access to a water resource that are available

all year long, while water restrictions are often applied in summer on conventional water resources.

The relevant regulation was updated in 2014 to better account for the case of sprinkler irrigation

techniques, and provides wind velocity limits at which irrigation should be stopped depending on the

operating pressure in use, and also stipulates safety distances accounting for sprinkler maximum range.

Many new water reuse projects are planned for the upcoming years. Future regulation proposals should

include new water reuse options such as urban uses, firefighting, wetlands, etc.

In many cases, agricultural production has been extended and sustained thanks to TWW: high value

seed maize can be grown in Clermont-Ferrand and potato cultivation could be extended in summer in

Noirmoutier, thus limiting the exploitation of potable water imported from the continent, while also

mitigating pressure on existing natural resources and generating higher incomes for farmers and for the

territories.

In the Mediterranean area, the Sainte-Maxime golf course is irrigated with TWW. This project has freed

up conventional water for higher value urban uses. Cost-benefit⁴ analyses have highlighted the benefits

of water reuse for both Sainte-Maxime and Rhuys-Kerver projects. The use of TWW from WWTP for

agricultural, turf production and garden irrigation purposes is regulated since 2010. Prior to 2010, water

reuse regulation was not clear and few projects had emerged. The 2010 regulation introduced quality

standards for TWW based on 4 quality levels (from A - high quality - to D), cf. French Regulation,

⁴ Abbreviated as CBA (see Online Resource 2)

Doi: 10.1007/s10113-018-1292-z

2010. The higher the risk of human exposure (valorization of the crops, type of irrigation) the higher

the treatment level needed.

Tunisian experience

Tunisia was among the first countries around the Mediterranean Rim to have established and

implemented a water reuse policy in the 1980s with water reuse operations integrated into the planning

and design of sanitation projects. Water reuse has become an integral part of overall environmental

pollution control and water management strategy. It is viewed as a way to: increase water resources,

provide supplemental crop nutrients, and protect coastal areas, water resources and sensitive receiving

water bodies. The country has a long history of water reclamation and reuse for agricultural irrigation.

Other applications in Tunisia include irrigation of golf courses, green belts and hotel landscaping.

Reclaimed water is also used for recharging groundwater. Since the mid-1960s, a step by step approach

to expand reuse has been adopted. The strategy consists of 1) extending wastewater treatment to all

urban areas; 2) conducting pilot- and demonstration-scale irrigation operations on agricultural and green

areas; 3) establishing large-scale irrigation schemes; and 4) implementing a policy aimed at increasing

the percentage of treated effluent for reuse. Currently, the National Sanitation Utility (ONAS) is

running 110 wastewater treatment plants (WWTP) treating annually 240 Mm3 of wastewater (Nasr

Abroug, 2014). Only 57 Mm³ of the total treated wastewater volume (24%) are reused, 54% of which is

destined for indirect uses such as wetlands, sebkhas, etc., and the remaining 46% for direct applications

such as irrigation of crops (32.8%), golf courses (12.5%) and green areas (0.9%). These 57 Mm³ could

irrigate up to 30,000 ha of cultivated areas whereas only 8,256 ha have been equipped for reuse. By

2020, the area irrigated with reclaimed water should reach to 20,000-30,000 ha, i.e. 7-10% of the

overall irrigated area.

b) Wastewater effluent is treated to secondary levels mostly using activated sludge processes (78%); the

quality of treated wastewater shows high levels of COD, BOD and phosphorus. In Tunisia, several

research studies of real field conditions have been carried out regarding the physical-chemical and

biological quality of reclaimed water and its impact on soils and plants. The results have shown the

feasibility of water reuse provided some precautions are taken.

The concentration of almost all regulated elements in raw and reclaimed water were below the

10

maximum concentration recommended for agricultural reuse based on the Tunisian standards

(INNORPI, 1989) and had a high fertilizing content which, in the cases of nitrogen and potassium, may

Doi: 10.1007/s10113-018-1292-z

directly exceed plant growth requirements. The application of nitrogen that exceeds crop growth

requirements may present some risks for crops and/or groundwater. The different treatment processes

did not result in a complete removal of pathogenic bacteria such as salmonella, except for effluents

from stabilization ponds which were free from such pathogens. Storage in ponds showed an

improvement in the quality of reclaimed water. Investigations of the long-term effects in the La Soukra

area, which has been irrigated for more than twenty years with reclaimed water, did not show any

notable effects on soils, crops, or groundwater. A study conducted within this scheme to evaluate the

impacts on health linked to reclaimed water reuse could not determine a clear cause-effect relationship

between the observed diseases and the reuse practice. Another epidemiological study conducted within

the Zaouiet Sousse scheme did not reveal any significant differences in the exposed and non-exposed

populations.

Water reuse in agriculture is regulated by the 1975 Water Law and by the JORT Decree No. 891047 of

1989. The quality criteria for agricultural reuse of reclaimed water were developed using Ayers and

Westcot (1985) and WHO (1989) guidelines on restricted irrigation (less than 1 nematode egg/l), along

with other Tunisian standards related to irrigation or water supply. Regulations allow the use of

secondary-treated effluent on all crops except vegetables, whether eaten raw or cooked. Therefore,

depending on climate conditions, about 25-40% of reclaimed water is used to irrigate industrial and

fodder crops, cereals, vineyards, citrus and other fruit trees. Golf courses (Tunis, Hammamet, Sousse,

Tabarka, Tozeur and Monastir) and some hotel gardens in Jerba and Zarzis are also irrigated with

reclaimed water. Regional agricultural departments supervise the enforcement of water reuse decrees

and collect related charges. In order to promote water reuse, the reclaimed water charge was set at

0.018€/m³, which is below the tariff for conventional surface water used in other irrigation systems

(0.026-0.092€/m³). However, farmers still prefer conventional water, even if more expensive (Ben

Brahim-Neji et al. 2014).

These experiences highlight the following points. What is at first surprising is the differences in the proportions

of waste water reused in the 4 situations (between 0.1 and 25%, respectively for the French and Tunisian case).

Such findings highlight that the main driver of national water management strategies is the level of water stress.

While not dismissing the role of social aspects, the diversity of available data (quantitative and qualitative) in

each of the 4 experiences reveals the diversity of applied regulations, of the perceived link between hazards and

Doi: 10.1007/s10113-018-1292-z

risks and the diversity of water stresses. Concerning regulations and standards, they state the levels of quality

expected at treatment plant outlets while not considering the effective WW uses: they rely on strict norms

without any consideration of the monitoring capacities available, or the harmful impacts related to some uses

(like the effect of soil microbial ecosystems on pathogens, which form a "barrier" and limit their dissemination).

We discuss and suggest hereafter how regulations could be harmonised beyond the guidelines of FAO and

WHO. With respect to risk management, the experiences attest to a primary focus on first level hazards, e.g.,

those related to pathogens and pollutants, while little attention is given to the related long term effects. In this

paper we discuss the problems related to the accumulation of some chemicals and their degradation sub-

products, the salinization and the Contaminants of Emerging Concern (CEC). Regarding the treatment and

distribution technologies the experiences highlight reuse practices relying on technical chains which are

designed to address treatment requirements only, and not resource recovery (water + nutrients). To this purpose

we discuss the recent evolution of sewage and wastewater treatment plants.

ISSUES RELATED TO WASTEWATER APPLICATIONS AROUND THE MEDITERRANEAN RIM

Taking into account the different Mediterranean situations described above, different scientific issues need to be

addressed along with a range of other agronomic, environmental, technological and social questions in order to

promote the sustainable reuse of TWW for irrigation.

Managing treatment plants for water reuse in agriculture

Traditional wastewater treatment plant technology has been developed to minimize organic pollution, and in

some cases N and P pollution, from TWW with respect to normative constraints. In most cases, wastewater is

treated in such a way that organic content is minimized (as indicated in the experiences reported in the first

section, most treatments to produce TWW are conventional activated sludge processes). To ensure sustainable

reuse, which encompasses a notion of the benefit of water in agriculture, wastewater should be processed in such

a way that the organic and mineral contents contained in the water meet agronomic needs. Indeed, as stated

above in the Tunisian case, the fertilizing potential of wastewater is significant. More generally, in the average

Mediterranean case, for an irrigation of 700 mm/ha/year, the quantities of nitrogen and phosphorus contained in

wastewater treated by activated sludge without denitrification are 150 kg and 50 kg respectively, which would

represent a large proportion of the fertilization requirements of a crop (Condom et al. 2012). However, the

Doi: 10.1007/s10113-018-1292-z

application of nitrogen at levels higher than required for crop growth may present risks for crops and/or

groundwater.

Crop needs are highly dynamic. Consequently, the treatment system must be designed and operated in such a

way that treated water could contain low nitrogen/phosphorus during no-irrigation period (e.g. during low plant

uptake stages) to limit environmental impacts. This is particularly true for N-sensitive areas.

- Recovering N and P from the total sewage water produced worldwide would lead to a saving of 33% and

22%, respectively, in N and P fertilizers (World Bank, 2010).

According to the World Bank, irrigation with TWW (activated sludge without denitrification) can meet

53%, 50% and 31%, respectively, of nitrogen, phosphorus and potassium needs.

Regarding long-term studies, the organic carbon contained in soils should play an important role, not only in

the soil function but, also, in the global Carbon cycle (Lal 2004; Drechsel et al. 2010). Increases in the

organic carbon content of soils would be an advantage from an environmental viewpoint, especially for

areas where desertification is seen as a tangible risk.

Even if in a number of cases, users are willing to pay extra for higher water quality (cf. the Tunisian experience),

this benefit has to be weighed against possible indirect costs. For instance, regarding the authors' experience in

France, the Sainte-Maxime golf course has been irrigated since 2006 with TWW. Thanks to nutriments

contained in the TWW, fertilizer consumption has decreased by 67%. although additional grass cutting is still

required, which means that nutrient management could still be improved.

Assuming actual treatment technology can be used to modulate water quality, future challenges are likely to be:

ensuring that the organic and metallic micropollutants, as well as pathogen concentrations found in treated waste

water comply with regulations, and the assessment of the capacity of the agricultural system to inactivate or

degrade them. As underlined above, one of the main challenges to be addressed is to manage remediation

processes that have been designed to remove pollution in such a way that they deliver water meeting specific

quality requirements. In other words, the objective is no longer to deliver water with C, N and P concentrations

that are lower than normative constraints but, rather, with C/N/P optimal ratios (called "setpoints" in dynamic

systems and control theory, and of particular interest within the present context) with respect to the specific

needs of irrigated plants as well as soil storage capacity. Such setpoints should be designed from a dynamic

perspective: in the short-term, it is expected that the needs of plants may change over days or weeks; in the long-

Doi: 10.1007/s10113-018-1292-z

term, on the other hand, they can change with respect to crop rotations, e.g., following recommendations and

specifications detailed in rapidly-developing agro-ecological approaches (Gliessman 2006). To achieve such

objectives, automatic control theory may be of interest (Katebi et al. 1999). In particular, the use of a systemic

(or input-output) approach may indeed be of interest when designing advanced feedback control laws⁵ that aim

at driving one or several outputs (C, N and/or P concentrations) towards predefined setpoints possibly in real

time, or in minimizing any other objective criterion. To design such feedback mechanisms, the use of models

that capture the main dynamic properties of the system could be used. However, we do not know if available

models that have been developed, notably by the International Water Association (IWA, 2000), to simulate

actual WWTP operations are suitable for this purpose. In other words, the flexibility of actual processes must be

evaluated with respect to the new objectives we describe here. We believe this work must be done so that models

and optimal control-based solutions - that have been proven to be relevant for decision-making in classic

integrated water treatment, cf. for instance (Gajardo et al. 2011; Rapaport et al. 2014), seawater desalination

(Yokokawa et al. 2013) or in an industrial framework (Dvarioniene and Stasiskiene 2007) - can be used within

the new integrated approach we put forward in the present paper.

Irrigation technologies using recycled water

In some cases, regulations have been adapted to allow for a more integrated approach. This is true in the French

case where constraints inherent to irrigation technology have been taken into account. For farmers, using TWW

presents an additional constraint: the integrated system must be designed to take into account the risk of biofilm

clogging or pathogens regrowth in the irrigation system and unintended dispersion (Ayars et al. 2007). Three

distinct irrigation technologies are available for water distribution in an agricultural plot. These systems have

different potential life durations, and each has associated risks of potential dissemination of unintended materials

(pathogens and pollutants). These issues can be effectively managed using suitable practices designed to

decrease the potential level of hazards.

Gravity or surface irrigation is the most widely used technique in Mediterranean agriculture and worldwide. It

takes advantage of the potential energy of water to flood the plots as homogeneously as possible through soil

leveling, regulation of plot inlet flow and irrigation duration. With this technology, pathogens, or hazards from

pollutant aerial dissemination, are restricted but the contamination of the soil, plants and water tables may be

⁵ "feedback control" refers to the appropriate way of acting on a physical system – through actuators – to force certain output variables - usually observed via measurements - to follow predefined possibly, time-varying

patterns called "setpoints".

Doi: 10.1007/s10113-018-1292-z

significant. Widely used by traditional farmers, exposure by contact, and product ingestion, may have serious

health consequences.

Sprinkler irrigation, which tends to reproduce homogeneous rainfall over the entire plot, restricts the potential

contact of workers with contaminated waters; but the hazards involved are linked to unintentional dissemination

of effluent in the form of fine droplets that may contain pathogens or other harmful contaminants when

sprinklers operate under different wind regimes (Molle et al. 2016). On the other hand, both of these irrigation

technologies have the potential to play a key role in pathogen control depending on the survival capacity of

microorganisms during the transport and distribution process in air or soil. For instance, a decrease of two orders

of magnitude of respiratory pathogens has been observed during the sprinkling dissemination process in wind

tunnels. Except for Legionella pneumophila, such contamination routes remain poorly understood and merit to

be addressed in research work.

Drip irrigation is widely promoted as a means to improve water productivity (Luquet et al. 2005), which is

recognized when the system is brand-new, but seldom over the long-term. Drip irrigation has the potential for

much greater efficiency than other irrigation techniques by applying water directly to the immediate vicinity of

the plant, thereby increasing water productivity (Lamm and Camp 2007). Drip irrigation systems can also

improve nutrient use efficiency (fertigation), decrease energy requirements and improve cultivation practices

(Ayars et al. 2007). When reusing treated wastewater, this technology is considered the best option in terms of

protection against contact and the dispersion of pathogens. Nevertheless, its long-term performance continues to

be questioned. The presence of nutrients and salts in WW increases the possibility of chemical precipitation as

well as biofilm development due to the particles transported (Capra and Scicolone 1998; Niu et al. 2012; Gamri

et al. 2014; Rizk et al. 2017). In addition, clogging by sedimentation can soon lead to a sharp decrease in

distribution performance (Bounoua 2010). A better understanding of clogging phenomena, and their interaction,

demands new research on the characterization of flow topology inside narrow labyrinth channels, on biofilm

characteristics and their response mechanisms while taking into account both nutrient transport and hydraulic

shear force, as well as analysis of chemical precipitation.

Cropping systems, soil and groundwater impacts

Soil properties, and soil organization in the landscape, both vertically and laterally, strongly influence water

transfer and its availability to plants, while groundwater quality depends heavily on biogeochemical processes in

the unsaturated zone. These points are crucial for the protection of soil fertility against risks linked to

Doi: 10.1007/s10113-018-1292-z

salinization, alkalinization and soil structure degradation. The impact of wastewater on agricultural soils is

mainly due to: its high nutrient content (nitrogen and phosphorus), high total dissolved solids, and other

constituents such as heavy metals which accumulate in the soil over time. Wastewater can also contain salts that

may accumulate in the root zone with possible harmful impact on soil health and crop yields. The problem of

soil salinity and sodicity can be resolved by the application of natural or artificial soil conditioners. However,

such soil reclamation measures are costly, thus adding economic constraints that can result in crop productivity

losses. Moreover, it may not be possible to restore the soil to its original level of productivity by using such soil

conditioners. Therefore, wastewater irrigation may have a long-term economic impact on the soil which in turn

may affect market prices and the land values of saline and waterlogged soils.

The leaching of salts below the root zone may cause the pollution of both soil and groundwater (Bond 1999).

Applying wastewater has the potential to damage the quality of groundwater resources in the long run through

the delivery of excess nutrients and salts caused by wastewater leaching below the plant root zone. However, the

actual effects depend on various factors including depth of the water table, the quality of groundwater, soil

drainage, and wastewater in irrigation. The proximity of wastewater irrigation to sources of potable water

supplies, such as wells or tube wells, will influence how we evaluate the severity of groundwater exposure. Thus,

the potential for groundwater contamination needs to be evaluated before embarking on a major wastewater

irrigation program. In addition to the accretion of salts and nitrates, wastewater irrigation can, under certain

conditions, transfer pathogenic bacteria and viruses to groundwater (NRC report 1996).

Wastewater (treated and untreated) is used in agriculture because it is a source of macro nutrients (NPK) and

micronutrients (Ca, Mg, Mn, Se...) and provides all the moisture necessary for crop growth. Due to this nutrient

content, most crops give higher than expected yields with wastewater irrigation when compared to standard

fertilization of irrigated crops, which does not include any micro-nutrients, thereby reducing the need for

chemical fertilizers, which results in net cost savings for farmers. Furthermore, the high concentration in

untreated wastewater of plant nutrients becomes an incentive for farmers to use it as it reduces fertilizer costs,

even when the higher nutrient concentrations may not necessarily improve yields. Most crops, including those

grown in peri-urban agriculture, need specific amounts of NPK for maximum yield. Once the recommended

levels of NPK are exceeded, crop growth and yield may be negatively affected. The different experiences

reported in the first section of this paper attest to the fact that this negative effect has been observed in a number

16

of cases, for instance in Tunisia.

Doi: 10.1007/s10113-018-1292-z

Such aspects are generally not considered by reclaimed water use projects planners, yet the close connection

between treatment management and the potential crop reuse of nutrient is of high interest (if well controlled as

we suggest above), at least in terms of energy balance (e.g. nitrogen removal from a wastewater requires

additional energy to be injected – through aeration in an activated sludge treatment plant; it uses up to 40% of

the energy needs, while 1 ton of nitrogen fertilizer required 1 ton of petrol equivalent energy).

Sanitary pollution via wastewater reused for irrigation

As shown in the different national cases reported, the wastewater reuse experience in reducing health risk is very

low whatever the country considered (too many parameters to be monitored, very few long-term experiments,

lack of political will...). However, effluents emanating from urban wastewater treatment plants (WWTP) are

suspected to be among the main anthropogenic sources of pathogens, antibiotics, antibiotic resistance genes

(ARG) and antibiotic-resistant bacteria (ARB) released into the environment (Verlicchi et al. 2012; Rizzo et al.

2013; Yang et al. 2014). Indeed, biological treatment processes create an environment that is potentially

conducive to both resistance development and its spread because WWTPs are in fact reservoirs for microbial

diversity in ongoing growth which is continuously mixed with antibiotics at sub-inhibitory levels. But WWTP

also involve different biological and physical-chemical processes which may affect the fate of antibiotics, ARB,

ARG and pathogens. Michael et al. (2013) showed that antibiotic removal efficiency varies and depends on the

combination of an antibiotic, its physical-chemical properties and operating conditions. They argued that

membrane processes, activated carbon adsorption or advanced oxidation processes (AOP) may lead to higher

rates of removal, and may be necessary before final disposal of effluents or recycling for irrigation; however,

less is known on such processes when they are run under sub-optimal conditions. The effectiveness of integrated

processes, including membrane bioreactors (MBR) and AOP, was investigated for wastewater from

pharmaceutical production, while also taking into account by-products from degradation (Pollice et al. 2012;

Laera et al. 2012). This aspect of degradation by-products is especially relevant when considering that many

complex molecules are only partially degraded through chemical or biological processes: accurate monitoring of

degradation by-products should be carried out in order to evaluate their persistency and possible toxicity

(Mascolo et al. 2010). Moreover, very little is known about the implications for soil/crop irrigation of the

distribution system/point-of-use (Fahrenfeld et al. 2013). Various biological contaminants (human and animal

pathogens, phytopathogens, ARG, ARB) can be transported by wastewater and be enriched in soil. Several

technologies exist for an efficient removal of contaminants from TWW, but several questions remain to be

Doi: 10.1007/s10113-018-1292-z

addressed such as the dynamics of contaminants during the transport and distribution of water or the effects on

soil microbiota which was also neglected in most studies on irrigation with wastewater (Becerra-Castro et al.

2015). Heavy metals have been shown to accumulate in the soil at toxic levels as a result of the long-term

application of untreated wastewater. Soils irrigated by wastewater accumulate heavy metals such as copper (Cu),

zinc (Zn), cadmium (Cd), and nickel (Ni) in top soil. When the capacity of the soil to retain heavy metals

declines due to repeated applications of wastewater, heavy metals may leach into the groundwater, thus

becoming available for plant uptake (Devkota and Schmidt 2000; Frost and Ketchum 2000).

Social aspects of irrigation with wastewater

In arid and semi-arid Mediterranean areas, the reuse of TWW faces many socio-economic challenges such as:

evolving legal frameworks, local cultural conditions (especially in Islamic countries where there are religious

restrictions about the use of "impure" water although Fatwas have been issued to allow use of reclaimed water in

several Muslim countries), social and economic considerations, farmer involvement in issues related to

agricultural water supply, etc.). Acceptability of this type of new water resource is a crucial issue and requires

the full and real participation in the decision making process of the different stakeholders.

Under certain specific conditions (IWMI 2007; MED WWR WWG 2007; World Bank 2010; El Ayni et al. 2011;

Condom et al. 2012; Mizyed 2013), projects involving TWW reuse can contribute to an integrated management

approach to water resources that reconciles different goals such as: the fight against poverty, economic

development, environmental and human health protection, etc. From a socio-economic point of view, water

reuse represents a hybrid research object located midway between supply-side and demand-side approaches, and

involving both technological and socio-economic challenges, while at the same time introducing into the public

debate the idea of water recycling at the scale of a given territory. This is why, as underlined above, water

demand management, which involves making better use of available resources - as opposed to simply always

augmenting supply – is gaining traction as a way to mitigate water-scarcity problems (Winpenny 1997).

The issue of safe wastewater recycling in agriculture thus cannot be reduced to its mere technological,

quantitative and qualitative aspects (fulfillment of more or less strict environmental standards), but must also

include a number of other socio-economic aspects and the challenges involved in integrating different scales of

analysis. Before adopting one given technical solution, end users need to know and understand the economic

costs, returns and benefits associated with the different qualities of TWW. In many cases, the experience tends to

prove that any technology transfer mainly benefits the investors (national and international) who have

Doi: 10.1007/s10113-018-1292-z

considerable financial means and lobbying capacity; it seldom benefits small farmers who already have poor

access to water and sanitation. In a socio-economic context that is increasingly affected by globalization, and

confronted with extreme poverty and highly-differentiated agricultural production systems, the question remains

how to prevent irrigation water reuse projects from resulting in increasing inequality?

Adapting to climate change in general, and for the water sector in particular, requires a wholesale move away

from a short-term reactive or curative approach to the preventive and proactive management of risks and

resources over the long term. Water reuse projects form part of these potential resources for agriculture and fully

fit the principles for action underpinning this type of management: promoting innovation, long-term planning

and opting for "no regrets" or "few regrets" measures that create win-win situations, and that encourage dialogue

between all stakeholders in the water sector (Plan Bleu 2012). Citizen grievances that drove the 'Arab Spring'

stemmed in part from the lack of accountability of executive branches of government and the failure to deliver

basic services linked with good governance. In this context, recent social and political changes in Tunisia or

Morocco underscore the need for: "increasing transparency, the decentralization and the empowerment of local

civil society support and the re-appropriation of water, livelihoods and power" (Houdret 2012).

CONCLUSION

In the changing climate context around the Mediterranean Rim, it is expected that rapidly-expanding water

recycling practices will quickly provide sustainable, low energy and cost-effective options to improve water

availability based on criteria of quality and recycling capacity. To do so, processing systems must be rethought

by adopting a bottom-up approach from use to source, by evaluating different scenarios in terms of

environmental assessment techniques and risk analysis using standardized methods (as cost benefit analysis, life

cycle assessment⁶), and by ultimately making a real paradigm shift from a waste water treatment plant to a water

resource recovery facility, thus creating a real environmentally-friendly "biorefinery" within a more circular

economy framework. Apart from agriculture, several studies have been carried out to assess other reuse options

such as: groundwater recharge as well as municipal, industrial and environmental applications. The studies have

shown that strategy should be focused on the substitution of conventional water by reclaimed water.

Forthcoming projects aimed at meeting a real demand for water – in quantity and quality – should encourage a

greater utilization of reclaimed water, primarily for agricultural purposes, and thereafter, in other sectors.

⁶ Abbreviated as LCA (see Online Resource 3)

Doi: 10.1007/s10113-018-1292-z

As the water reuse cycle is essentially an interdisciplinary issue, an integrated approach encompassing social,

economic along with environmental concerns should be used to address it. In particular, at the local level, a

sensible cost-benefit approach will have to take into account, both the financial and non-financial benefits. To

this end, innovative research is needed on the potential impact of reuse techniques and practices, possibly

including innovative decentralized treatment techniques that facilitate the conservation of those compounds that

are beneficial for plants.

Regulations will then need to be redrafted in a more consistent and standardized way, and thereafter more

effectively enforced worldwide to make a wiser use of the precautionary principle (Molle et al. 2012). Treatment

plant design should fully integrate reuse concerns to ensure the value of reclaimed water. The wastewater

treatment industry also faces a new challenge: delivering treated wastewater fit for agriculture purposes rather

than treating water to minimize its impact when disposed of in the environment. There are obviously two

possible routes. The first is to adapt the quality of the water based on environmental and health constraints.

Treatments should also be economically affordable, but further research is needed to evaluate the potential health

and environmental risks and societal acceptance of this solution. The second more technological route, aims to

use high-performance treatment systems to remove all possibly problematic compounds, then to selectively

recover those that can be of positive use (as N, P, K or micro-nutrients), and finally to irrigate crops/plants in a

totally secure and adapted way. This latter option remains a possible alternative, but its success will depend on

our ability to recover compounds of interest in a cost-effective way, and this remains the major obstacle. Such

potential developments should: address health and pollution hazards, reduce the treatment footprint and, more

generally, the human waste footprint (water as well as energy). This would maximize the opportunity offered by

agriculture for recycling (with precautions of use) preferably for non-food crop irrigation, but also some food

production (raw or cooked food crops) after specific treatment. In addition, this implies that the social and

cultural aspects of water reuse are fully understood and that the population supports the idea, and moreover, is

willing to pay for, or welcome a water reuse project. Linking reuse policies to the possible advanced resilience of

human communities, the water cycle in their various environments should be explained clearly to local

populations who may always remain reluctant. Experience in Mediterranean countries that have long practiced

reuse (e.g.; Jordan, Tunisia, France, and Italy) can greatly facilitate this task as well as the efforts of international

organizations (WHO, FAO, CEN, ISO, ...). By upgrading water quality and providing more widespread

information, reclaimed water reuse should gain wider acceptance in the near future (Bahri 2009).

Acknowledgements

The authors thank for their financial support: the SICMED Mediterranean research network

(http://www.sicmed.net/), the TREASURE research network (https://project.inria.fr/treasure/), the UTIQUE

project 2013 No. 28687SF "Ecologie microbienne et modélisation pour le traitement de l'eau", the TASSILI

project 2015 No. 33254QH "Procédés membranaires pour le traitement anaérobie des eaux usées - Modélisation,

commande et optimisation", the Water4Crops FP7 project, "Integrating bio-TWW with enhanced water use

efficiency to support the Green Economy in EU and India", N° 311933, the Mad4Water EU Horizon 2020

project, "Development And application of integrated technological and management solutions for wastewater

treatment and efficient reuse in agriculture tailored to the needs of Mediterranean African Countries" and the

NOWWMA project, "New Process for Optimizing Wastewater Reuse from Mauguio to the Mediterranean Area"

in support of the French Reuse Directive.

References

Ayars JE, Bucks DA, Lamm FR, Nakayama FS (2007) Introduction. In: Lamm FR, Ayars JE, Nakayama FS

(eds) Microirrigation for Crop Production Design, Operation, and Management. Elsevier, Amsterdam, pp 1-

26. doi:10.1016/S0167-4137(07)80004-7

Ayers RS, Westcot DW (1985) Water quality for agriculture. FAO Irrigation and Drainage Paper 29 (Rev. 1).

Food and Agriculture Organization of the United Nations, Roma

Bahri A (2009) Managing the other side of the water cycle: Making wastewater an asset. TEC Background Paper

No 13. http://www.monroban.org/public/documents/outils/uploaded/5Asul4n6.pdf. Accessed 16 January

2018

Batarseh MI, Rawajfeh A, Ioannis KK, Prodromos KH (2011) Treated municipal wastewater irrigation impact

on olive trees (Olea Europaea L.) at Al-Tafilah, Jordan. Water Air Soil Pollut 217:185-196.

doi:10.1007/s11270-010-0578-7

Becerra Castro C, Lopes AR, Vaz-Moreira I, Silva EF, Manaia CM, Nunes OC (2015) Wastewater reuse in

irrigation: a microbiological perspective on implications in soil fertility and human and environmental health.

Environ Int 75:117-35. doi:10.1016/j.envint.2014.11.001

- Ben Brahim-Neji H, Ruiz-Villaverde A, González-Gómez F (2014) Decision aid supports for evaluating agricultural water reuse practices in Tunisia: The Cebala perimeter. Agric Water Manag 143:113-121. doi:10.1016/j.agwat.2014.07.002
- Bond WJ (1999) Effluent irrigation an environmental challenge for soil science. Aust J Soil Res 4:543-555. doi:10.1071/S98017
- Bounoua S (2010) Etude du colmatage des systèmes d'irrigation localisée. Dissertation (In French), University of Provence Aix-Marseille I
- Carpa A, Scicolone B (1998) water quality and distribution uniformity in drip/trickle irrigation systems. J Agr Eng Res 70:355-365. doi:10.1006/jaer.1998.0287
- Condom N, Lefebvre M, Vandome L (2012) Treated Wastewater Reuse in the Mediterranean: Lessons Learned and Tools for Project Development. Plan Bleu, Valbonne
- Devkota B, Schmidt G H (2000) Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains, Greece. Agric Ecosyst Environ 78:85-91. doi:10.1016/S0167-8809(99)00110-3
- Drechsel P, Scott CA, Raschid-Sally L, Redwood M, Bahri A (2010) Wastewater Irrigation and Health-Assessing and Mitigating Risk in Low-Income Countries. IWMI, IDRC, Earthscan, London
- Dvarioniene J, Stasiskiene Z (2007) Integrated water resource management model for process industry in Lithuania. J Clean Prod 15:950-57. doi:10.1016/j.jclepro.2006.01.009
- El Ayni F, Cherif S, Jrad A, Trabelsi-Ayadi M (2011) Impact of Treated Wastewater Reuse on Agriculture and Aquifer Recharge in a Coastal Area: Korba Case Study. Water Resour Res 25:2251-2265. doi:10.1007/s11269-011-9805-2
- Fahrenfeld N, Ma Y, O'Brien M, Pruden A (2013) Reclaimed water as a reservoir of antibiotic resistance genes: distribution system and irrigation implications. Front Microbiol, 4-130:1-10. doi:10.3389/fmicb.2013.00130
- Frost HL, Ketchum LH (2000) Trace metal concentration in durum wheat from application of sewage sludge and commercial fertilizer. Adv Environ Res 4:347-355. doi:10.1016/S1093-0191(00)00035-6
- French Regulation (2010) Arrêté du 02/08/10 relatif à l'utilisation d'eaux issues du traitement d'épuration des eaux résiduaires urbaines pour l'irrigation de cultures ou d'espaces verts. https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000022753522. Accessed 16 January 2018
- Gajardo P, Harmand J, Ramirez H, Rapaport A (2011) Minimal-time bioremediation of natural water resources.

 Automatica 47:1764-1769. doi:10.1016/j.automatica.2011.03.001

- Gamri S, Soric A, Tomas S, Molle B, Roche N (2014) Biofilm development in micro-irrigation emitters distributing treated wastewater for reuse. Journal of Irrigation Science 32:77-85. doi:10.1007/s00271-013-0414-0
- Gliessman SR (2006) Agroecology: The Ecology of Sustainable Food Systems, Second Edition. CRC press, Boca Raton
- Houdret A (2012) The water connection: Irrigation and politics in southern Morocco. Water Alternatives 5:284-303
- INNORPI (1989) Use of reclaimed water for agricultural purposes-Physical, chemical and biological specifications (in French), Tunisian standards. http://www.innorpi.tn/Fra/. Accessed 16 January 2018
- IWA (2000) Activated Sludge Models. The IWA Task Group on Mathematical Modelling for Design and Operation of Biological Wastewater Treatment, IWA publishing, London
- IWMI (2007) Agricultural use of marginal-quality water-opportunities and challenges. http://www.iwmi.cgiar.org/assessment/Water%20for%20Food%20Water%20for%20Life/Chapters/Chapter%2011%20MQ%20Water.pdf. Accessed 16 January 2018
- IWMI (1998) Global Water Scarcity Study
 http://www.iwmi.cgiar.org/About_IWMI/Strategic_Documents/Annual_Reports/1998/WSacarcity. Accessed
 16 January 2018
- Jhansi SC, Mishra SK (2013) Wastewater Treatment and Reuse: Sustainability Options. Consilience: The Journal of Sustainable Development 10:1-15. doi:10.7916/D8JQ10Q1
- Jimenez B, Asano T (2008) Acknowledge All Approaches: The Global Outlook on Reuse. Water 21:32–37
- Kalavrouziotis IK, Arambatzis C, Kalfountzos D, Varnavas SP (2011) Wastewater reuse planning in agriculture: the case of Aitoloakarnania, Western Greece. Water 3:988-1004. doi:10.3390/w3040988
- Katebi R, Johnson MA, Wilkie J (1999) Control and instrumentation for waste water treatment plants, Series on Advances in Industrial Control. Springer, London
- Kellis M, Kalavrouziotis IK, Gikas P (2013) Review of wastewater reuse in the Mediterranean countries, focusing on regulations and policies for municipal and industrial applications. Global Nest J 15:333-350
- Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ Pollut 152:686-692. doi:10.1016/j.envpol.2007.06.056

- Kihila J, Mtei KM, Njau KN (2014) Wastewater treatment for reuse in urban agriculture; the case of Moshi Municipality, Tanzania. Phys Chem of the Earth 72:104-110. doi:10.1016/j.pce.2014.10.004
- Kukul YS, Çalışkan ADÜ, Süer ANAÇ (2007) Arıtılmış atık suların tarımda kullanılması ve insan sağlığı yönünden riskler. Ege Üniv. Ziraat Fak. Derg 44:101-116
- Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:162-1627. doi: 10.1126/science.1097396
- Laera G, Cassano D, Lopez A, Pinto A, Pollice A, Ricco G, Mascolo G (2012) Removal of organics and degradation products from industrial wastewater by a membrane bioreactor integrated with ozone or UV/H2O2 treatment. Environ Sci Technol 46: 1010-1018. doi: 10.1021/es202707w
- Lamm FR, Camp CR (2007) Subsurface drip irrigation. In: Lamm FR, Ayars JE, Nakayama FS (eds) Microirrigation for Crop Production Design, Operation, and Management. Elsevier, Amsterdam, pp 473-551. doi: 10.1016/S0167-4137(07)80016-3
- Lazrova V, Bahri A (2005) Water reuse for irrigation. CRC press, Boca Raton
- Lazarova V, Asano T, Bahri A, Anderson J (2013) Milestones in Water Reuse, The best success story. IWA Publishing, London
- Lopez A, Pollice A, Lonigro A, Masi S, Palese AM, Cirelli GL, Toscano A, Passino R (2006) Agricultural wastewater reuse in southern Italy. Desalination 187:323-334. doi:10.1016/j.desal.2005.04.091
- Lonigro A, Montemurro N, Rubino P, Vergine P, Pollice A (2015) Reuse of treated municipal wastewater for irrigation in Apulia region: The "IN.TE.R.R.A." project. Envir Sci Policy J 14:1665-1674
- Luquet D, Vidal A, Smith M, Dauzat J (2005) 'More crop per drop': how to make it acceptable for farmers?.

 Agric Water Manag 73:108-119. doi:10.1016/j.agwat.2005.01.011
- Mascolo G, Balest L, Cassano D, Laera G, Lopez A, Pollice A, Salerno C (2010) Biodegradability of pharmaceutical industrial wastewater and formation of recalcitrant organic compounds during aerobic biological treatment. Biores Tech 101: 2585-2591. doi:10.1016/j.biortech.2009.10.057
- MED WWR WWG (2007) Mediterranean Wastewater reuse group. Mediterranean Wastewater Reuse Report.

 EU water initiative,WFD process. http://ec.europa.eu/environment/water/blueprint/pdf/med_final_report.pdf.

 Accessed 16 January 2018
- Michael I, Rizzo L, McArdell CS, Manaia CM, Merlin C, Schwarz T, Dagot C, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res 47(3):957-995. doi:10.1016/j.watres.2012.11.027

- Mizyed NR (2013) Challenges to treated wastewater reuse in arid and semi-arid areas. Environmental Science & Policy 25:186-195. doi:10.1016/j.envsci.2012.10.016
- Ministry of Water and Irrigation (MWI) (2015) National framework for decentralized wastewater management, Amman, Jordan
- Ministry of Water and Irrigation in Jordan (MWI) (2016) National Water Strategy 2016-2025. http://www.mwi.gov.jo/sites/en
 - us/Hot%20Issues/Strategic%20Documents%20of%20%20The%20Water%20Sector/National%20Water%20 Strategy(%202016-2025)-25.2.2016.pdf. Accessed 16 January 2018
- Molle B, Brelle F, Bessy J, Gantel D (2012) Which water quality for which uses? Overcoming overzealous use of the precautionary principle to reclaim waste water for appropriate irrigation uses. Irrig Drain 61:87-94. doi: 10.1002/ird.1662
- Molle B, Tomas S, Huet L, Audouard M, Olivier Y, Granier J (2016) Experimental Approach to Assessing Aerosol Dispersion of Treated Wastewater Distributed via Sprinkler Irrigation. Irrigation & Drainage Systems Engineering 9
- Nasr Abroug S (2014) Traitement et réutilisation des eaux uses traitées en Tunisie, ONAS. ONAS Rapport annuel
- National Research Council (NRC) (1996) Use of reclaimed water and sludge in food crop production. National Academy Press, Washington D.C
- Plan Bleu (2012) Water and climate change: which adaptation strategy for the Mediterranean?. Plan Bleu, Valbonne, Blue Plan Notes 23
- Pollice A, Laera G, Cassano D, Diomede S, Pinto A, Lopez A, Mascolo G (2012) Removal of nalidixic acid and its degradation products by an integrated MBR-ozonation system. J Hazardous Mat 203-204: 46-52. doi:10.1016/j.jhazmat.2011.11.072
- Rapaport A, Rousseau, Harmand J (2014) Procédé de traitement d'une ressource fluide, programme d'ordinateur et module de traitement associes, BREVET INTERNATIONAL. https://hal.inria.fr/hal-00859584. Accessed 16 January 2018
- Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci Total Environ 447:345-360. doi:10.1016/j.scitotenv.2013.01.032

- Rizk N, Ait-Mouheb N, Bourrié G, Molle B, Roche N (2017) Parameters controlling chemical deposits in microirrigation with treated wastewater. J Water Supply Res T. doi:10.2166/aqua. 2017.065
- Thebo AL, Drechsel P, Lambin EF, Nelson KL (2017) A global, spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows. Environ Res Lett. doi:10.1088/1748-9326/aa75d1
- TYPSA Consulting Engineers & Architects (2013) Updated report on wastewater reuse in the European Union.

 Service contract for the support to the follow-up of the Communication on Water scarcity and Droughts.

 April 2013. TYPSA-reference: 7452-IE-ST03_WReuse_Report-Ed1.doc,

 http://ec.europa.eu/environment/water/blueprint/pdf/Final%20Report_Water%20Reuse_April%202013.pdf.

 Accessed 16 January 2018
- UNWWDR (2017) UN-World Water Development Report, Wastewater the Untapped resource. http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/. Accessed 16 January 2018
- Vergine P, Saliba R, Salerno C, Laera G, Berardi G, Pollice A (2015) Fate of the fecal indicator Escherichia coli in irrigation with partially treated wastewater. Water Res 85:66-73. doi: 10.1016/j.watres.2015.08.001
- Vergine P, Lonigro A, Salerno C, Rubino P, Berardi G, Pollice A (2016) Nutrient recovery and crop yield enhancement in irrigation with reclaimed wastewater: a case study. Urban Water J 14:325-330. doi:10.1080/1573062X.2016.1141224
- Verlicchi P, Aukidy MA, Zambello E (2012) Occurrence of pharmaceutical compounds in urban wastewater:

 Removal, mass load and environmental risk after a secondary treatment-A review. Sci Total Environ
 429:123-155. doi:10.1016/j.scitotenv.2012.04.028
- Winpenny JT (1997) Demand management for efficient and equitable use. In: Kay M, Franks T, Smith L (eds)

 Water: economics, management and demand. EFN Spon, London, pp 296-303
- World Health Organization (1989) Health guidelines for the use of wastewater in agriculture and aquaculture, Report of a WHO Scientific Group. WHO Technical report series 778. World Health Organization, Geneva
- World Bank (2010) Improving wastewater use in agriculture. The World Bank- ETWWA. http://siteresources.worldbank.org/INTWAT/Resources/ESWWastewaterAg.pdf. Accessed 16 January 2018
- Yang Y, Li B, Zou S, Fang HHP, Zhang T (2014) Fate of antibiotic resistance genes in sewage treatment plant revealed by metagenomic approach. Water Res 62:97-106. doi:10.1016/j.watres.2014.05.019
- Yokokawa K, Namba R, Yamanaka O, Kurokawa F, Yamagata H (2013) Model based optimal control for SWRO process based on pilot plant data. IDA Journal of Desalination and Water Reuse 5:83-90. doi:10.1179/2051645213Y.0000000010