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Long chain fatty acids bind to carnitine and form long chain acyl carnitine (LCAC), to enter into themitochondria.
They are oxidized in the mitochondrial matrix. LCAC accumulates rapidly under metabolic disorders, such as
acute cardiac ischemia, chronic heart failure or diabetic cardiomyopathy. LCAC accumulation is associated with
severe cardiac arrhythmia including ventricular tachycardia or fibrillation. We thus hypothesized that
palmitoyl-carnitine (PC), altersmitochondrial function leading to Ca2+ dependent-arrhythmia. In isolated cardiac
mitochondria from C57Bl/6 mice, application of 10 μM PC decreased adenine nucleotide translocase (ANT)
activity without affecting mitochondrial permeability transition pore (mPTP) opening. Mitochondrial reactive
oxygen species (ROS) production, measured with MitoSOX Red dye in isolated ventricular cardiomyocytes,
increased significantly under PC application. Inhibition of ANT by bongkrekic acid (20 μM) prevented PC-
induced mitochondrial ROS production. In addition, PC increased type 2 ryanodine receptor (RyR2) oxidation,
S-nitrosylation and dissociation of FKBP12.6 from RyR2, and therefore increased sarcoplasmic reticulum (SR)
Ca2+ leak. ANT inhibition or anti-oxidant strategy (N-acetylcysteine) prevented SRCa2+ leak, FKBP12.6 depletion
and RyR2 oxidation/S-nitrosylation induced by PC. Finally, both bongkrekic acid and NAC significantly reduced
spontaneous Ca2+ wave occurrences under PC. Altogether, these results suggest that an elevation of PC disturbs
ANT activity and alters Ca2+ handling in a ROS-dependent pathway, demonstrating a new pathway whereby
altered FA metabolism may contribute to the development of ventricular arrhythmia in pathophysiological
conditions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In physiological conditions, the high-energy demand required for
cardiac function is mainly provided by long-chain fatty acids (FAs).
The rate of FAs uptake and oxidation is directly related to the level of
circulating FA [1]. As soon as the FAs supply increases, the cardiac
efficiency, defined as the ratio between the cardiac power and the

oxygen consumption drops [2]. In skeletal muscle, under high acute
FAs supply, uncoupling protein 3 (UCP3) may export fatty anions from
the mitochondrial matrix leading to a reduction of the mitochondrial
proton motive force and so of ATP synthesis [3]. In normal heart,
UCP3 expression level is low, and FAs-mediating uncoupling has been
attributed to the adenine nucleotide translocase (ANT) [4–6]. Before
entering into the mitochondria, FAs are first esterified to give fatty-
acyl-CoA and then the acyl group is transferred to carnitine to form
acylcarnitine. Long chain acyl carnitine (LCAC) such as palmitoyl-
carnitine (PC) is shuttled in the mitochondria and converted again in
fatty-acyl-CoA to be β-oxidyzed [7]. Changes in FA metabolism affect
the LCAC levels and the concentration increases from 2–6 μM to
10–30 μM during diabetic cardiomyopathy, genetic disorders or
ischemic heart failure [8–11]. LCAC accumulation contributes to the
ventricular dysfunctions as ventricular extrasystole, tachycardia
and ventricular fibrillation [12–14]. Similarly, cardiac ANT deficiency
in human is associated with ventricular arrhythmia [15]. Although a
decrease in LCAC accumulation is known to reduce ventricular
arrhythmias, the mechanisms whereby LCAC induces ventricular
arrhythmia remain elusive.
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In addition to energy expenditure, acute application of the long-chain
free FA palmitate disturbs Ca2+handling in healthy cardiomyocytes via a
mechanism involvingmarkedly increased reactive oxygen species (ROS)
production [16]. Similarly, electro-mechanical dysfunction induced by
PC has been linked to an early increase in cellular ROS production [17].
More generally, increased ROS production impairs cellular Ca2+

handling by interfering with a wide range of proteins implicated in
excitation–contraction coupling, e.g. the sarcoplasmic reticulum (SR)
Ca2+ release channels (type 2 ryanodine receptors, RyR2) [18,19].
RyR2 contains several thiols groups that are highly sensitive to redox
modification and, RyR2 oxidation may dissociate the regulatory protein,
FKBP12.6, from the channel to promote SR Ca2+ leak [20,21]. Although
PC accumulation induces Ca2+ overload and initiates transient inward
current [22], whether LCAC affects RyR2 function through redox modifi-
cation is still unknown.

In the present study we aimed to determine (1) whether acute
application of PC on wild type (WT) cardiomyocytes affects Ca2+

handling through redox modification of RyR2 and (2) whether
regulation of ANT activity may account for these changes. We found
that PC-altered ANT activity leading to an increased mitochondrial
ROS production, RyR2 oxidation and SR Ca2+ leak that results in the
triggering of cellular Ca2+ waves and ventricular extrasystoles.

2. Material and methods

2.1. Chemicals

Fluo-4 AM, and MitoSOX Red were from Molecular Probes/
Invitrogen. Carnitine (C), octanoyl-L-carnitine (OC), palmitoyl-
L-carnitine (PC), oleoyl-L-carnitine (OlC), N-acetylcysteine (NAC),
bongkrekic acid (BA), and isoprenaline hydrochloride were
purchased from Sigma-Aldrich (France). Ap5A was from VWR
(France). All compounds were prepared as stock solutions in appro-
priate solvents. On the day of the experiment, stock solutions were
diluted to the desired final concentration in the bath solution.
Control solutions contain the same solution of solvent when
required (1% dilution of stock solution).

2.2. Isolated mitochondria

Mice hearts were excised and homogenized with the Dounce
homogenizer. Then,mitochondriawere isolated by differential centrifu-
gation [23]. Mitochondrial protein contents were determined using
micro BCA assay (BCA Protein Assay Kit, Thermo Fisher Scientific).

In order to measure mitochondrial permeability transition pore
(mPTP) opening, isolated heart mitochondria were diluted in 200 μl of
hypo-osmotic buffer composed of (inmM): 200 saccharose, 5 succinate,
10 MOPS, 0.01 EGTA, 1 H3PO4 (pH adjusted at 7.4), and incubated
with different PC concentrations. mPTP opening was estimated by
spectrophotometry where the decrease of optical density at 540 nm
reflects the mitochondrial swelling. Different Ca2+ concentrations
(6, 25, 50 μM)were used as positive control [24]. The effects of different
treatments were normalized according to the following equation
(NT − X) / (NT − Ca2+ 50 μM) ∗ 100, where NT is the value
obtained in non-treated mitochondria, X is the value obtained with
the test condition, and “Ca2+ 50 μM” is the value obtained with
50 μM of Ca2+.

A non-radioactivity assay was used to estimate ANT activity [25].
Briefly, the ADP/ATP exchange rate was evaluated by following
NADPH fluorescence (λexc: 360 nm, λem: 465 nm) in the presence of
6.5 μM external ADP and 2.5 mM glucose, 1 E.U. hexokinase, 0.2 mM
NADPH, 0.5 E.U. glucose-6-phosphate dehydrogenase. An increase of
NADPH fluorescence reflects an increase of ANT activity as previously
described [26,27]. 10 μM of P1P5-diadenosine-5′-pentaphosphate
(Ap5A) was used to determine the influence of adenylate kinase-
dependent ATP synthesis.

2.3. Cell isolation

All procedures conformed to European Parliament Directive 2010/
63/EU and the 22 September 2010 Council on the protection of animals,
and were approved by the institutional Ethics Committee for Animal
Experiments, Languedoc Roussillon (N CEEA-LR-12080).

7 weeks-old C57Bl/6 male mice (Centre d'élevage Janvier, Le Genest
Saint Isle, France) were killed by rapid cervical dislocation. Hearts were
excised, mounted on the Langendorff apparatus and retrogradely
perfused with dissociation buffer contained (in mM): 113 NaCl, 4.7
KCl, 0.6 KH2PO4, 0.6 Na2HPO4, 1.2 MgSO4, 12 NaHCO3, 10 KHCO3, 10
Hepes, 30 Taurine (pH 7.4 adjustedwith NaOH) and 0.1mg/ml Liberase
TM Research Grade (Roche Diagnostic, Germany). After enzymatic
dissociation, hearts were mechanically dissociated in the same solution
without enzyme. Cardiomyocytes were then filtered and resuspended
in the dissociation buffer where Ca2+ was reintroduced gradually to
reach a final concentration of 1 mM Ca2+ [16].

2.4. Confocal imaging

Cells were placed in a bath chamber perfusedwith a Tyrode solution
(in mM): 135 NaCl, 4 KCl, 1.8 CaCl2, 1 MgCl2, and 2 HEPES (pH 7.4
adjusted with NaOH) supplemented or not with 10 μM of palmitoyl-
L-carnitine (PC10). The bath chamber was placed on the stage of a
Zeiss LSM 510 inverted confocal microscope (Zeiss, LePecq France)
equipped with a 63× lens (oil immersion, numerical aperture,
N.A. = 1.2) allowing the measurement of Fluo4-AM and MitoSOX
Red fluorescence.

To measure cytoplasmic Ca2+ transients and spontaneous RyR2
activities (i.e. Ca2+ sparks), isolated cardiomyocytes were loaded for
15 min with the permeant Ca2+ indicator Fluo4-AM (3 μM, Molecular
Probes), at room temperature. All measurements were performed in
line-scan mode (1.5 ms/line), and scanning was carried out along the
long axis of the cell. An excitation wavelength of 488 nm was used,
and emitted light was collected through a 505 nm long-pass filter. The
laser intensity used (3%–6% of themaximum) had no noticeable delete-
rious effect on the fluorescence signal or cell function over the course of
the experiment. Ca2+ transient were recorded under field stimulation
(10 V at 1 Hz). Analyses were performed using ImageJ software. To
enable comparisons between cells, fluorescence signals were divided
by the minimal fluorescent (F0) obtained immediately before the 1 Hz
stimulation pulse. The SR Ca2+ content was assessed by measuring
the amplitude of cytosolic Ca2+ transients induced by the rapid applica-
tion of caffeine (10 mM). Spontaneous Ca2+ sparks were recorded in
quiescent cells following 5 min stimulations in order to reach steady
state SR-Ca2+ content. Ca2+ sparks frequency was analyzed using
ImageJ software with the Sparksmaster plugin [28].

TMRM was used to measure mitochondrial membrane potential
(ΔΨm) [29]. Isolated cardiomyocytes were loaded with TMRM
(10 nM) for 20 min at room temperature. Confocal images of TMRM
fluorescence were obtained by excitation at 568 nm while measuring
the emitted light at 585 nm. TMRM fluorescence was measured in five
different areas in each cell to minimize the subcellular variability in
ΔΨm. Images were taken every minute and fluorescence signals were
normalized to the fluorescence measured in each cell at the start of
the experiment, which was set to 100%. At the end of each experiment,
cells were exposed to the mitochondrial uncoupler FCCP (10 μM) to
determine the dynamic range of the dye.

Mitochondrial ROS production was measured using MitoSOX Red
dye. Cardiomyocytes were incubated 45 min at 37 °C with MitoSOX
Red [16]. Cells were perfused with the Tyrode solution and field stimu-
lated during 5 min to reach a steady state. Then the PC solution was
perfused during 15 min. x-y confocal images of the emitted light at
585 nm were recorded every 2 min intervals by excitation at 488 nm.
The first acquisition was done after 1 min of Tyrode perfusion.
Fluorescence changes, measured after 10 min of PC application, were
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normalized to the steady state values recorded after 5 min of Tyrode
perfusion (Fig. 3B).

2.5. Cellular arrhythmia

Cellular arrhythmias, such as abnormal Ca2+waves,were quantified
with the IonOptix® system (Hilton, USA) [30,31]. Cardiomyocyteswere
loaded with the ratiometric dye 30 min at RT with 10 μM indo-1
AM (Invitrogen) and perfused with a Tyrode solution containing
1 nM isoprenaline. Cardiomyocytes were field-stimulated at 3 Hz
(20 V, 1 ms), and simultaneously illuminated at 305 nm using a xenon
arc bulb light. Indo-1 AM fluorescence emitted at 405 nm and 480 nm
was recorded simultaneously using IonOptix® acquisition software
(Hilton). To record spontaneous Ca2+ waves in the resting condition,
stimulation was stopped for 30 s once Ca2+ transient steady state was
reached.

2.6. RyR2 biochemistry

Using Langendorff technique, the whole heart was perfused
10 min with Tyrode's solution containing or not PC10 and/or BA.
Atria and right ventricles were then excised and the left ventricles
were quickly frozen. Left ventricle was lysed in 1 ml of a buffer
containing (in mM) 10 Tris-maleate (pH 6.8), 35 NaF, 1% Triton and
a cocktail of protease inhibitors (Roche 11873580001). An anti-RyR
antibody was used to immunoprecipitate RyR2 from 500 μg of left
ventricular homogenate. Samples were incubated with an anti-RyR
antibody in 0.5 ml of a modified RIPA buffer (10 mM Tris–HCl,

pH 7.4; 150 mM NaCl; 1% Triton; 5 mM NaF and protease inhibitor
cocktail) for 2 h at 4 °C. The immune complex was incubated with
protein A/G magnetic beads (Pierce 88802) at 4 °C for 2 h, after
which the beads were washed out three times with RIPA buffer. To
detect RyR2 protein oxidation, the immune complex was treated
with 2.4 μM dinitro-phenylhydrazine (DNPH) and the DNP-
derivatized carbonyls were detected using on Oxyblot Protein
oxidation detection Kit (Millipore S7150). Proteins were separated
on SDS/PAGE gels and transferred onto nitrocellulose membranes
for 1 h at 100 V. The immunoblots were prepared using antibodies
against RyR (1:1000), anti Cys-NO antibody (Sigma-Aldrich N5411,
1:1000), anti-DNPH (1:300) and anti-FKBP12.6 (RD System AF
4174, 1:1000). All immunoblots were developed and quantified
using the Odyssey infrared imaging system (LICOR Biosystems) and
infrared-labeled secondary antibodies.

2.7. Electrocardiogram recording

Mice were equipped of subcutaneous implantable devices
(PhysiothelTAE-F10 model, Data Sciences International, USA). Surgical
implantation of ECG devices was realized under general gaseous
anesthesia (2.5% isoflurane/O2, Iso-vet, Piramal Healthcare UK) and
monitoring, on retro-controlled heating pad. Lidocaïne was solely
disposed on the wound after surgery during 2 days of recuperation
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and experiments began one week after surgery. ECGs were recorded
using IOX and analyzed with ECG auto software (EMKA technologies,
France). Heart rate, PR, QRS, and QT intervals were measured during
the 6 h after 100 μL intravenous (IV) injection of a physiological serum
solution (control) or after PC10. Experiments were performed in the
samemice after one day of clearance. QT interval was defined between
the first deviations from an isoelectric PR interval until the return of the
ventricular repolarisation to the isoelectric TP baseline. This method
included in the measure the low-amplitude portion of the T-wave
and allows a complete ventricular repolarization of ventricles. The
QT correction was performed with the adapted Bazett's formula of

Mitchell. The triggering of spontaneous arrhythmia as single or in salvos
ventricular extrasystoles was counted after control or PC10 challenge.
The housing, the recording and the analyses of ECG respected the
Lambeth convention.

2.8. Statistical analysis

Data are presented as mean ± SEM. Statistical significance was
defined as *p b 0.05, **p b 0.01, and ***p b 0.001 using Student's t test
(paired or unpaired) or analysis of variance (one- or two-way),
followed by a Bonferroni selected-comparison test. The n represents
the number of cells and N the numbers of animals studied.

3. Results

3.1. Effects of palmitoyl-carnitine on ANT activity

Depending on the FAs nature, ANT activity is regulated differentially.
For instance, free FAs activates ANT whereas palmitoyl-CoA inhibits it
[5]. Here we first determined whether PC form would affect ANT activ-
ity. We used an ADP/ATP translocase assay on ventricular isolated
mitochondria as previously described [23]. This assay is based on
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NADPH fluorescence measurement upon ADP application (6.5 μM).
The subsequent NADPH formation depends on both the adenylate
kinase 2 (AK2) and the ANT activities. We thus used diadenosine-
pentaphosphate (Ap5A, 10 μM) and bongkrekic acid (BA, 20 μM),
specific inhibitors of AK2 and ANT respectively in order to differentiate
both activities (Fig. 1A) [23]. In the presence of 2.5 μM PC (PC2.5)
NADPH fluorescence, with or without Ap5A, was unchanged whereas
10 μMPC (PC10) decreased NADPH formation in presence or in absence
of Ap5A (Fig. 1B). In the presence of BA, PC2.5 and PC10 were ineffec-
tive, indicating that PC10 specifically decreased the ATP/ADP
translocase activity without affecting AK2.

Under stress conditions, ANT associated with other mitochondrial
proteins, such as cyclophilin D, forms the mitochondrial permeability
transition pore (mPTP) [32]. To determine whether PC affects mPTP
formation, we performed a mitochondrial-swelling test [24] (Fig. 2). In
the presence of PC2.5 or PC10, the absorbance was unchanged whereas
application of Ca2+ (50 μM) as a positive control induced a drop of
optical density. Altogether these results show that PC10 modulates
ANT activity without affecting mPTP opening.

3.2. Effects of palmitoyl-carnitine on mitochondrial ΔΨm and ROS
production

To estimate the uncoupling effects of PC10, wemeasuredmitochon-
drial membrane potential (ΔΨm) using TMRM on intact ventricular
cardiomyocytes. FCCP (10 μM) was applied at the end of each experi-
ments to fully uncouple and dissipate ΔΨm. (Fig. 3A) PC10 application
decreases TMRM fluorescence by ~20% whereas in the presence of BA,
PC10 was ineffective (Fig. 3A), indicating that BA prevents uncoupling
mediated by PC10 [4,6]. We next measured mitochondrial ROS
production using MitoSOX Red on intact ventricular cardiomyocytes
[16]. Application of PC10 significantly increased mitochondrial ROS
production by ~20% (122.4±6.4 vs. 101.6±0.9; Fig. 3C, D). In presence
of the ANT inhibitor, BA (20 μM), PC10 was unable to increase
mitochondrial ROS production (Fig. 3D). When applied with the mPTP
inhibitor, cyclosporine A (CsA, 0.1 μM), PC10 significantly increased
MitoSOX Red fluorescence to the same extent than in the absence of

CsA (Fig. 3D). These results indicate that PC increases mitochondrial
ROS production through its effects on ANT and independently of mPTP.

3.3. Effects of palmitoyl-carnitine on Ca2+ transients

PC has been reported to increase intracellular Ca2+ level on quies-
cent cardiomyocytes, however the effects of PC on triggered Ca2+ tran-
sients is unknown [33]. In intact isolated ventricular cardiomyocytes,
application of PC10 significantly decreased Ca2+ transient amplitude
(Fig. 4A, C) as well as SR Ca2+ content (Fig. 4B). The use of carnitine
alone (10 μM) or a middle chain fatty acid, octanoyl-carnitine (10 μM)
did not affect Ca2+ transient amplitude. This result suggests that the
decrease of Ca2+ transient amplitude is specific to PC. NAC (20 mM), a
broad-spectrum anti-oxidant, prevented PC10-induced Ca2+ transients
decrease, whereas DPI (diphenyleneiodonium), an inhibitor of NADPH
oxidase (NOX) was ineffective (Fig. 4B). Although, PC10 decreased
Ca2+ transients' amplitude, the Ca2+ transients' decay was not affected
(Fig. 4D). To summarize, these results indicate that LCAC affect SR
release of Ca2+ through an increased ROS production independently
of NOX activity.

3.4. Effects of palmitoyl-carnitine on SR Ca2+ leak

We next determined whether PC10 affects RyR2 activities by mea-
suring the SR spontaneous Ca2+ release events (Ca2+ sparks) using
confocal microscopy. In intact isolated ventricular cardiomyocytes,
application of PC10 significantly increased Ca2+ sparks frequency
reflecting a SR Ca2+ leak (Fig. 5A, B) whereas in the presence of BA
(20 μM), PC10was ineffective (Fig. 5B). Similarly, when cardiomyocytes
were incubated with the non-specific antioxidant, NAC (20 mM), PC10
did not affect Ca2+ sparks frequency (Fig. 5A, B). It is to note that BA and
NAC alone did not affect calcium sparks frequency. In addition sparks
frequency was not affected by carnitine or octanoyl-carnitine (Fig. 5C).
These results indicate that LCAC only induce SR Ca2+ leak via ANT
activity and ROS production.

Increased oxidation state of RyR2 may account for SR Ca2+ leak [18,
21]. Therefore, we assessed RyR2 post-translational modification in left
ventricle from heart perfused for 10 min with either PC10 alone or
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PC10 + BA (20 μM), PC10 + NAC (20 mM) (Fig. 6). We observed that
PC10 increased both RyR2 oxidation and S-nitrosylation (Fig. 6C, D),
and a dissociation of FKBP12.6/RyR2 complex (Fig. 6E). BA or NAC
alone did not affect the basal RyR2 oxidation and S-nitrosylation state
and the FKBP12.6/RyR2 interaction. However, they both partially
decreased the RyR2 oxydation and S-nitrosylation induced by PC10
(Fig. 6). Similarly, they reduced the dissociation of FKBP12.6 from
RyR2 macromolecular complex induced by PC10 application (Fig. 6E).
To sum up, PC10 increases SR-mediated Ca2+ leak through RyR2
oxidation, S-nitrosylation and FKBP12.6 dissociation from RyR2. PC10-
induced RyR2 post-translational modification results from reduced
ANT activity and mitochondrial ROS production.

3.5. Effects of palmitoyl-carnitine on spontaneous Ca2+ waves and
ventricular arrhythmia

In pathological conditions, an increased SR Ca2+ leak is known to
initiate Ca2+ waves and to trigger arrhythmic events, originating from
delayed after depolarization [34]. To investigate the propensity of intact
ventricular cardiomyocytes to generate spontaneous Ca2+ waves in the
presence of PC10, we field-stimulated cardiomyocytes, loaded with the
Ca2+ indicator indo-1-AM, during 30 s at 3 Hz frequency. Spontaneous

Ca2+ waves were detected during a subsequent resting period (30 s).
While in control conditions, the diastolic Ca2+ remained stable during
the rest period, after PC10 application, about 70% of the cardiomyocytes
triggered Ca2+ oscillations and/or waves, indicative of an arrhythmic
behavior (69.3 ± 3.6%, Fig. 7B). Confocal microscopy experiments
show that PC10-induced Ca2+ waves originate from an increase in
Ca2+ sparks events (Fig. 7C). Again, when cardiomyocytes were
incubated with BA or NAC, PC10 failed to trigger spontaneous Ca2+

events (Fig. 7B). PC10 propensity to induce arrhythmic events was
further studied in vivo by telemetric approach (Fig. 8). Although IV
injection of PC10 did not significantly impact basal ECG parameters
(Fig. 8A–E), PC10 increased the occurrence of ventricular extrasystoles
(Fig. 8F–G). In addition we also observed in 2 out of 6 PC10 treated
mice the triggering of non-sustained ventricular tachycardia as defined
by the Lambeth conventions [35], whereas untreated mice did not
(Chi2 = 0.12; Fig. 8H). None of the untreated and treated PC10 mice
developed sustained ventricular tachycardia.

4. Discussion

LCAC level varies dependingon themetabolic state andmay increase
under pathophysiological conditions. In the present study, we
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demonstrate that PC-induced decrease in ANT activity causes an
increased mitochondrial ROS production and consequently RyR2
oxidation and S-nitrosylation, and FKBP12.6 dissociation. These RyR2
post-translational modifications trigger SR Ca2+ leak and promotes
the occurrences of diastolic Ca2+ waves and arrhythmic events.

In physiological conditions, the heart is preferentially fuelled with
FAs. However, compared to glucose, an increase in FAs consumption
reduces cardiac efficiency. Among themechanisms involved, a modula-
tion of ANT has been suggested [2]. Indeed, increased palmitoyl-CoA
content inhibits ANT both from the extra-mitochondrial side and the
mitochondrial matrix [36]. Altered ANT activity would reduce the
ATP/ADP turnover and subsequently the ATP synthase activity. Conse-
quently, it would increase mitochondrial ROS production from the
electron transport chain [37]. Accordingly, PC-induced ROS production
has been ascribed to an incomplete blockade of the respiratory chain
[38]. In the present study the decrease in ANT activity induced by PC
is presumably due to its conversion into palmitoyl-CoA rather than a
direct effect, as LCAC does not inhibit ANT on submitochondrial parti-
cles [5,39,40]. In addition, free fatty acids have been proposed to uncou-
ple mitochondria via the ANT either through an allosterical stimulation
of H+ transfer or through the translocation of fatty acid under their
anionic form. Alternatively, fatty acid anions could also increase
negative surface charges facilitating H+ transfer trough the ANT [2].
Consequently, an increased uncoupling through the ANT may compete
with the ATP4−/ADP3− translocation capacity of the ANT as reported in

Fig. 1, associated with ΔΨm dissipation (Fig. 3A and [4,6]) and
mitochondrial ROS production (Fig. 3D). Conversely, bongkrekic acid,
which inhibits both the uncoupling and the ATP4−/ADP3− transport
(Fig. 1; [4,6]), prevents ΔΨm and mitochondrial ROS production.

A cellular elevation of ROS leads to the oxidation of numerous
proteins resulting in myocardial dysfunction [41]. Among ROS potential
targets, calcium-handling proteins are particularly sensitive to redox
modulation [18]. RyR2 is highly sensitive to redox state due to the
large number of cysteines that composed the homo-tetramer. The
nature and the number of oxidized and/or S-nitrosylated cysteine
residues directly impact on the channel properties. Indeed, a RyR2
monomer contains 89 cysteine residues and 2 per FKBP12.6 protein,
and it was estimated that around 20 cysteine residues per subunit are
free (80 per tetrameric RyR2). It was also estimated that channel
activation requires a poly-S-nitrosylation where 3 sites per subunit
(∼11 per tetramer) induced a maximal RyR2 activation, whereas ∼2
sites per RyR2 did not significantly affect RyR2 open probability.
Meaning that a low level of RyR2 S-nitrosylation per se does not affect
significantly RyR2 function. On the other hand, oxidation of N7 thiols
per subunit induces an irreversible activation of the channel through
disulfide bonds formation between RyR2 subunits [42–44]. Irreversible
RyR2 oxidation unambiguously increases RyR2 open probability and SR
Ca2+ leak, however the level of RyR2 S-nitrosylation, which is
reversible, has been proposed to increase or decrease RyR2 open
probability (for review see [45,46]). Indeed, more than S-nitrosylation
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or oxidation itself, the nitroso/redox balance is critical for the modula-
tion of RyR2 function. In physiological conditions, RyR2 is endogenously
S-nitrosylated at a low level, which does not affect the RyR2 open
probability. Nevertheless, a decrease in the basal S-nitrosylation level
increases the number of free cysteines available for oxidation. Conse-
quently, the RyR2 oxidation may increase which leads to SR Ca2+ leak
[47,48]. In this context RyR2 S-nitrosylation competes with the RyR2
oxidation level and is considered as a protective reaction to counteract
an irreversible thiol oxidation of the RyR2. On the other hand, in
pathophysiological conditions where NO homeostasis is altered and
the number of S-nitrosylated cysteine is substantially increased, SR
Ca2+ leak is enhanced [31,46]. However, in pathological conditions,
the nitroso/redox balance was not systematically measured and a
concomitant increase in oxidation may also contribute to SR Ca2+ leak
[31]. In the present study, increase S-nitrosylation might be a compen-
satory mechanism to limit the extent of thiol oxidation or might
contribute, in synergy with oxidation, to altered Ca2+ release. One
challenging perspective of the present work would be to determine
the specific S-nitrosylated- and/or oxidized cysteines that are modified
under PC treatments compared to control. However, in the present
study, the use of both anti-SNO and anti-DNPH antibodies does not
allow us to identify the number and the specific location of the S-
nitrosylated and/or oxidized cysteine. A recent study identified 21
cysteine residues sensitive to oxidation in RyR1 isoform that are
conserved in RyR2 isoforms [49]. Most importantly several cysteine
residues are located in a regulated domain of the cytoplasmic part of
the channel such as the FKBP12 interacted site [49]. Although

involvement of these specific cysteine residues in the displacement of
the FKBP12/FKBP12.6 under oxidation and/or poly-S-nitrosylation is
still speculative, these results reinforce the hypothesis that RyRs/
FKBPs interactions in heart and skeletal muscle might be directly
sensitive to oxidation and/or poly-S-nitrosylation [20,21].

Normal closing of RyR2 in diastole is a key parameter, which pre-
vents Ca2+ leak and subsequent SR Ca2+ depletion, thereby preserving
appropriate conditions for an optimal Ca2+ release during systole.
Increased RyR2 oxidation and/or S-nitrosylation are associated with
both a decrease in FKBP12.6 binding affinity to the channel and an
increase RyR2 Ca2+ sensitivity [20,21]. Therefore, disruption of the
RyR2–FKBP12.6 interaction increases diastolic SR Ca2+ leak through
increased RyR2 activity [50]. As a matter of fact, PC-induced RyR2
oxidation and S-nitrosylation disturb diastolic Ca2+ homeostasis with
decreased peak Ca2+ transients and triggering of ectopic Ca2+ waves.
Increased diastolic SR Ca2+ leak and Ca2+ waves destabilize secondary
resting membrane potential and triggered ectopic action potential [51].
When SR Ca2+ leak exceed the SR Ca2+ uptake capacity, Ca2+ extrusion
from the Na+/Ca2+ exchanger is increased, generating an inward
current [51]. In the mean time, the increased SR Ca2+ leak decreases
the outward component of the inward rectifying potassium current
(IK1) [52,53]. The increased inward Na+/Ca2+ exchanger current and
reduced outward IK1 synergistically contribute to the genesis of delayed
afterdepolarizations [51–53]. Accordingly PC has been reported to
trigger transient inward current and delayed afterdepolarization in
adult ventricular cardiomyocytes [22]. Moreover, NAC treatment
reduces RyR2 oxidation, S-nitrosylation and prevents RyR2 SR Ca2+
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leak as previously reported [31]. This confirms the deleterious role of
ROS on Ca2+ handling and subsequent arrhythmic events [29,47,54].
In addition, we showed that the blockade of ANT activity by BA reduces
PC10 effects on RyR2. These results reveal a direct link between ANT
dysfunction, ROS production and RyR2 function. Although in the
present study PC10 application did not significantly affect Ca2+

transients decay, cumulative deleterious effects of PC on other Ca2+

handling proteins could not be excluded [55].
The uptake of cardiac FAs is directly correlated to the plasmatic

level of non-esterified FAs [56]. Under metabolic stress, plasmatic FA
concentration increases dramatically as well as FAs covalently bound
to coenzyme A or carnitine [13,51,57]. For instance a rapid increase of
plasmatic FA concentration in diabetic cardiomyopathy rats is corre-
lated with a four-fold increase of LCAC in myocardium [57] and
mitochondrial dysfunction during metabolic syndrome is associated
with arrhythmogenic events [58]. Moreover, increased levels of long
chain FAs have also been suspected to be involved in unexplained
sudden death in infants with conduction defects or ventricular
fibrillation and tachycardia [59]. In addition to LCAC accumulation,
acute ischemia is also associated with a decreased ANT activity,
independently of any change in oxidative phosphorylation, [60–62]
and an increased RyR2 oxidation leading to reperfusion injury [63].
Similarly, PC level was shown to correlate with NYHA classification
and high plasma levels of PC were significantly associated with
serious adverse events and poor prognostic of heart failure patients
[64]. Finally, decreased ANT function per se triggers a progressive
cardiomyopathy and elicits arrhythmic events [15,65–67] associated
with mitochondrial ROS production [65,68].

To conclude growing evidences demonstrate a link between altered
FAs acids metabolism and arrhythmia in various pathological and stress
conditions in both animal model and human. The present study
proposes a novel model whereby mitochondrial ANT-induced ROS
production is central for FA-induced arrhythmias. Strategies based on
a re-equilibration of mitochondrial function could be promising to
limit PC accumulation and subsequent fatal arrhythmias in a wide
range of pathology [12,69].
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