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Predicting mechanical degradation indicators of silver fir wooden 
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Jean Baptiste Barré1,2 · Franck Bourrier1,2 · Lauric Cécillon1,2 · Loïc Brancheriau4 · 

David Bertrand3 · Marie France Thévenon4 · Freddy Rey1,2 

of determination (r2
p
) of 0.79. The Dw

MOR
 model has a 

RMSEP of 0.13 and a r2-value of 0.91. These results high-
light the considerable potential of NIRS in assessing the 
extension of decay in wooden logs.

1 Introduction

Ecological engineering structures, such as wooden check 
dams and timber log crib walls, are structurally based on 
timber structures. These structures, made from a frame-
work of logs, require specific attention since wood may be 
degraded by a microbial community composed of a vari-
ety of micro-organisms or insects. In wet conditions, the 
most efficient ones are the wood-rotting Basidiomycetes 
(brown and white rots), Ascomycetes (soft and white rots) 
and Deuteromycetes (soft rot) that use the wood?s chemi-
cal components for their nutrition. This results in losses in 
wood strength and stiffness with potential risk for the struc-
ture’s integrity. For that reason, practitioners have based 
their field investigations mainly on direct or indirect den-
sity measurement such as resistance drilling or penetration 
methods (Kasal and Tannert 2011; Mkip and Linkosalo 
2011) and visual inspections. However, wood has already 
lost significant strength when fungi effects become visible 
and the mass loss is quantifiable (Wilcox 1978). Alterna-
tive approaches used, for example, on time-domain reflec-
tometry water content (Previati et al. 2012) and stress-wave 
measurement (Dackermann et  al. 2013) provide experts 
with more relevant information. These approaches are 
based on the in-situ measurement of wood decay indicators 
such as mass loss, hardness loss and mechanical property 
variations.

Specific gravity is a widely used indicator to quantify 
the extent of fungal attack. However, strength (Haines et al. 

Abstract The management of ecological engineering 
structures making up a timber structure requires periodical 
evaluations, including the level of decay of the constituent 
parts of the timber structure. Methods exist to measure the 
level of decay in the laboratory or in the field. However, 
they are rarely suitable for the conditions of ecological 
engineering structures, or give partial information. The aim 
of this study was to predict two mechanical degradation 
indicators (Dw

MOE
 and Dw

MOR
) of silver fir (Abies alba) 

wooden strips during microbial decomposition using near-
infrared spectroscopy (NIRS). For 1.5 years, the degrada-
tion of 180 squared wooden strips, 30 mm wide and 500 
mm long, buried in a greenhouse near Grenoble, France 
(Altitude: 200 m) was monitored. Dw

MOE
 and Dw

MOR
 

were set from the normalized losses in modulus of elastic-
ity (MOE) and modulus of rupture (MOR), two mechani-
cal properties classically used for timber-structure design. 
A calibration set of 109 samples was selected to build two 
separate predictive models of Dw

MOE
 and Dw

MOR
 using 

partial least square regression. The NIR-based models 
applied to a validation set of 47 samples indicated good 
prediction performance. The model has a root mean square 
error of prediction (RMSEP) of 0.15 and a coefficient 
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1996) and stiffness (Przewloka et al. 2008) losses are more 
suitable indicators at the early stage of decay (Curling et al. 
2002). The fungi actually alter the lignocellulosic matrix 
by various mechanisms (Blanchette 1995), and therefore 
the mechanical properties (Rowell 2012). Mechanical prop-
erties are all the more important since structural design 
according to the Eurocode 5 standard (CEN 2005) is based 
on these properties. Thus, the modulus of elasticity (MOE) 
and the modulus of rupture (MOR) are of interest both for 
structural design and to define decay indicators. However, 
MOE and MOR remain impossible to measure in-situ using 
classical methods because a bench test is necessary. An 
alternative solution lies in the use of the near infrared spec-
troscopy (NIRS) applied to milled cores sampled on struc-
ture parts to predict changes in MOE and MOR.

Functional groups of the wood molecules submitted to 
an electromagnetic radiation vibrate and absorb a part of 
the radiation. NIRS (wavelengths from 800 to 2500 nm) 
measures this absorbance or reflection depending on the 
device used. The returned spectrum is analysed statisti-
cally to extract the meaningful information. The spectral 
data are often used to build predictive models of variables 
characterizing the data set. Previous studies (Tsuchikawa 
and Schwanninger 2013) have shown that MOE and MOR 
could be predicted from near infrared (NIR) spectra using 
multivariate statistics. Kelley et  al. (2004) obtained not 
only accurate predictions of these mechanical properties for 
solid loblolly pine (Pinus taeda) samples, but also, of their 
chemical compounds, i.e. lignin, glucose, mannose and 
extractives. Sandak et al. (2015a) also reported that NIRS 
has been used to investigate degradation in wood structural 
members. Fackler et al. (2007c) analysed chemical changes 
due to the fungal activity. Green et  al. (2010b) predicted 
levels of degradation in southern pine (Pinus spp.). Kelley 
et al. (2002) detected the chemical changes associated with 
brown-rot biodegradation of spruce wood.

However, they inoculated samples with only one fungus 
at a time and stored them in an incubator controlling humid-
ity and temperature. On the contrary, wood inoculated with 

a microbial community has never been studied by NIRS to 
assess the level of decay.

The aim of this study was to assess the decay extent of 
silver fir wooden strips degraded by a microbial commu-
nity using NIRS in semi-controlled conditions. First, the 
level of decay was defined from two degradation indicators 
Dw

MOE
 and Dw

MOR
. They were set from the normalized 

losses in MOE and in MOR, respectively, between intact 
and decayed states. Then, partial least square regressions 
were performed between spectra and Dw

MOE
 or Dw

MOR
 to 

establish a predictive model of these indicators.

2  Materials and methods

2.1  Wood samples preparation

As intra-tree mechanical properties variation is greater than 
inter-tree variation (Gonzalez-Rodrigo et al. 2013), a single 
freshly-cut log of European silver fir (Abies alba sp.) was 
selected to supply the 209 samples (600 × 30 × 30 mm3). 
No specific attention was paid to defects such as knots. Two 
pieces sized 50 × 30 × 30 mm3 were collected from each 
sample: one for moisture content (MC) measurement and 
the other for NIRS acquisition. The residual pieces sized 
500 × 30 × 30 mm3 were used for mechanical tests (intact 
state), then for the degradation process.

The degradation process took place inside a greenhouse 
between March, 2013 and October, 2014 in Grenoble, 
France (Fig.   1a). The progression of decay was assumed 
to be heterogeneous in the cross-section and in the longitu-
dinal direction. Nevertheless, the samples have been buried 
to limit the influence of heterogeneous fungal growth in the 
longitudinal direction compared to stakes in the field test 
according to the EN 252 standard (CEN 2014). One hun-
dred and eighty of the 209 samples were buried with two 
layers of different materials. The first layer was made of 
decayed silver fir debris collected in a silver fir forest stand. 
This layer included an appropriate fungal community that 

Fig. 1  Successive steps of sample installation in the greenhouse. a Intact samples divided into series; b samples covered with the first layer of 
woody debris; c samples covered by the second layer of soil
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had already been active (Fig.   1b). The second is a 5-cm 
local soil layer (Fig.   1c). The only controlled parameter 
during the degradation process was the MC of the samples, 
which was kept by soil humidification above the fibre satu-
ration point (FSP), i.e. 29% according to the Tropix data-
base (CIRAD 2011). The resistive wood moisture sensor 
Humitest Timb plus (Domosystem) was used to check MC 
in-situ. The 29 remaining samples were used to be mechan-
ically tested until rupture at the intact state.

In the greenhouse, the samples were divided into six sets 
of 30 samples. The sets were successively removed from 
the greenhouse after 44, 73, 112, 149, 178 and 505 days. 
The decayed samples were prepared for measurements sim-
ilar to that for the intact state: for each sample, two pieces 
sized 50 × 30 × 30 mm3 were collected for NIRS and den-
sity measurement. The residual sample,sized 400 × 30 × 30 
mm3, was kept for the mechanical test. Each sample was 
cleaned of soil and mycelium by careful brushing prior to 
measurement.

2.2  Measurement of moisture content and mechanical 

properties

Measurement of the MC and mechanical properties was 
based on the assumption that they were equally distrib-
uted within the entire specimen. The MC of the samples 
was calculated for both intact and decayed pieces (Eq. 1). 
The oven-dry weight (W

0
) was measured after sample dry-

ing until weight stabilization using a Memmert oven set at 
103.5 ◦C.

where W
h
 is the wet weight.

MOE and MOR were measured using three point bend-
ing tests shortly after taking the samples from the green-
house so that the variation in MC could be ignored. The 
cross-head loading velocity for all measurements was 2 
mm/min to remain in quasi-static conditions. The MOE was 
calculated in the initial linear part of the load-deflection 
curve using Eq. 2. For practical reasons, the span-to-depth 
ratio was limited to 13.33 for intact samples and 10.67 for 
decayed samples. As a consequence, the measured deflec-
tion f included both bending and shear effects. In this case, 
the calculated MOE corresponded to an apparent modulus 
of elasticity.

where F is the applied force, L the length between the two 
supports, f the deflection of the sample corrected by the 
indentations at the supports and the head-load, and I

G
 the 

moment of inertia of the cross section.

(1)MC = [(W
h
−W

0
)∕W

0
] × 100

(2)MOE =
F ⋅ L3

48 ⋅ f ⋅ IG

The MOR is defined from the maximum load supported 
by the sample using Eq. 3 (Dinwoodie 2000b).

where F
max

 is the maximum applied force, l the length 
between the two supports, b the sample width, h the sample 
height.

From these two properties, two mechanical indicators 
Dw

MOE
 and Dw

MOR
 were defined depending on each sam-

ple’s rate of degradation. They are considered as reference 
values used to build the predictive models. Dw

MOE
 is the 

normalized loss in the MOE of the same sample between 
intact and decayed states (Eq. 4).

where MOE
i
 and MOE

d
 are the MOE of a sample in intact 

and decayed states, respectively.
Dw

MOR
 is the normalized loss in the MOR. The MOR 

cannot be evaluated in intact and decayed states for the 
same sample because it has to be brought to failure to 
measure the MOR. Thus, the MOR of a set of 29 sam-
ples, randomly selected amongst 209 and not buried in the 
greenhouse were measured and averaged into one MOR

∗

i
 

value. Dw
MOR

 was next calculated for each sample accord-
ing to Eq. 5.

where MOR
∗

i
 is the mean MOR of 29 samples in the intact 

states, MOR
d
 the MOR of the sample in the decayed state.

This definition of the indicators based on normalization 
allows one to limit the shear effect assuming that it remains 
the same, whatever the level of decay. Furthermore, given 
that the samples’s MC was kept above FSP by watering, it 
was assumed that MC differences had no influence on the 
mechanical properties and consequently on the indicators 
(Dinwoodie 2000a).

2.3  Near infrared spectroscopy measurements

A piece of each intact or decayed sample, a transver-
sal slice measuring 50 × 30 × 30 mm3, was collected for 
the NIRS measurement and dried for 12 h in an oven set 
at 40 ◦C to ease the grinding. In the next step, these cut 
off parts of the samples were milled to a fine powder (0, 
25 mm) in a Retsch ZM 200 mill. They were ground to 
reduce the spatial heterogeneity of wood properties exist-
ing in intact wood and reinforced by the fungal coloniza-
tion (Schwarze 2007). The powder was dehydrated again 

(3)MOR =
3 ⋅ F

max
⋅ l

2 ⋅ b ⋅ h2

(4)Dw
MOE

=

MOE
i
−MOE

d

MOE
i

(5)Dw
MOR

=

MOR
∗

i
−MOR

d

MOR
∗

i
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for 12 h in an oven to limit the adverse effect of water dur-
ing spectrum acquisition. Intact NIRS-sample refers to the 
powder obtained from an intact sample and intact spectrum 
to the corresponding infrared spectrum. Likewise, the pow-
der obtained from the decayed sample was called decayed 

NIRS-sample and its spectrum decayed spectrum. The 
NIRS measurements were taken using a diffuse reflectance 
module with the Thermo Scientific Antaris 2 FT-NIR ana-
lyser. This instrument records the absorbance in the spec-
tral region (3999, 10,001 cm−1) at a resolution of 4 cm−1. 
The spectra are thus composed of 1557 wavenumbers. With 
the same parameters, spectra were acquired from cellulose 
and lignin kraft extracted from Pinus pinaster sp. samples 
to ease spectrum interpretations.

2.4  Spectral data treatments

The information contained in the spectra were highlighted 
by specific treatments. All data processing was done using 
R software (R Core Team 2013). The spectra were managed 
using the hyperSpec package (Beleites and Sergo 2012). 
The pre-processing step followed recommendations of Rin-
nan et  al. (2009) for limiting the scattering effect usually 
observed with milled samples and adjusting the baseline 
shifts between samples. A single pre-processing step was 
performed on the spectra to limit the model’s complexity. 
The spectra were adjusted by a de-trending method (base-
line correction) using the baseline package (Liland and 
Mevik 2014).

The proposed method aims to assess the level of decay 
by comparing of intact and decayed spectra. A differential 

spectrum Sdiff  was calculated for each decayed sample from 
the difference between a mean intact spectrum, the average 
of all intact spectra, and the spectrum of a decayed NIRS-
sample (Eq.  6). This methodology was selected for two 
reasons. Firstly, it was considered that intact spectra would 
not be available throughout real structure investigations. 
The proposal aims to consider the mean intact spectrum to 
establish a spectral reference for the silver fir samples. Sec-
ondly, the saproxylic community present in the greenhouse 
was potentially highly diverse (Stokland et  al. 2012) and 
was not determined for practical reasons. In particular, the 
three types of wood-inhabiting fungus (brown, white and 
soft rots) might be expected. No assumption can be made 
on a predominantly decayed chemical compound. However, 
no studies have been published on the effect of the fungal 
community on NIR spectra. Most NIRS studies of decayed 
wood have investigated spectral modifications caused 
by known fungal species in controlled conditions. These 
species are mainly white or brown rot types (Fackler and 
Schwanninger 2012; Green et al. 2012) and seldom soft rot 
(Stirling et  al. 2007). Hence, it was proposed to highlight 
the affected parts of the spectra by means of Sdiff .

where i indicates the wavelength, absi
g.mean

 is the baseline-

corrected absorbance of the mean intact spectrum and 
abs

i

d
 is the baseline-corrected absorbance of the decayed 

sample.

2.5  Spectral analysis

The data set exploration started with a principal compo-
nent analysis (PCA) on the whole spectra. PCA facilitates 
the understanding of complex data sets with many varia-
bles. The partial least square regression (PLSR) was next 
used to develop predictive models of Dw

MOE
 and Dw

MOR
 

from differential spectra. PLSR is a multivariate regres-
sion method used in spectroscopy because it is adapted 
when collinear variables are used (Wold et  al. 2001). 
Sandak et  al. (2015b) referred to several studies using 
PLSR in a quantitative manner in decayed-wood investi-
gations. The process of model construction was divided 
into calibration and validation phases (Fig. 2).

The validation phase consists of applying the PLSR 
function from the pls package (Mevik et  al. 2013) to a 
calibration set of 109 samples using the Kennard-Stone 
algorithm, as implemented in the soil.spec package 
(Sila and Terhoeven-Urselmans 2013). In this phase, 
the models were internally validated by the leave-one-
out (LOO) cross-validation method. The quality of the 
PLSR models was assessed using the coefficient of mul-
tiple determination r2

c
 and the root mean squared error of 

calibration (RMSEC), i.e. the residuals of the calibration 
data. Likewise, the results of the cross validation has 
been characterized by r2

cv
, the root mean squared error 

of cross-validation (RMSECV) (Mevik and Cederkvist 
2004). The validation phase corresponded to outer tests 
with a validation data set of 47 samples separated from 
the calibration set. It consists of applying the model 
calibrated in the previous phase to the validation set to 
predict the two indicators Dw

MOE
 and Dw

MOR
. The pre-

dictive ability of the model is evaluated by the coeffi-
cient of determination r2

p
, the root mean squared error of 

(6)absi
diff
= absi

g.mean
− absi

d

Calibration phase (109 samples) Validation phase (47 samples)

2. Cross-validation : method leave-one-out

rcv², RMSECV

1. Partial least square regression

rc², RMSEC

Whole dataset : 156 samples

3. Prediction
rp², RMSEP, PRD, Bias

Prediction models

outer tests 

of models

Fig. 2  Details of the validation process of the predictive models
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prediction (RMSEP), the ratio of performance to devia-
tion (RPD), calculated as the ratio of the standard devia-
tion of the reference data to the RMSEP (Schimleck 
et al. 2003), and the bias, calculated as the difference of 
the mean of the predicted values versus the mean of the 
true values (Bellon-Maurel et al. 2010). The value of the 
bias should be close to 0 for accurate calibration.

2.6  Wavelength selection

Following the recommendations of Schwanninger et  al. 
(2011), the spectral range was reduced to improve the 
model’s performance. The principle adopted consisted in 
retaining regions where differences between decay and 
the mean intact spectra were considered high. For this 
purpose, a process in two-step was developed. Firstly, 
the standard deviation (SD) of absorbances absi

diff
 among 

the different Sdiff  spectra was calculated for each wave-
length. Only the wavelengths corresponding to SD larger 
than a threshold value SD

lim
 were kept in the PLSR. Sec-

ondly, an iterative test was developed to determine the 
best wavelength range, i.e. those that minimize RMSEP. 
Thus, different thresholds were tested by varying SD

lim
 

from 0 to the optimal SD
lim

 which corresponded to the 
lower RMSEP. Furthermore, the laboratory climate was 
not fully controlled and dried wood samples are very 
hydrophilic. Thus, the wavelengths associated with water 
(5150–5220, 5051, 7073 cm−1) were removed from the 
analysis, even if they corresponded to wavelengths asso-
ciated with OH-bonds of wood compounds (Schwan-
ninger et  al. 2011). OH-bonds are nevertheless related 
to other wavelengths, in particular those from 4620 to 
4890 cm−1, where spectra variations due to fungi were 
observed (Sandak et al. 2013).

3  Results and discussion

The aim of this study was to quantify the level of decay 
of silver fir strips degraded by a fungal community using 
NIRS. For this purpose, reference indicators Dw

MOE
 and 

Dw
MOR

 were defined from MOE and MOR measured in the 
intact and decayed states. The intact wooden strips were 
buried in a greenhouse for a period of 44–505 days. After 
the decay process, the evidence of fungal activity was visu-
ally observed at the surface of the samples. Mycelium was 
noted on all samples with variable intensities in terms of 
spatial distribution (Fig. 3). Small cracks were present on 
the most severely decayed samples. The slicing of sam-
ples made it possible to visually ascertain that discoloura-
tions were present inside the wood to a variable extent. It 
was assumed that fungi penetrated wood a short time after 
inoculation.

3.1  Mechanical degradation indicators Dw
MOE

 

and Dw
MOR

For the 109 samples of the calibration set, the mean MOE 
was 8211 MPa (i.e N∕mm2) (SD 951 MPa; Table 1). The 
mean MOR, calculated from 29 of the intact samples, was 
41.9 MPa (SD 7.0 MPa). The mean MC was 106%, always 
greater than 30%. For the 47 samples of the validation set, 
the mean MOE was 8172 MPa (SD 829 MPa). The mean 
MC was 113%. For decayed samples, the mean MOE was 
3889 MPa and 2966 MPa (SD 2191 and 2486 MPa) for 
the calibration and validation sets, respectively. The mean 
MOR was 30.1 and 23.9 MPa (SD 14.2 and 17.1 MPa) for 
the calibration and validation sets, respectively. For the last 
series (i.e. 505 degradation days, 25 samples), the MOE 
and MOR were set at 0 MPa because the samples were too 
degraded to be tested using bending tests and could easily 
be broken by hand. The MOE and MOR were correlated in 
the intact and decayed states (Fig. 4). Indeed, an increase 

Fig. 3  a Mycelium observed 
on the surface of a sample 
degraded for 73 days. The tape 
measure is in centimetre. b The 
mycelium may have a higly 
variable spatial extent. Sample 
degraded for 112 days
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in MOE induces an increase in MOR. Assuming a linear 
relationship between these two variables gives coefficients 
of determination r2 of 0.72 and 0.86, respectively.

The MOE and MOR measurements in decayed condi-
tions were skewed by the heterogeneity of fungal decay 
visually observed in the cross-section given that Eqs. 2 and 
3 were defined assuming an isotropic material. However, 
it gave coherent values from a decay-assessment perspec-
tive. Thus, the degradation process tested in the greenhouse 
provided a large data set of 156 Dw

MOE
 and Dw

MOR
 val-

ues (Fig. 5). Regarding Dw
MOR

, 28 negative values ranging 
from −0.27 to 0 (mean of negative Dw

MOR
: −0.09) were 

observed as the MOR of decayed samples was compared 
to a mean MOR of intact samples. This is in particular the 
consequence of the MOR’s variability rated at 9 MPa (SD 

for silver fir—Tropix 7). From a mechanical point of view, 
both indicators have different meanings and appear to be 
complementary in the context of timber structure design 
and monitoring. Dw

MOE
 is related to the bending stiffness 

and therefore linked to wooden beam deformation. Dw
MOE

 
could therefore be used to assess a capacity of deformation 
before rupture. Dw

MOR
 is related to the bending strength 

and thus to the material rupture.

3.2  Near-infrared spectra

Spectrum exploration using PCA performed with all 
wavenumbers showed a separation between intact and 
decayed NIRS-samples (Fig.  7a). The first component 
(PC1) loadings (Fig. 7b) were characterized by three main 
peaks (around 4502, 5361 and 7577 cm−1) corresponding 
to wavenumbers where baseline-corrected absorbances 
are extremely low (Fig.  6). These three peaks were also 
observed on the second component (PC2) loadings (4995, 
5331, 5390, 7553 and 7658 cm−1). The PC2 pointed to 
a lesser extent to five other wavenumbers: 4142, 4870, 

Table 1  Physical and 
mechanical measurements and 
indicators of the level of decay

Range and standard deviation (SD)
aMeasured for 29 intact samples

Calibration set, n=109 Validation set, n=47

Wood property Mean Min. Max. SD Mean Min. Max. SD

Intact samples
  Moisture content (%) 106 32 179 44 113 35 181 47
  MOE

intact
 (MPa) 8211 5672 10275 951 8172 5792 9460 829

  MOR
intact

 (MPa)a 41.9 28.3 56.6 7.0 – – – –

Decayed samples
  Moisture content (%) 104 42 175 37 106 47 170 35
  MOEdecay (MPa) 3889 0 9001 2191 2966 0 6905 2486
  MORdecay (MPa) 29.8 0 53.3 14.2 23.9 0 49.9 17.1

Indicators
  Dw

MOE
 (–) 0.52 0.06 1 0.27 0.64 0.13 1 0.30

  Dw
MOR

 (–) 0.29 −0.27 1 0.34 0.43 −0.19 1 0.42
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5022, 5770, 9045 cm−1. PCA performed only on decayed 
NIRS-samples showed a graduation of Dw

MOE
 (Fig.  8a) 

or Dw
MOR

 (Fig. 8b) visible along PC1 axes.
The mean intact and decayed spectra followed the 

same pattern but decayed spectra had lower baseline-cor-

rected absorbance values in the whole NIR spectral range 
(4000–10,000 cm−1) (Fig. 6).   

The findings of this study confirm that NIRS spec-
tra contain relevant information regarding the microbial 
activity in wood, even at the early stage. The first fea-
ture highlighted by PCA (Fig. 7a) is a difference between 

the spectra of intact and decayed samples, whatever the 
duration of decay. This is also observed on the spectrum 
plot (Fig.  9). The loss in baseline-corrected absorbance 
of decayed spectra compared to the intact spectra is vis-
ible in regions associated with cellulose (peaks 5865 
and 6727 cm−1) or lignin (peaks, 6875 and 5972 cm−1) 
(Schwanninger et  al. 2011). Similar observations have 
been described with different wood species decayed by 
brown or white rots (Fackler et  al. 2007a; Sandak et  al. 
2013), remembering that soft rot may be involved in the 
current experiment given that the samples were sub-
jected to a microbial community. This constant difference 
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between spectra confirms the value of calculating a dif-
ferential spectrum that extracts the meaningful spectral 
information. PCA of decayed NIRS-samples (Fig. 8) also 
distinguishes strongly decayed samples (Dw

MOE
 > 0.75 

and Dw
MOR

 > 0.75 ) from samples that are less decayed 
along the PC1 axis. PCA is, however, limited for further 
investigation because of an aggregation of less decayed 
NIRS-samples. PCA loadings (Fig. 7b) reveal no specific 
wavelength except one associated with OH-bonds (peak, 
5021 cm−1) and others where baseline-corrected absorb-
ance is low (peaks, 4502, 5361, 7577 and 9036 cm−1).

The differential spectra provide evidence of some spec-
tral regions where differences between the mean intact 
spectrum and decayed spectra are of interest (Fig. 11). Nev-
ertheless, these regions are distributed all along the NIR 
range. PLSR performed in the whole NIR range should be 
sufficient to assess decay, as other studies did (Stirling et al. 
2007; Leinonen et  al. 2008; Green et  al. 2012). But this 

solution would not be optimal according to suggestions by 
Nadler and Coifman (2005) and Cécillon et al. (2008) that 
prescribe wavelength range reduction to decrease the root 
mean square error of PLSR. This motivated the develop-
ment of the wavelength selection method presented in this 
study.

3.3  Prediction of mechanical degradation indicators 

Dw
MOE

 and Dw
MOR

 using the PLSR of differential 

spectra

Wavelength selection The optimal SD values to determine 
wavenumbers ranges optimizing the PLSR are 0.0062 
(Dw

MOE
) and 0.0055 (Dw

MOR
) (Fig.  10). Figure  11 pre-

sents the different spectral ranges kept for the PLSR. In 
both cases, six similar ranges were selected. Amongst the 
six regions identified, regions 2, 3, 4 and 5 of both mod-
els (Fig.  11) had similarities to those obtained by other 

Fig. 8  Principal component 
analysis of the baseline-
corrected spectra of decayed 
samples. Grey scale and sizes 
are a function of the level of 
decay according to Dw

MOE
 (a) 

and Dw
MOR

 (b)
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research on decay effects on wood spectra. Fackler et  al. 
(2007b) found the best regression for weight loss of brown 
rotted beech wood in the NIR region (7235–6106 and 
5384–4150 cm−1). They reported that this model was not 
applicable to white rot fungi. Ishizuka et al. (2012) retained 
4050–5000 and 5800–6800 cm−1 for PLSR to predict lignin 
and cellulose contents. The main difference between the 
two studies and the results presented herein remains in the 
(5800–6000 cm−1) region associated with lignin and identi-
fied as being important in the case of white rot. This range 
was not included in region 5, which starts at 6163 and 6144 
cm−1 for Dw

MOE
 and Dw

MOR
, respectively. It was concluded 

that lignin might be less affected than polysaccharides by 
the fungal community involved. In natural conditions, the 
composition of the fungal community changes over time 
and depends on early established and long-lived species 
(Ottoson 2013). Thus, further investigations of the method 

on various fungal communities in natural conditions would 
be highly valuable.

PLSR models With these spectral ranges, two PLSR 
models were developed from differential spectra Sdiff  to pre-
dict Dw

MOE
 or Dw

MOR
. The results obtained after the LOO 

validation were significant with RMSECV of 0.16 for both 
indicators and r2

v
 of 0.63 and 0.77 for Dw

MOE
 and Dw

MOR
 

prediction, respectively (Table 2). These models applied to 
the validation set confirm the consistency of the results: to 
predict Dw

MOE
 and Dw

MOR
, RMSEP was 0.15 and 0.13, r2

p
 

was 0.79 and 0.91, RPD was 2.0 and 3.2, and the bias was 
0.032 and 0.036, respectively. The relationships between 
measured and NIR-predicted values for both indicators and 
their associated prediction residuals are shown in Fig. 12.

The current results support previous research (Tsu-
chikawa and Schwanninger 2013) that reported a statisti-
cal link between NIRS spectra and mechanical properties 
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using PLSR. However, while most studies work with 
intact wood, the current models establish relationships 
between NIRS differential spectra Sdiff  and losses in MOE 
and MOR of decayed wood (Table 2). Green et al. (2010a) 
already used NIRS and PLSR to predict the level of decay 
in wood measured by compression strength in particular. 
They obtained appreciable results with r2

p
 of 0.69 and RPD 

of 2.61 (model with raw spectra). While this study showed 
that NIRS could predict wood decay, it used Gloeophyllum 

trabeum  (brown rot type) to inoculate samples. The cur-
rent study shows similar results (r2

p
 0.79 and RPD 2.0 for 

Dw
MOE

 prediction. r2
p
 0.91 and RPD 3.2 for Dw

MOR
 predic-

tion) for predicting the level of decay in silver fir wooden 
strips inoculated with a microbial community.

Finally, from a practical standpoint, these methods may 
be applied to real structures by means of core collection 
(Noetzli et al. 2008). Spectral acquisition of cores could be 
directly acquired at different parts of the cores or on milled 

cores (Schimleck 2008). Cores 5 mm in diameter have very 
limited mechanical damage against the diameter of the logs 
generally used in ecological engineering structures (diame-
ter above 150 mm) and are easy to reduce into powder. This 
would give practitioners quantitative information about the 
level of decay of parts located by their expertise. However, 
the method needs to be tested previously on beams simi-
lar to those used in ecological engineering structures, i.e. 
wooden logs. The mean intact spectrum of silver fir should 
also be enriched by spectra from other locations to ensure 
that it covers the heterogeneity of the species.

4  Conclusion

The main purpose of this study was to predict degradation 
indicators of silver fir wooden strips decayed by a micro-
bial community using NIRS. Two indicators of the level 

Fig. 11  Mean spectrum and 
standard deviation of the dif-
ferential spectra Sdiff . The red 

ribbons (lengthwise stripes) 
show the excluded wave-
numbers for PLSR. a Dw

MOE
 

prediction, range 1: 3900–4104 
cm−1, range 2: 4211–4420 
cm−1, range 3: 4632–4929 cm−1, 
range 4: 5079–5145 cm−1, range 
5: 6163–7243 cm−1, range 6: 
8080–8539 cm−1. b Dw

MOR
 

prediction. range 1: 3900–4107 
cm−1, range 2: 4200–4423 cm−1,  
range 3: 4624–4933 cm−1, range 
4: 5068–5145 cm−1, range 5: 
6144–7343 cm−1, range 6: 
8079–8604 cm−1
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Table 2  Main model 
characteristics developed for 
predicting indicators Dw

MOE
 

and Dw
MOR

NF number of factors, RMSEC root mean squared error of calibration, RMSEC root mean squared error of 
cross validation, RMSEP root mean squared error of prediction, RPD relative percent difference ratio of SD 
to RMSEP, Bias the difference of the mean of the predicted versus the mean of the true values

Mechanical 
indicator

Calibration phase, n = 109 Validation phase, n = 47

Calibration LOO cross-validation Prediction

NF r
2

c

RMSEC NF r
2

v

RMSECV r
2

p
RMSEP RPD Bias

Dw
MOE

11 0.75 0.14 11 0.64 0.16 0.79 0.15 2.0 0.032
Dw

MOR
11 0.85 0.13 11 0.77 0.16 0.91 0.13 3.2 0.036
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of decay, Dw
MOE

 and Dw
MOR

, were developed allowing 
an accurate evaluation of the level of decay in terms of 
mechanical properties. These indicators were related to 
the near infra-red spectra seen as estimators of the chemi-
cal compounds. The analysis of the NIRS spectra of intact 
and decayed milled samples confirmed the NIRS sensitivity 
to decay even under semi-controlled conditions. This sen-
sitivity is observable over the full spectral range and non-
attributable to one specific chemical compound (i.e. lignin, 
cellulose or hemicellulose). Based on these observations, 
two models were developed from spectra to predict Dw

MOE
 

and Dw
MOR

 using PLSR. Predicted and measured values 
were highly correlated with r2

p
 values of 0.79 (Dw

MOE
) and 

0.91 (Dw
MOR

). These models can provide useful tools for 
the rapid screening of wood residual properties of struc-
tural members. For that purpose, complementary investiga-
tions are needed. The scattering effects may be corrected 
by several methods, the multiplicative scatter corrections in 
particular (Rinnan et al. 2009), that should be compared in 
the context of the assessment of the level of decay. Further-
more, the method has been intentionally developed with a 

data set of limited variability (samples were sampled from 
one log). The generalisation of the method with a data set 
taking into account an extensive variability is necessary.
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