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This review addresses the develop-
mental roles of 2 GTPases of the

Rho family, RhoV/Chp and RhoU/
Wrch. These two GTPases form a dis-
tinct subfamily related to Rac and Cdc42
proteins and were detected in a screen for
Rho members that are particularly
expressed in the neural crest, an embry-
onic tissue peculiar to vertebrates. The
neural crest represents a physiological
model of normal epithelial to mesenchy-
mal transition (EMT), in which epithe-
lial cells at the border of neural and non-
neural ectoderm differentiate, lose their
intercellular connections and migrate
throughout the embryo. We showed that
RhoV, transiently induced by the canoni-
cal Wnt pathway, is required for the full
differentiation of neural crest cells, while
RhoU, induced later by the non-canoni-
cal Wnt pathway, is necessary for the
migration process. These two GTPases,
which are highly conserved across verte-
brates, are thus tightly functionally
linked to Wnt signaling, whose implica-
tion in embryonic development and can-
cer progression is well established. In the
light of the recent literature, we discuss
how RhoV and RhoU may achieve their
physiological functions.

Introduction

Development of the Neural Crest
(NC) is probably the most dramatic mor-
phogenetic event of vertebrate embryo-
genesis. Originating at the boundary
between neural and non-neural ectoderm,
NC cells differentiate in response to com-
plex inductive cues emanating from the
surrounding tissues.1 At this early stage,
NC cells express a set of transcription

factors, such as Snai1/Snail, Snai2/Slug or
Twist, which are known for their pro-
invasive activities in stem cells and cancer
cells.2 After commitment (specification
stage), NC cells migrate throughout the
embryo and differentiate to form a broad
range of terminal derivatives, including
pigment cells, craniofacial skeleton, carti-
lage, neurons or glia of the peripheral ner-
vous system.3 Among the morphogens
required for proper NC development,
BMP, FGF, Notch and canonical Wnt
pathways have prominent roles in NC
induction, while non-canonical Wnt is
required for NC migration.4,5 Prior to
migration, NC cells undergo a delamina-
tion phase, characterized by the loss of epi-
thelial adherens junctions and the
acquisition of invasive properties. This
developmental process, known as epithe-
lial to mesenchymal transition (EMT),
has been proposed to mimic very early
events of malignant progression, in which
adherent adenoma cells switch to an inva-
sive carcinoma phenotype.6

Because of their impact on adhesion
and migration dynamics of many cell
types,7 GTPases of the Rho family were
suspected to be involved in NC cell
dynamics, and several studies pointed to a
role of the major Rho family members
Rho and Rac1 in NC formation in the
Xenopus embryo.8-10 Xenopus represents
a model of choice for experimental embry-
ology, mostly because of its rapid embry-
onic development and the large size of its
eggs, which makes them amenable to
microinjection and microdissection.
Another major advantage of this model is
the possibility of manipulating just one
side of the embryo, while the other side
serves as an internal control of develop-
ment. Xenopus is also ideal because it
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contains orthologues for 18 of the 20 Rho
family members found in placentals.11

We performed a comprehensive in situ
hybridization screen to identify Rho
members that are preferentially expressed
in NC. Apart from RhoB and Rnd1, we
identified RhoV/Chp and RhoU/Wrch, as
being expressed sequentially at distinct
NC developmental stages.12,13

RhoV and RhoU form an ancient Rho
subfamily related to Rac1 and Cdc42
GTPases.11 RhoV and RhoU are atypical
in this family as they display a high intrin-
sic guanine nucleotide exchange activity
and are thus thought to be constitutively
active whenever they are expressed.14,15 In
keeping with their spontaneous activation,
they are expressed at very low levels (in
particular RhoV) in various tissues and
organs.11 Furthermore, they are palmitoy-
lated and not prenylated like most Rho
members, suggesting that they act at dis-
tinct subcellular locations,16 and they
contain additional N-terminal and
C-terminal extensions, critical for their
activities.15,16 Despite the knowledge of
their biochemical properties, little was
known about the physiological function
of these 2 GTPases, and the work we per-
formed on Xenopus embryos unveiled
their roles in NC development.

RhoV

RhoV is induced in the prospective NC
territory as a canonical Wnt response
gene, expressed as early as Snai1.13 RhoV
induction in response to Wnt is indepen-
dent of Snai1, since expression of a domi-
nant negative Snai1 mutant in Wnt1-
treated embryos did not impair RhoV
expression, whereas it blocked the subse-
quent induction of the Snai2 or Sox9
genes (unpublished data). RhoV expres-
sion is transient and is no longer detected
at the migration stage. RhoV knockdown
by antisense morpholino injection per-
turbs NC differentiation: while having no
effect on the early Snai1 expression, it
impaired induction of the Snai2, Twist or
Sox9 genes. Consequently, NC-derived
cranial structures are strongly inhibited in
morphant embryos. Conversely, RhoV
overexpression expands the NC territory
and increases the expression of Snai1,

Snai2 and Twist, indicating that RhoV
feeds positively the canonical Wnt path-
way. RhoV was shown to activate
PAK1,17 a member of a family of versatile
kinases involved in cell migration and
invasion.18 PAK1 itself can phosphorylate
and activate Snai1.19 Since Snai1 activity
is critical for NC induction,20 RhoV
might thus participate in the propagation
and amplification of the canonical Wnt
pathway. RhoV activity is also probably
relies on its activity on cell adhesion, as
recently shown in the zebrafish embryo,
wherein RhoV is required for proper
localization of E-cadherin and b-catenin
at adherens junctions.21 Along the same
line, we observed that the neural plate was
expanded upon RhoV inhibition and
restricted upon moderate RhoV over-
expression. This supports a role of RhoV
in cell motility since folding of the neural
plate is sensitive to the medial migration
of NC cells.22

RhoU

As a non-canonical Wnt response
gene,23,24 RhoU was expected to be
involved in NC cell migration5 and its
expression was indeed detected only
from the migration stage in NC cells.
RhoU depletion impaired NC migra-
tion and the subsequent formation of
craniofacial cartilages.12 NC cells from
RhoU-depleted explants adopted a
rounded phenotype and showed
reduced adhesion to the substrate.
Intriguingly, these effects are in contra-
diction with the increased density of
integrin-dependent adhesive structures
observed in RhoU-silenced mammalian
cells.25,26 Moderate RhoU overexpres-
sion also inhibited NC cell migration
but with a distinct mechanism; RhoU-
expressing explants readily adhered to
the substrate and migratory NC cells
scattered at an even higher rate than
control cells. However, instead of being
polarized, the scattering was isotropic
and the persistence of NC cells migra-
tion was reduced, indicative of a defect
in sensing polarity cues. Overall, these
experiments suggest that RhoU controls
NC migration through the regulation of
polarized cell adhesion.

RhoV and RhoU Signaling in NC
Development

Although the signaling pathways used
by the 2 GTPases in NC cells remain to
be fully determined, several candidates
have emerged from the recent literature
(Fig. 1). RhoU was shown to associate
with EGFR in a Grb2-dependent manner
and mediate changes in cell adhesion and
migration.27 Grb228 and EGFR29,30 were
themselves described as critical for NC
adhesion, migration and late differentia-
tion. Another potent RhoU regulator is
Src, which can phosphorylate RhoU at its
C-terminus thereby modifying its subcel-
lular location.31 Src and its substrate Tks5
are also required for NC migration in
zebrafish development.32 Several effectors
have been identified for RhoV and
RhoU,33 in particular PAKs. PAK1 and
PAK2 are expressed in migrating NC cells
and indeed their activation or inhibition
mimicked the phenotypes observed upon
RhoU expression and depletion, respec-
tively.12 The proline-rich tyrosine kinase
Pyk2 may also mediate RhoU activity in
NC cell migration; indeed Pyk2 interacts
with RhoU and the 2 partners cooperate
with Src in cytoskeletal dynamics.34 Fur-
thermore, Pyk2 activation triggers EGFR
signaling and epithelial cell motility dur-
ing wound healing.35 Last, RhoU might
control polarized migration through inter-
action with Par6,33,36 a RhoU and Cdc42
partner required for Cdc42-dependent
cell polarity.37

Specific Roles of RhoV and RhoU
in NC Development

The specific roles of RhoV and RhoU
in NC development remain to be deter-
mined. RhoU can rescue RhoV deple-
tion,13 while the reverse is not true.12

Thus RhoU in NC might exert the same
functions as RhoV does, plus other func-
tions probably linked to its specific
domain; RhoU contains an SH3-binding
proline-rich region in its NH2 terminus,
that is responsible for its binding to
Grb2.15 Another difference between the 2
proteins is the tyrosine that is phosphory-
lated by Src, which is present at position
254 in RhoU31 but absent in RhoV.
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Given the functional differ-
ences between the 2
GTPases, one can thus pro-
pose that RhoV, induced
early by the canonical Wnt
pathway, initiates the cellu-
lar effects necessary for NC
formation. These effects are
then prolonged by RhoU
which is induced later by the
non-canonical Wnt pathway
and which in addition trig-
gers migration by interacting
with partners through its
SH3-binding domain. Two
clues nevertheless suggest
that RhoV may also have
specific properties not held
by RhoU: i) in the Xenopus
embryo, RhoV mRNA is no
longer detected in migrating
cells,13 indicating the pres-
ence of an active shutdown
mechanism; ii) the RhoV
protein displays an
extremely high turnover in
mammalian cells (unpub-
lished data), suggesting that
its activity is tightly con-
trolled. This strongly sug-
gests that RhoV must not be expressed
during migration, which therefore sug-
gests that RhoU cannot substitute for all
activities of RhoV.

The sequential expression of the 2
GTPases may therefore be envisioned as
follows (Fig. 1): As a canonical Wnt
response gene, RhoV cooperates with
Snai1 in the induction of NC-specific
markers and is probably responsible for
disrupting epithelial junctions and modi-
fying cell polarity, potentially through its
binding to Par6, as proposed for RhoU in
MDCK cells.36 Disruption of cell-cell
contacts might then activate the non-
canonical Wnt pathway37 and therefore
RhoU expression, which in turn could
promote polarized cell migration through
its SH3-binding domain.

Concluding Remarks

In conclusion, functional analysis of
RhoV and RhoU in the Xenopus embryo
has revealed their specific roles during

development of the neural crest. Although
the ‘big 3’ GTPases (RhoA, Rac1 and
Cdc42) have already been implicated in
Wnt signaling, mostly in non-canonical
pathways,38,39 recent literature showed
that the conditional invalidation of Rac1
or Cdc42 in mouse NC only induced
mitotic and survival defects in post-migra-
tory NC cells. This excludes a role for
Rac1 and Cdc42 at early stages of NC
development, i.e. in the specification,
EMT and migration stages.40,41 This fur-
ther emphasizes the unique roles of RhoV
and RhoU in the high dynamics of this
embryonic tissue. Moreover, due to their
sensitivity to canonical and non-canonical
Wnt pathways, these 2 GTPases might
well take a significant contribution in
Wnt-related pathologies, in particular
tumorigenesis.42
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