
HAL Id: hal-01742416
https://hal.umontpellier.fr/hal-01742416v1

Submitted on 24 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conjunto: Constraint Logic Programming with Finite
Set Domains
Carmen Gervet

To cite this version:
Carmen Gervet. Conjunto: Constraint Logic Programming with Finite Set Domains. ILPS, 1994,
Ithaca, United States. �hal-01742416�

https://hal.umontpellier.fr/hal-01742416v1
https://hal.archives-ouvertes.fr

Conjunto:Constraint Logic Programmingwith Finite Set DomainsCarmen GervetECRCArabellastra�e 17, D-81925 Munich, Germanycarmen@ecrc.deAbstractCombinatorial problems involving sets and relations are currently tackled byinteger programming and expressed with vectors or matrices of 0-1 variables.This is e�cient but not exible and unnatural in problem formulation. To-ward a natural programming of combinatorial problems based on sets, graphsor relations, we de�ne a new CLP language with set constraints. This lan-guage Conjunto1 aims at combining the declarative aspect of Prolog withthe e�ciency of constraint solving techniques. We propose to constrain a setvariable to range over �nite set domains speci�ed by lower and upper boundsfor set inclusion. Conjunto is based on the inclusion and disjointness con-straints applied to set expressions which comprise the union, intersection anddi�erence symbols. The main contribution herein is the constraint handlerwhich performs constraint propagation by applying consistency techniquesover set constraints.1 IntroductionVarious systems of set constraints have been de�ned for purposes such as ax-iomatizing a set theory in flogg [4], prototyping combinatorial problems withsets, multisets and sequences in CLPS[13], manipulating strings in CLP(��)[16], analyzing programs [7] [1] [2] among others. According to the objectivesaimed at, each of these languages proposes a constraint solver for a class ofset constraints over a computation domain.The motivation for Conjunto originates from a desire to combine the e�-cient constraint satisfaction techniques with the declarative aspect of Prologin order to solve combinatorial problems based on sets, relations or graphs(minimum node cover, minimum set cover, set partitioning, set packing,...).These NP-complete problems correspond to real life problems such as ware-house location, resources allocation, graph colouring, etc. They belong tothe class of Operations Research (OR) problems and are currently solved us-ing Integer Linear Programming (ILP) or constraint satisfaction techniquesover 0-1 domain variables. A problem formulated in ILP is tightly coupledwith the resolution technique and modifying some constraints or adding new1Conjunto: [konr0nto], Spanish for set.

ones would require a revision of the whole system. In Conjunto, like in anyConstraint Satisfaction Problem language, the constraint solving is incre-mental and independent of the various constraints of the problem at hand.The current 0-1 formulation of combinatorial problems on sets or graphs isnot natural and forces one to handle very large matrices with respect tothe size of the problem. For example partitioning the set fa; b; c; dg into aset of 3 subsets P � = fS1; S2; S3g (without optimization criterion for sim-plicity reasons) would be de�ned in ILP by stating the following system ofarithmetic constraints:xa1 + xa2 + xa3 = 1; xb1 + xb2 + xb3 = 1;xc1 + xc2 + xc3 = 1; xd1 + xd2 + xd3 = 1;where xij = 0::1 (1 if i 2 Sj , 0 otherwise).Solving combinatorial problems aims at computing a feasible or optimizedsolution from a given �nite search space. In particular, the set covering andset partitioning problems consist of computing a subset or a set of subsetsfrom a given one. No order is required in the solution, and often the reso-lution would gain if the symmetries were avoided. Toward these aims, theuse of set variables and set constraints looks ideal. To initialize the searchspace, we propose to attach a �nite set domain to each set variable. A morenatural and concise statement of the above problem is:S1 \ S2 = fg; S1 \ S3 = fg; S2 \ S3 = fg, S1 [S2 [S3 = fa; b; c; dg,S1; S2; S3 :: fg::fa; b; c; dg: (i)These domain constraints (i) initialize the set variable domains. They havethe same semantics as : fg � Si � fa; b; c; dg.Two general questions arise from this comparison: can set constraints ap-plied to set variables be expressive enough to describe combinatorial prob-lems on sets and graphs ? Can consistency techniques be powerful enoughto solve such problems ? In this paper we aim at answering a more speci�cquestion derived from the two previous ones: can we �nd a good tradeo� be-tween the expressive power of set constraints and the e�ciency of consistencytechniques ?In Conjunto, we propose to compute extensional �nite sets using setconstraints over �nite set domain variables. A set domain attached to a setvariable is speci�ed by its greatest lower bound (glb) and least upper bound(lub). The inclusion and disjointness constraints over these domain vari-ables are solved by applying consistency techniques which allow to performdeterministic computations until we reach a �xed point. This approach canbe seen as an adaptation of �nite domains [3][9] to �nite set domains wherethe number of elements of the domain is no longer linear but exponential inthe size of the upper bound and where the order relation is not total (<)but partial (�). As a consequence, checking the consistency of arithmeticconstraints over each value of a domain would take a polynomial time in thedomain size whereas for set constraints, this would lead to an exponentialnumber of tests in the size of the largest domain upper bound. To avoidsuch ine�cient computations, the consistency algorithms in Conjunto per-form reasoning on the bounds of the set domains: the consistency is checked

over the lower and upper bounds of a set domain. This reasoning on boundsremoves inconsistent values from a set domain by increasing the lower boundand/or reducing the upper one.This article is organized as follows. Its �rst part presents the relatedwork. The second part informally introduces the approach upon which Con-junto uses active constraint propagation on �nite set domains. The thirdpart is devoted to the language description. The operational semantics ispresented in the fourth part and comparisons are made with �nite integerdomains languages. Some areas of applications using �nite set domains arepresented in the �fth part in particular a bin packing example is given. Di-rections for future works are mentioned in the conclusion.2 Related Work2.1 Sets in CLPSeveral approaches have been tackled in the recent years to embed sets inthe CLP framework.CLP(��) [16] (string handling) represents an instance of the CLP schemein the computation domain of regular sets which are �nite sets composedfrom �nite strings. CLP(��) constraints are of the form A in (X."ab".Y)which states that any string attached to variable A must contain the sub-string ab. A scheduling strategy for selecting constraints ensures terminationof the satis�ability procedure.flogg [4] is based on an axiomatized set theory where set terms are con-structed using the interpreted functor with, e.g. ; with x with (; with y with z)= ffz,yg,xg. The satisfaction procedure of the complete solver is based on anon-deterministic selection of constraints by taking into account all the pos-sible substitutions between the elements of two sets. This non-determinismleads, in the worst case, to a hidden exponential growth in the search tree(if s1 = s2 and #s1 = n, there are 2n computable solutions). Nevertheless,flogg allows to de�ne a very large class of sets such as hereditarily �nite sets(sets of �nite depth).Example 2.1 For ease of presentation, we use fx; yg for ; with x with y. Leta system of constraints be s � f3; 2; ag: To solve it in flogg, the set term shas been previously constructed. It could be the set s = fx1; x2; :::; xkg. Thevariables xi are not necessarily distinct. The constraint handler infers (usinga built-in universal quanti�er) the constraints: 8 t 2 fx1; x2; :::; xkg; t 2f3; 2; ag: An atomic equality between t and one element of f3; 2; ag is derivedin a non-deterministic way.The CLPS language is founded on the set notion of sets of �nite depthover Herbrand terms (simple sets are sets of depth one). The satisfactionof constraints is performed using consistency checking techniques [8] over

set elements de�ned as domain variables. Completeness is guaranteed atan exponential cost in the number of set elements by computing a tensorialproduct which builds the set of all the possible combinations linking elementsof the various given domains: a1
 :::
 an = ffx1; :::; xng j x1 2 a1; :::xn 2ang. This language is already used for prototyping several problems.Example 2.2 Let us consider the above mentioned example s � f3; 2; ag:s can be speci�ed by s = fx1; x2; :::; xkg in CLPS, where the vari-ables xi are not necessarily distinct. The constraint handler gener-ates an equivalent system of constraints : depth(s) � depth(f3; 2; ag),#s � #f3; 2; ag , x1 2 f3; 2; ag; x2 2 f3; 2; ag; :::; xk 2 f3; 2; ag, s 2ff3g; f3; 2g; f3; ag; f2; ag; f3; 2; agg. The exhaustive set of possible instancesof s is computed. As soon as the domain of one xi is modi�ed, the domainof s is recomputed.2.2 Systems of set constraintsA related line of work is program analysis systems [7] [1] [2] among others.They handle a larger class of sets (in�nite sets) than Conjunto, flogg orCLPS. The set variables are introduced to model a program. The di�erentresolution algorithms are based on transformation algorithms. These trans-formations preserve consistency either by computing a least model [7] whichdoes not preserve all solutions or by computing a �nite set of systems insolved form [1]. [2] demonstrated that the latter algorithm is solvable innon-deterministic exponential time.3 Representing sets by lower and upper boundsThe previous section reects that to embed sets in a CLP language, thereare two alternatives: (i) to de�ne a set constructor which allows to builda set term , (ii) to apply set constraints over set expressions. The �rstalternative founds expression in \lists" of variables fx1; x2; :::; xng for therepresentation of a set term (flogg, CLPS). In this case, the non determinismof the set uni�cation leads to compute a number of combinations which maygrow exponentially with the largest number of set elements. The secondalternative has been chosen by program analysis systems and CLP(��). InConjunto, we propose a speci�c case of this alternative, by constraining a setvariable to belong to a �nite set domain. The notion of �nite domain has�rst been used and de�ned in the constraint logic programming languageCHIP [3]. Such a computation domain has proved its e�ciency in the CLPframework by a powerful use of consistency checking techniques.In Conjunto, a set is an extensional set which contains only Herbrandterms (no variables and no sets). We use the word ground to de�ne it. A�nite set domain (for set inclusion) is de�ned by a �nite set of ground setsand speci�ed by its greatest lower bound (glb)- intersection of the ground

sets - and its least upper bound (lub)- union of the ground sets. Elementsof the lower bound are elements of the set variable whereas elements ofthe upper bound are possible elements of the set variable. For exampleff3; ag::f3; a; g(1); 5gg de�nes a set domain with glb = f3; ag and lub =f3; a; g(1); 5g. The values in this domain are the sets f3; ag, f3; a; g(1)g,f3; a; 5g, f3; a; g(1); 5g.Example 3.1 The example introduced in section 2 is handled in Conjuntoas a single constraint S � f3; 2; ag. The domain of S has been previouslyinitialized and is reduced so as to satisfy this constraint.Our motivation behind the set domain concept in a CLP framework is tocombine a natural and exible statement of combinatorial problems on sets(set partitioning, bin packing) and graphs with the e�ciency of constraintsatisfaction techniques. But from our experiment set constraints are notexpressive enough to tackle the problems on graphs. In fact, our objectivesare not limited to the de�nition of set domains but also aim at describingrelations in the same way. Lauri�ere �rst addressed this issue in his seminallanguage ALICE [12]. In Conjunto, a �nite relation domain constrains arelation variable R � S1 � S2 where S1 and S2 are respectively the domainand the range of R (ground sets). A graph is a speci�c relation where thedomain and range coincide. A forthcoming report will describe this extensionto relations and graphs in more detail.4 The Conjunto language4.1 A set domain for set variablesDe�nition 4.1 A �nite set domain D attached to a set variable S is thediscrete lattice or powerset fS 2 2lubs j glbs � Sg under inclusion speci�ed bythe notation glbs::lubs. glbs and lubs represent respectively the intersectionand union of elements of D.The indexical domain is de�ned using the functions (i) d(X) for thedomain of a set expression X, (ii) lub(X) for the least upper bound ofX, (iii) glb(X) for the greatest lower bound of X. By de�nition d(X) =glb(X) :: lub(X).4.2 The constraint domainDomain of discourse The domain of discourse is D = FP(HU) [HUwhere FP(HU) is the set of �nite sets in 2HU and HU the �nite HerbrandUniverse. Thus, values of D could be either simple Herbrand terms or groundsets. For example s = fa; b; f(a); V g where a; b; f(a) are Herbrand terms andV is a variable, is not an element of D because V is a variable and thus s isnot ground.

De�nition 4.2 A Conjunto language L consists of:1. Binary predicate symbols: arithmetic constraint symbols (=, �, �, 6=)and set constraint symbols (�, 2, =2, 6=0, ::). The two latter predicates6=0 and :: are respectively interpreted as the disjointness constraint andthe domain constraint.2. Unary function symbols introduced previously: d, lub, glb of arity one.3. Binary operator symbols: arithmetic ones (+,�) and set operators ([,\, n, #). The two latter are interpreted as a complementary di�erence(S n S0 = fx j x 2 S; x =2 S0g) and the usual set cardinality operator.4. Constants: Cs (ground sets), Ch (Herbrand terms) belonging to D, theempty set ;2 and its complementary Top in FP(HU).5. Variables and domain variables Dv taking their value in FP(HU) orHU .Set expressions A set expression S of L where S1 and S2 are set expres-sions is given by the following abstract syntax: S ::= Cs j Dv j S1 [S2 jS1 \ S2 j S1 n S2.A set expression is composed of set domain variables together with setoperator symbols. The domain of a set expression is also a �nite latticeunder inclusion [6]. It could be represented by computing its exact boundsat an exponential cost in the size of the largest upper bound invoked. But fore�ciency reasons, it is represented in Conjunto by approximating its boundsin terms of the domain bounds of the set variables. The following propertiesgive the equivalences and/or implications which exist between the upper andlower bounds of a set expression domain and the upper and lower ones ofthe set variable domains invoked.Properties 4.3 1. glb(Y) � Y � lub(Y)2. lub(Y [Z) = lub(Y) [lub(Z)3. glb(Y \ Z) = glb(Y) \ glb(Z)4. lub(Y \ Z) � lub(Y) \ lub(Z)5. glb(Y [Z) � glb(Y) [glb(Z)6. lub(Y nZ) = lub(Y) n glb(Z)7. glb(Y n Z) = glb(Y) n glb(Z)Proof The proof of the �rst �ve properties is given in [15]. To demonstrate6. and 7., assume X and Y are set variables whose domains are respectivelyspeci�ed by glb(X) :: lub(X), glb(Y) :: lub(Y).6. x 2 lub(X n Y) i� fxg \ X n Y 6= fg i� fxg \ X 6= fg ^ fxg \ Y = fg i�x 2 lub(X) ^ x =2 glb(Y). Thus lub(X n Y) = lub(X) n glb(Y).7. x 2 glb(X n Y) i� fxg � X n Y i� fxg � X ^ fxg 6� glb(Y) i� fxg �glb(X) ^ fxg 6� glb(Y) i� x 2 glb(X) n glb(Y). 22; is represented by the syntax fg and interpreted as the empty set.

In [15] they use this notion of bounds as knowledge approximation onbehalf of the whole knowledge base. In Conjunto, these properties constitutea very important issue on a constraint propagation viewpoint. It means thatconstraints over set expressions can be approximated in terms of constraintsover set variables (see section 5) with a limited loss of the approximated setexpression domain. The loss in the computation of the lower bound of thedomain of a set expression s[s1 is not very surprising for it is very close tothe problem of handling disjunctions in Prolog.4.2.1 Basic constraints P =P1+P2P denotes the system of basic constraints composed of set constraints andarithmetic constraints. P2 is the set of basic arithmetic constraints de�nedin [9] (fax = by + c; ax 6= c; ax � by + c; ax � by + c; x 2 fa1; ::; angg wherethe a,b,c,a1, an are positive integers and x,y are domain variables). WeincludeP2 in the system as the solver handles �nite (integer) domains whendealing with the cardinality operator #. For reasons of space, its handlingwill not be presented here.P1 comprises set relation constraints and set domain constraints as de-�ned below. P1 = (Pr;Pd)In the following, let us denote a set domain variable (not a set expression)by S or S0 and a ground set by s. a; a1; :::; am denote elements of the �niteHU and X any variable taking its value in the �nite Herbrand Universe.The semantics of set equality, membership, inclusion and disjointness is theusual one.Set relation constraints Let Pr = f S � S0; S 6=0 S0 g. The equalityconstraint is de�ned using the following rewriting rule:S is3 S1 ! S � S1; S1 � SSet domain constraints Elements of Pd are set domain constraints i.e.,of the form b(S) :: glb(S)::lub(S). In other terms if glb(S) = fa1; :::; algand lub(S) = fa1; :::; aqg this constraint corresponds to fa1; :::; alg � S �fa1; :::; aqg. Nevertheless the set domain constraint can not be replaced bythe latter as the special handling of domains is fundamental to Conjunto'sconsistency techniques.3avoids confusions with the arithmetic equality and �ts the Conjunto implementationsyntax.

4.2.2 n-ary constraintsSet expressions together with binary set predicate symbols are n-ary con-straints. In other terms, if cons is any constraint predicate symbol inf�;�; 6=0g, n-ary constraints are of the form: Sexp1 consSexp2.Remark The disjointness constraint (6=0) is equivalent from a semanticalviewpoint to S \S1 = fg, a speci�c case of the n-ary constraint S \S1 = S2where S2 = fg. As S 6=0 S1 is of much use in partitioning problems, ithas been embedded in Conjunto as a basic set relation constraint. A localarc consistency algorithm has been implemented to solve it. Doing so, weconvert a n-ary constraint into a set relation one and avoid the more generalapproximation process which is useless here and looses information aboutthe domain bound computation (see properties 4.3).4.2.3 Mixed computation domain constraintsThis last class of constraints establishes links between variables from twocomputation domains: (i) the �nite HU universe (ii) the �nite FP(HU)universe. It concerns the set of fX 2 S;X =2 Sg4 constraints.4.2.4 Admissible system of constraintsAs an adaptation of [9], an admissible system of constraints is a system ofconstraints where every set constrained variable occurs in some set domainconstraints. Set constraints are only considered in a given context (wheredomains are attached to the variables).Having de�ned the foundations of Conjunto we need to de�ne its opera-tional semantics comprising the consistency algorithms.5 Operational semantics for set constraintsConjunto does not �t to the standard CLP scheme [11] as the operationalsemantics is based on the notions of postponing some constraints and prop-agating other constraints whose satis�ability is not always provable. Thesolver schedules in a data-driven way, the set constraints checked throughconsistency techniques.5.1 Preliminary de�nitionsFirst let us consider a constraint graph G to represent a constraint satisfac-tion problem. The approach is the usual one, that is each node si of the4In flogg [4] they do not need to distinguish these constraints from � as they can writex 2 S $ fxg � S. In Conjunto fxg is not a term (if x is a variable) so we do need tode�ne � as a primitive constraint.

graph corresponds to a set domain variable; each directed arc (si; sj) linkingthe variables si and sj corresponds to a single constraint Cij . Thus we as-sume for simplicity reasons that there is at most one constraint linking twovariables in a given order of variables (s1 � s2 and s2 � s1 are two distinctconstraints). This assumption simpli�es the algorithm description but norestriction is actually imposed on real Conjunto programs.The de�nitions of node, arc consistency [14] and solved form [9] are keptand recalled hereafter.De�nition 5.1 Let c(S) be a unary constraint (i.e, with one set variable)such that a set domain Ds = glbs:: lubs is attached to S. c(S) is node consis-tent i� 8v 2 Ds, c(v) is true.De�nition 5.2 Let c(S; S0) be a binary constraint such that set domainsDs = glbs:: lubs and Ds0 = glbs0 :: lubs0 are respectively attached to S and S0.c(S; S0) is arc consistent i� for all v 2 Ds, there exists w 2 Ds0 such thatc(v; w) is true.De�nition 5.3 A system of basic set constraints is in solved form i� ev-ery unary constraint is node consistent and every binary constraint is arcconsistent.5.2 Solved form computation5.2.1 The internal set representationUnlike for �nite integer domains, the time complexity for operations onground sets (+; � versus [; \; n) can not be considered as constant as itclosely depends on the internal set representation. We made the choice torepresent each domain bound with a sorted list where the time complexity forany set operation ([; \; n) is upper bounded by O(2d) where d is #lub(s)+#glb(s) and s the set with the largest domain. # is the cardinality operator.We have experimented another approach which consists of representing a setdomain as a vector of 0-1 variables. This reduces the time complexity of the[and \ operations to O(#lub(s)) where lub(s) is the largest domain upperbound. But it leads to a much larger occupation of the memory space. Inthe following d will always stand for #lub(s) + #glb(s).5.2.2 Node consistency for basic set relation constraintsThe node consistency checking for unary set constraints (set constraints withonly one set variable) is quite straightforward. Let the algorithm be notedNCsets. It performs the following tests: for each unary constraint Ci onthe set variable si with domain Di remove all the inconsistent sets fromthe domain Di, by reducing its upper bound and/or by increasing its lowerbound. More detail concerning the computations over the bounds are givenin the general case of arc consistency (arc_cons-f�; 6=0g).

For example, the system of constraints: S :: fa; 3g::fa; 3; 7; fg; S �fa; f; 3g is node consistent i� the domain of S is reduced to S ::fa; 3g::fa; 3; fg.Complexity issues Let n be the number of variables and d the sum ofthe largest upper bound and lower bound in the set domains. The timecomplexity for NCsets is in the worst case O(2nd).5.2.3 Arc consistency for basic set relation constraintsRecall the set of basic set relation constraintsPb = f S � S0; S 6=0 S0g whereS and S0 are set domain variables. The existing arc consistency algorithmscan not be simply adapted to check consistency of set relation constraintsover set domain variables. The reason is that these algorithms are based ona domain reasoning (except for AC-5 over arithmetic constraints [10]). Thatis, an arc (i,j) is consistent for each element of an integer domain Di. Thisreasoning takes polynomial time in the length of the largest domain. In thecase of set domains, this reasoning would lead to an exponential number oftests in the largest upper bound length. For e�ciency reasons, this reasoningis replaced in Conjunto by a reasoning on the domain bounds.As formally introduced in [10], the existing arc consistency algorithmsmanipulate a list or queue of elements to reconsider. Once a variable domainj has been modi�ed, some constraints need to be checked again. In terms ofarcs, this means that some arcs (i; j) need to be reconsidered.In Conjunto we consider two queues: one noted Qglb contains the arcs(si; sj) for which the glb of sj has been increased and requires to reconsiderarcs (si; sj). The de�nition of the second queue noted Qlub is then straight-forward. It contains the arcs (si; sj) for which the lub of sj has been modi�edand requires to reconsider the arcs (si; sj). As a logical consequence, the �rstqueue might contain constraints of the form sj � si; si 6=0 sj; sj 6=0 si andthe second queue might contain constraints of the form si � sj. Handlingtwo queues avoids checking again arcs where a modi�cation of the domainof sj does not justify a need to reconsider arcs (si; sj). This optimizationgoes in the same line as the one given in AC-5 where the objective is to takeinto account the semantics of constraints and thus to check again only theconstraints for which a need is justi�ed.Now that the di�erent queues have been de�ned, we need to give the spec-i�cation of the consistency algorithm for the inclusion and the disjointnessconstraints arc_cons-f�; 6=0g. This algorithm reconsiders an arc (si; sj) ac-cording to the constraint predicate it represents. This arc comes from a givenqueue due to a reduction of the domain of sj. It computes and returns thenew domain Di of si and a boolean value indicating a possible modi�cationof Di (1 if Di has changed, 0 otherwise). In the following, the domain Diwill stand for the two sets glb(si), lub(si) and the arc (si; sj) will be replaced

by its associated constraint predicate Cij . As usual Cij(s; s0) represents theconstraint Cij between the set values s and s0 and denotes a boolean value.procedure arc_cons-f�; 6=0g(in:(Cij),inout: Di, out: CHANGED)begincase Cijof1. si � sjif : lub(si) � lub(sj) thenbeginlub(si) lub(si) \ lub(sj);CHANGED = 1;endelse CHANGED = 0;2. si � sjif : glb(si) � glb(sj) thenbeginglb(si) glb(si) [glb(sj);CHANGED = 1;endelse CHANGED = 0;3. si 6=0 sj or sj 6=0 siif : lub(si) 6=0 lub(sj) thenbeginlub(si) lub(si) n glb(sj);CHANGED = 1;endelse CHANGED = 0;endFig. 2 : local arc consistency for the inclusion and disjointness constraintsThe two �rst cases di�erentiate the constraints where sj appears in the rightof left hand side of �.Complexity issues. Like for the node consistency algorithm, the timecomplexity for this algorithm is closely linked to the set operation cost andis in O(2d).Queue issues. Note �rst that the lower bound glb(si) can only get modi-�ed in the � case and second that the lub(si) might get reconsidered eitherdue to a glb(sj) modi�cation in the 6=0 case, or due to a lub(sj) modi�cationin the � case. Thus the constraint si � sj comes from the Qlub queue andmight imply (if Di gets modi�ed) to add constraints of the same kind in thesame queue. The constraint si � sj comes from the Qglb queue and couldalso require to add constraints of the same kind or disjointness ones to thesame queue. On the other hand, the si 6=0 sj constraint comes from the Qglbqueue and modi�cations of lub(si) could lead to add sj � si constraints inthe Qlub queue.

In Conjunto the constraints linked with a variable sj are stored in a listLsj initialized in the beginning of the resolution. Like in arc consistencyalgorithms for arithmetic constraints, the access to these constraints will notbe taken into account in the time complexity results. So, to add constraintsto one queue, requires to select from a given list speci�ed by the stringBOUND, the constraints for which the need to check them again is justi�ed.The previous paragraph gave us some indications about the constraints to beselected given a modi�ed domain bound. The following algorithm performsthis selection. Q stands either for the Qglb or Qlub queue which is given asan input. Note that the sk � sj constraints are the only ones which need tobe reconsidered due to a modi�cation of lub(sj).procedure addto_queue (in: Dj , BOUND inout: Q)beginif BOUND = \lub" then Q = Q [f8k; sk � sj 2 Lsjgelse if BOUND = \glb" then Q = Q [f8k; Ckj 2 Lsj j Ckj 6= sk � sjgendThe next step consists of initializing these queues. To do so, we need toperform once the above de�ned local arc consistency algorithm upon eacharc (si; sj) of the graph G. The algorithm arc_cons considers once each arcand stores it (in case of a domain modi�cation) in the right queue accordingto the constraint considered. It returns the two queues Qglb and Qlub. Wekeep the previous notation for (si; sj) that is Cij .procedure arc_cons(in: G out: Qglb, Qlub)beginQglb, Qlub fg;for each Cij 2 G dobeginarc_cons-f�; 6=0g (Cij , Di, CHANGED);if CHANGED thenif Cij = si � sj then addto_queue (Di, \glb", Qglb)else addto_queue (Di, \lub", Qlub)endendLet e be the number of directed arcs or constraints and d the number intro-duced above. The time complexity of arc_cons is in O(2ed).We now give the complete algorithm for arc consistency checking of setrelation constraints over �nite set domains. It performs deterministic com-putations to reach a consistent system. The algorithm �rst applies the nodeconsistency algorithm to check the unary constraints. Then it performs thearc_cons algorithm once to initialize the queues by performing a �rst prop-agation on each arc of the graph G. The two next interwoven loops aim atreaching the solved form. One iteration of the largest loop consists of emp-tying the Qlub loop and then of checking one arc Cij from the Qglb queue.This checking might lead to add arcs to any of the two queues (to the Qlubone in case of Cij = si 6=0 sj, to Qglb otherwise).

begin ACsetsfori until n doNCsets(i);arc_cons(G, Qglb, Qlub) ;while Qglb not empty dobeginwhile Qlub not empty dobeginselect and remove Cij from Qlub;arc_cons-f�; 6=0g (Cij , Di, CHANGED) ;if CHANGED then addto_queue (Di, \lub", Qlub) ;endselect and remove Cij from Qglb;arc_cons-f�; 6=0g (Cij , Di, CHANGED);if CHANGED thenif Cij = si � sj then addto_queue (Di, \glb", Qglb)else addto_queue (Di, \lub", Qlub) ;endendFig. 5 ACsets: the new arc consistency algorithmTheorem 5.4 ACsets is correct and terminates.Proof (correctness) First, each set s removed from a domain Di can notbelong to any arc consistent solution: a set is removed if it does not satisfy alocal consistency (cf. arc_cons-f�; 6=0g). Furthermore it can never be addedfurther on. So by a continuous reduction of Di all the sets removed can neverbelong to any solution, so s in particular can not belong to any solution.Second, ACsets is totally arc consistent, that is for all arcs (si; sj), for allsets s inDi there is one set s0 inDj such that Cij(s; s0): the continuity of theset inclusion and disjointness predicate symbols assure that if the domainbounds are sound values then any set value in the domain is also sound.The two points demonstrated guarantee that ACsets builds the largest arcconsistent solution: all the reduced domains do not contain a set which mightlead to an inconsistent solution and thus should be removed. 2Proof (termination and complexity) The size of the set domains canonly get continuously reduced (see operations on the domains in arc_cons-f�; 6=0g). Once a variable domain is reduced to one single set no constraintcontaining this variable is added to any queue. So if d0 is the largest valueof #lub(s)�#glb(s) a constraint could be checked at most d0 times. Termi-nation is thus guaranteed for each loop.Now, let l be the size of Qlub and e � l the one of Qglb. The cost ofarc_cons-f�; 6=0g is d for one constraint (d being the largest #lub(s) +

#glb(s)). So for one constraint ACsets could be iterated d0 times till theconstraint is solved. If only one queue was handled, e constraints would bereconsidered in the worst case. So the time complexity would be O(edd0).In the case of Conjunto all the constraints are not reconsidered each timea modi�cation occurs. If the constraints to be checked again only belongto the Qlub queue, the time complexity would be O((e � l)d + ldd0). Ifthey would only belong to the Qglb queue, the time complexity would beO(ld + (e � l)dd0). Assuming that max(l; e � l) = e � l, the upper boundtime complexity of ACsets is O(ld + (e � l)dd0). The gain versus a singlehandled list is ld� ldd0.25.2.4 Partial lookahead for n-ary constraintsRecall the class of n-ary constraints: Sexp1 cons Sexp2 where Sexpi are setexpressions and cons is any constraint predicate symbol in f�;�; 6=0g.These constraints are handled e�ciently by a reasoning about variationlattice bounds just like in ACsets using the properties 4.3 of the functionsglb(s), lub(s) for set expressions s. Thus constraints over set expressionsare approximated in terms of constraints over set variables. Let a n-aryconstraint be Sexp1 = Sexp2 for example. Let the set expression Sexp1 rangeover glb1 :: lub1 and Sexp2 over glb2 :: lub2. For the equation to be satis�ed,the two terms must range over glb :: lub where glb is the maximum of glb1and glb2 and lub is the minimum of lub1 and lub2. In the following, we usethe term PLH-solved form for this class of constraints upon which a newpartial lookahead algorithm is applied.Note that for e�ciency reasons, very nested constraints such as S1\ :::\Sn = fg are split into more simple ones like S1\S2 = S0, S0\S3 = S00, ..., Sk\Sn = fg. This process might avoid awakening the initial constraint whichinvolves a large amount of set domain variables (if lub(S1) gets modi�ed butthe bounds of S0 remain the same). This approach prefers e�ciency gainover memory loss. It has been used in the bin packing application.5.2.5 Forward checking for mixed computation domain con-straintsThe constraints fX 2 S; X =2 Sg are currently handled in Conjunto usingforward checking over the integer variables X, that is the constraints arepostponed until X is ground. If X becomes a ground term a, the constraintsare rewritten into:a 2 S ! fag � S a =2 S ! fag 6=0 SNow that the consistency algorithms for set relation constraints and n-aryconstraints have be de�ned, we need to de�ne the solver which uses thesealgorithms to transform a system of set constraints into a consistent system.

5.3 The constraint solverThe constraint solver of Conjunto transforms a system of set relation con-straints into a system in solved form and a system of n-ary constraints intoa system in PLH-solved form. The membership and nonmembership con-straints are delayed (ounder notion in [9]) until they become unary con-straints.Algorithm The solver acts in a data driven way using a relation betweenstates. A state of the program is the system of constraints or pair S =<SC;DC > where SC is a set of set relation constraints and n-ary constraintsand where DC is a set of set domain constraints. First apply the nodeconsistency algorithm NCsets to the unary constraints to obtain the state< SC;DC 0 >, then depending on the constraints apply the arc consistencyalgorithm ACsets or the partial lookahead algorithm to obtain the stateS0 =< SC;DC 00 >.Theorem 5.5 A system < SC;DC > in solved form (i.e., containing onlyset relation constraints resulting from ACsets) is satis�able if the set of con-straints DC is satis�able.Proof First, if any set domain is unsound (glb(s) � lub(s)) then the systemis clearly unsatis�able. Second, if the set of set relation constraints is notempty, it is always possible to �nd a solution by computing the least model.In fact, the continuity of the inclusion and disjointness predicates guaranteesthat any set value within the respective domains leads to a solution. Soassigning to each of the domain variable the respective lower bound of theirdomain leads to a solution. 2Expressive power It is worth noting that in a system in PLH-solved formwhich contains some union together with some intersection operators, the setdomain bounds of a set variable can be locally consistent but not globally.The reason is that the union operator does not preserve the lower boundcomputation (see property 4.3.5) of a set expression domain whereas theintersection does not preserve the upper one (property 4.3.4). So global con-sistency is not provable for systems of set constraints comprising union andintersection operators unless the solver performs exhaustive computationsat an exponential cost in the largest upper bound among the set domain.Example 5.6The following set of constraints:S1 :: fg::f1; 2; a; bg, S2 :: fg::f1; 2; a; bg, S3 :: fg::f1; 2; a; bg,S1 [S2 [S3 = f1; 2; a; bg; S1 \ S2 \ S3 = fg.is in PLH-solved form but not globally consistent. Assigning respectively toeach set variable the lower bound of its domain (or the upper one) does notlead to a solution.

6 ApplicationThe following example of bin packing illustrates how constraint propagationacts actively over set constraints and is su�cient to solve such problems, andhow set domains bring expressiveness and conciseness to the program.Problem description Bin packing problems belong to the class of setpartitioning problems [5]. A multiset of n integers is given fw1; :::; wng andspeci�es the weight elements to partition. Another integerWmax is given andrepresents the weight capacity. The aim is to �nd a partition of the n integersinto a minimal number of m bins (or sets) fs1; ::; skg such that in each binthe sum of all integers does not exceedWmax. This problem is usually statedin terms of arithmetic constraints over 0-1 variables and solved using variousOR techniques or constraint satisfaction ones. It requires one matrix (aij)to represent the elements of each set, one vector xj to represent the selectedsubsets sk and one vector wi to represent the weights of the elements aij .Hereafter is the abstract formulation of the bin packing problem in IntegerProgramming (IP) and in Conjunto.IP abstract formulation Conjunto abstract formulationPmj=1 aij xj = 1 8i 2 f1; ::; ng s1 \ s2 = fg; s1 \ s3 = fg; ::; sn�1 \ sm = fgs1 [s2 [::: [sm = f(1; w1); ::; (n;wn)gwhere:xj = 0::1 (1 if sj 2 fs1; :: ; skg) sj :: fg::f(1; w1); ::; (n;wn)gaij = 0::1 (1 if i 2 sj)Pni=1 aij wi �Wmax 8j 2 f1; :::;mg weight(i; wi) = wi;P#glb(sj)i=1 weight(i; wi) �Wmax 8sjUnder these assumptions, the program to solve is to minimize the number of bins:minx0 =Pmj=1 xj minx0 = #fsj j sj 6= fggProblem statement Let P = f item(1; w1) ; :::; item(i; wi); :::;item(n;wn)g be a non empty set of items i with a weight wi. The aimis to partition P into a minimal number of N subsets such that the sum ofthe wi in a computed subset of P does not exceed a limited weight Wmax.The heuristic used is the �rst �t descending which �rst sorts the objects indecreasing order of their weight. Bins are then �lled one after another. Theprogram uses the union operators as a constraint predicate (cf. previousremark on e�cient handling of nested set expressions) and exploits the setrepresentation with �nite domains. We evoke a simple Conjunto programpartly shown on �gure 6 which solves large instances (80 items partitionedinto 30 sets) and �nds the optimal solution in about 22 seconds on a SUN4/40. The part of the program given only shows the partitioning for a givenN . The optimization predicate is the classical one which initializes N to

the value weight(P)=Wmax and extends N at each call of the top levelpredicate until a failure is encountered. The solution is the last successfulpartition.solve(N,Sets) :- state_constraints(Sets, P) :-pieces(P), restrict_weight(Sets),make_sets(N,P,Sets), $all_disjoints(Sets),state_constraints(Sets,P), $all_union(Sets,P).labeling(Sets). labeling([]).make_sets(0,Plub,[]). labeling([S1|Sets]) :-make_sets(N,Plub,[Set|Sets]):- $refined(S1),!,$Set ::{}..Plub, labeling(Sets).N1 is N - 1, labeling([S1|Sets]) :-make_sets(N1, Plub,Sets). $refine(S1),labeling([S1|Sets]).Figure 6: A partitioning program with Conjunto built-insProblem solving The predicates preceded by $ are Conjunto built-ins. The main idea behind the program consists of retrieving the ini-tial set (pieces()), creating a number N of sets whose initial domainsare fg::P (make_sets()), stating the constraints (restrict_weight() ,all_disjoint() , all_union()) and adding (or removing in case of failure)elements to the sets by choosing �rst the element with the greatest weight(labeling()). The weight constraint (restrict_weight()) constrains thetotal weight of the elements of each set not to be greater than the limitedweight Wmax. The top-level predicate is solve(N,S) if the partition rep-resents N sets.Problem data The problem receives as data the maximum weight al-lowed in each computable set weight_max(50) and a �nite set of itemspieces({item(it1,W_1),..., item(it80,W_80)}).Conjunto built-ins The re�ne procedure tries to add elements to the glbof each set and in case of failure (the weight of the items is strictly greaterthan weight_max(50)) removes them from the lub. The all_disjoint()predicate constrains the upper bound of each Sj not to contain any lowerbound of the remaining set domains Di with (i 6= j). It has the semantics ofthe following set of constraints S1\S2 = fg; S1\S3 = fg; ::: ; Sn�1\Sn = fg.The all_union() predicate constrains the union of all the upper bounds tobe equal to the set P . It is encoded by splitting the SSi = P into simpleconstraints S1 [S2 = S0; ::: ; Sk [Sn = P .

Experimental results and comparisons We made a complete compar-ative study with a 0-1 Finite Domain (FD) formulation. For the encoding ofsets and set constraints, we used respectively lists of 0-1 variables and arith-metic constraints on the variables as described previously. The arithmeticconstraint predicates were handled using the ECLiPSe solver5 for arithmeticconstraints over �nite domains. The FD program was encoded so as to usethe same �rst �t descending heuristics and the same labeling procedure asthe Conjunto program. The following array gives the time together withspace consumption results. The number of backtracks in the two programexecutions is the same.Criterion Conjunto program FD programglobal stack peak (bytes) 847 872 2 334 720trail stack peak (bytes) 126 968 987 136garb. collection number 27 77cpu time (sec.) 21.6 31.5garb. collection time (sec.) 1.21 6.28The two programs di�er in the data structure used and thus in the con-straints applied to these data. The �rst point to note is that this di�erencehas an impact both on the space consumption (stack peaks6) and on thecpu time. The space consumption comprises among other stacks, the globalstack and the trail stack. The data structure is largely responsible for thegrowth of the global stack peak. The di�erence of space consumption (stacksizes) in the two approaches comes from the set-like representation as list of0-1 domain variables versus two sorted lists in Conjunto: (i) The lists of 0-1variables are never reduced because retrieving an element from a set corre-sponds to setting a variable domain to zero. This is not the case with theset domain representation. (ii) The trail stack is used to record information(set domains or lists of zero-one variables) that is needed on backtracking.The number of backtracks in the two program executions is the same, so thedi�erence comes from the amount of information needed to be recorded.The di�erence in the garbage collection number comes also from thespace consumption as this number is the number of stack garbage collection.The di�erence of cpu time is due �rst to the time needed for garbagecollection which is a direct consequence of the size of the stacks which aregarbage collected; and second to the time needed for performing operationson the data. A pro�le on the cpu time consumption indicated that half ofthe consumption in the FD program resolution is a time needed for per-forming arithmetic operations on the 0-1 variables. The weight constraintapplied to each set is one of the costly computations. The weight constraint5based on consistency techniques which perform a reasoning about variation domainbounds or about variation domains depending on the constraint predicate.6the peak value indicates what was the maximum allocated amount during the session.

ai1 �W1 + ai2 �W2 + ::: ain �Wn �Wmax which is awakened each time anaij is set to 1, consists of a cartesian product of two lists. In the Conjuntoprogram, it consists of constraining the sum of weights Wi directly availablefrom the elements (i;Wi) of a domain upper bound. Another costly com-putation in the FD formulation, is the one of the largest weight not alreadyconsidered for one set. This requires to check the 0-1 variable in link withone weight. A weight is not yet considered if the corresponding domainvariable is not instantiated. In the Conjunto program, this computationcorresponds to the di�erence of the two bounds of a set domain. The result-ing set constains the elements (i; Wi) which have not been considered yet.This di�erence operation is in fact the most time consuming in the Conjuntoprogram resolution, for it is also performed to compute disjoint sets. But itrepresents half of the cpu time consumption of arithmetic operations.Thus, it arises from this application based on the computation of a mini-mal set of bins, that set constraints together with set domains are expressiveenough to embed the problem semantics and allow to avoid encoding theinformation as lists of 0-1 variables or handling additional data (the list ofweights), and also that consistency techniques for set constraints are e�cientto solve combinatorial problems on sets.7 Conclusion and future workA new CLP language embedding sets, called Conjunto is presented. InConjunto, set variables range over �nite set domains. This representationhas several strengths: it is rather natural; it is powerful enough to expressthe set semantics; it leads to an e�cient use of consistency techniques. Newconsistency algorithms for reasoning on the set domain bounds are the basisof the constraint solver. An O(ld + (e � l)dd0) arc consistency algorithm ispresented for the class of set relation and set domain constraints where l isthe number of inclusion constraints, e�l the number of remaining ones, d thesum of the cardinalities of the largest domain bounds and d0 their di�erence.The operational semantics is described and guarantees satis�ability for alarge class of constraints. An application of this computation domain toa bin packing problem is presented. It illustrates how e�ciency can becombined with expressive power.We are currently investigating the applicability of relation constraintsto set covering problems. In this extended domain of computation basedon the same notions of bounds, some complexity issues are currently be-ing investigated for the consistency algorithms handling relation and graphconstraints. Some work is still to be done though, both to complete theexperimental work on set constraints and to evaluate the expressive powerand practical interest of relations.

AcknowledgementsSpecial thanks to Pascal Van Hentenryck for his comments and worthwhile sugges-tions on a previous version of the paper. Many thanks also to Alexander Heroldfor his support, to Mark Wallace and Christophe Bonnet for their proofreading anduseful comments. This work was supported in part by the ESPRIT Project 5291CHIC.References[1] Alexander Aiken and Edward L. Wimmers. Solving Systems of Set Constraints.In IEEE Symposium on Logic in Computer Science, June 1992.[2] L. Bachmair, H. Ganzinger, and U. Waldmann. Set Constraints are theMonadic Class. In Proceedings of the LICS'93, 1993.[3] M. Dincbas, H. Simonis, and P. Van Hentenryck et al. The Constraint LogicProgramming Language CHIP. In FGCS, Japan, Aug. 1988.[4] A. Dovier and G. Rossi. Embedding Extensional Finite Sets in CLP. InILPS'93, 1993.[5] M.R. Garey and D. S. Johnson. Computers and intractability, A guide to thetheory of NP-completeness. Victor Klee, 1979. 124-130.[6] G. Gierz and K.H. Hofman et al. A Compendium of Continuous Lattices.Springer Verlag, Berlin Heidelberg New York, 1980. Chapter 0.[7] N. Heintze and J. Ja�ar. A Decision Procedure for a Class of Set Constraints.In Proceedings of the Sixth Annual IEEE Symposium on Logic in CS, pages300{309, July 1991.[8] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. LogicProgramming Series. The MIT Press, Cambridge, 1989.[9] P. Van Hentenryck and Y. Deville. Operational Semantics of Constraint LogicProgramming over Finite Domains. In Proceedings of PLILP'91, pages 396{406, Passau, Germany, Aug. 1991.[10] P. Van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-consistencyalgorithm and its specializations. Arti�cial Intelligence, 57:291{321, 1992.[11] J. Ja�ar and J.-L. Lassez. Constraint Logic Programming. In Proceedingsof the 14th ACM Symposium on Principles of Programming Languages, pages111{119, Munich, Germany, 1987.[12] J. L. Lauri�ere. A Language and a Program for Stating and Solving Combina-torial Problems. Arti�cial Intelligence, 10:29{127, 1978.[13] B. Legeard and E. Legros. Short overview of the CLPS System. In Proceedingsof PLILP'91, Passau, Germany, Aug. 1991. 3rd International Symposium onProgramming Language Implementation and Logic Programming.[14] A. K. Mackworth. Consistency in networks of relations. Arti�cial Intelligence,1977.

[15] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data. D:System theory, Knowledge engineering and Problem solving. Kluwer AcademicPublishers, 1991.[16] C. Walinsky. CLP(��): Constraint Logic Programming with Regular Sets. InICLP'89, pages 181{190, 1989.

