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Conjunto: Constraint Logic Programming with Finite Set Domains

Combinatorial problems involving sets and relations are currently tackled by integer programming and expressed with vectors or matrices of 0-1 variables. This is e cient but not exible and unnatural in problem formulation. Toward a natural programming of combinatorial problems based on sets, graphs or relations, we de ne a new CLP language with set constraints. This language Conjunto 1 aims at combining the declarative aspect of Prolog with the e ciency of constraint solving techniques. We propose to constrain a set variable to range over nite set domains speci ed by lower and upper bounds for set inclusion. Conjunto is based on the inclusion and disjointness constraints applied to set expressions which comprise the union, intersection and di erence symbols. The main contribution herein is the constraint handler which performs constraint propagation by applying consistency techniques over set constraints.

Introduction

Various systems of set constraints have been de ned for purposes such as axiomatizing a set theory in flogg 4], prototyping combinatorial problems with sets, multisets and sequences in CLPS 13], manipulating strings in CLP( ) 16], analyzing programs 7] 1] 2] among others. According to the objectives aimed at, each of these languages proposes a constraint solver for a class of set constraints over a computation domain.

The motivation for Conjunto originates from a desire to combine the ecient constraint satisfaction techniques with the declarative aspect of Prolog in order to solve combinatorial problems based on sets, relations or graphs (minimum node cover, minimum set cover, set partitioning, set packing,...). These NP-complete problems correspond to real life problems such as warehouse location, resources allocation, graph colouring, etc. They belong to the class of Operations Research (OR) problems and are currently solved using Integer Linear Programming (ILP) or constraint satisfaction techniques over 0-1 domain variables. A problem formulated in ILP is tightly coupled with the resolution technique and modifying some constraints or adding new ones would require a revision of the whole system. In Conjunto, like in any Constraint Satisfaction Problem language, the constraint solving is incremental and independent of the various constraints of the problem at hand. The current 0-1 formulation of combinatorial problems on sets or graphs is not natural and forces one to handle very large matrices with respect to the size of the problem. For example partitioning the set fa; b; c; dg into a set of 3 subsets P = fS 1 ; S 2 ; S 3 g (without optimization criterion for simplicity reasons) would be de ned in ILP by stating the following system of arithmetic constraints: x a1 + x a2 + x a3 = 1; x b1 + x b2 + x b3 = 1; x c1 + x c2 + x c3 = 1; x d1 + x d2 + x d3 = 1; where x ij = 0::1 (1 if i 2 S j , 0 otherwise). Solving combinatorial problems aims at computing a feasible or optimized solution from a given nite search space. In particular, the set covering and set partitioning problems consist of computing a subset or a set of subsets from a given one. No order is required in the solution, and often the resolution would gain if the symmetries were avoided. Toward these aims, the use of set variables and set constraints looks ideal. To initialize the search space, we propose to attach a nite set domain to each set variable. A more natural and concise statement of the above problem is: S 1 \ S 2 = fg; S 1 \ S 3 = fg; S 2 \ S 3 = fg, S 1 S 2 S 3 = fa; b; c; dg, S 1 ; S 2 ; S 3 :: fg::fa; b; c; dg: (i) These domain constraints (i) initialize the set variable domains. They have the same semantics as : fg S i fa; b; c; dg. Two general questions arise from this comparison: can set constraints applied to set variables be expressive enough to describe combinatorial problems on sets and graphs ? Can consistency techniques be powerful enough to solve such problems ? In this paper we aim at answering a more speci c question derived from the two previous ones: can we nd a good tradeo between the expressive power of set constraints and the e ciency of consistency techniques ?

In Conjunto, we propose to compute extensional nite sets using set constraints over nite set domain variables. A set domain attached to a set variable is speci ed by its greatest lower bound (glb) and least upper bound (lub). The inclusion and disjointness constraints over these domain variables are solved by applying consistency techniques which allow to perform deterministic computations until we reach a xed point. This approach can be seen as an adaptation of nite domains 3] 9] to nite set domains where the number of elements of the domain is no longer linear but exponential in the size of the upper bound and where the order relation is not total (<) but partial ( ). As a consequence, checking the consistency of arithmetic constraints over each value of a domain would take a polynomial time in the domain size whereas for set constraints, this would lead to an exponential number of tests in the size of the largest domain upper bound. To avoid such ine cient computations, the consistency algorithms in Conjunto perform reasoning on the bounds of the set domains: the consistency is checked over the lower and upper bounds of a set domain. This reasoning on bounds removes inconsistent values from a set domain by increasing the lower bound and/or reducing the upper one.

This article is organized as follows. Its rst part presents the related work. The second part informally introduces the approach upon which Conjunto uses active constraint propagation on nite set domains. The third part is devoted to the language description. The operational semantics is presented in the fourth part and comparisons are made with nite integer domains languages. Some areas of applications using nite set domains are presented in the fth part in particular a bin packing example is given. Directions for future works are mentioned in the conclusion.

2 Related Work

Sets in CLP

Several approaches have been tackled in the recent years to embed sets in the CLP framework.

CLP( ) 16] (string handling) represents an instance of the CLP scheme in the computation domain of regular sets which are nite sets composed from nite strings. CLP( ) constraints are of the form A in (X."ab".Y) which states that any string attached to variable A must contain the substring ab. A scheduling strategy for selecting constraints ensures termination of the satis ability procedure.

flogg 4] is based on an axiomatized set theory where set terms are constructed using the interpreted functor with, e.g. ; with x with (; with y with z) = ffz,yg,xg. The satisfaction procedure of the complete solver is based on a non-deterministic selection of constraints by taking into account all the possible substitutions between the elements of two sets. This non-determinism leads, in the worst case, to a hidden exponential growth in the search tree (if s 1 = s 2 and #s 1 = n, there are 2 n computable solutions). Nevertheless, flogg allows to de ne a very large class of sets such as hereditarily nite sets (sets of nite depth).

Example 2.1 For ease of presentation, we use fx; yg for ; with x with y. Let a system of constraints be s f3; 2; ag: To solve it in flogg, the set term s has been previously constructed. It could be the set s = fx 1 ; x 2 ; :::; x k g. The variables x i are not necessarily distinct. The constraint handler infers (using a built-in universal quanti er) the constraints: 8 t 2 fx 1 ; x 2 ; :::; x k g; t 2 f3; 2; ag: An atomic equality between t and one element of f3; 2; ag is derived in a non-deterministic way.

The CLPS language is founded on the set notion of sets of nite depth over Herbrand terms (simple sets are sets of depth one). The satisfaction of constraints is performed using consistency checking techniques 8] over set elements de ned as domain variables. Completeness is guaranteed at an exponential cost in the number of set elements by computing a tensorial product which builds the set of all the possible combinations linking elements of the various given domains: a 1 ::: a n = ffx 1 ; :::; x n g j x 1 2 a 1 ; :::x n 2 a n g. This language is already used for prototyping several problems. Example 2.2 Let us consider the above mentioned example s f3; 2; ag: s can be speci ed by s = fx 1 ; x 2 ; :::; x k g in CLPS, where the variables x i are not necessarily distinct. The constraint handler generates an equivalent system of constraints : depth(s) depth(f3; 2; ag), #s #f3; 2; ag , x 1 2 f3; 2; ag; x 2 2 f3; 2; ag; :::; x k 2 f3; 2; ag, s 2 ff3g; f3; 2g; f3; ag; f2; ag; f3; 2; agg. The exhaustive set of possible instances of s is computed. As soon as the domain of one x i is modi ed, the domain of s is recomputed.

Systems of set constraints

A related line of work is program analysis systems 7] 1] 2] among others.

They handle a larger class of sets (in nite sets) than Conjunto, flogg or CLPS. The set variables are introduced to model a program. The di erent resolution algorithms are based on transformation algorithms. These transformations preserve consistency either by computing a least model 7] which does not preserve all solutions or by computing a nite set of systems in solved form 1]. 2] demonstrated that the latter algorithm is solvable in non-deterministic exponential time.

Representing sets by lower and upper bounds

The previous section re ects that to embed sets in a CLP language, there are two alternatives: (i) to de ne a set constructor which allows to build a set term , (ii) to apply set constraints over set expressions. The rst alternative founds expression in \lists" of variables fx 1 ; x 2 ; :::; x n g for the representation of a set term (flogg, CLPS). In this case, the non determinism of the set uni cation leads to compute a number of combinations which may grow exponentially with the largest number of set elements. The second alternative has been chosen by program analysis systems and CLP( ). In Conjunto, we propose a speci c case of this alternative, by constraining a set variable to belong to a nite set domain. The notion of nite domain has rst been used and de ned in the constraint logic programming language CHIP 3]. Such a computation domain has proved its e ciency in the CLP framework by a powerful use of consistency checking techniques. In Conjunto, a set is an extensional set which contains only Herbrand terms (no variables and no sets). We use the word ground to de ne it. A nite set domain (for set inclusion) is de ned by a nite set of ground sets and speci ed by its greatest lower bound (glb)-intersection of the ground sets -and its least upper bound (lub)-union of the ground sets. Elements of the lower bound are elements of the set variable whereas elements of the upper bound are possible elements of the set variable. For example ff3; ag::f3; a; g(1); 5gg de nes a set domain with glb = f3; ag and lub = f3; a; g(1); 5g. The values in this domain are the sets f3; ag, f3; a; g(1)g, f3; a; 5g, f3; a; g(1); 5g. Example 3.1 The example introduced in section 2 is handled in Conjunto as a single constraint S f3; 2; ag. The domain of S has been previously initialized and is reduced so as to satisfy this constraint.

Our motivation behind the set domain concept in a CLP framework is to combine a natural and exible statement of combinatorial problems on sets (set partitioning, bin packing) and graphs with the e ciency of constraint satisfaction techniques. But from our experiment set constraints are not expressive enough to tackle the problems on graphs. In fact, our objectives are not limited to the de nition of set domains but also aim at describing relations in the same way. Lauri ere rst addressed this issue in his seminal language ALICE 12]. In Conjunto, a nite relation domain constrains a relation variable R S 1 S 2 where S 1 and S 2 are respectively the domain and the range of R (ground sets). A graph is a speci c relation where the domain and range coincide. A forthcoming report will describe this extension to relations and graphs in more detail. [START_REF] Dincbas | The Constraint Logic Programming Language CHIP[END_REF] The Conjunto language 4.1 A set domain for set variables De nition 4.1 A nite set domain D attached to a set variable S is the discrete lattice or powerset fS 2 2 lubs j glb s Sg under inclusion speci ed by the notation glb s ::lub s . glb s and lub s represent respectively the intersection and union of elements of D.

The indexical domain is de ned using the functions (i) d(X) for the domain of a set expression X, (ii) lub(X) for the least upper bound of X, (iii) glb(X) for the greatest lower bound of X. By de nition d(X) = glb(X) :: lub(X).

The constraint domain Domain of discourse The domain of discourse is D = FP(HU) HU

where FP(HU) is the set of nite sets in 2 HU and HU the nite Herbrand Universe. Thus, values of D could be either simple Herbrand terms or ground sets. For example s = fa; b; f(a); V g where a; b; f(a) are Herbrand terms and V is a variable, is not an element of D because V is a variable and thus s is not ground.

De nition 4.2 A Conjunto language L consists of:

1. Binary predicate symbols: arithmetic constraint symbols (=, , , 6 =) and set constraint symbols ( , 2, = 2, 6 = 0 , ::). The two latter predicates 6 = 0 and :: are respectively interpreted as the disjointness constraint and the domain constraint.

2. Unary function symbols introduced previously: d, lub, glb of arity one.

3. Binary operator symbols: arithmetic ones (+,?) and set operators ( , \, n, #). The two latter are interpreted as a complementary di erence (S n S 0 = fx j x 2 S; x = 2 S 0 g) and the usual set cardinality operator. 4. Constants: C s (ground sets), C h (Herbrand terms) belonging to D, the empty set ;2 and its complementary Top in FP(HU). 5. Variables and domain variables D v taking their value in FP(HU) or HU.

Set expressions A set expression S of L where S 1 and S 2 are set expressions is given by the following abstract syntax: S ::

= C s j D v j S 1 S 2 j S 1 \ S 2 j S 1 n S 2 .
A set expression is composed of set domain variables together with set operator symbols. The domain of a set expression is also a nite lattice under inclusion 6]. It could be represented by computing its exact bounds at an exponential cost in the size of the largest upper bound invoked. But for e ciency reasons, it is represented in Conjunto by approximating its bounds in terms of the domain bounds of the set variables. The following properties give the equivalences and/or implications which exist between the upper and lower bounds of a set expression domain and the upper and lower ones of the set variable domains invoked.

Properties 4.3 1. glb(Y ) Y lub(Y ) 2. lub(Y Z) = lub(Y ) lub(Z) 3. glb(Y \ Z) = glb(Y ) \ glb(Z) 4. lub(Y \ Z) lub(Y ) \ lub(Z) 5. glb(Y Z) glb(Y ) glb(Z) 6. lub(Y n Z) = lub(Y ) n glb(Z) 7. glb(Y n Z) = glb(Y ) n glb(Z)
Proof The proof of the rst ve properties is given in 15]. To demonstrate 6. and 7., assume X and Y are set variables whose domains are respectively speci ed by glb(X) :: lub(X), glb(Y ) :: lub(Y ).

6. x 2 lub(X n Y

) i fxg \ X n Y 6 = fg i fxg \ X 6 = fg ^fxg \ Y = fg i x 2 lub(X) ^x = 2 glb(Y ). Thus lub(X n Y ) = lub(X) n glb(Y ). 7. x 2 glb(X n Y ) i fxg X n Y i fxg X ^fxg 6 glb(Y ) i fxg glb(X) ^fxg 6 glb(Y ) i x 2 glb(X) n glb(Y ). 2
In 15] they use this notion of bounds as knowledge approximation on behalf of the whole knowledge base. In Conjunto, these properties constitute a very important issue on a constraint propagation viewpoint. It means that constraints over set expressions can be approximated in terms of constraints over set variables (see section 5) with a limited loss of the approximated set expression domain. The loss in the computation of the lower bound of the domain of a set expression s s 1 is not very surprising for it is very close to the problem of handling disjunctions in Prolog.

Basic constraints P = P

1 + P 2 P denotes the system of basic constraints composed of set constraints and arithmetic constraints. P 2 is the set of basic arithmetic constraints de ned in 9] (fax = by + c; ax 6 = c; ax by + c; ax by + c; x 2 fa 1 ; ::; a n gg where the a,b,c,a 1 , a n are positive integers and x,y are domain variables). We include P P 1 = ( P r ; P d ) In the following, let us denote a set domain variable (not a set expression) by S or S 0 and a ground set by s. a; a 1 ; :::; a m denote elements of the nite HU and X any variable taking its value in the nite Herbrand Universe.

The semantics of set equality, membership, inclusion and disjointness is the usual one.

Set relation constraints Let P r = f S S 0 ; S 6 = 0 S 0 g. The equality constraint is de ned using the following rewriting rule: S is3 S 1 ! S S 1 ; S 1 S Set domain constraints Elements of P d are set domain constraints i.e., of the form b(S) :: glb(S)::lub(S). In other terms if glb(S) = fa 1 ; :::; a l g and lub(S) = fa 1 ; :::; a q g this constraint corresponds to fa 1 ; :::; a l g S fa 1 ; :::; a q g. Nevertheless the set domain constraint can not be replaced by the latter as the special handling of domains is fundamental to Conjunto's consistency techniques.

n-ary constraints

Set expressions together with binary set predicate symbols are n-ary constraints. In other terms, if cons is any constraint predicate symbol in f ; ; 6 = 0 g, n-ary constraints are of the form: S exp1 cons S exp2 .

Remark The disjointness constraint (6 = 0 ) is equivalent from a semantical viewpoint to S \ S 1 = fg, a speci c case of the n-ary constraint S \ S 1 = S 2 where S 2 = fg. As S 6 = 0 S 1 is of much use in partitioning problems, it has been embedded in Conjunto as a basic set relation constraint. A local arc consistency algorithm has been implemented to solve it. Doing so, we convert a n-ary constraint into a set relation one and avoid the more general approximation process which is useless here and looses information about the domain bound computation (see properties 4.3).

Mixed computation domain constraints

This last class of constraints establishes links between variables from two computation domains: (i) the nite HU universe (ii) the nite FP(HU) universe. It concerns the set of fX 2 S; X = 2 Sg4 constraints.

Admissible system of constraints

As an adaptation of 9], an admissible system of constraints is a system of constraints where every set constrained variable occurs in some set domain constraints. Set constraints are only considered in a given context (where domains are attached to the variables).

Having de ned the foundations of Conjunto we need to de ne its operational semantics comprising the consistency algorithms. [START_REF] Dovier | Embedding Extensional Finite Sets in CLP[END_REF] Operational semantics for set constraints Conjunto does not t to the standard CLP scheme 11] as the operational semantics is based on the notions of postponing some constraints and propagating other constraints whose satis ability is not always provable. The solver schedules in a data-driven way, the set constraints checked through consistency techniques.

Preliminary de nitions

First let us consider a constraint graph G to represent a constraint satisfaction problem. The approach is the usual one, that is each node s i of the graph corresponds to a set domain variable; each directed arc (s i ; s j ) linking the variables s i and s j corresponds to a single constraint C ij . Thus we assume for simplicity reasons that there is at most one constraint linking two variables in a given order of variables (s 1 s 2 and s 2 s 1 are two distinct constraints). This assumption simpli es the algorithm description but no restriction is actually imposed on real Conjunto programs.

The de nitions of node, arc consistency 14] and solved form 9] are kept and recalled hereafter.

De nition 5.1 Let c(S) be a unary constraint (i.e, with one set variable) such that a set domain D s = glb s :: lub s is attached to S. c(S) is node consistent i 8v 2 D s , c(v) is true. De nition 5.2 Let c(S; S 0 ) be a binary constraint such that set domains D s = glb s :: lub s and D s 0 = glb s 0 :: lub s 0 are respectively attached to S and S 0 . c(S; S 0 ) is arc consistent i for all v 2 D s , there exists w 2 D s 0 such that c(v; w) is true.

De nition 5.3 A system of basic set constraints is in solved form i every unary constraint is node consistent and every binary constraint is arc consistent.

Solved form computation

The internal set representation

Unlike for nite integer domains, the time complexity for operations on ground sets ( +; ? versus ; \; n) can not be considered as constant as it closely depends on the internal set representation. We made the choice to represent each domain bound with a sorted list where the time complexity for any set operation ( ; \; n) is upper bounded by O(2d) where d is #lub(s) + #glb(s) and s the set with the largest domain. # is the cardinality operator.

We have experimented another approach which consists of representing a set domain as a vector of 0-1 variables. This reduces the time complexity of the and \ operations to O(#lub(s)) where lub(s) is the largest domain upper bound. But it leads to a much larger occupation of the memory space. In the following d will always stand for #lub(s) + #glb(s).

Node consistency for basic set relation constraints

The node consistency checking for unary set constraints (set constraints with only one set variable) is quite straightforward. Let the algorithm be noted NC sets . It performs the following tests: for each unary constraint C i on the set variable s i with domain D i remove all the inconsistent sets from the domain D i , by reducing its upper bound and/or by increasing its lower bound. More detail concerning the computations over the bounds are given in the general case of arc consistency (arc_cons-f ; 6 = 0 g).

For example, the system of constraints: S :: fa; 3g::fa; 3; 7; fg; S fa; f; 3g is node consistent i the domain of S is reduced to S :: fa; 3g::fa; 3; fg.

Complexity issues Let n be the number of variables and d the sum of the largest upper bound and lower bound in the set domains. The time complexity for NC sets is in the worst case O(2nd).

Arc consistency for basic set relation constraints

Recall the set of basic set relation constraints P b = f S S 0 ; S 6 = 0 S 0 g where S and S 0 are set domain variables. The existing arc consistency algorithms can not be simply adapted to check consistency of set relation constraints over set domain variables. The reason is that these algorithms are based on a domain reasoning (except for AC-5 over arithmetic constraints 10]). That is, an arc (i,j) is consistent for each element of an integer domain D i . This reasoning takes polynomial time in the length of the largest domain. In the case of set domains, this reasoning would lead to an exponential number of tests in the largest upper bound length. For e ciency reasons, this reasoning is replaced in Conjunto by a reasoning on the domain bounds.

As formally introduced in 10], the existing arc consistency algorithms manipulate a list or queue of elements to reconsider. Once a variable domain j has been modi ed, some constraints need to be checked again. In terms of arcs, this means that some arcs (i; j) need to be reconsidered.

In Conjunto we consider two queues: one noted Q glb contains the arcs (s i ; s j ) for which the glb of s j has been increased and requires to reconsider arcs (s i ; s j ). The de nition of the second queue noted Q lub is then straightforward. It contains the arcs (s i ; s j ) for which the lub of s j has been modi ed and requires to reconsider the arcs (s i ; s j ). As a logical consequence, the rst queue might contain constraints of the form s j s i ; s i 6 = 0 s j ; s j 6 = 0 s i and the second queue might contain constraints of the form s i s j . Handling two queues avoids checking again arcs where a modi cation of the domain of s j does not justify a need to reconsider arcs (s i ; s j ). This optimization goes in the same line as the one given in AC-5 where the objective is to take into account the semantics of constraints and thus to check again only the constraints for which a need is justi ed. Now that the di erent queues have been de ned, we need to give the speci cation of the consistency algorithm for the inclusion and the disjointness constraints arc_cons-f ; 6 = 0 g. This algorithm reconsiders an arc (s i ; s j ) according to the constraint predicate it represents. This arc comes from a given queue due to a reduction of the domain of s j . It computes and returns the new domain D i of s i and a boolean value indicating a possible modi cation of D i (1 if D i has changed, 0 otherwise). In the following, the domain D i will stand for the two sets glb(s i ), lub(s i ) and the arc (s i ; s j ) will be replaced by its associated constraint predicate C ij . As usual C ij (s; s 0 ) represents the constraint C ij between the set values s and s 0 and denotes a boolean value. procedure arc_cons-f ; 6 = 0 g(in:(C ij ),inout: D i , out: CHANGED) begin case C ij of 1. s i s j if : lub(s i ) lub(s j ) then begin lub(s i ) lub(s i ) \ lub(s j ); CHANGED = 1; end else CHANGED = 0; 2. s i s j if : glb(s i ) glb(s j ) then begin glb(s i ) glb(s i ) glb(s j ); CHANGED = 1; end else CHANGED = 0; 3. s i 6 = 0 s j or s j 6 = 0 s i if : lub(s i ) 6 = 0 lub(s j ) then begin lub(s i ) lub(s i ) n glb(s j ); The two rst cases di erentiate the constraints where s j appears in the right of left hand side of .

Complexity issues. Like for the node consistency algorithm, the time complexity for this algorithm is closely linked to the set operation cost and is in O(2d).

Queue issues. Note rst that the lower bound glb(s i ) can only get modied in the case and second that the lub(s i ) might get reconsidered either due to a glb(s j ) modi cation in the 6 = 0 case, or due to a lub(s j ) modi cation in the case. Thus the constraint s i s j comes from the Q lub queue and might imply (if D i gets modi ed) to add constraints of the same kind in the same queue. The constraint s i s j comes from the Q glb queue and could also require to add constraints of the same kind or disjointness ones to the same queue. On the other hand, the s i 6 = 0 s j constraint comes from the Q glb queue and modi cations of lub(s i ) could lead to add s j s i constraints in the Q lub queue.

In Conjunto the constraints linked with a variable s j are stored in a list L s j initialized in the beginning of the resolution. Like in arc consistency algorithms for arithmetic constraints, the access to these constraints will not be taken into account in the time complexity results. So, to add constraints to one queue, requires to select from a given list speci ed by the string BOUND, the constraints for which the need to check them again is justi ed. The previous paragraph gave us some indications about the constraints to be selected given a modi ed domain bound. The following algorithm performs this selection. Q stands either for the Q glb or Q lub queue which is given as an input. Note that the s k s j constraints are the only ones which need to be reconsidered due to a modi cation of lub(s j ).

procedure addto_queue (in: D j , BOUND inout: Q) begin if BOUND = \lub" then Q = Q f8k; s k s j 2 L sj g else if BOUND = \glb" then Q = Q f8k; C kj 2 L sj j C kj 6 = s k s j g end The next step consists of initializing these queues. To do so, we need to perform once the above de ned local arc consistency algorithm upon each arc (s i ; s j ) of the graph G. The algorithm arc_cons considers once each arc and stores it (in case of a domain modi cation) in the right queue according to the constraint considered. It returns the two queues Q glb and Q lub . We keep the previous notation for (s i ; s j ) that is C ij . procedure arc_cons(in: G out: Q glb , Q lub ) begin Q glb , Q lub fg; for each C ij 2 G do begin arc_cons-f ; 6 = 0 g (C ij , D i , CHANGED); if CHANGED then if C ij = s i s j then addto_queue (D i , \glb", Q glb ) else addto_queue (D i , \lub", Q lub ) end end Let e be the number of directed arcs or constraints and d the number introduced above. The time complexity of arc_cons is in O(2ed).

We now give the complete algorithm for arc consistency checking of set relation constraints over nite set domains. It performs deterministic computations to reach a consistent system. The algorithm rst applies the node consistency algorithm to check the unary constraints. Then it performs the arc_cons algorithm once to initialize the queues by performing a rst propagation on each arc of the graph G. The two next interwoven loops aim at reaching the solved form. One iteration of the largest loop consists of emptying the Q lub loop and then of checking one arc C ij from the Q glb queue. This checking might lead to add arcs to any of the two queues (to the Q lub one in case of C ij = s i 6 = 0 s j , to Q glb otherwise). Proof (correctness) First, each set s removed from a domain D i can not belong to any arc consistent solution: a set is removed if it does not satisfy a local consistency (cf. arc_cons-f ; 6 = 0 g). Furthermore it can never be added further on. So by a continuous reduction of D i all the sets removed can never belong to any solution, so s in particular can not belong to any solution. Second, AC sets is totally arc consistent, that is for all arcs (s i ; s j ), for all sets s in D i there is one set s 0 in D j such that C ij (s; s 0 ): the continuity of the set inclusion and disjointness predicate symbols assure that if the domain bounds are sound values then any set value in the domain is also sound.

The two points demonstrated guarantee that AC sets builds the largest arc consistent solution: all the reduced domains do not contain a set which might lead to an inconsistent solution and thus should be removed. 2 Proof (termination and complexity) The size of the set domains can only get continuously reduced (see operations on the domains in arc_consf ; 6 = 0 g). Once a variable domain is reduced to one single set no constraint containing this variable is added to any queue. So if d 0 is the largest value of #lub(s) ? #glb(s) a constraint could be checked at most d 0 times. Termination is thus guaranteed for each loop. Now, let l be the size of Q lub and e ? l the one of Q glb . The cost of arc_cons-f ; 6 = 0 g is d for one constraint (d being the largest #lub(s) + #glb(s)). So for one constraint AC sets could be iterated d 0 times till the constraint is solved. If only one queue was handled, e constraints would be reconsidered in the worst case. So the time complexity would be O(edd 0 ).

In the case of Conjunto all the constraints are not reconsidered each time a modi cation occurs. If the constraints to be checked again only belong to the Q lub queue, the time complexity would be O((e ? l)d + ldd 0 ). If they would only belong to the Q glb queue, the time complexity would be O(ld + (e ? l)dd 0 ). Assuming that max( l; e ? l) = e ? l, the upper bound time complexity of AC sets is O(ld + (e ? l)dd 0 ). The gain versus a single handled list is ld ? ldd 0 .2

Partial lookahead for n-ary constraints

Recall the class of n-ary constraints: S exp1 cons S exp2 where S expi are set expressions and cons is any constraint predicate symbol in f ; ; 6 = 0 g. These constraints are handled e ciently by a reasoning about variation lattice bounds just like in AC sets using the properties 4.3 of the functions glb(s), lub(s) for set expressions s. Thus constraints over set expressions are approximated in terms of constraints over set variables. Let a n-ary constraint be S exp1 = S exp2 for example. Let the set expression S exp1 range over glb 1 :: lub 1 and S exp2 over glb 2 :: lub 2 . For the equation to be satis ed, the two terms must range over glb :: lub where glb is the maximum of glb 1 and glb 2 and lub is the minimum of lub 1 and lub 2 . In the following, we use the term PLH-solved form for this class of constraints upon which a new partial lookahead algorithm is applied.

Note that for e ciency reasons, very nested constraints such as S 1 \:::\ S n = fg are split into more simple ones like S 1 \S 2 = S 0 , S 0 \S 3 = S 00 , ..., S k \ S n = fg. This process might avoid awakening the initial constraint which involves a large amount of set domain variables (if lub(S 1 ) gets modi ed but the bounds of S 0 remain the same). This approach prefers e ciency gain over memory loss. It has been used in the bin packing application.

Forward checking for mixed computation domain constraints

The constraints fX 2 S; X = 2 Sg are currently handled in Conjunto using forward checking over the integer variables X, that is the constraints are postponed until X is ground. If X becomes a ground term a, the constraints are rewritten into: a 2 S ! fag S a = 2 S ! fag 6 = 0 S Now that the consistency algorithms for set relation constraints and n-ary constraints have be de ned, we need to de ne the solver which uses these algorithms to transform a system of set constraints into a consistent system.

The constraint solver

The constraint solver of Conjunto transforms a system of set relation constraints into a system in solved form and a system of n-ary constraints into a system in PLH-solved form. The membership and nonmembership constraints are delayed ( ounder notion in 9]) until they become unary constraints.

Algorithm The solver acts in a data driven way using a relation between states. A state of the program is the system of constraints or pair S = < SC; DC > where SC is a set of set relation constraints and n-ary constraints and where DC is a set of set domain constraints. First apply the node consistency algorithm NC sets to the unary constraints to obtain the state < SC; DC 0 >, then depending on the constraints apply the arc consistency algorithm AC sets or the partial lookahead algorithm to obtain the state S 0 = < SC; DC 00 >. Theorem 5.5 A system < SC; DC > in solved form (i.e., containing only set relation constraints resulting from AC sets ) is satis able if the set of constraints DC is satis able.

Proof First, if any set domain is unsound (glb(s) lub(s)) then the system is clearly unsatis able. Second, if the set of set relation constraints is not empty, it is always possible to nd a solution by computing the least model. In fact, the continuity of the inclusion and disjointness predicates guarantees that any set value within the respective domains leads to a solution. So assigning to each of the domain variable the respective lower bound of their domain leads to a solution. 2

Expressive power It is worth noting that in a system in PLH-solved form which contains some union together with some intersection operators, the set domain bounds of a set variable can be locally consistent but not globally.

The reason is that the union operator does not preserve the lower bound computation (see property 4.3.5) of a set expression domain whereas the intersection does not preserve the upper one (property 4.3.4). So global consistency is not provable for systems of set constraints comprising union and intersection operators unless the solver performs exhaustive computations at an exponential cost in the largest upper bound among the set domain. Example 5.6 The following set of constraints: S 1 :: fg::f1; 2; a; bg, S 2 :: fg::f1; 2; a; bg, S 3 :: fg::f1; 2; a; bg, S 1 S 2 S 3 = f1; 2; a; bg; S 1 \ S 2 \ S 3 = fg. is in PLH-solved form but not globally consistent. Assigning respectively to each set variable the lower bound of its domain (or the upper one) does not lead to a solution.

The following example of bin packing illustrates how constraint propagation acts actively over set constraints and is su cient to solve such problems, and how set domains bring expressiveness and conciseness to the program.

Problem description Bin packing problems belong to the class of set partitioning problems 5]. A multiset of n integers is given fw 1 ; :::; w n g and speci es the weight elements to partition. Another integer W max is given and represents the weight capacity. The aim is to nd a partition of the n integers into a minimal number of m bins (or sets) fs 1 ; ::; s k g such that in each bin the sum of all integers does not exceed W max . This problem is usually stated in terms of arithmetic constraints over 0-1 variables and solved using various OR techniques or constraint satisfaction ones. It requires one matrix (a ij ) to represent the elements of each set, one vector x j to represent the selected subsets s k and one vector w i to represent the weights of the elements a ij .

Hereafter is the abstract formulation of the bin packing problem in Integer Programming (IP) and in Conjunto.

IP abstract formulation

Conjunto abstract formulation P m j=1 a ij x j = 1 8i 2 f1; ::; ng s 1 \ s 2 = fg; s 1 \ s 3 = fg; ::; s n?1 \ s m = fg s 1 s 2 ::: s m = f(1; w 1 ); ::; (n; w n )g where:

x j = 0::1 (1 if s j 2 fs 1 ; :: ; s k g) s j :: fg::f(1; w 1 ); ::; (n; w n )g a ij = 0::1 (1 if i 2 s j ) P n i=1 a ij w i W max 8j 2 f1; :::; mg weight(i; w i ) = w i ; P #glb(sj) i=1 weight(i; w i ) W max 8s j Under these assumptions, the program to solve is to minimize the number of bins: min x 0 = P m j=1 x j minx 0 = #fs j j s j 6 = fgg Problem statement Let P = f item(1; w 1 ) ; :::; item(i; w i ); :::; item(n; w n )g be a non empty set of items i with a weight w i . The aim is to partition P into a minimal number of N subsets such that the sum of the w i in a computed subset of P does not exceed a limited weight Wmax.

The heuristic used is the rst t descending which rst sorts the objects in decreasing order of their weight. Bins are then lled one after another. Problem data The problem receives as data the maximum weight allowed in each computable set weight_max(50) and a nite set of items pieces({item(it1,W_1),..., item(it80,W_80)}).

Conjunto built-ins The re ne procedure tries to add elements to the glb of each set and in case of failure (the weight of the items is strictly greater than weight_max(50)) removes them from the lub. The all_disjoint() predicate constrains the upper bound of each S j not to contain any lower bound of the remaining set domains D i with (i 6 = j). It has the semantics of the following set of constraints S 1 \S 2 = fg; S 1 \S 3 = fg; ::: ; S n?1 \S n = fg.

The all_union() predicate constrains the union of all the upper bounds to be equal to the set P. It is encoded by splitting the S S i = P into simple constraints S 1 S 2 = S 0 ; ::: ; S k S n = P.

Experimental results and comparisons We made a complete comparative study with a 0-1 Finite Domain (FD) formulation. For the encoding of sets and set constraints, we used respectively lists of 0-1 variables and arithmetic constraints on the variables as described previously. The arithmetic constraint predicates were handled using the ECLiPSe solver 5 The two programs di er in the data structure used and thus in the constraints applied to these data. The rst point to note is that this di erence has an impact both on the space consumption (stack peaks6 ) and on the cpu time. The space consumption comprises among other stacks, the global stack and the trail stack. The data structure is largely responsible for the growth of the global stack peak. The di erence of space consumption (stack sizes) in the two approaches comes from the set-like representation as list of 0-1 domain variables versus two sorted lists in Conjunto: (i) The lists of 0-1 variables are never reduced because retrieving an element from a set corresponds to setting a variable domain to zero. This is not the case with the set domain representation. (ii) The trail stack is used to record information (set domains or lists of zero-one variables) that is needed on backtracking. The number of backtracks in the two program executions is the same, so the di erence comes from the amount of information needed to be recorded.

The di erence in the garbage collection number comes also from the space consumption as this number is the number of stack garbage collection. The di erence of cpu time is due rst to the time needed for garbage collection which is a direct consequence of the size of the stacks which are garbage collected; and second to the time needed for performing operations on the data. A pro le on the cpu time consumption indicated that half of the consumption in the FD program resolution is a time needed for performing arithmetic operations on the 0-1 variables. The weight constraint applied to each set is one of the costly computations. The weight constraint a i1 W 1 + a i2 W 2 + ::: a in W n W max which is awakened each time an a ij is set to 1, consists of a cartesian product of two lists. In the Conjunto program, it consists of constraining the sum of weights W i directly available from the elements (i; W i ) of a domain upper bound. Another costly computation in the FD formulation, is the one of the largest weight not already considered for one set. This requires to check the 0-1 variable in link with one weight. A weight is not yet considered if the corresponding domain variable is not instantiated. In the Conjunto program, this computation corresponds to the di erence of the two bounds of a set domain. The resulting set constains the elements (i; W i ) which have not been considered yet.

This di erence operation is in fact the most time consuming in the Conjunto program resolution, for it is also performed to compute disjoint sets. But it represents half of the cpu time consumption of arithmetic operations.

Thus, it arises from this application based on the computation of a minimal set of bins, that set constraints together with set domains are expressive enough to embed the problem semantics and allow to avoid encoding the information as lists of 0-1 variables or handling additional data (the list of weights), and also that consistency techniques for set constraints are e cient to solve combinatorial problems on sets.

Conclusion and future work

A new CLP language embedding sets, called Conjunto is presented. In Conjunto, set variables range over nite set domains. This representation has several strengths: it is rather natural; it is powerful enough to express the set semantics; it leads to an e cient use of consistency techniques. New consistency algorithms for reasoning on the set domain bounds are the basis of the constraint solver. An O(ld + (e ? l)dd 0 ) arc consistency algorithm is presented for the class of set relation and set domain constraints where l is the number of inclusion constraints, e?l the number of remaining ones, d the sum of the cardinalities of the largest domain bounds and d 0 their di erence. The operational semantics is described and guarantees satis ability for a large class of constraints. An application of this computation domain to a bin packing problem is presented. It illustrates how e ciency can be combined with expressive power.

We are currently investigating the applicability of relation constraints to set covering problems. In this extended domain of computation based on the same notions of bounds, some complexity issues are currently being investigated for the consistency algorithms handling relation and graph constraints. Some work is still to be done though, both to complete the experimental work on set constraints and to evaluate the expressive power and practical interest of relations.
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  CHANGED then if C ij = s i s j then addto_queue (D i , \glb", Q glb ) else addto_queue (D i , \lub", Q lub ) ;

	begin AC sets fori until n do NC sets (i); arc_cons(G, Q glb , Q lub ) ;
	while Q glb not empty do
	begin while Q lub not empty do
	begin select and remove C ij from Q lub ; arc_cons-f ; 6 = 0 g (C ij , D i , CHANGED) ; if CHANGED then addto_queue (D i , \lub", Q lub ) ;
	end
	select and remove C ij from Q glb ; arc_cons-f ; 6 = 0 g (C ij , D i , CHANGED);

if end end

  The part of the program given only shows the partitioning for a given N. The optimization predicate is the classical one which initializes N to the value weight(P)=Wmax and extends N at each call of the top level predicate until a failure is encountered. The solution is the last successful partition.

	The program uses the union operators as a constraint predicate (cf. previous remark on e cient handling of nested set expressions) and exploits the set representation with nite domains. We evoke a simple Conjunto program partly shown on gure 6 which solves large instances (80 items partitioned into 30 sets) and nds the optimal solution in about 22 seconds on a SUN state_constraints(Sets, P) :-pieces(P), restrict_weight(Sets), make_sets(N,P,Sets), $all_disjoints(Sets), state_constraints(Sets,P), $all_union(Sets,P). labeling(Sets). labeling( ]). make_sets(0,Plub, ]). labeling( S1|Sets]) :-make_sets(N,Plub, Set|Sets]):-$refined(S1),!, $Set ::{}..Plub, labeling(Sets). N1 is N -1, labeling( S1|Sets]) :-make_sets(N1, Plub,Sets). $refine(S1), 4/40. solve(N,Sets) :-labeling( S1|Sets]).

  for arithmetic constraints over nite domains. The FD program was encoded so as to use the same rst t descending heuristics and the same labeling procedure as the Conjunto program. The following array gives the time together with space consumption results. The number of backtracks in the two program executions is the same.

	Criterion global stack peak (bytes) 847 872 Conjunto program FD program 2 334 720 trail stack peak (bytes) 126 968 987 136 garb. collection number 27 77 cpu time (sec.) 21.6 31.5 garb. collection time (sec.) 1.21 6.28

Conjunto: konr0nto], Spanish for set.

; is represented by the syntax fg and interpreted as the empty set.

in the system as the solver handles nite (integer) domains when dealing with the cardinality operator #. For reasons of space, its handling will not be presented here.

comprises set relation constraints and set domain constraints as dened below.

avoids confusions with the arithmetic equality and ts the Conjunto implementation syntax.

In flogg 4] they do not need to distinguish these constraints from as they can write x 2 S $ fxg S. In Conjunto fxg is not a term (if x is a variable) so we do need to de ne as a primitive constraint.

based on consistency techniques which perform a reasoning about variation domain bounds or about variation domains depending on the constraint predicate.

the peak value indicates what was the maximum allocated amount during the session.
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