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Abstract� Local consistency techniques have been introduced in logic programming in order to
extend the application domain of logic programming languages
 The existing languages based on
these techniques consider arithmetic constraints applied to variables ranging over �nite integer
domains
 This makes di
cult a natural and concise modelling as well as an e
cient solving
of a class of NP�complete combinatorial search problems dealing with sets
 To overcome these
problems� we propose a solution which consists in extending the notion of integer domains to that
of set domains �sets of sets	
 We specify a set domain by an interval whose lower and upper bounds
are known sets� ordered by set inclusion
 We de�ne the formal and practical framework of a new
constraint logic programming language over set domains� called Conjunto
 Conjunto comprises
the usual set operation symbols ����� n	� and the set inclusion relation ��	
 Set expressions built
using the operation symbols are interpreted as relations �s � s� � s��


	
 In addition� Conjunto
provides us with a set of constraints called graduated constraints �e
g
 the set cardinality	 which
map sets onto arithmetic terms
 This allows us to handle optimization problems by applying a
cost function to the quanti�able� i�e�� arithmetic� terms which are associated to set terms
 The
constraint solving in Conjunto is based on local consistency techniques using interval reasoning
which are extended to handle set constraints
 The main contribution of this paper concerns the
formal de�nition of the language and its design and implementation as a practical language


Keywords� CSP� �nite set domains� relational set constraints� consistency techniques� interval
propagation� CLP� constraint programming language


�� Introduction and motivation

This paper presents a means to tackle set based combinatorial search problems
in a Constraint Logic Programming �CLP� framework �Ja�ar and Lassez� �����
Colmerauer� ����� Ja�ar and Maher� �����	 The main contribution of the work is
a new language allowing set based constraint satisfaction problems to be modelled
and solved in an elegant way using constraint logic programming	 We introduce the
notion of set domain following the concept of 
nite integer domain �Fikes� �����	
The elements of a set domain are known sets containing arbitrary values� and the
set domain itself represents a powerset	 It is de
ned as a set interval speci
ed by
its lower and upper bounds	 The constraints of the language are built�in relations
applied to variables ranging over set domains	 The solver is based on an exten�
sion of consistency techniques �Mackworth� ����� Mackworth and Freuder� ���
�
�originating in arti
cial intelligence� to deal with set constraints	 Closely related
to our work are the notions of 
nite domains� sets and intervals embedded in a



constraint logic programming framework	 These notions presented hereafter come
from various backgrounds and were originally meant for di�erent purposes	

���� Constraint satisfaction using CLP

Logic programming �Kowalski� ����� Colmerauer et al	� ����� Lloyd� ����� is a pow�
erful programming framework which enables the user to state nondeterministic
programs in relational form	 Some ten years ago� the concept of 
nite domain
variables �Van Hentenryck and Dincbas� ����� i	e	� variables ranging over a set of
natural numbers� has been embedded into logic programming to allow for e�cient
tackling of combinatorial search problems modelled as Constraint Satisfaction Prob�
lems �CSPs��Mackworth� �����	 A CSP is commonly described by a set of variables
ranging over a set of possible values �the domains� and a set of constraints applied
to the variables	 It is well known that combinatorial search problems are NP�
complete �Papadimitriou and Steiglitz� �����	 The solving of a CSP utilizes local
consistency techniques	 These are constraint propagation techniques aiming at
pruning the search space� associated to a CSP� by removing values that can never
be part of any feasible solution	 One use of these techniques in logic programming
has aimed at extending a logic�based language with consistency techniques at the
language level �Van Hentenryck and Dincbas� �����	 This has led to the 
rst de�
velopment of a Constraint Logic Programming �CLP� language on 
nite domains�
CHIP �Dincbas et al	� ����� �Constraint Handling In Prolog�	
CHIP extends the application domain of logic programming to the e�cient solv�

ing of combinatorial search problems	 Typical examples are scheduling appli�
cations� warehouse location problems� disjunctive scheduling and cutting stock
�Dincbas et al	� ����� which are arti
cial intelligence or operations research prob�
lems	 The success of CHIP prompted the development of new 
nite domain CLP
languages� classi
ed as CLP�FD� languages �e	g	 �Carlson et al	� ������� but also
raised the question of its limitations	 Some of the limitations are concerned with
the di�culties CLP�FD� languages have to model and solve a class of combinato�
rial problems based on the search for sets or mapping objects	 Set partitioning� set
covering� matching problems are such combinatorial search problems	 The main
motivation of our work is to provide a solution to this problem	 So far� a 
nite do�
main CSP approach models a set either as a list of variables taking their value from
a 
nite set of integers ��x�� ���� xm�� xi � f�� �� ���� ng if m � n and the cardinality of
the set is known to be m�� or as a list of ��� variables ��y�� ���� ym�� yi � f�� �g�	 The

rst approach requires the removal of order and multiplicities among the elements
of the list� which is achieved by adding ordering constraints �x� � x� � ��� � xm�	
Constraints over sets are modelled using arithmetic constraints	 This is not natu�
ral� costly in variables� and this often makes the program non�generic	 The second
approach� based on the use of ��� variables� originates from ��� Integer Linear Pro�
gramming �ILP� �Schrijver� �����	 It makes use of the one�to�one correspondence
which exists between a subset s of a known set S and a boolean algebra	 This
correspondence is de
ned by the characteristic function�
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f � yi �� f�� �g where f�yi� � � i� i � s

In other words� a ��� variable is associated with each element in S and takes the
value � if and only if the element belongs to the set s	 This approach requires a lot
of variables	 In addition it does not ease the statement of set constraints such as
the set inclusion� because the inclusion of one list into another requires considering
a large amount of linear constraints over the ��� variables	 This is not very natural�
nor concise	 To cope with this problem� two solutions have been proposed	 One
consists in de
ning a class of built�in predicates� referred to as global constraints
�Beldiceanu� ����� Beadiceanu and Contejean� ������ which allow for the concise
statement and global solving of a collection of constraints	 One way to achieve such
a global reasoning is to use operations research techniques in a CLP setting	 This
approach aims to achieve a better pruning of the variable domains by taking into
account several constraints at a time	 It also extends the programming facilities
of CLP�FD� languages to handle e�ciently speci
c problems such as disjunctive
scheduling� computation of circuits in a graph� etc	 The second solution� presented
in this paper� aims at extending the expressiveness of the language by embedding
sets and providing set and mapping constraints for general purposes	 This requires
an investigation of how CLP languages based on sets tackle the set satis
ability
problem and how well expressiveness can be combined with e�ciency	

���� Set data structures in logic�based programming languages

A set is a collection of distinct elements commonly described by fx�� ���� xng	 The

rst application to embed sets as a high level programming abstraction was in
rapid software prototyping and problem speci
cation �Oxford ����� Schwartz et
al	� ����� Turner� ����� More recent proposals in database query languages� as�
sume a logic�based language as the underlying framework	 These proposals aimed
at strengthening typical existing set facilities of languages like Prolog �e	g	 setof�
bagof� to handle sets of terms and complex data structures	 In this line of work
sets have been embedded in �Beeri et al	� ����� Kuper� ����� Shmueli et al	� �����
Dovier et al	� �����	 All these languages converge on one aspect� representing
a set variable by a set constructor so as to nest objects in a natural manner	
This constructor is speci
ed either by an extensional representation fx�� ���� xng
��Beeri et al	� ����� Kuper� ������ or by an iterative one fxg � E where E can be
uni
ed with a set of terms containing possibly set variables �concept of sets of 
nite
depth in �Dovier et al	� ����� Legeard and Legros� ����� Stolzenburg� ������	 The
equality relation over constructed sets is a particular case of Associative� Commuta�
tive and Idempotent �ACI� relation �Livesey and Siekmann� �����	 Each property
is usually modelled by a set of axioms	 Ensuring the satis
ability of these prop�
erties� i	e	 solving the satis
ability problem of constructed sets� is NP�complete
or even NP�hard �Livesey and Siekmann� ����� Perry et al	� ����� Kapur and
Narendran� ����� Hibti� ���
�� depending on the class of axioms and operations
considered �e	g	 ���� n�	 The main reason is the absence of a unique most general
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uni
er when unifying constructed sets	 This is clear from the following exam�
ple� the equality fX�Y g � f�� �g derives two solution sets� fX � �� Y � �g and
fX � �� Y � �g neither of which is more general than the other	 Thus� in practice
the uni
cation procedure of constructed sets is achieved by computing a minimal
collection of set uni
ers� that is a set of substitutions	 This means that the satis�
faction of the ACI axioms introduces nondeterminism in the uni
cation procedure
by deriving disjunctions of a 
nite number of equalities	 In �Beeri et al	� �����
Jayaraman and Plaisted� ����� a term�matching procedure is considered �uni
ca�
tion of two sets when one of them contains no variables�	 This approach reduces
signi
cantly the set of uni
ers	 But term�matching for constructed sets remains an
NP�complete problem �Perry et al	� ����� Kapur and Narendran� �����	 Indeed� if
fx�� ���� xng � f�� ����mg �m � n� there are at most �n�m computable solutions	
These approaches allow for a high level of abstraction when representing collec�

tions of terms	 Unfortunately they are very ine�cient in time complexity results	
Recently� some alternative approaches have focused on embedding constructed sets
in constraint logic programming	 CLP languages dealing with sets� CLP�Sets��
are de
ned as instances of the CLP scheme �Ja�ar and Lassez� ����� over a spe�
ci
c computation domain describing the class of allowed set expressions and set
constructors	 These CLP�Sets� languages provide a sound and complete solver	
Hereafter� we put a particular attention into the description of CLP���� which
deals with regular sets� the revisited language flogg which axiomatizes a set theory�
and CLPS which aims at prototyping combinatorial problems using sets� multisets
and sequences	

���� Set data structures in constraint logic programming languages

Constraint Logic Programming �CLP� combines the positive features of logic pro�
gramming with constraint solving techniques	 The concept of constraint solving
replaces the uni
cation procedure in logic programming and provides� among oth�
ers� a uniform framework for handling set constraints �eg	 x � s� s � s�� s � s��	
CLP���� �Walinsky� ����� represents an instance of the CLP scheme over the

computation domain of regular sets	 A regular set is a 
nite set composed of
strings which are generated from a 
nite alphabet �	 This language incorporates
strings into logic programming to strengthen the standard string�handling features
�eg	 concat� substring�	 CLP���� does not deal with sets in the general sense
but nevertheless� it constitutes a 
rst attempt to compute regular sets by means
of constraints like the membership relation	 The complexity of the satis
ability
procedure is not given� but in
nite computations are avoided thanks to the use of
�oundering	
flogg �Dovier and Rossi� ����� Bruscoli et al	� ����� has been revisited from a LP

to a CLP framework in order to provide a uniform framework for the handling of set
constraints ����� ��� ���	 The author does not know of any application developed
using this language but its design and implementation have settled the theoretical
foundations for embedding constructed sets of the form fxg�S into logic program�
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ming and constraint logic programming	 The soundness and completeness of its
solver allow us to use it for theorem proving and problem speci
cation	 In flogg�
the nondeterministic satisfaction procedure of constructed sets reduces a given con�
straint to a collection of constraints in a suitable form by introducing choice points
in the constraint graph itself	 This leads to a hidden exponential growth in the
search tree	 In this approach� completeness of the solver is required if one aims at
performing theorem proving	 Thus� there is no possible compromise here between
completeness and e�ciency	

CLPS �Legeard and Legros� ����� Legeard and Legros� ����� aims at prototyp�
ing combinatorial problems using sets� multisets and sequences	 It proposes a couple
of interesting methods to handle extensional sets fx�� ���� xng of 
nite depth �e	g	
s � fffe� agg� cg is a set of depth three�	 Unlike flogg� CLPS comprises the set
cardinality operation which in this prototyping context is of a great practical use	
One of the distinctive features of CLPS is to allow set elements to range over in�
teger domains	 When set elements are 
nite domain varaibles� the satis
ability
problem of constructed sets is tackled by an arc�consistency algorithm of type AC�
� �Mackworth� ����� combined with a local search procedure �forward checking�	
A system of set constraints where each set element ranges over a 
nite domain
is consistent if each of the set constraints it contains is locally consistent	 For
example� the system x � f�� �g� y � f�� �� �g� �z� t� � f�� �� �� 
g� fx� yg � fz� tg is
consistent if x � f�� �g� y � f�� �g and �z� t� � f�� �� �g	 Note that the set equal�
ity relation should be associative� commutative and idempotent	 It might happen
that due to the satisfaction of the ACI axioms� distinct selected values for the el�
ements will generate identical instances of the sets �e	g	 the two sets of selected
values fx � �� y � �� z � �� t � �g and fx � �� y � �� z � �� t � �g gener�
ate a unique instance f�� �g for both sets�	 While some a priori pruning can be
achieved� the search procedure which uni
es the constructed sets remains expo�
nential	 This is a main drawback of this language when solving set�based com�
binatorial search problems �e	g	 bin packing� set partitioning�	 However� their
later work on constructed terms for multisets and sequences proved to be appro�
priate for modelling and solving scheduling problems with a reasonable e�ciency
�Baptiste et al	� ����� Boucher and Legeard� �����	

To achieve a better e�ciency in the area of combinatorial search problem solving�
a set should be represented by a variable as opposed to a constructed term� this
allows us to have a deterministic set uni
cation procedure which consists of testing
in polynomial time the equality between set variables and ground sets �e	g	 S �
f�� �g�	 In addition� sets should range over domains so as to make use of powerful
constraint propagation techniques	 To achieve this� we propose a language which
enables us to model a set�based problem as a set domain CSP �where set variables
range over set domains�� and which tackles set constraints by using consistency
techniques	 A set domain can be a collection of known sets of arbitrary elements
like ffa� bg� fc� dg� fegg	 It might happen that the elements of the domain are
not ordered at all� and thus if large domains are considered� it is not possible to
approximate the domain reasoning by an interval reasoning as in some CLP�FD�
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systems	 To cope with this� we propose to approximate a set domain by a set
interval speci�ed by its upper and lower bounds� thus guaranteeing that a partial
ordering exists� This allows us to make use of consistency techniques by reasoning
in terms of interval variations� when dealing with a system of set constraints	 The
set interval �fg� fa� b� c� d� eg� represents the convex closure of the set domain above	

The strengths of handling intervals in CLP have recently been proved when deal�
ing� in particular� with integers and reals	 On the one hand� interval reasoning
does not guarantee that all the values from a domain are locally consistent� versus
domain reasoning	 On the other hand� it removes at a minimal cost some values
that can never be part of any feasible solution	 This is achieved by pruning the
domain bounds instead of considering each domain element one by one	 Inter�
val reasoning is particularly suitable to handle monotonic binary constraints �e	g	
x � y� s � s��� where it guarantees the correctness properties of domain reasoning
while being more e�cient in terms of time complexity	

���� Interval reasoning using CLP

The introduction of real intervals into CLP aims at avoiding the errors resulting
from 
nite precision of reals in computers	 A real interval is an approximation of
a real and is speci
ed by its lower and upper bounds	 It does not denote the set of
possible values a variable could take but a variation of an in
nite number of values	
Cleary �Cleary� ����� introduced a relational arithmetic of real intervals into logic
programming based on the interpretation of arithmetic expressions as relations	
Such relations are handled by making use of projection functions and closure oper�
ations� which correspond to the de
nition of transformation rules expressing each
real interval in terms of the other intervals involved in the relation	 These transfor�
mation rules approximate the usual consistency notions	 The handling of these rules
is done by a relaxation algorithm which resembles the arc�consistency algorithm
AC�� �Mackworth� �����	 This approach prompted the development of the class of
CLP�Intervals�	 A formalization of this approach is given in �Benhamou� ���
�	

While CLP�Intervals� languages make use of consistency techniques� they do not
model CSPs because the solving of a problem modelled in a CLP�Intervals� lan�
guage searches for the smallest real intervals such that the computations are correct	
It guarantees that the values which have been removed are irrelevant� but does not
bind the real variables to a value	 Set intervals in constraint logic programming re�
semble the real interval arithmetic approach in terms of interpreting set expressions
�e	g	 s� s�� s� s�� as relations and using interval reasoning to perform set interval
calculus when handling the constraints	 However� set intervals in constraint logic
programming contribute to the de�nition of a language which allows one to model
and solve discrete CSPs	 In practice� this corresponds to providing a labelling pro�
cedure in order to reach a complete solution	 This requirement di�ers from that
of CLP�Intervals� languages where the completeness issue is still an open problem
because of the in
nite size of real intervals	
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���� Contribution

This paper contains the following contributions�

� A formal framework for solving a system of set constraints over set domains	
This framework de
nes the algebraic structure of the constraint domain over set
intervals	 It is generic and can be adapted to formalize the class of languages
which make use of consistency techniques as main constraint solving tool	

� A practical framework describing the Conjunto language which we have designed
and implemented using the constraint logic programming platform ECLiPSe

�ECRC� �����	

� Applications developed in Conjunto	 They illustrate the modelling facilities of
the language and its ability to solve in an e�cient way large search problems
�Gervet� ����� Gervet� ���
�	

I Formal Framework

This part describes a constraint logic programming system dealing with sets which
range over a 
nite domain �i�e�� sets which belong to a powerset� and whose
solver is based on consistency techniques	
A CLP system is parameterized by its computation domain and more generally

by its constraint domain �Ja�ar and Maher� �����	 The computation domain is
the algebraic structure over which constraints are applied to set variables and the
constraint domain is the algebraic structure over which consistency techniques are
performed in terms of set interval reasoning	 A clear distinction should be made
between them	 On the one hand� the user manipulates sets in a logic�based language
and on the other hand set interval calculus is performed to search for set values as
illustrated on the following 
gure	

Computation domain
User level

Constraint domain
Set interval calculus 
level

transformation
rule

[{6},{6,13}]    [{13},{13,5}] =  {} D2  <-  [{13},{13,5}]

D1  <-[{6}, {6}]

X     D1, 

Y     D2,  
 X       Y = {} 

Y     [{13},{13, 5}],  

X     [{6},{6,13}], 

 X       Y = {} 

A constraint logic programming language with sets� set operations and relations
is not expressive enough to tackle set�based search problems	 In particular opti�
mization problems require the statement of a cost function which necessarily deal
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with quanti
able� i�e�� arithmetic� terms	 To cope with this� an extension of the
language is presented and consists in adding to the language syntax and to the
constraint domain of the system a class of functions which map sets to integers
�e	g	 the set cardinality �� the set weight� etc	�	 These functions are called graded
functions when they map elements from a lattice �e	g	 a powerset equipped with
the operations ��� and the partial ordering �� to the set of integers	

�� Basics of powerset lattices

Some de
nitions� properties and results on lattices are necessary to understand
the main features of the formal description of the system	 These can be found in
�Birkho�� ����� Graetzer� ����� Gierz and Ho�man� �����	 The particular lattice
we deal with is the powerset lattice	 To give an intuitive idea of the subsequent use
of these de
nitions� some examples relating to powerset lattices are given	 Readers
familiar with these notions can skip this subsection	

���� Lattices

Definition � A poset �also known as partially ordered set� is a set S equipped
with a binary relation 	 �formally a subset of S 
 S� that satis�es the following
laws�

P�� Re	exivity �x� x 	 x
P
� Antisymmetry �x 	 y and y 	 x� � �x � y�
P�� Transitivity �x 	 y and y 	 z� � x 	 z

Example� Let S be a �nite set and P�S� the set of all subsets of S or powerset of
S� Then the set inclusion � is easily seen to be a partial order on P�S�� P�S� is
a poset�

Definition � Let S be a poset� X a subset of S and y an element of S� Then y
is a meet or greatest lower bound or glb for X i��

y is a lower bound for X� i�e�� if x � X then y 	 x and�
if z is any other lower bound for X then z 	 y

The notation we use is y �
V
�X��

Definition � Let S be a poset� X � S and y � S� Then y is a join or least upper
bound or lub for X i��

y is an upper bound for X� i�e�� if x � X then y 
 x and�
if z is any other upper bound for X then z 
 y

The notation we use is y �
W
�X��

Proposition � Let S be a poset and X a subset of S� Then X can have at most
one meet and at most one join�
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Proof	 By P
� meet and join are clearly unique whenever they exist	 If a and b
are two meets then we have on the one hand a 	 b and on the other hand b 	 a	
This infers a � b	

The following property establishes a link between 	 and the pair �
V
�
W
� as actual

meet and join	

Property � �Consistency property� Let S be a poset� Then for all x� y � S�
x 	 y � x �

V
�fx� yg�

x 	 y � y �
W
�fx� yg�

Proposition � �Graetzer� �
��� The following de�nitions are equivalent�
�i� A poset is a lattice i� every �nite subset has a meet and a join�
�ii� A poset S is a lattice i� every two elements have a meet and a join�

Example� The powerset P�X� is a lattice where the meet operator is the intersection
� and the join operator is the union �� Every two elements x� y of P�X� have a
meet x � y and a join x � y�
The partial order as set inclusion � satis�es the consistency property�

x � y � y � x � y � x � y � x

This equivalence de�nes the correspondence between the relational de�nition of the
structure �P�X�� ������ in terms of properties of the partial order � �existence of
a glb and a lub� with its algebraic de�nition in terms of properties of the operations
����

���� Intervals in powerset lattices

Reasoning with and about intervals within a powerset lattice constitutes the core
of our system	 The following de
nitions and properties give the basic properties of
set intervals in powerset lattices	 A set interval delimited by two sets x and y is
speci
ed by the syntax �x� y� such that x � y	 In case x � y this interval is reduced
to a singleton	 One important task in set interval reasoning is the computation of
set intervals which describe the smallest convex powerset containing a collection of
sets	 This subsection focuses on the de
nitions and properties of these convex set
intervals	

Definition � An interval of two arbitrary sets x� y in a powerset lattice is the set
�x � y� x � y��

Definition � A subset S of a powerset lattice L is convex if x� y � S imply

�x � y� x � y� � S

8



Property � The meet and join operators in a powerset lattice are isotone �preserve
the order��

x � y � x � z � y � z
x � y � x � z � y � z

Example� This property is extremely useful when reasoning about set intervals in a
powerset lattice P �X�� Consider the following inclusion relations between elements
of P �X��

a � x � b and c � y � d

x and y belong to the respective intervals �a� b� and �c� d�� From property 
� we
infer a � c � x � y � b � d and dually for the union operation� So if x and y are
only de�ned from the intervals they belong to� their union and intersection can be
approximated by the new intervals �a � c� b � d� and �a � c� b � d��

Proposition � A closed set interval �x � y� x � y� is convex�

Proof	 Let I � �x�y� x�y� be a set interval	 If z� t � I then z�t � I and z�t � I �
and by Property �� �z � t� z � t� � I 	

�� Set intervals in CLP

Consider an arbitrary collection of sets	 Take the smallest convex set which contains
this collection of sets	 This convex part denotes a set interval	 This concept of set
interval is the means we use to reason with and about sets in a CLP system	 On the
one hand the user manipulates sets in a logic�based language and on the other hand
set interval calculus is performed to search for set values	 This section describes the
algebraic structure of the system called the constraint domain	 This is the structure
over which set interval calculus is performed	

���� Preliminaries

Let �S be the set of prede
ned function and predicate symbols necessary to reason
with and about sets in the language�

�S � f������ n�����a�b�g

The predicate symbol ��a�b� applied to a variable s will be interpreted as the double
ordering a � s � b	
The set of constants de
nes the domain of discourse of the language	 It extends

the Herbrand universe to provide the concept of set constant	

Definition � The domain of discourse is the powerset

DS � P�Hu� where Hu refers to the Herbrand universe
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A set constant is any element from P�Hu� represented by the abstract syntax
fe�� ���� eng where the ei belong to Hu	

Definition � A set variable is any variable taking its value in P�Hu��

Definition � A set expression S of DS where s�� s� are set constant or variables
is inductively de�ned by� s� � s� j s� � s� j s� n s�

Notations� Set variables will be represented by the letters x� y� z� s	 Set constants
will be represented by the letters a� b� c� d	 Natural numbers will be represented by
the letters m�n and integer variables by v� w	 All these symbols can be subscripted	

���� Computation domain

The computation domain of the system is the powerset algebra DS which interprets
�over the domain of discourse DS� the function symbols ���� n belonging to �S in
their usual set theoretical sense �i�e�� � is the empty set� n the set di�erence� etc	�	
The interpreted set union and intersection symbols have the following algebraic

properties�
C	 x � y � y � x x � y � y � x commutativity
As	 �x � y� � z � x � �y � z� �x � y� � z � x � �y � z� associativity
I	 x � x � x x � x � x idempotence
Ab	 x � �x � y� � x x � �x � y� � x absorption

���� Constraint domain

The constraint domain represents the structure of the system over which set in�
terval calculus is performed	 This structure is built from the computation domain
equipped with the predicate symbols ����a�b� belonging to �S and interpreted as
constraint relations	 The predicate symbol � is interpreted as the set inclusion and
the predicate ��a�b� is interpreted as the set domain constraint	 This relation con�
strains a set variable to take its value in a speci
c domain	 Since the main idea of
the system is to perform set interval calculus� we must guarantee that the domain
of any set variable is an interval	
The structure denoted by �DS ��� describes a powerset lattice with the partial

order �	 Any two of its elements c� d have a unique least upper bound c � d and a
unique greatest lower bound c�d �cf	 section �	�	�	 The existence of limit elements
for any set fc� dg belonging to DS allows us to de
ne a notion of set domain as a
convex subset of DS � that is a set interval �c � d� c � d�	

Definition � A set interval domain or set domain is a convex subset of DS spec�
i�ed by �a� b� such that a � b and a� b � P�Hu��

Definition �	 A set variable s is said to range over a set domain �a� b� if and
only if s � �a� b��
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Definition �� The de
nite elements of a set s such that s � �a� b� are the elements
contained in the greatest lower bound a�

Definition �� The possible elements of a set s such that s � �a� b� are the elements
contained in the least upper bound b which are not in a�

Example� The constraint s � �f�� �g� f�� �� 
� �g� means that the elements �� � are
de
nite elements of s �they belong to s� and that 
 and � are possible elements of s	

Set intervals have been used so far to specify the domain of a set variable	 Re�
garding set expressions� the domain of a union or intersection of sets is not a set
interval because it is not a convex subset of DS �e	g	 I � �f�g� f�� �g�� �fg� f�� �g��
f�� �g� f�g � I but �fg� f�� �� �g� �� I�	 It is possible to maintain such disjunctions
of domains during the computation� but this leads to a combinatorial explosion	
This handling of �holes� can be avoided by considering the convex closure of a set
expression domain	 Consequently� the constraint domain of the system is de
ned
as the powerset lattice over the convex parts of P�DS� �convex subsets of DS��
equipped with a convex closure operation	

Definition �� The set of all convex parts of P�DS� is a subset of P�DS� ordered
by set inclusion and designated by �DS�

Definition �� The constraint domain CD is the algebraic structure of the lattice
�DS of set intervals ordered by set inclusion such that�
CD � ��DS �DS �����a�b��

Convex closure operation To ensure that any set domain is a set interval� we
de
ne a convex closure operation which associates to any element of P�DS� its
convex closure as being a set interval� element of �DS 	

Definition �� The convex closure operation �conv � P�DS� � �DS is such that
�conv � x� x satis�es�

x � fa�� ���� ang � x � �
�
ai�x

ai�
�
ai�x

ai�

For example� the convex closure of the set ff�� �g� f�� �� �g� f�gg belonging to
P�DS� is the set interval �f�g� f�� �� �� �g�	

Property � An element x of P�DS� is convex under the above convex closure
operation when x is equal to its �closure� x�

Corollary � All singleton sets are convex�

In the following� the operations
T

ai�x
ai and

S
ai�x

ai will be respectively written
glb�x� and lub�x� which stand for greatest lower bound and least upper bound of
x� respectively	

11



Property � The operation �conv�x� � x � �glb�x�� lub�x�� has the following prop�
erties�

C�� x � x Extension
C
� x � x Idempotence
C�� If x � y� then x � y Monotonicity

If we consider the � relation as a logical implication� the extension property C�
can be interpreted by �any element of x belongs to x �thus to glb�x�� and any
element de
nitely not in x �not in lub�x�� does not belong to x�	 This allows the
set calculus to be performed in �DS while ensuring that the computed solutions
are valid in DS 	 Property C� guarantees that the partial order � is preserved in
�DS 	
�DS equipped with the operation �conv allows us to de
ne the constraint do�

main from an algebraic point of view� i�e�� from the properties of the union and
intersection operations in �DS 	

Definition �� The constraint domain CD is a powerset lattice �DS �����a�b�� with
the family �DS of set intervals that satis�es�

P�� Each union of elements of �DS is also an element of �DS

P
� Each 
nite intersection of elements of �DS is also an element of �DS

P�� P�DS� and the empty set fg are elements of �DS�

Properties P� and P
 de
ne the distributivity of � and � in �DS 	 It follows from
P
 and the 
rst statement of P� �P�DS� � �DS� that a convex closure operation
satisfying C��C� is de
ned in CD	 This operation is �conv	 Because of P� and P

this operation satis
es�

x � y � x � y and x � y � x � y

Finally P� implies that � � �	

���� Set interval calculus

In order to satisfy the properties P�� P
 and P�� we de
ne a set interval calculus
within �DS 	 This consists in deriving equality relations from the following ordering
relations�

�a� b� � �c� d� � �a � c� b � d� and �a� b� � �c� d� � �a � c� b � d�

This is achieved by making use of the convex closure operation	 The resulting set
interval calculus is described as follows�

�a� b� � �c� d� � �a � c� b � d�

�a� b� � �c� d� � �a � c� b � d�

P�Ds� � P�Ds� and � � �
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With regard to the set di�erence operation �a� b�n�c� d�� its set theoretical de
nition
is x n y � x� y� where y� is the complement of y	 The complement of a set interval
�c� d� is the set interval �Ds n d�Ds n c� which is characterized by the fact that it
does not contain the elements in c and that the elements of d should not a priori be
de
nite elements of this interval	 So the convex closure of a set interval di�erence
is�

�a� b� n �c� d� � �a n d� b n c�

The consistency property x � y � y � x � y and x � y � x � x � y �cf	 �	�	
property �� characterizes � by the set operations of a powerset lattice �in fact by
either of them�	 This embeds the notions of right inclusion �y � x � y�� which
de
nes the least upper bound �join operator� for x and y to be y� and the left
inclusion �x � x� y�� which de
nes the greatest lower bound �meet operator� for x
and y to be x	 From an operational point of view� obtaining such a characterization
is essential	 However since computations are performed in CD� this property needs
to be de
ned for set intervals using te set interval calculus within �DS 	
Consider two set intervals �a� b� and �c� d�	 They denote powersets and thus sets	

Consequently we have� �a� b� � �c� d� � �a� b� � �a� b� � �c� d� � �c� d� � �c� d� � �a� b�	
Using the set interval calculus� this is equivalent to�

�a� b� � �c� d� � �a� b� � �a � c� b � d�
� �c� d� � �c � a� d � b�
� a � c� b � d

Definition �� Assuming that �a� b�� �c� d� specify set domains� the consistency prop�
erty in CD is de�ned by�

�a� b� � �c� d�� a � c� b � d

This de
nition of consistency gives us the necessary conditions to be satis
ed
when checking and�or inferring consistency of the set inclusion constraint over set
domains	

���� Graded functions

The expressivity of the system can be increased if some graded functions are applied
to sets	 A graded function maps a non quanti
able term to an integer value denoting
a measure of the term	 The set cardinality is one example of such a function	 They
allow the user to deal with optimization functions in a set�based language �e	g	
minimizing the cardinality of a set�	 The constraint domain presented so far does
not contain any such graded functions	 In this subsection� we extend the language
alphabet and the constraint domain of the system to deal with such functions	 In
order not to limit the extension of the language to the set cardinality function� the
general case of an arbitrary graded function f is studied	
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Definition �� A graded function f is a function from �DS ��� to N �set of positive
integers� which maps each element x � DS to a unique m such that f�x� � m and
which satis�es�

s� � s� � f�s�� � f�s�� �� is the strict inclusion and � the arithmetic inequality�

The convex closure of a graded function f is required to deal with elements from
�DS 	 The closure function� written f � maps elements from �DS to a subset of the
powerset P�N � containing intervals of positive integers	 This subset is designated
by �N 	

Example� Let s be a set and �s its cardinality �a positive integer�	 Consider
the constraint s � �fg� f�� �g�	 The cardinality function � is approximated by �	
Intuitively we have ��s� � ��� ��	

Definition �� Let f � DS � N � The function f � �DS � �N is derived from f
as follows�

f��a� b�� � �f�a�� f�b��

Property � If s � �a� b� then f�s� � f��a� b���

Proof	 By de
nition f is a graded function	 So if a � s � b then we have f�a� �
f�s� � f�b�	 Consequently we have f�x� � �f�a�� f�b�� which means f�s� � f��a� b��	

This property guarantees that the output of the function f applied to a set domain
contains the actual graduation value of the concerned set variable	

��
� Extended constraint domain

Graded functions add expressive power to the language	 They can be embedded
as prede
ned symbols in the language� if the constraint domain is extended to
deal with integer intervals and integer variables	 The constraint domain associated
with integer intervals is that of integer interval domains �subset of the standard
constraint domain over 
nite integer domains�	 It is de
ned by the structure�

FD � ��N � �N ������ �������m�n��

where the relation ��m�n� is interpreted in �N as the integer domain constraint
such that� x ��m�n� �m�n� is equivalent to m � x � n	 The other symbols are
interpreted in their usual arithmetic sense	 The extended constraint domain of our
system should contain FD	
The extended constraint domain CDe with graded functions� is the structure�

��DS �DS � f�����a�b�� � FD

CDe interprets graded function symbols as unary set operations with respect
to their intended meaning	 For example the symbol � is interpreted as the set
cardinality operation	
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�� Execution model

The execution model is based on constraint solving in CDe	 It is a top�down ex�
ecution model which de
nes the operational semantics of the system	 The model
describes how the constraints are processed over CDe and what they lead to	 The
idea consists in ��� constraining each set variable to range over a set domain� and
��� removing some values of the set domains that can never be part of any feasible
solution	 This is achieved by making use of local consistency techniques adapted
to the handling of constraints de
ned in CDe	 A transformed system is commonly
called a locally consistent system	 One necessary condition for dealing with local
consistency techniques is that each set variable ranges over a set domain	

���� De�nition of an admissible system of constraints

The set of prede
ned constraints in CDe can contain any of the following�

� set domain constraints s � �a� b� where s is a set variable	

� set constraints S � S� where S� S� are set expressions �comprising constants�
variables and possibly set operation symbols in f���� ng�	

� graduated constraints f�S� � �m�n� where f is any prede
ned graded function
and �m�n� any element in �N �i�e�� an integer if m � n or an integer domain�	

Definition �	 An admissible system of constraints in CDe is a system of con�
straints such that every set variable s ranges over a set domain�

���� From n�ary constraints to primitive ones

The prede
ned constraints might denote n�ary constraints like s� � s� � s� � s�	
Ensuring the local consistency of these constraints via interval re
nement methods
requires us to express each set variable in terms of the others	 Since there is no
inverse operation for ���� n there is no way to move all the operation symbols on one
side of the constraint predicate	 So it is necessary to decompose n�ary constraints
into primitive ones	

Consider the following set of basic set expressions fs � s�� s � s�� s n s�g	 The
proposed method consists in approximating each basic set expression by a new set
variable with its appropriate domain	 The resulting constraints are binary or unary
ones called primitive constraints	

Definition �� A primitive constraint is ��� a prede�ned set constraint containing
at most two set variables or� �
� a graduated constraint containing at most one set
variable�
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In the former example the n�ary constraint is approximated by the system of
constraints�

s� � s� � s��� s� � s� � s��� s�� � s��

This approach is similar to the relational form of arithmetic constraints over real
intervals introduced by Cleary �Cleary� �����	
A relation denoting a basic set expression represents a subset of the Cartesian

product of the set domains attached to each set variable	 In order to deal with the
consistency of these relations� we de
ne projection functions which allow each set
domain to be expressed in terms of the others	 Consider a relation r � �a�� b�� 

�a�� b�� 
 �a�� b��	 The set it denotes must belong to the domain �DS over which
the computations are performed	 Since �DS contains convex sets� each value of a
projection function must be a convex set� that is a set interval	 Consequently� to
each projection function designated by �i we associate its closure �i	 The closure is
derived from �i by making use of the closure operator de
ned above which satis
es�

�i � �conv��i�

�i represents the approximation of this projection of the relational form r on the
si�axis	

Definition �� The i�th projection function �i of a relation r denoting a set ex�
pression is the mapping �
�i � �convfsi � �ai� bi� j ��sj � sk� � �aj � bj �
 �ak� bk� such that j� k �� i � �si� sj � sk� �
rg

These relational forms of set expressions are not visible to the user but they are
necessary to de
ne the local consistency of an n�ary constraint	

���� Consistency notions

The standard notions of consistency �Mackworth� ����� applied to integer domains
state conditions that must be satis
ed by each element belonging to a variable
domain	 For example� arc�consistency states conditions that must be satis
ed by
each value belonging to a variable domain�

Definition �� A binary constraint c�x� y� such that x � Dx and y � Dy is arc
consistent if and only if ��� for any value i � Dx� there is a value j � Dy such that
c�i� j� is true� and �
� for any value j � Dy� there is a value i � dx such that c�i� j�
is true�

This domain reasoning approach is not useful for set variables since set domains
speci
ed by set intervals can contain an exponential number of elements �e	g	 the
set interval �fg� f�� ���� ng� contains �n elements�	 Instead� we derive conditions that
must be satis
ed by the set domain bounds	 These conditions guarantee that a
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constraint relation which does not hold for the bounds of the variable domains does
not hold for any set between these bounds	 For this purpose we de
ne here the
local consistency notions for each constraint appearing in an admissible system	
Consider a set variable s	 The lower and upper bounds of the domain of s will

be respectively de
ned by the functions glb�s� and lub�s�	

Definition �� Let s� � s� be a primitive set constraint� We say that this con�
straint is locally consistent if and only if�
SC�	 glb�s�� � glb�s�� and
SC�	 lub�s�� � lub�s���

Property 
 A primitive set constraint is locally consistent if an only if it is arc�
consistent�

Proof	 This property holds because the operations � and � are isotone	 The do�
main constraint s � �a� b� is equivalent to �es � �a� b� we might have s � a�es	 The
isotony of � means that a � es � b� a � es � a � b �since a � b�	
Assume the domain constraints s � �a� b�� s� � �c� d�	 The set constraint s � s� is

interval consistent i��
a � c and b � d � �es � �a� b� a � es � c � es and b � es � d � es

� �es � �a� b�� �es� � �c� d�� es� � c � es such that
es � es�

� s � s� is arc�consistent	

Definition �� A primitive graduated constraint f�s� � �m�n� is locally consistent
i��
SC�	 f�glb�s�� � m and f�lub�s�� � n

The local consistency of the relational forms of basic set expressions is de
ned
through the consistency of the projection functions	 Since the set domain of a basic
set expression is approximated it is clear that we cannot get the equivalent of arc�
consistency	 Some elements in the resulting set interval are meant to ful
ll �holes�
and are not expected to be part of any feasible solution	

Theorem � A relation r denoting the relational form of a basic set expression is
locally consistent if and only if each of the projection functions �i describing r is
locally consistent�

Definition �� A projection function �i associated to the relation
r �  j�f�������g�aj � bj � is locally consistent if and only if�

SC�	 glb��i� � ai and bi � lub��i�

���� Inference rules

The consistency notions de
ne conditions to be satis
ed by set domain bounds
so that a set constraint is locally consistent	 If such conditions are not satis
ed
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this means that elements in the domain are irrelevant	 Local consistency can be
inferred by moving such elements �out of the boundaries of the domain� which
means pruning the bounds of the domain	 The essential point is that a re
nement
of both bounds allows us to prune a domain	 Reducing the set of possible values a set
could take can be achieved either by extending the collection of de�nite elements of
a set i�e�� adding elements to the glb of a set domain� or by reducing the collection
of possible elements i�e�� removing elements from the lub of a set domain	 Both
computations are deterministic	

������ For set constraints

Consider the constraint s � s� such that s � �a� b�� s� � �c� d�	 Inferring its local
consistency amounts to possibly extending the lower bound of the domain of s� and
to possibly reducing the upper bound of the domain of s�	 This is depicted by the
following inference rule�

I�	
b� � b � d � c� � c � a

fs � �a� b�� s� � �c� d�� s � s�g ��� fs � �a� b�� � s� � �c�� d�� s � s�g

When s� s� denote set expressions� the relational forms are created and the fol�
lowing additional inference rule is necessary to deal with the projection functions	
For each projection function �i describing the domain of an si appearing in a set
expression� we have�

I�	
a�i � ai � c � b�i � bi � d

f si � �ai� bi�� �i � �c� d� g ��� f si � �a�i� b
�
i�g

����
� For primitive graduated constraints�

The constraint f�s� � �m�n� such that s � �a� b� describes a mapping from an el�
ement belonging to a partially ordered set to an element belonging to a totally
ordered set	 Consequently� it might occur that two distinct elements in �a� b� have
the same valuation in �m�n�	 This implies that inferring the local consistency of
this constraint might require re
ning �a� b� only if a single element in �a� b� satis
es
the constraint	 If this element exists� it corresponds necessarily to one of the do�
main bounds since they are uniquely de
ned and are strict subset �or superset��
of any element in the domain	 Thus� the value of the graded function mapped
onto them cannot be shared	 The inference mechanism is depicted by the following
rules	 min�� and max�� are functions which take as input a collection of integers
and return respectively the minimal and maximal integer value of this collection	

I�	
�m�� n�� � �max�m� f�a���min�n� f�b���

f s � �a� b� � f�s� � �m�n�g ��� fs � �a� b� � f�s� � �m�� n�� g
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I�	
n � f�a�

f s � �a� b� � f�s� � �m�n�g ��� fs � a g

I
	
m � f�b�

f s � �a� b� � f�s� � �m�n�g ��� fs � b g

������ For domain constraints

The inference rules de
ned here� describe the cases when two distinct set domains
are applied to a single set variable� or when the set domain of a set variable is
reduced to one value or is inconsistent	

I�	
a � b

f si � �a� b� g ��� f s � ag
I�	

a � b

f si � �a� b� g ��� fail

I�	
a� � a � c � b� � d � b

fs � �a� b�� s � �c� d�g ��� fs � �a�� b��g

Three similar inference rules exist for the integer domain constraints	 They are
not speci
c to our system but are recalled hereafter since we also deal with integer
domains	 The integer variable is speci
ed by v	

I�	
m � n

f v � �m�n� g ��� f v � mg
I��	

m � n

fv � �m�n�g ��� fail

I��	
m� � max�m�m�� � n� � min�n� n��

fv � �m�n�� v � �m�� n��g ��� fv � �m�� n��g

������ Properties of the inference rules

The behaviour of all the inference rules I� to I�� is captured by the following scheme	
Let us denote a set�graduated constraint relation by c and its arity by k	 Let us

represent an inference rule as a mapping from a Cartesian product of set�integer
domains� onto another Cartesian product	
Let  j�f�����kg �aj � bj �� j�f�����kg �a

�
j � b

�
j � be two distinct Cartesian products of the

domains of the variables appearing in c	 These Cartesian products can be made
into ordered sets by imposing the strict set inclusion ordering de
ned by�

 j�f�����kg�aj � bj � �  j�f�����kg�a
�
j � b

�
j �� �j � f�� ��� kg� �aj � bj � � �a

�
j � b

�
j �

i	e	� all the elements in �aj � bj � are in �a
�
j � b

�
j �	
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An inference rule � applied to a constraint relation c maps a Cartesian product
 j�f�����kg�aj � bj � onto a newly computed Cartesian product of domains	 Each new
domain is the output of a projection �i of � onto the i�axis �cf	 De
nition ���	 A
projection function �i derives a new domain by intersecting c with  j�f�����kg�aj � bj ��
projecting the result back onto the i�axis� and computing the convex closure of this
projection	 Thus� an inference rule is de
ned in algebraic terms by�

��  j�f�����kg �aj � bj �� �  i�f�����kg �i � j�f�����kg�aj � bj ��

One can easily see that this generic procedure �and thus each inference rule� is�
�i� correct �all possible solutions are kept� since only irrelevant values are removed
from the domains� �ii� contracting �
nal domains are subset of the initial domains��
since the domains can only get re
ned� and �iii� idempotent �the smallest domains
have been computed the 
rst time�� since every element that can be removed has
been removed the 
rst time	
Moreover� an inference rule � applicable to c is inclusion monotone if�

 j�f�����kg�aj � bj � �  j�f�����kg�a
�
j � b

�
j �� �� j�f�����kg�aj � bj �� � �� j�f�����kg�a

�
j � b

�
j ��

This means that smaller initial domains yield smaller 
nal domains	

Lemma � The inference rules are inclusion monotone�

Proof	 The monotonicity property of the inference rules follows from that of the
projection functions	
Assume that �j � f�� ��� kg � �aj � bj � � �a�j � b

�
j �	 Each projection function �i �i �

f�� ��� kg� is monotone since the set intersection is isotone �Property �� and the
convex closure operation is monotone �Property ��	 This implies that�
�i � f�� ��� kg � �conv �� c �  j�f�����kg�aj � bj ��i� � �conv �� c �  j�f�����kg�a

�
j � b

�
j ��i�

which is equivalent to�
�i � f�� ��� kg � �i � j�f�����kg�aj � bj �� � �i � j�f�����kg�a

�
j � b

�
j �� � and consequently to�

�� j�f�����kg �aj � bj �� � ��  j�f�����kg �a
�
j � b

�
j ��	 Thus � is monotone	

���� Operational semantics

The inference rules described so far can be applied to individual constraints	 The
operational semantics shows how to check and infer the consistency of a system of
constraints	 This system should correspond to an admissible system of constraints	
The consistency of such a system results from the consistency of each constraint
appearing in it	 The operational semantics is described by the following algorithm	
Let a tuple �c� �s� �ds� denote a constraint c over a set of variables designated by

�s where each variable si is constrained by a domain constraint dsi 	 The set of

relevant domain constraints with respect to �s is designated by �ds	 The initial set
of constraints to be considered is designated by G	 The set of domain constraints
is designated by A	 A set C which represents the constraint store contains the
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constraints whose consistency has been checked	 The operational semantics is based
on one non deterministic transition rule which takes as input one constraint c in G
and applies to it the adequate local inference rule using a depth 
rst search strategy	
Each constraint c is determined to be locally consistent if the inference rule infers
consistent domains	 This might require some domain re
nements and consequently
a need to reconsider some constraints in C whose variables intersect with those in
c	 Such constraints are moved from C to G	 The constraint c is then added to the
constraint store C and another constraint is selected in G	 The last state of the
resolution is reached once no goal remains in G� or when a failure is encountered
�i�e�� at least one set domain �a� b� or integer interval �m�n� is such that a �� b or
m �� n�	 The general schema of the algorithm is depicted in the following 
gure	

begin
Initialize G to the set of all the constraints in the admissible system
Initialize C to the empty set
Initialize A to the empty set
while G is not empty do

begin
select and remove a constraint �c� �s� from G

select and remove the relevant domain constraints �ds in G � A

apply the adequate inference rule on �c� �s� �ds� which returns �c� �s�
�ds
��

if �ds
� is inconsistent then

exit with failure

else if �ds ��
�ds
� then

begin
�ds �

�ds
�

for each �p��v� in C do
if �s � �v �� � then
remove �p��v� from C and add it to G

end

if �ds �G �� � then remove the domain constraints in �ds �G from G
and add them to A
add �c� �s� to C	

end
end

This whole process amounts to considering a transition system on states where
each state contains the constraints as yet unconsidered and the constraints which
have already been checked out	 One state i is speci
ed by the tuple hGi� Ai� Cii	
The initial state of the transition system is speci
ed by the tuple hG�� �� �i where
all the constraints need to be checked	 The 
nal state is either fail or h�� A�� C �i	
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Theorem � A transformed system of constraints h�� A� Ci is locally consistent if
and only if each domain constraint in A is locally consistent�

Proof	 This follows simply from the various inference rules	 Inferring the con�
sistency of a system amounts to considering the consistency of each constraint in
conjunction with the already consistent ones	 An inconsistency is detected if one
of the inference rules I� or I�� is successfully applied which means a failure is
encountered in one �integer� set� domain	

This algorithm resembles the relaxation algorithm used by CLP�Intervals� sys�
tems �Lee and van Emden� ����� also referred to as 
xed point algorithm in �Ben�
hamou et al	� ����� Benhamou� ���
� All of those can be seen as an adaptation of
the AC�� algorithm �Mackworth� ����� where domains are speci
ed by intervals	
The only di�erence between the algorithms lies in the inference rules applied	 The
generic algorithm satis
es the following properties of 
xed point algorithms � ter�
mination� existence of a unique 
xed point independent of the constraint ordering�
and correctness	

Theorem � The algorithm always terminates�

Proof	 This comes from the fact that the domains are 
nite and can only get
re
ned �contractance property of the inference rules�	 Also� if a failure is detected�
the algorithm terminates with fail	

Theorem � The algorithm has a unique �xed point independent of the ordering of
the inference rules�

Proof	 �Older and Vellino� ����� proved that propagation methods based on the
AC�� algorithm compute a unique 
xed point independent of the ordering of the
inference rules� if the states of the iteration process can be ordered within a lattice
and if the inference rules applied are contracting� idempotent and inclusion mono�
tone	 They show that the contractance and idempotence properties guarantee the
existence of a 
xed point	 In addition� due to the monotonicity of the inference
rules� the 
xed point is unique and independent of the ordering of the inference
rules	

In our case� the only things that change during our iteration process are the
bounds of the domains	 Thus the states can be characterized by the set of domains	
The domains are partially ordered by the set inclusion within the lattice of set and
integer domains �DS � �N 	 Additionally� we have shown �section �	�	�� that the
contractance� idempotence and inclusion monotone properties are satis
ed by our
inference rules	 Thus� the generic algorithm has a unique 
xed point independent
of the ordering of the inference rules	

Theorem � If a solution exists� it can be derived from the consistent system of
constraints�
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Proof	 This follows directly from the monotonicity of the convex closure operation
and the correctness of the inferences rules applied	 Monotonicity guarantees that
the actual value of a set or integer lies in the approximated domains	 Moreover�
the inference rules are correct� so all possible solution values are kept	

��
� Satis�ability issue

Ensuring the satis
ability of a consistent system requires guaranteeing that a so�
lution exists	 This is not possible when both symbols � and � belong to some
n�ary constraints since we work on domain approximations	 However satis
ability
can be guaranteed in some particular cases which are of practical interest �eg	 for
constraints of the form s� � s� � ��	 The following properties give the equiva�
lences and�or implications which exist between the lower and upper bounds of a
set expression domain and the lower and upper bounds of the set variables invoked	

Properties � �Pawlak� �

��

�� glb�s�� � s� � lub�s��


� lub�s� � s�� � lub�s�� � lub�s��

�� glb�s� � s�� � glb�s�� � glb�s��

�� lub�s� � s�� � lub�s�� � lub�s��

�� glb�s� � s�� � glb�s�� � glb�s��

Properties ��� and ��
 show respectively that the union operation preserves the
upper bounds but not the lower bounds	 By duality� properties ��� and ��� show
respectively that the intersection preserves the lower bounds but not the upper
bounds	 This means that inferring the local consistency of an n�ary constraint con�
taining only the set union symbol is achieved by computing the exact upper bounds
of each set variable and by approximating the lower bounds of the set variables us�
ing the set interval calculus	 The dual case is considered for a n�ary constraint
containing the set intersection symbol	 Consequently� we have the following prop�
erties�

Property 
 Let s� � s� � s�� be the relational constraint associated to the set
expression s� � s�� If this relational constraint is locally consistent then we have
glb�s�� � glb�s�� � glb�s����

Property � Let s� � s� � s�� be the relational constraint associated to the set
expression s� � s�� If this constraint is locally consistent then we have lub�s�� �
lub�s�� � lub�s����
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With respect to the primitive set inclusion constraint s� � s�� we have proved at
an earlier stage that if this constraint is locally consistent then it is arc�consistent
�cf	 property ��	 In other words� the domain bounds are possible values for the set
variables as well as any set value between the bounds	

Theorem � A locally consistent system built from set domain constraints� primi�
tive set inclusion constraints and relational constraints containing either the union
or intersection symbol is satis�able if the domain constraints embedded in the system
are satis�able�

Proof	 Clearly� if some set domain constraints are not locally consistent� the
system is not consistent and a fortiori not satis
able	 Otherwise� it is always possible
to construct a solution to this system	 By property �� all the relational constraints
of the form s� � s� � s�� are true if we assign to each set variable the lower
bound of their domain	 These assignments also hold for the primitive set inclusion
constraints	 By property �� all the constraints of the form s� � s� � s�� are true if
we assign to each set variable the upper bound of their domain	 These assignments
also hold for the primitive set inclusion constraints	 Thus in either of the two
consistent systems of constraints we guarantee that a solution exists	

Note that a system containing both forms of relational constraints can be locally
consistent but not globally consistent� assigning respectively to each set variable
the lower bound of its domain �or the upper one� does not lead to a solution	 With
respect to graduated constraints� consistency does not guarantee satis
ability since
a consistent graduated constraint f�s� � m does not guarantee that some elements
of the domain of s might satisfy the constraint	 The satis
ability for systems
containing such constraints is not provable unless the solver performs exhaustive
computations at an exponential cost in the largest upper bound among the set
domains	

Example� Consider the system of constraints�
s�� s�� s� � �fg� f�� �� �� 
g�� s� � s� � s��� s�� � s� � f�� �� �� 
g�
s� � s� � s��� s�� � s� � fg
It is locally consistent but not satis
able	 No possible value for each set variable

leads to a solution	

II Practical Framework

The formal framework has given us the structure of a set�based system whose solver
is based on consistency techniques	 It constitutes the basis of the design of a prac�
tical language called Conjunto �Conjunto means �set� in Spanish�	 Conjunto is a
constraint logic programming language designed and implemented to reason with
and about sets ranging over a set domain	 Its functionalities �apart from those of a
logic�based language like Prolog �Colmerauer et al	� ������ are set operations and
relations from set theory together with some graded functions which provide set
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measures like cardinality� weight� etc	 The graded functions map set domains to
subsets of the natural numbers �
nite domains�	 This requires from an implementa�
tion point of view to establish a cooperation between two solvers �the set constraint
solver of Conjunto and a 
nite domain solver�	 In this part� we describe the imple�
mentation of Conjunto which raises among others the issues of ��� this cooperation
between two solvers� ��� the dynamic handling of a system of constraints by means
of delay mechanisms� ��� the speci
c set data structure which is required to attach
all the relevant information related to a set variable� ��� the way set calculus is
achieved in algorithmic terms	 Since Conjunto aims at solving set�based combina�
torial search problems� the local consistency ensured by the solver via some local
transformation rules should be enriched by a labelling procedure in order to reach
a complete solution	 This procedure is described together with some programming
facilities which enhance the expressive power of the language	

�� Design of Conjunto

We describe the functionalities of the Conjunto language and omit a detailed de�
scription of the traditional predicates and functions on Prolog terms �Colmerauer
et al	� �����	

���� Syntax

The Conjunto language is a logic�based programming language with the alphabet
of a Prolog language �constants� predicates� functions� connectives� etc�	 It is char�
acterized by a signature � which contains the following set of prede
ned function
and predicate symbols in their concrete syntax�

� the constant ��	

� the binary set predicate symbols f��� ���� ���� �� weightg and arithmetic
predicate symbols f���� ��g	

� the binary set function symbols f�	� 	�� �g and the arithmetic sum symbol

	

Definition �� �Lloyd� �
��� An atomic formula �or atom� is de�ned as follows�
If p is an n�ary predicate and t�� ���� tn are terms� then p�t�� ���� tn� is an atom�

The atoms which are built from set terms and prede
ned predicate symbols in �
are called constraints	 They are subject to a speci
c interpretation in Conjunto	
A program built from the language is based on de
nite clauses of the form�

��� a � �b�� ���� bn and ��� � �g�� ���� gn

where a is an atom and the bi� gi are atoms or constraints	 ��� is called a program
clause and ��� a program goal	 The constraints constitute the core functionalities
of the language and are characterized by a speci
c terminology and semantics	
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���� Terminology and semantics

The main objective of Conjunto is to perform set calculus over sets de
ned as
elements from a powerset domain	 Some constraints like set cardinality or set
weight require us to deal also with 
nite domains� that is integers and arithmetic
constraints	

Definition �� The computation domain is the set D � P�Hu��Hu where P�Hu�
is the powerset of the Herbrand universe�

��
��� Terminology

The terminology gives names to the predicate and function symbols in � and de
nes
the notions of set domains and set terms necessary to reason with and about sets
in D	
The symbols in f��� ���� ���� �� weightg refer respectively to the set inclu�

sion constraint predicate� the set disjointness constraint predicate� the set domain
constraint� the set cardinality constraint predicate and the weight constraint pred�
icate	 The symbols in f�	� 	�� �g represent the concrete syntax of the set oper�
ations ���� n	 They will be interpreted in their usual set theoretical sense� the set
di�erence is a complementary di�erence �e	g	 s n s� � fx � s j x �� s�g�	 The other
symbols in � refer simply to the arithmetic operations they denote	

Definition �� A ground set is an element of P�Hu� which represents a �nite set
of Herbrand terms delimited by the characters f and g�

Example� �����f
f
u�o��� is a ground set�

Definition �	 A set variable is any variable taking its value in PHu�

Definition �� A set term is de�ned by�
��� any set constant a is a set term
�
� any set variable s is a set term

The concepts of set domain and set expressions are those from the formal descrip�
tion	
The syntax of a set variable is s � s��a�b�� where s��a�b�� denotes the domain

attached to a variable s	 We introduce a new concept which is that of weighted set
domain	

Definition �� A weighted set domain is a speci�c set domain where each element
of the set domain bounds has the syntax �e�m� such that e is a Herbrand term and
m is a positive integer�

Example� S� S���
a������
a����
c����
d������ is a set variable whose
weighted set domain is the set interval ��
a������
a����
c����
d������
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Similarly� variables denoting integers will take their value in a 
nite set of integers
�
nite domain�	 In Conjunto these domains are approximated by integer interval
domains	 An integer interval domain is the convex closure of a 
nite set of integers
and will be simply referred to as an integer interval	

Definition �� An integer variable is a logical variable whose value lies in an
integer interval�

Notation� Conjunto!s predicate and function symbols are written in a bold font	
Set variables are denoted by s� v� w� set expressions t� integer variables are denoted
by x� y� z� ground sets a� b� c� d� integers m�n	 These symbols may be subscripted	

��
�
� Semantics

The interpretation of the elements of � in D is given by distinguishing set con�
straints from graduated constraints	

A primitive set constraint is one of the following constraints�

� s ��� �a� b� is semantically equivalent to a � s � b �cf	 the ��a�b�a�b predicate in
the formal part�	

� s �� s� is equivalent to the set inclusion relation s � s�	

� s ��� s� is equivalent to the empty intersection of the two sets s� s�	

Note that the set equality can be derived from the double inclusion�
s �� s� � s �� s� and s� �� s	

Remark The set disjointness constraint ��� which was not included in the formal
part has been embedded as a primitive constraint in Conjunto mainly for practical
reasons	 Since the disjointness of two sets appears in almost all set based problems�
it is simpler to use a speci
c syntax and more e�cient to handle it as a primitive
constraint	

A primitive graduated constraint is one of the following�

� ��s� x� is equivalent to the arithmetic equality �s � x where �s is the standard
cardinality function of set theory	

� weight�s� x� is semantically equivalent to the arithmetic operation
P

imi � x
such that �ei�mi� � s	

Definition �� The constraint system of a Conjunto program is an admissible
system �cf� de�nition 
�� of set constraints and graduated constraints where every
set variable is constrained by a set domain constraint�
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In this admissible system of constraints the searched objects are the sets	 The
integer variables are not part of the initialization of the search space which is
attached to the system	 They constitute essentially a means to get to the 
nal
solution	 This is described in the following de
nition	

Definition �� A set domain constraint satisfaction problem is an admissible sys�
tem of set and graduated constraints� i	e	 a constraint satisfaction problem where
the initial search space is de�ned by the set domains attached to the set variables�

���� Constraint solving

The constraint solving in Conjunto focuses on e�ciency rather than on complete�
ness	 The Conjunto solver based on the 
xed point algorithm presented earlier aims
at checking and inferring the consistency of an admissible system of constraints	
This is achieved by�

� applying some local transformation rules� which allow for the consistency of one
constraint to be checked�inferred� using a top�down search strategy�

� delaying consistent constraints which are not completely solved	

The Conjunto solver considers one constraint at a time and checks�infers its con�
sistency in conjunction with the set of delayed constraints �constraint store�	 This
process might require the local consistency of some delayed constraints to be re�
considered	 These constraints are woken using a data driven mechanism based on
suspension handling mechanisms	 Each newly consistent constraint is added to the
constraint store	 The 
nal state of the program is achieved when all atoms appear�
ing in a goal clause have been checked and when no further domain re
nement is
required	 This state is either denoted by �fail� when some constraints have been
marked inconsistent or it contains a set of delayed constraints together with the set
variables and their associated domains	

Example� The goal�

�� S ��� ���������������� S� ��� �������� �� ���� S �� S��

produces the re
ned domains�

S � S��������������� S� � S������������������

and the delayed goal� S �� S�

Example� The goal�

�� S ��� ���������������� �
S����

produces the instantiation S � ��� and no delayed goal since the initial goal is
completely solved	
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���� Programming facilities

One of the application domains we have investigated using Conjunto is the mod�
elling and solving of set based combinatorial problems �e	g	 set partitioning� bin
packing� hypergraph computations�	 To allow the user to state short and con�
cise programs� some programming facilities have been added to the initial set of
primitive constraints	 They consist of a collection of constraints de
ned from the
primitive ones� some predicates necessary to access information related to the vari�
able domains� and a built�in set labelling procedure	 The most important ones are
presented below� others are described in �Gervet� ���
�	

������ Set domain access

Set domains are represented as abstract data types� and the users are not supposed
to access them directly	 So two predicates are provided to allow operations on
set domains � glb�s� sglb� and lub�s� slub�	 If s denotes a set variable� each term is
respectively assigned the value of the domain!s lower and upper bound	 Otherwise it
fails	 Similar predicates are de
ned to access integer domain bounds� min�x� xmin�
and max�x� xmax�	

����
� Set labelling

Assigning a value to a set variable is a nondeterministic problem which can be
tackled by di�erent labelling strategies	 Since the Conjunto solver uses local con�
sistency techniques� an adequate strategy should aim at making an active use of
the constraints in the constraint store	 On the one hand� a procedure which would
consist in instantiating a set by directly selecting an element from the set domain
makes a passive use of the constraints whose consistency is only local	 In the worst
case this process might require considering all the elements belonging to a set do�
main even if some of them are irrelevant	 On the other hand re
ning a set domain
by adding one by one elements to the lower bound of the domain is more likely
to minimize the possible choices to be made	 The refine predicate embedded in
Conjunto behaves as follows�
refine�s� labels s� if s is a set variable	 If there are several instances of s� it creates
choice points	 If s is a ground set� nothing happens	 If not� the following actions
are performed recursively until the set gets instantiated� ��� select an element e
from the ground set lub�s� n glb�s�� ��� add the membership constraint e in s
to the program	 This added constraint is handled by the solver which checks its
consistency in conjunction with the actual constraint store	 In case of failure the
program backtracks and ��� the nonmembership constraint is added �successfully�
to the program so as to remove the irrelevant value e from the domain	 The points
��� and ��� correspond to the disjunctive set of constraints�


 e in S � e notin S�
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Example� Consider the goal�

�� S ��� ������������� refine
S��

The search tree generated during the labelling procedure and covered using a
depth 
rst search strategy is described in the following 
gure	

S{[{},{2,3}]}

S{[{2},{2,3}]} S{[{},{3}]}

S={2,3} S={2} S={3} S={}

S{[{1},{1,2,3}]}

S{[{1,2},{1,2,3}]}

S={1,2,3}

S{[{1},{1,3}]}

S={1,2} S={1}S={1,3}

S{[{},{1,2,3}]}

The strategy� which consists in adding membership constraints to the program�
aims in particular at making an active use of those graduated constraints whose
consistency is only local	

Example� Consider the goal�

�� S ��� ������������� �
S���� refine
S��

The irrelevant branches of the search tree are cut in an a priori way i�e�� no useless
choice point is created	 The search tree generated during the solving of this goal is
depicted in the following 
gure	

S{[{1},{1,2,3}]}

S={1}

S{[{},{2,3}]}

S{[{2},{2,3}]} S{[{},{3}]}

S={2} S={3}

S{[{},{1,2,3}]}

������ Optimization predicates

The notion of optimization is common in problem solving	 It aims at minimizing
or maximizing a cost function which denotes a speci
c arithmetic expression	 The
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notion of cost de
nes a kind of measure or quanti
cation applied to some terms	
A set can not denote a quantity and is not measurable	 Only its possible graded
functions are	 Thus there are no speci
c optimization predicates for sets	 Existing
predicates embedded in a 
nite domains solver �e	g	 for a branch and bound search�
can be directly applied to expressions over integer intervals occurring in graduated
constraints	 For example� minimizing a set cardinality acts over a set through the
link existing between a set variable and its cardinality	

������ Relations and constraints

When dealing with sets� it sounds quite natural to deal with relations and functions
as well	 Functions are more restrictive than relations since they constrain each
element from its DS�domain �DS�domain stands here for departure set� to have
exactly one image	 Providing relations at the language level extends the expressive
power of the language when dealing for example with circuit problems and matching
problems originating from Operations research	 In relation theory �Fraiss"e� ������
a relation R is represented as a set of ordered pairs �xi� yj� such that xi belongs
to the DS�domain d of R and yj to its AS�range �AS�range stands here for arrival
set� a	 In other words� a relation R on two ground sets d and a is a subset of
the Cartesian product d 
 a	 Keeping this representation to deal with relations
as speci
c set terms containing pairs of elements can be very costly in memory	
Indeed� the statement of the Cartesian product referring to a relation requires us to
consider explicitly a huge set of pairs	 This is very inconvenient	 Instead� a relation
in Conjunto is represented as a speci
c data structure which is characterized by
two ground sets �DS�domain and AS�range� and a list containing the successor sets
attached to each element of DS�domain �Gervet� ����� Gervet� ����a�	 Considering
one successor set per element splits the domain of a relation into a collection of set
domains	 The resulting value of a relation is clearly the union of the successor
sets	 This approach is close to the one introduced in the seminal work ALICE
�Lauri#ere� ����� which dealt essentially with functions	 However in ALICE there
is no explicit notion of set domain	

Definition �� Let a relation be r � d 
 a� The successor set s of an element
x � d is the set s � fy � a j �x� y� � rg�

Definition �� A relation variable r is a logical variable whose value is a compound
term birel�l� d� a� such that birel is a functor of arity three� l is a list of �d set
variables si such that si ��� �fg� a� and d� a are two ground sets�

This compound term is associated to a free variable by means of the predicate
r bin�r d ��� a	

Example� The goal�

�� R bin�r ����� ��� �a�b�c��
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creates the term�
R � birel
�Set�������a�b�c���� Set�������a�b�c����� ������ �a�b�c��

The de
nition of constraints applied to relation variables abstracts from stating
directly constraints over the set DS�domain and AS�range or over the successor
sets	 The following constraints have been embedded in Conjunto�

� �i� j� in�r r� �i� j� notin�r r which adds or retrieves pairs to the relation
� funct�r� which constrains a relation to be a function�
� inj�r� which constrains a relation to be an injective function�
� surj�r� which constrains a relation to be a surjective function�
� bij�r� which constrains a relation to be a bijective function	

The schema of these constraints is directly derived from their usual interpretation
issued from relation theory �Fraiss"e� �����	 They are represented below using the
mathematical cardinality operation �� the usual set operation symbols ����� and
the arithmetic inequality ���	

Constraints Interpretation

r bin�r d ��� a r � birel�l� d� a� where l � fsi j �i � d� si � fg��ag

�i� j� in�r r if i � d� j � a then j � si

�i� j� notin�r r if i � d� j � a then j �� si

Constraints Interpretation

funct�r� �i � d� �si � �

inj�r� �d � �a� �d � n
s� � s� � �� s� � s� � �� ���� sn�� � sn � �
�i � d� �si � �

surj�r� �d � �a� �d � n
s� � s���� � sn � a
�i � d� �si � �

bij�r� �d � n� �a � n
s� � s� � �� s� � s� � �� ���� sn�� � sn � �
�i � d� �si � �

These schema tell us how each constraint over a relation is described and imple�
mented in Conjunto by means of set and graduated constraints	 These constraints
over relations do not require any speci
c solver since the reasoning is based on
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the successor set variables	 The Conjunto solver is simply used	 The expressiv�
ity of these relation variables and constraints is illustrated in the set partitioning
application presented subsequently	

Example� The goal�

�� R bin�r ��� �� ��� �a� b� c�� funct
R��

creates the term�
R � birel
�Set�������a�b�c���� Set�������a�b�c����� ������ �a�b�c��

and the list of delayed goals�
�
Set�������a�b�c���� ��� �
Set�������a�b�c���� ��

Since the created compound term is not visible to the user� a collection of predicate
relations allows him�her to access the properties of the relation�

� succs�r� l� instantiates l to the list of successor sets of r	
� dom�r� s� instantiates s to the DS�domain of r	
� ran�r� s� instantiates s to the AS�range of r	
� succ�r� e� s� instantiates s to the successor set of the element e

belonging to DS�domain� such that s � fx j �e� x� � rg	


� Implementation of Conjunto

The implementation of Conjunto was done in the ECLiPSe �ECRC� ����� sys�
tem which extends the plain Prolog language with features dedicated to the im�
plementation of speci
c constraint solvers	 The main features provided at the lan�
guage level comprise the attributed variable data structure and the suspension han�
dling predicates	 An attributed variable is a special data type �Le Huitouze� �����
Holzbaur� ����� which consists of a variable with a set of attributes attached and
whose behaviour on uni
cation can be explicitly de
ned by the user in a way that
di�ers from Prolog uni
cation	 Attributed variables aim at dealing with speci
c
computation domains distinct from the Herbrand universe	 The suspension han�
dling predicates provide means to ��� delay a goal or constraint� ��� store it in
a speci
c list with respect to one or several variables� ��� awake a list of delayed
goals when some given conditions are satis
ed	 The suspension handling predicates
allowed us to implement the data driven constraint handling in Conjunto	 In ad�
dition� the Conjunto solver makes use of the 
nite domain library of ECLiPSe to
deal with integer interval terms �as well implemented as attributed variables�	


��� Set data structure

A set variable is not represented as a standard Prolog variable� but as an attributed
variable which is subject to a dedicated uni
cation algorithm	 The internal repre�
sentation of ground sets is also given since it in�uences the time complexity of the
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transformation rules	 Both the data structure and the internal representation of
ground sets are not visible to the user and will be ignored in the description of the
transformation rules	

������ Set variable representation

A set variable is an attributed variable comprising the following list of attributes	
This structure stores for each set variable all the necessary information regarding its
domain� cardinality� and weight �null if unde
ned� together with three suspension
lists	 The attribute arguments have the following meaning�

� setdom	 �Glb�Lub� represents the set domain	 The user can access it using
the built�in predicates glb� lub	

� card	 C represents the set cardinality	 This attribute C is initialized as soon
as a set domain is attached to a variable	 It is either an integer interval or an
integer	 It can be accessed and modi
ed using speci
c built�in predicates from
a 
nite domain library	

� weight	 W represents the set weight	 W is intialized to zero if the domain
is not a weighted set domain� otherwise it is computed as soon as a weighted
set domain is attached to a set variable	 It can be accessed and modi
ed using
speci
c built�in predicates from a 
nite domain library	

� del�glb	 Dglb is a suspension list that should be woken when the lower bound
of the set domain is updated	

� del�lub	 Dlub is a suspension list that should be woken when the upper bound
of the set domain is updated	

� del�any	 Dany is a suspension list that should be woken when any set domain
re
nement is performed	

����
� Ground set representation

The choice for the internal representation of sets is independent of the algorithms�
and not visible to the user	 However� it plays a role in the time complexity of the
di�erent set operations	 In contrast to integer intervals� the time complexity for
operations on ground sets � �� � versus �� �� n� can not be considered as constant
for it closely depends on the internal representation of a set	 In Conjunto each
ground set is represented by a sorted list where the time complexity for any set
operation ��� �� n� is bounded from above by O�d� where d is �lub�s� � �glb�s�
and s the set with the largest domain	
Since we work essentially on set domains� another approach has been tried out

which consists in representing a set domain as a boolean vector mapped onto a list
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containing the actual value of the elements	 The upper bound is speci
ed by the
set of elements whose corresponding ��� variable has the value � or ��� �undeter�
mined�	 The lower bound is speci
ed by the set of elements whose corresponding
��� variable has the value �	 This approach reduces the time complexity of the �
and � operations to O��lub�s�� where lub�s� is the largest domain upper bound	
But this leads to much larger memory usage due to the size of the domains used
in practice and to the handling of two lists �the list of ��� variables and the list of
actual values�	
From now on� the value of d in the complexity results will always stand for

�lub�s� � �glb�s�	


��� Set uni�cation procedure

A Conjunto program attaches a speci
c semantics to set terms	 This semantics
requires to extend the Prolog uni
cation to the one of set terms	 The behaviour of
the set uni
cation procedure comprises the following tests and inferences�

� the uni
cation of a logical variable and a set variable	 The logical variable is
bound to the set variable	

� the uni
cation of a ground set and a set variable	 The set variable is instantiated
to the ground set if it belongs to its domain	

� the uni
cation of two set variables	 The two variables are bound to a new
variable whose domain is the convex intersection of the two domains �cf	 set
interval calculus�	 If this domain is empty the uni
cation fails	

� the uni
cation of a set variable with any other term fails	


��� Local transformation rules

Consistency notions and inference rules have been de
ned in the formal part for
primitive set constraints and for the general case of projection functions and grad�
uated constraints respectively	 Here� we make use of these de
nitions to de
ne the
transformation rules which check and infer the local consistency of each primitive
constraints implemented in Conjunto	 The basic idea consists in pruning the set
domains attached to the set variables by removing set values which can never be
part of any feasible solution	 Set values are removed by adding elements to the
lower bound of the domain and�or by removing elements from the upper bound	

������ Transformation rules for primitive set constraints

Primitive set constraints are s �� s� and s ��� s� where s and s� denote set variables
ranging over a set domain	
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Consider the set inclusion constraint s� �� s� such that s� � d�� s� � d�	 The
transformation rule makes use of the lower and upper ordering of the set inclu�
sion	 Making this constraint consistent might require adding elements to the lower
bound of the domain d� and removing elements from the upper bound of d�	 The
re
nements lead to the new domain bounds�

T�	 glb�d��� � glb�d�� lub�d��� � lub�d�� � lub�d��
T�	 glb�d��� � glb�d�� � glb�d�� lub�d��� � lub�d��

Consider the disjointness constraint s� ��� s� such that s� � d�� s� � d�	 The
only possible re
nement aims at removing elements from each upper bound of a
set domain which are de
nite elements of the other set	 This constraint is locally
consistent if the re
ned domains for the variables are�

T�	 glb�d��� � glb�d�� lub�d��� � lub�d�� n glb�d��
T�	 glb�d��� �glb�d�� lub�d��� � lub�d�� n glb�d��

Complexity issues� The time complexity for each transformation is bounded by
O�d� since only one set operation is applied each time	

����
� Projection functions for n�ary constraints

Constraints over set expressions require a special handling mechanism if we want
to express each set variable in terms of the others involved in a constraint	 This
point requires us to tackle these n�ary constraints as �mini�programs�	 The ap�
proach implemented in Conjunto consists in approximating an n�ary constraint by
��� associating each basic set expression �s� �	 s�� s�	� s�� s��s�� with its rela�
tional form� ��� applying inductively this process until the n�ary constraint can be
expressed as a binary one	 The relational forms of set expressions are derived by
creating a new set variable whose domain is approximated by using the set interval
calculus	 The relational forms correspond to the following constraints�

union �s�� s�� s� � s� �	 s� �� s
inter �s�� s�� s� � s� 	� s� �� s
diff �s�� s�� s� � s� � s� �� s

The local consistency of these ��ary constraints ensures that no triples satisfying
the constraint are excluded	 The inference is performed using transformation rules
that make use of the projection functions	 Each projection function allows each set
domain to be expressed in terms of the others �with respect to one constraint�	 Each
such projection uniquely de
nes a smallest set domain which contains the possible
solution values	 Three projection functions are required per relational constraint	
They are depicted in the following 
gures	
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Projection functions associated to the constraint union�s�� s�� s� such that s� �
d�� s� � d�� s � d� T� holds also for s� and a similar rule exists for d��

T
	 glb�d��� � glb�d�� � glb�d� n lub�d��
lub�d��� � lub�d�� � lub�d�

T�	 glb�d�� � glb�d� � glb�d�� � glb�d��
lub�d�� � lub�d� � �lub�d�� � lub�d���

The union of two sets represents a logical disjunction	 So it is very unlikely that
the addition of new elements to glb�d� requires modifying the lower bound of the
domains of s� or s�	 The one case which requires such a re
nement occurs if some
elements belong to the lower bound of d and can never belong to one of the two
sets �cf	 T
�	 Consequently they should be added to the other one	

Projection functions associated to the constraint inter�s�� s�� s� such that s� �
d�� s� � d�� s � d� T�	 holds also for d��

T�	 glb�d��� � glb�d�� � glb�d�
lub�d��� � lub�d�� n ��lub�d�� � glb�d��� n lub�d��

T�	 glb�d�� � glb�d� � glb�d�� � glb�d��
lub�d�� � lub�d� � lub�d�� � lub�d��

The intersection of two sets represents a logical conjunction	 So any addition of
elements to one of the three domains requires modifying at least one of the lower
bounds of the domains	 A pruning of the upper bound of these domains is less
frequent	 However� it might occur in the case depicted in T� which corresponds
to the following con
guration� some elements are de
nite ones of s� �or s�� and
possible ones of s� �or s��	 If they cannot belong to s then they should be removed
from the upper bound of the domain of s� �respectively s��	

Projection functions associated to the constraint diff�s�� s�� s� such that s� �
d�� s� � d�� s � d�

T�	 glb�d��� � glb�d�� � glb�d�
lub�d��� � lub�d�� n �lub�d�� n �lub�d� � lub�d����

T��	 glb�d��� � glb�d��
lub�d��� � lub�d�� n glb�d�

T��	 glb�d�� � glb�d� � �glb�d�� n lub�d���
lub�d�� � lub�d� � �lub�d�� n glb�d���

The second part of the rule T� considers a particular case where the upper bound
of d� should be pruned	 If lub�d�� contains elements which do not belong both to
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the upper bound of d and to the upper bound of d�� then these elements cannot
belong to s�	 Both conditions must be satis
ed to prune lub�d��	

Complexity issues� Time complexity for each transformation rule is bounded
by O�d� times the number of basic set operations� which is bounded by � for the
rules T� and T�	
Remark� The relational constraints are transparent to the user at the program�
ming level	 However� any temporary state of a program is given in terms of these
newly created constraints	

Example� A locally consistent constraint of the form� S� �	 S� �� S� 	� S�

is stored using the set of delayed goals�
union
S�� S�� S����

inter
S�� S�� S����

S�� �� S��	

������ Graduated constraints� cardinality and weight constraints

Graduated constraints deal with set variables and integer variables	 Inferring the
local consistency of these constraints might require re
ning the integer domains
or assigning a value to a set	 Since graded functions are not bijective functions�
a modi
cation of the integer domains is not a su�cient condition to require a set
domain re
nement	 The pruning for the set cardinality and the weight constraints
achieved by the following transformation rules	 It guarantees that ��� the values
removed from the domains cannot be part of any feasible solution� ��� if a solution
exists� its value lies in the remaining set and integer domains	

Consider the set cardinality constraint ��s� x� where s � d and x � �m�n�� x is an
integer variable� We have�

T��	 �m�� n�� � � max�m��glb�d��� min�n��lub�d���
T��	 d� � glb�d� if �glb�d� � n
T��	 d� � lub�d� if �lub�d� � m

The transformation rules for the weight constraint are similar	 The only di�erence
lies in the initial computation of the integer intervals	

Consider the weight constraint weight�s� y� where s � d� y � �m�n� andP
�ek�mk�� glb�d�mk � wglb and

P
�ek�mk�� lub�d�mk � wlub� We have�

T��!	 �m�� n�� � �max�m�wglb��min�n�wlub��
T��!	 d� � glb�d� if m � wlub

T��!	 d� � lub�d� if n � wglb
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��� Complexity of the constraint solver

The constraint solver is based on the generic 
xed point algorithm described in the
formal part	 It applies these rules to check�infer the consistency of an admissible
system of constraints in an incremental way	 Incrementality refers to the nature
of the Conjunto solver which stores each newly locally consistent constraint and
handles the consistency of each constraint in conjunction with the constraint store	

Complexity issues Let G be the set of all the constraints to be considered and
l its size	 The cost of one transformation rule is bounded by O�d� �d being the
largest �lub�s� � �glb�s��	 For one constraint the algorithm can be iterated at
worst d� times if d� � �lub�s� � �glb�s�	 If these iterations are necessary for all
the constraints the worst time complexity is then O�ldd��	�

This time complexity does not occur in practice since a constraint is not sys�
tematically reconsidered if some of its variable domains get modi
ed	 Indeed� the
constraints are stored in various suspension lists so as to avoid reconsidering them
when there is no need to do so	 These lists are described below	

Suspension lists Three di�erent lists are attached to each set variable	 They
are meant to improve the time complexity and thus the e�ciency of the solver
by splitting the list C so that only those constraints concerned with the speci
c
domain re
nement are woken	 Corresponding to each set variable si with domain
di� each of the three lists could contain the following goals�

� Qglb contains the primitive constraints for which a modi
cation of the lower
bound of di might require reconsidering the constraints	 It contains only con�
straints of the form si �� sj 	

� Qlub contains the primitive constraints for which a modi
cation of the upper
bound of di might require reconsidering the constraints	 It contains the con�
straints of the form� sj �� si� si ��� sj � �and its symmetrical sj ��� si�	

� Qany contains the remaining constraints for which any set domain modi
cation
might require reconsidering them	 In other words it contains the relational con�
straints �relational forms of the set union� intersection and di�erence operations�
and the graduated constraints in which the variable si appears	

In addition� the graduated constraints are also stored in the list of delayed goals
attached to the integer variables appearing in it	 While graduated constraints are
delayed only once� they are attached to two lists and thus might be reactivated
with respect to two di�erent conditions	 This process establishes the dynamic
cooperation between the Conjunto solver and the 
nite domain solver	 It guarantees
that the local consistency of a graduated constraint is always maintained within a
constraint system	
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��� Solver modularity

The Conjunto solver can be embedded in any logic�based language provided a set of
constraint solving facilities is given or can be de
ned	 These facilities comprise ���
attributed variables or a similar structure which links a set variable to its domain
and the required lists of delayed goals� ��� suspension handling mechanisms to
deal with delayed goals� ��� possibly a 
nite domain library to tackle set based
optimization problems	 The following 
gure shows the modules and functionalities
required during the execution of a Conjunto program	

Computed solution

(+ optimization)
Labelling 

Simplified program

Conjunto solver
Finite domain solver

Constraint platform

(Prolog engine  +

 suspension handling)

Conjunto Program 

 attributed variables +

III Applications

We show the applicability of the Conjunto language to the modelling and solving
of set based search problems	 The focus is on the expressiveness and the e�ciency of
the language when dealing with search problems and optimization problems arising
from operations research and combinatorial mathematics	

�� Set domain CSPs

The modelling and solving of a set domain CSP follows the usual procedure for CSPs
which consists of the problem statement� the labelling procedure and possibly the
search for an optimal solution	
The labelling can be achieved by using the pre�de
ned labelling procedure refine

described in the practical framework or by de
ning a new labelling procedure based
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on speci
c labelling strategies	 An e�cient set labelling procedure should not try
to directly instantiate a set to one of its domain elements	 The reason is that by
doing so� the satisfaction of those constraints for which only a local consistency is
guaranteed is reached in a passive way	
The concept of optimality is related to the notion of minimizing or maximizing a

cost function	 This function necessarily denotes a measure� takes as input an arith�
metic expression and returns an integer value	 Possible cost functions associated
with a set domain CSP are the sum of the set cardinality values� the sum of the
weights� etc	 Such a function constrains the sets via their associated measure and
consequently no speci
c optimization predicate is required to deal with sets	 The
user can make use of existing predicates developed for integer domain CSPs with
an optimization criterion	 One of these predicates used in a subsequent application
�set partitioning�� performs the branch and bound search	
The predicate min�max
Goal� Cost� searches for a solution to the goal Goal that

minimizes the value of the linear term Cost using the branch and bound method
from operations research �Papadimitriou and Steiglitz� �����	 As soon as a partial
solution to Goal is found whose cost is worse than the previous solution the search
is not explored any further and a new solution is searched for	
Another predicate is often used to minimize the cost of a solution within a 
xed

range� min�max
Goal� Cost� Min� Max� Percent�	 This predicate also makes
use of the branch and bound method with some restrictions	 It starts with the
assumption that the value Cost to be minimized is less than or equal to Max	 As
soon as a solution is found whose minimized value is less than Min� this solution
is returned	 When one partial solution is found� the search for the next better
solution starts with a minimized value Percent $ less than the previous one	
The use of these predicates in a set domain CSP requires the de
nition of Goal

as a set labelling procedure call� plus a graduated constraint whose integer value
is Cost	 The solving of min�max	�	� will execute the labelling procedure and
incrementally re
ne the integer domain involved in the graduated constraint	 Once
all the sets are labelled the integer domain becomes one value �the cost� which
can be evaluated	 The optimization process will then constrain the integer variable
appearing in the graduated constraint to have its value in a new domain whose
upper bound is lower than the cost previously computed	

���� Modelling facilities

The two problems presented hereafter come from the areas of combinatorial math�
ematics �Lueneburg� ����� and operations research	 The 
rst one �the ternary
Steiner problem� is to 
nd a speci
c hypergraph whose nodes are integer variables	
Our approach illustrates how an hypergraph whose nodes are integer variables can
be modelled as a simple graph whose nodes are set variables	 The second problem is
a set partitioning problem usually represented by mathematical models and solved
using integer linear programming techniques	 Here it is modelled as a set domain
CSP	
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������ Ternary Steiner problem

The ternary Steiner problem has its origins in combinatorial mathematics	 It be�
longs to the class of block theory problems which deal with the computation of
hypergraphs	 A hypergraph is a graph with the property that some arcs connect
collections of nodes	 This problem has only recently been addressed in computer sci�
ence	 �Beldiceanu� ����a� addresses this problem for the 
rst time	 The approach
consists in representing the problem as an integer domain CSP in a constraint
logic programming �CHIP �Dincbas et al	� ������� using the new concept of global
constraints	 The integer domain CSP modelling corresponds to the hypergraph
representation� the integer variables represent the nodes and the global constraints
represent the hyperarcs	

Problem statement The statement is taken from �Beldiceanu� ����a�	 A ternary
Steiner system of order n is a set of T � n�n � ���� triples of distinct elements
in f�� ���� ng such that any two triples have at most one element in common	 The
mathematical properties of this problem prove that n modulo � has to be equal to
� or � �Lindner and Rosa� �����	 One solution of Steiner � is for example�

f�� �� �g� f�� �� 
g� f�� �� �g� f�� �� �g� f�� 
� �g� f�� �� �g� f�� 
� �g

The integer domain CSPmodelling or hypergraph representation uses three nodes�
or variables� ranging over f�� ���� ng to represent a triple fX�Y� Zg	 The constraints
are ��� ordering constraints between the three nodes �X � Y � Z� so as to remove
equivalent triples under permutations of the elements� ���� any triple must have at
most one element in common with the other triples of nodes	 This amounts to con�
straining each pair of a triple to be pairwise distinct from any other pair appearing
in another triple	 This requires constraining all the n�n� �� possible pairs �� per
triple �X� Y� Z�� �X�Y�� �Y�X�� �X�Z�� �Z�X�� �Y�Z�� �Z�Y�� to be pairwise distinct	 This
approach is sound but far too costly in variables and constraints	 A global con�
straint all�pair�diff has been de
ned in �Beldiceanu� ����� Beldiceanu� ����a�
to free the user from specifying all the pairwise distinct pairs	
If each set of three nodes� describing a triple� can be represented as one variable�

then the modelling is simpler and requires less variables	 Such a modelling corre�
sponds to a set domain CSP approach	 Also� the constraints applied between each
set of three nodes become one constraint between two triples �set variables�	 Thus�
the set domain CSP models a hypergraph with respect to the integer domain CSP
modelling	

Problem modelling Modelling the problem as a set domain CSP involves rep�
resenting each triple as one set variable	 Let Si� � � i � T denote the T set vari�
ables which represent the triples	 Their domains are initialized to the set domain
�����������n��	
The constraint �any two triples have at most one element in common� is simply

represented by� �
 Si 	� Sj� �� �	 The constraint generation is summed up in
the short program�
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constraints
Lsets� �� intersect�atmost�
����

card�all
Lsets� ��� intersect�atmost�
�S� �L�� ��

intersect�atmost�
Lsets�� distinctsfrom
S�� L��

intersect�atmost�
L��

card�all
��� N��

card�all
�Set��LSets�� N� �� distinctsfrom
�S� ����

�
Set�� N�� distinctsfrom
S� �S� � L�� ��

card�all
LSets� N�� �
S 	� S�� C�� C �� ��

distinctsfrom
S� L��

card�all constrains the cardinality of each set variable in the list Lsets to be
equal to �	 The predicate intersect�atmost� generates the main constraint to be
satis
ed by each pair of triples	

Problem solving The resolution makes use of the labelling procedure refine
S�
for each triple S	 If n � �� the 
rst set is instantiated to f�� �� �g	 Then the system
tries to instantiate the second set by 
rst adding the element � to its lower bound	
This domain re
nement requires reconsidering the constraint �
S� 	� S�� C�	
This results in a re
nement of the domain of S� by a removal of the values �
and � from the upper bound of its domain	 At this stage in the resolution� the
re
ned domains are�

S� � �������� S� ��� ������������������

�S��S��S��S��S�� ��� ���������������

Computation results The problem was solved in �	� sec on a Sun���� for n �
�	 Six choice points were created during the solution step	 �Beldiceanu� ����a�
says that �� choice points were generated and �	�� sec were su�cient to solve the
problem	 This di�erence in choice points and time was surprising	 Unfortunately
the global constraint and the program developed were not available and so� in order
to make a sound comparison� we developed the same program as described in the
paper using the ECLiPSe integer domain library	 The choice points and the time
required were then similar to the Conjunto approach� but the program was much
less natural	
The complexity of this problem grows exponentially with n	 In �Beldiceanu� ����a�

the problem has not been tackled for larger values than �	 Indeed� it turned out
that using the same program to solve the problem when n � � leads to a combi�
natorial explosion	 We de
ned a labelling strategy which consists in constraining
each element to belong to at most �n����� triples	 Indeed� there are at most n��
distinct pairs containing one element i and a triple containing i must contain � of
these pairs	 In practice this labelling strategy corresponds to a simple occur check
before adding one element to a set domain	 This does not help when n � � but for
n � � it reduced the number of choice points from ���� to ��� and consequently
the computation time from 
�� sec	 to �� sec	
Remark� For one value of n there exists more than one solution	 The search for
all the possible solutions requires us to take into account the symmetries inherent
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to the problem i�e�� those which do not depend on the modelling	 A permutation of
two sets does not change the actual solution but corresponds� from a computational
point of view� to new instances of the set variables	 In fact� the modelling of a
search problem as a set domain CSP removes the symmetries that come from an
integer domain CSP approach	 Consequently� set constraints resemble some global
constraints in terms of problem solving and pruning ability� but to cope with this
actual symmetries of the problem a global reasoning on sets is necessary	

����
� The set partitioning problem

The set partitioning problem �Gondran and Minoux� ����� is an optimization prob�
lem that comes from operations research	 Consider a mapping from a set of elements
to a collection of equivalence classes each of which contains a subset of these ele�
ments� and has a speci
c cost	 The objective is to 
nd a subset of the classes such
that they are all pairwise disjoint� each element is mapped onto exactly one class
and the total cost of the selected classes is minimal	
This problem is currently tackled as a ��� integer linear programming problem

using the following mathematical model�

minimize �c � x�� �aij� 
 x � em

where c is a cost vector � � n� �aij� is an m � n known matrix comprising � and �
values� x is an n � � vector of ��� variables and em is a vector of m entries equal to
�	 We have�

�i � Dom��j � f�� ���� ng� aij �

�
� if i � Sj �
� otherwise

Each equivalence class is denoted by a set Sj 	

Example� A ��� modelling corresponds to the following system of constraints� min
c�x� � c�x� � c�x� � c�x� � c	x	 � c
x


x�� x�� x	 � �
x�� x�� x�� � �
x�� x�� x
 � �

x�� x	� x
 � �
x�� x
 � �

Each column represents an equivalence class	 Each line refers to one element in
f�� ��� 
g	 The equality constraints specify that an element can belong to exactly
one equivalence class	

Problem statement The mathematical statement of the problem is depicted
here in terms of relations and set constraints	 Consider a mapping R from Dom
to Ran which is constrained to be an application	 Let the DS�domain be Dom �
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f�� �� ����mg and the AS�range be a family Ran of n subsets of Dom such that
Ran � fS�� ���� Sng where each Sj is an equivalence class �a ground set� and�

�
j�f��������ng

Sj � Dom

A subset P� of Ran is a partition of Dom if and only if�

�
j�f��������ng

Sj � Dom
�

�Sj � Sk � P�� Sj � Sk � �

A cost set Sc is associated to the elements Si of Ran by considering a weighted
set composed of elements �Si� wi�	 The 
nal problem is to determine a partition
P � such that�

X
i

wi is minimal

This statement corresponds to the approach used with the Conjunto language	

Problem modelling Let a relation R on the ground sets Dom and Ran be
constrained to be an applicative mapping	 Each successor set is constrained to
be a subset of the proposed sets	 These constraints are not su�cient to solve the
problem	 Two other requirements are necessary�

� the 
nal set P � of equivalence classes should contain only disjoint sets	

� an instantiated successor set should also represent the successor set of all its
predecessors	

This corresponds to adding two constraints which will be checked using the for�
ward checking inference rule �i�e�� once a successor set becomes ground�	 Informally�
as soon as one successor set succ�R� i� fskg� becomes ground we must have�

�j � Dom� succ�R� j� sj�

�
if j � sk� sj � fskg
if j �� sk� sj � fskg � �

���

Example� The statement of the previous example corresponds to the following set
of constraints Conjunto constraints�

R bin�r ����������� ��� ��������������������� ���������������������

appl
R��

succ
R� �� S��� S� �� ����������������

succ
R� �� S��� S� �� ��������������

succ
R� �� S��� S� �� ������������������

succ
R� �� S��� S� �� ����������������

succ
R� �� S��� S� �� ����������������
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Each element i � f�� ���� 
g is mapped to a set Si whose domain contains the possible
equivalence classes �ie	 those which contain i�	 Note that columns � and � in the
ILP modelling correspond here to one equivalence class f�� �� �g	
The search space associated to these problems is usually very large and sim�

pli
cation rules are applied in order to reduce the initial problem size �e	g	 in
�Ho�man and Padberg� ����� Padberg� ������	 They consist in removing rows and
columns in the adjacency matrix formulation	 This corresponds to removing� in
a deterministic manner� redundant sets from the successor set domains� and to
bounding some successor sets to the same variable	 The main operations amount
to checking disjointness and�or inclusion of sets and to computing cliques over the
successor set domains	 This is achieved in a very natural manner using Conjunto
�for a full description of the modelling see �Gervet� ���
��	

Problem solving One important strength of solvers based on constraint propa�
gation techniques is their dynamic behaviour thanks to the delay mechanism	 In
particular� once the simpli
cation rules have been applied� their ripple e�ects on
the set of constraints allows to dynamically reduce the problem size	 Linear pro�
gramming solvers require the whole problem to be considered once again	
A large application has been developed� in which it is necessary to look for an

optimal solution using the predicate min�max	� and to consider a speci
c labelling
strategy	 The strategy aims at selecting a set among the remaining ones whose cost
is the lowest	
The labelling procedure considers each successor set Si in order	 The set E which

belongs to the upper domain bound of Si and which has the lowest cost is selected�
and added to Si	 A choice point is created and in case of failure the program
backtracks	 The previous state is restored and the set E is removed from the domain
of Si	

labelling
��� ���

labelling
�S� � LSuccs�� S� �� set
S��� ��

labelling
LSuccs� S��

labelling
�S� � LSuccs�� S� ��

lub
S� Lub��

select�cheapest
S�� E� Lub��


E in S�

�

E notin S���

labelling
�S� � LSuccs�� S��

The optimization predicate for the set partitioning problem is�

min�max

labelling
LSuccs� S�� take�min
C��� C� Min� Max� ��	

take�min
C� is an integer domain predicate which binds an integer term C to its
minimal value	 C is the weight of the set variable S	
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To solve the goal labelling
LSuccs� S�� take�min
C�� we 
rst label all the
sets� instantiate the weight of the set domain of S to its minimal value and then
search for a better solution according to the criteria given	

Computation results A set partitioning problem describing a ��� matrix of
size ��x��� was implemented using the approach presented here	 The complete
program takes ��� lines of Conjunto code	 The problem was taken from the
�Ho�man and Padberg� ����� library	 The heuristics led to a simpli
ed prob�
lem within � seconds and the optimal solution was found within �� seconds on
a Sun����	 The proof of optimality required �� additional seconds	 �Ho�man and
Padberg� ����� make use of the simplex method combined with a tailored branch
and cut search to tackle set partitioning problems �crew scheduling problems�	 The
optimum solution to the ��x��� problem is found in �	�� seconds on a VAX ����	
On the one hand� the �exibility and conciseness of the Conjunto approach is a

strength compared with existing mathematical models	 On the other hand� con�
straint propagation techniques are not competitive when compared with global
methods like the simplex �e	g	 in �Ho�mann and Padberg� ����� Guerinik and
Van Caneghem� ���
��	 While completing this work� it appeared to us that the
set domain CSP approach is promising when investigating feasibility issues that
are problematic with the simplex method	 The simplex stops when the model is
detected to be inconsistent but it cannot detect the reasons for failure	 The inher�
ent incremental solving of local consistency techniques can be of a great help	 In
addition� the partitioning problem appears as a sub�problem in numerous real life
applications �eg	 timetables� bus line balancing�� which are currently solved using
integer domain solvers	 While integer domain CSP are well suited to the schedul�
ing constraints of these problems� a set domain CSP can provide an easy way to
tackle the partitioning constraints	 The cooperation between the solvers is not a
problem� provided that the constraints which involve set and integer variables can
be attached to both	 A real life application is worth considering	

���� E�ciency issues	 A case study

The previous section illustrated the applicability of the system for dealing with a
large class of search problems involving sets� relations� graded functions and opti�
mization criteria	 The question is� �can a gain in expressiveness be combined with
a gain in e�ciency %�	 From a pruning point of view� the one�to�one correspon�
dence between a set variable ranging over a set domain and a vector of ��� variables
guarantees that if both sorts of variables are handled using the same labelling pro�
cedure �cf	 refine�� the pruning will be exactly the same	 If there is a gain�
it might therefore come from the saving in memory utilization and consequently
from the garbage collection time	 This point is illustrated through an integer linear
programming optimization problem� the bin packing problem	

Problem description Bin packing problems belong to the class of set partitioning
problems �Garey and Johnson� �����	 A multiset of n integers fw�� ���� wng is given

47



that speci
es the weight elements to partition	 Another integerWmax is given that
represents the weight capacity	 The aim is to 
nd a partition of the n integers
into a minimal number of m bins �or sets� fs�� ��� skg such that in each bin the
sum of all weights does not exceed Wmax	 This problem is usually stated in terms
of arithmetic constraints over binary variables and solved using various operations
research or constraint satisfaction techniques over binary 
nite domains	 It requires
one matrix �aij� to represent the elements of each set� one vector xj to represent
the selected subsets sk and one vector wi to represent the weights of the elements
aij 	 The cost function to be optimized is the total number of bins	
The mathematical formulation in ��� CSP and set domain CSP is described in

the following 
gure	

��� CSP abstract formulation set domain CSP abstract formulation

Pm
j�� aij xj � � for all i � f�� ��� ng s� � s� � fg� ��� � sn�� � sm � fg

s� � ��� � sm � f��� w��� ��� �n�wn�g
where�

xj � ����

�
� if sj � fs�� �� � skg
� otherwise

sj � �fg� f��� w��� ��� �n�wn�g�

aij � ����

�
� if i � sj
� otherwise

Pn

i�� aij wi �Wmax �j � f�� ����mg weight�i� wi� � wiP�glb�sj�
i�� weight�i� wi� �Wmax �sj

Under these assumptions� the program to solve is to minimize the number of

bins�
minx� �

Pm

j�� xj minx� � �fsj j sj �� fgg

Problem statement Let P � f ��� w�� � ���� �i� wi�� ���� �n�wn�g be a non empty
set of items i with a weight wi	 The aim is to partition P into a minimal number
of N bins such that the sum of the wi in a computed subset of P does not exceed
a limited weight Wmax	 A bin is represented by a set variable with initial domain
�fg� P �	 The union of all bins should be equal to P �represented using the all�union
predicate�	 All the bins should be pairwise disjoint �all�disjoint predicate�	

pb�statement
N�Max�Sets� �� state�constraints
Sets� P� ��

pieces
P�� restrict�weight
Max�Sets��

make�sets
N�P�Sets�� all�disjoint
Sets��

state�constraints
Sets�Max�P�� all�union
Sets�P��

make�sets
���Plub����� restrict�weight
�M�����

make�sets
N�Plub��Set� Sets���� restrict�weight
Max��S� Sets�� ��

Set ��� ����Plub�� weight
S�W��

N� is N � �� W �� Max�

make�sets
N��Plub�Sets�� restrict�weight
Max�Sets��
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Problem solving The labelling procedure makes use of the 
rst 
t descending
heuristic	 This heuristic sorts the elements �i�Wi� in decreasing order of their
weight	 Bins are then 
lled one after another� which is more e�cient than 
lling
all the bins in parallel	 The optimization predicate is the classical one for packing
problems which initializes the number of bins N to the value weight�P ��Wmax
and increases it at each call of goal predicate in case of failure	 The solution is the

rst successful partition	 This program was used to solve a large instance of ��
items partitioned into �� sets	 The optimal solution was found in about �� seconds
on a SUN ����	

Experimental results and comparisons A comparative study was made with
a integer domain ����� formulation implemented using the 
nite domain library of
ECLiPSe	 For the encoding of sets and set constraints� we used respectively lists of
binary variables and arithmetic constraints on the variables described previously	
The arithmetic constraint predicates were handled using the ECLiPSe solver of
arithmetic constraints over 
nite domains	 It is based on consistency techniques
which perform a reasoning about variation domain bounds or about variation do�
mains� depending on the constraint predicate	 The ��� integer domain program was
encoded so as to use the same 
rst 
t descending heuristics and the same labelling
procedure as the set domain CSP program	 The following array gives the results
regarding time consumption together with space utilization	

Criterion Conjunto program FD program

global stack peak �bytes� ��� ��� � ��� ���
trail stack peak �bytes� ��� ��� ��� ���

garb	 collection number �� ��

cpu time �sec	� ��	� ��	


garb	 collection time �sec	� �	�� �	��

The two programs di�er in the data structure used� and thus in the constraints
applied to these data	 The 
rst point to note is that this di�erence has an impact
both on the space usage �stack peaks where the peak value indicates what the
maximum amount allocated was during the session� and on the cpu time	 The
space utilization comprises� among other stacks� the global stack and the trail stack	
The data structure is largely responsible for the growth of the global stack peak	
The di�erence in space utilization �stack sizes� between the two approaches comes
from the set�like representation as a list of zero�one domain variables versus two
sorted lists in Conjunto	 The lists of zero�one variables are never reduced because
retrieving an element from a set corresponds to setting a variable domain to zero	
This is not the case with the set domain representation	

The trail stack is used to record information �set domains or lists of zero�one
variables� that is needed on backtracking	 The number of backtracks in the two
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program execution is the same� so the di�erence comes from the amount of infor�
mation recorded	
The garbage collection number is the times garbage collections are performed

which is closely linked to the global and trail stack because the garbage collection
on both at the same time	 Thus� the di�erence in the garbage collection number
comes again from the space utilization	
The di�erence between the cpu times is due 
rst to the time needed for garbage

collection which is a direct consequence of the size of the global and trail stacks�
and secondly to the time needed for performing operations on the data	
Pro
ling the cpu time consumption indicates that half of time spent in the FD

program resolution is the time needed for performing arithmetic operations on the
zero�one variables	 The weight constraint applied to each set is one of the most
expensive computations	 The weight constraint ai�
w��ai�
w�� ��� ain
wn �
wmax which is woken each time an aij is set to �� consists of a Cartesian product of
two lists	 In the Conjunto program� it consists in constraining the sum of weights
wi directly available from the elements �i� wi� of a domain upper bound	 Another
costly computation in the FD formulation� is the computation of the largest weight
not already considered for one set	 This requires checking the value of the zero�one
variable� and if this value is one� considering the weight associated to this variable	
A weight is not considered if the corresponding domain variable is not instantiated	
In the Conjunto program� this computation corresponds to the di�erence of the two
bounds of a set domain� and the resulting set contains the elements �i� wi� which
have not yet been considered	 Computing this di�erence is in fact the most time
consuming step in the Conjunto program resolution� because it is also performed
when computing disjoint sets� but it represents half of the cpu time consumption
of arithmetic operations	
This application shows that set constraints together with set domains are expres�

sive enough to embed the problem semantics� and to avoid encoding the information
as lists of binary variables or handling additional data �the list of weights�	 It also
shows that consistency techniques for set constraints are e�cient enough to solve
such combinatorial problems on sets	

���� General remarks

These applications have illustrated how the solving of set�based optimization prob�
lems is possible thanks to the graduated constraints �set cardinality and weight
constraints�	
With regard to an integer domain CSP� a set domain CSP approach contributes

transparency with respect to the mathematical de
nition of set problems� and al�
lows the user to go from a hypergraph to a graph representation� thus reducing the
number of variables and simplifying the constraint statement phase	 As far as e��
ciency is concerned� the 
rst application �ternary Steiner problem� showed that the
solving of set constraint achieves a pruning identical to that of global constraints	
The cpu were also similar	
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The second application �set partitioning� makes us of the one�to�one correspon�
dence between a set variable ranging over a set domain and a ��� vector which
allows us to model ��� Integer Linear Programming �ILP� problems as set domain
CSPs	 The modelling of ��� ILP problems as set domain CSPs in a constraint logic
programming language shows the programming facilities of logic programming and
enhances the class of CSPs	 In particular� a CSP view of ��� ILPs brings �exibility
to the modelling and can be useful when ��� unpure ��� ILP problems are to be
tackled� ��� when their feasibility is problematical with ILP tools� ��� and when
small ��� ILP problems are involved in some real CSP applications �eg	 timetables�
bus line balancing� etc�	

The last application �bin packing� showed how a ��� CSP can be modelled more
concisely as a set domain CSP using Conjunto with a possible gain in e�ciency	
The gain comes essentially from the time needed for garbage collection which is
more important in the ��� CSP approach which uses a larger amount of variables	

Discussion and related works

Today� the Conjunto solver is available as a library in the ECLiPSe platform�
developed at ECRC	 Independently of our work� the concept of set domains was
brie�y introduced in �Puget� ����� and several set constraints are implemented
in the ILOG solver �Caseau and Puget� ����� Puget� �����	 Detailed comparisons
with the ILOG approach are di�cult since ILOG solver is an industrial implemen�
tation not fully described in the public domain	 However� personal communications
with Jean�Fran&cois Puget indicate that the two approaches are similar but di�er
on one main point� the generic algorithm used to handle set constraints	 ILOG
solver uses AC�
 �Van Hentenryck et al	� ����� whereas we make use of propaga�
tion methods based on the AC�� algorithm �Mackworth� �����	

A related line of work concerns the class of CLP�Sets� languages� that we have
presented in the introduction �Walinski� ����� Dovier and Rossi� ����� Bruscoli et
al	� �����	 None of them is directly motivated by the class of applications we are
dealing with� these approaches aim mainly at exploiting the expressiveness of con�
structed sets	 Our study of set�based logic programming and CLP�Sets� languages
came to the conclusion that complete solvers have severe e�ciency problems due
to the nondeterministic nature of the constructed set uni
cation and its exponen�
tial complexity	 Indeed� recent attempts have been made to tackle the bin packing
problem using set constraints over constructed sets� the exponential uni
cation pro�
cedure of constructed sets led to a combinatorial explosion	 Our approach �even
though it adds a lower level of abstraction than the LP or CLP approaches based on
constructed sets� is more realistic and e�cient when one aims at solving set�based
search problems	 The main di�erence is that we use variables with set domains and
hence have a trivial uni
cation procedure	

While our work has essentially aimed at de
ning a practical language towards
the solving of applications� it has provided us with a matter for a formal de
�
nition of the language	 The formal framework distinguishes between the compu�
tation domain of the constraint logic programming language� and the constraint

51



domain over which the computations are actually performed	 These two levels of
discourse are linked together by approximations and closure operations	 Up to now�
the class of CLP�FD� languages are de
ned as constraint logic programming lan�
guages� but their formal de
nition is still based on the formal framework de
ned
by Van Hentenryck that is� embedding consistency techniques in logic program�
ming �Van Hentenryck� �����	 The formal description of the Conjunto language
can be used to give a formal de
nition of the class of CLP languages which embed
consistency techniques as main constraint solving techniques	
We believe that some further research on applications and algorithms is needed	

The concept of graduated constraints helps us with tackling set�based optimization
problems� and studying the cooperation between two solvers �Conjunto and integer
domain solvers�� but the search space of such problems is de
ned with set domains
essentially	 The Conjunto language has not been used so far to tackle real life appli�
cations de
ned over a search space containing also integer domains	 Applications
involving scheduling constraints and set constraints are still to be developed	 In
particular� they would allow us to 
gure out whether it is possible or not to work on
a mixed�search space	 Time tables� bus line balancing� are some of the applications	
Regarding the class of consistency methods we have been using� we have essen�

tially considered node and arc consistency techniques applied to set and graduated
constraints	 It sounds interesting to go beyond this� to use path consistency algo�
rithms� and to take into account the latest researchs on the topology of constraint
graphs	 Some issues might be di�erent from those already established with respect
to integer domain CSPs	 In this respect� the study of the ratio complexity�pruning
is very important	
It would also be interesting to extend the set domain concept to that of lattice

domains in order to cope with symmetry problems	 For example� considering the
lattice domains ff�� �g� f�� �gg and ff�� �� �gg� we have ff�� �g� f�� �gg v ff�� �� �gg	
A set of constraints applied to variables ranging over lattice domains would ease the
modelling and solving of set based problems dealing with the search for equivalence
classes �partitioning� covering�	 They would remove the symmetries which come
from permutations of instances of set variables	 A solution to a set�based problem
would not be a list of instantiated set variables but the one value of a lattice vari�
able	 Thus the order of the sets which de
ne the lattice value would be irrelevant	
Constraints over lattices would model a set domain CSP as a lattice domain CSP�
and thus add a higher level of expressiveness with respect to set domains	 On the
other hand� the practical framework corresponding to embedding lattice intervals
in CLP requires further works describing the algorithms and studying the trade�o�
between expressiveness and e�ciency	
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