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Local consistency techniques have b e e n i n troduced in logic programming in order to extend the application domain of logic programming languages. The existing languages based on these techniques consider arithmetic constraints applied to variables ranging over nite integer domains. This makes di cult a natural and concise modelling as well as an e cient solving of a class of N P -complete combinatorial search problems dealing with sets. To o vercome these problems, we propose a solution which consists in extending the notion of integer domains to that of set domains (sets of sets). We specify a set domain by a n i n terval whose lower and upper bounds are known sets, ordered by set inclusion. We de ne the formal and practical framework of a new constraint logic programming language over set domains, called Conjunto. Conjunto comprises the usual set operation symbols( \ n), and the set inclusion relation ( ). Set expressions built using the operation symbols are interpreted as relations (s s 1 = s 2 ,...). In addition, Conjunto provides us with a set of constraints called graduated constraints (e.g. the set cardinality) which map sets onto arithmetic terms. This allows us to handle optimization problems by a p p l y i n g a cost function to the quanti able, i.e., arithmetic, terms which are associated to set terms. The constraint solving in Conjunto is based on local consistency techniques using interval reasoning which are extended to handle set constraints. The main contribution of this paper concerns the formal de nition of the language and its design and implementation as a practical language.

Introduction and motivation

This paper presents a means to tackle set based combinatorial search problems in a Constraint Logic Programming (CLP) framework [START_REF] Ja | Constraint Logic Programming[END_REF][START_REF] Colmerauer | Opening the prolog III Universe[END_REF][START_REF] Ja | Constraint Logic Programming: a Survey[END_REF]. The main contribution of the work is a new language allowing set based constraint satisfaction problems to be modelled and solved in an elegant w ay using constraint logic programming. We i n troduce the notion of set domain following the concept of nite integer domain [START_REF] Fikes | Ref-arf: A system for solving problems stated as procedures[END_REF]. The elements of a set domain are known sets containing arbitrary values, and the set domain itself represents a powerset. It is de ned as a set interval speci ed by its lower and upper bounds. The constraints of the language are built-in relations applied to variables ranging over set domains. The solver is based on an extension of consistency techniques [START_REF] Mackworth | Consistency in networks of relations[END_REF][START_REF] Mackworth | The complexity of some polynomial network consistency algorithms for constraint satisfaction problems[END_REF] |originating in arti cial intelligence| to deal with set constraints. Closely related to our work are the notions of nite domains, sets and intervals embedded in a constraint logic programming framework. These notions presented hereafter come from various backgrounds and were originally meant for di erent purposes.

1.1. Constraint satisfaction using CLP Logic programming [START_REF] Kowalski | Predicate Logic as a Programming Language[END_REF][START_REF] Colmerauer | Prolog, bases th eoriques et d eveloppements actuels[END_REF], L l o yd, 1987) i s a p o werful programming framework which enables the user to state nondeterministic programs in relational form. Some ten years ago, the concept of nite domain variables ( Van Hentenryck and Dincbas, 1986) i.e., variables ranging over a set of natural numbers, has been embedded into logic programming to allow for e cient tackling of combinatorial search problems modelled as Constraint Satisfaction Problems (CSPs) [START_REF] Mackworth | Consistency in networks of relations[END_REF]. A CSP is commonly described by a set of variables ranging over a set of possible values (the domains) and a set of constraints applied to the variables. It is well known that combinatorial search problems are N Pcomplete [START_REF] Papadimitriou | COMBINATORIAL OPTIMIZATION: Algorithms and Complexity[END_REF]. The solving of a CSP utilizes local consistency techniques. These are constraint propagation techniques aiming at pruning the search space, associated to a CSP, b y removing values that can never be part of any feasible solution. One use of these techniques in logic programming has aimed at extending a logic-based language with consistency techniques at the language level (Van [START_REF] Hentenryck | Domains in Logic Programming[END_REF]. This has led to the rst development of a Constraint Logic Programming (CLP) language on nite domains, CHIP [START_REF] Dincbas | The Constraint Logic Programming Language CHIP[END_REF] (Constraint Handling In Prolog).

CHIP extends the application domain of logic programming to the e cient solving of combinatorial search problems. Typical examples are scheduling applications, warehouse location problems, disjunctive scheduling and cutting stock [START_REF] Dincbas | The Constraint Logic Programming Language CHIP[END_REF] w h i c h are arti cial intelligence or operations research problems. The success of CHIP prompted the development of new nite domain CLP languages, classi ed as CLP(FD) languages (e.g. [START_REF] Carlson | AKL(FD) A Concurrent Language for FD Programming[END_REF]), but also raised the question of its limitations. Some of the limitations are concerned with the di culties CLP(FD) languages have to model and solve a class of combinatorial problems based on the search for sets or mapping objects. Set partitioning, set covering, matching problems are such combinatorial search problems. The main motivation of our work is to provide a solution to this problem. So far, a nite domain CSP approach models a set either as a list of variables taking their value from a nite set of integers ( x 1 : : : x m ] x i 2 f 1 2 : : : n g if m n and the cardinality o f the set is known to be m), or as a list of 0-1 variables ( y 1 ::: y m ] y i 2 f 0 1g). The rst approach requires the removal of order and multiplicities among the elements of the list, which i s a c hieved by adding ordering constraints (x 1 < x 2 < : : : < x m ).

Constraints over sets are modelled using arithmetic constraints. This is not natural, costly in variables, and this often makes the program non-generic. The second approach, based on the use of 0-1 variables, originates from 0-1 Integer Linear Programming (ILP) [START_REF] Schrijver | Theory of Linear and Integer Programming[END_REF]. It makes use of the one-to-one correspondence which exists between a subset s of a known set S and a boolean algebra. This correspondence is de ned by the characteristic function: f : y i ;! f 0 1g where f(y i ) = 1 i i 2 s

In other wo r d s , a 0 -1 v ariable is associated with each element i n S and takes the value 1 if and only if the element belongs to the set s. This approach requires a lot of variables. In addition it does not ease the statement of set constraints such a s the set inclusion, because the inclusion of one list into another requires considering a large amount of linear constraints over the 0-1 variables. This is not very natural, nor concise. To cope with this problem, two solutions have been proposed. One consists in de ning a class of built-in predicates, referred to as global constraints (Beldiceanu, 1990, Beadiceanu and[START_REF] Beldiceanu | Introducing Global Constraints in CHIP[END_REF], which allow for the concise statement and global solving of a collection of constraints. One way t o a c hieve s u c h a global reasoning is to use operations research techniques in a CLP setting. This approach aims to achieve a better pruning of the variable domains by taking into account several constraints at a time. It also extends the programming facilities of CLP(FD) languages to handle e ciently speci c problems such as disjunctive scheduling, computation of circuits in a graph, etc. The second solution, presented in this paper, aims at extending the expressiveness of the language by embedding sets and providing set and mapping constraints for general purposes. This requires an investigation of how CLP languages based on sets tackle the set satis ability problem and how w ell expressiveness can be combined with e ciency.

Set data structures in logic-based programming languages

A set is a collection of distinct elements commonly described by fx 1 : : : x n g. The rst application to embed sets as a high level programming abstraction was in rapid software prototyping and problem speci cation (Oxford 1986[START_REF] Schwartz | Programming with sets -An introduction to SETL[END_REF][START_REF] Turner | An overview of Miranda[END_REF] More recent proposals in database query languages, assume a logic-based language as the underlying framework. These proposals aimed at strengthening typical existing set facilities of languages like Prolog (e.g. setof, bagof) to handle sets of terms and complex data structures. In this line of work sets have been embedded in [START_REF] Beeri | Set constructors in a logic database language[END_REF][START_REF] Kuper | Logic Programming with Sets[END_REF], S h m ueli et al., 1992[START_REF] Dovier | flogg: A Logic Programming Language with Finite Sets[END_REF]. All these languages converge on one aspect: representing a set variable by a set constructor so as to nest objects in a natural manner. This constructor is speci ed either by an extensional representation fx 1 ::: x n g ( [START_REF] Beeri | Set constructors in a logic database language[END_REF][START_REF] Kuper | Logic Programming with Sets[END_REF])) or by an iterative o n e fxg E where E can be uni ed with a set of terms containing possibly set variables (concept of sets of nite depth in [START_REF] Dovier | flogg: A Logic Programming Language with Finite Sets[END_REF][START_REF] Legeard | Short overview of the CLPS System[END_REF][START_REF] Stolzenburg | Membership-constraints and complexity in logic programming with sets[END_REF]). The equality relation over constructed sets is a particular case of Associative, Commutative and Idempotent ( A CI) relation [START_REF] Livesey | Uni cation of Sets and Multisets[END_REF]. Each property is usually modelled by a set of axioms. Ensuring the satis ability o f these properties, i.e. solving the satis ability problem of constructed sets, is N P -complete or even N P -hard [START_REF] Livesey | Uni cation of Sets and Multisets[END_REF][START_REF] Perry | The Complexity of Logic Programming with Sets[END_REF][START_REF] Kapur | Np-completeness of the set uni cation and matching problems[END_REF][START_REF] Hibti | D ecidabilit e et complexit e de syst emes de constraintes ensemblistes[END_REF], depending on the class of axioms and operations considered (e.g. \ n). The main reason is the absence of a unique most general uni er when unifying constructed sets. This is clear from the following example: the equality fX Yg = f3 4g derives two solution sets: fX = 3 Y = 4 g and fX = 4 Y = 3 g neither of which is more general than the other. Thus, in practice the uni cation procedure of constructed sets is achieved by computing a minimal collection of set uni ers, that is a set of substitutions. This means that the satisfaction of the ACI axioms introduces nondeterminism in the uni cation procedure by deriving disjunctions of a nite number of equalities. In (Beeri et al., 1991, Jayaraman and[START_REF] Jayaraman | Programming with Equations, Subsets, and Relations[END_REF]) a term-matching procedure is considered (uni cation of two sets when one of them contains no variables). This approach reduces signi cantly the set of uni ers. But term-matching for constructed sets remains an NP-complete problem (Perry et al., 1986, Kapur and[START_REF] Kapur | Np-completeness of the set uni cation and matching problems[END_REF]. Indeed, if fx 1 : : : x n g = f1 ::: mg (m < n ) t h e r e a r e a t m o s t 2 n;m computable solutions.

These approaches allow for a high level of abstraction when representing collections of terms. Unfortunately they are very ine cient in time complexity results. Recently, some alternative approaches have focused on embedding constructed sets in constraint logic programming. CLP languages dealing with sets, CLP(Sets), are de ned as instances of the CLP scheme [START_REF] Ja | Constraint Logic Programming[END_REF] over a speci c computation domain describing the class of allowed set expressions and set constructors. These CLP(Sets) languages provide a sound and complete solver. Hereafter, we put a particular attention into the description of CLP( ) which deals with regular sets, the revisited language flogg which axiomatizes a set theory, and CLPS which aims at prototyping combinatorial problems using sets, multisets and sequences.

Set data structures in constraint logic programming languages

Constraint Logic Programming (CLP) combines the positive features of logic programming with constraint solving techniques. The concept of constraint solving replaces the uni cation procedure in logic programming and provides, among others, a uniform framework for handling set constraints (eg. x 2 s s s 1 s = s 2 ). CLP( ) (Walinsky, 1 9 8 9 ) represents an instance of the CLP scheme over the computation domain of regular sets. A regular set is a nite set composed of strings which are generated from a nite alphabet . This language incorporates strings into logic programming to strengthen the standard string-handling features (eg. concat, substring). CLP( ) does not deal with sets in the general sense but nevertheless, it constitutes a rst attempt to compute regular sets by means of constraints like the membership relation. The complexity of the satis ability procedure is not given, but in nite computations are avoided thanks to the use of oundering. flogg (Dovier andRossi, 1993, Bruscoli et al., 1994) has been revisited from a LP to a CLP framework in order to provide a uniform framework for the handling of set constraints (2 = 6 = = 2). The author does not know o f any application developed using this language but its design and implementation have settled the theoretical foundations for embedding constructed sets of the form fxg S into logic program-ming and constraint logic programming. The soundness and completeness of its solver allow us to use it for theorem proving and problem speci cation. In flogg, the nondeterministic satisfaction procedure of constructed sets reduces a given constraint to a collection of constraints in a suitable form by i n troducing choice points in the constraint graph itself. This leads to a hidden exponential growth in the search t r e e . In this approach, completeness of the solver is required if one aims at performing theorem proving. Thus, there is no possible compromise here between completeness and e ciency.

CLPS (Legeard and[START_REF] Legeard | Short overview of the CLPS System[END_REF]Legros, 1992) aims at prototyping combinatorial problems using sets, multisets and sequences. It proposes a couple of interesting methods to handle extensional sets fx 1 : : : x n g of nite depth (e.g. s = fffe agg c g is a set of depth three). Unlike flogg, CLPS comprises the set cardinality operation which i n t h i s p r o t o t yping context is of a great practical use. One of the distinctive features of CLPS is to allow set elements to range over integer domains. When set elements are nite domain varaibles, the satis ability problem of constructed sets is tackled by an arc-consistency algorithm of type AC-3 ( M a c kworth, 1977) combined with a local search procedure (forward checking). A system of set constraints where each set element ranges over a nite domain is consistent if each of the set constraints it contains is locally consistent. For example, the system x 2 f1 2g y 2 f1 3 4g z t] 2 f1 2 4 5g fx yg = fz tg is consistent if x 2 f1 2g y 2 f1 4g and z t] 2 f1 2 4g. Note that the set equality relation should be associative, commutative and idempotent. It might h a p p e n that due to the satisfaction of the ACI axioms, distinct selected values for the elements will generate identical instances of the sets (e.g. the two sets of selected values fx = 1 y = 4 z = 1 t = 4g and fx = 1 y = 4 z = 4 t = 1g generate a unique instance f1 4g for both sets). While some a priori pruning can be achieved, the search procedure which uni es the constructed sets remains exponential. This is a main drawback of this language when solving set-based combinatorial search problems (e.g. bin packing, set partitioning). However, their later work on constructed terms for multisets and sequences proved to be appropriate for modelling and solving scheduling problems with a reasonable e ciency (Baptiste et al., 1994, B o u c her and[START_REF] Boucher | Fonctions de voisinage progressives et admissibles pour des m ethodes d'optimisation en PLC sur s equences[END_REF].

To a c hieve a better e ciency in the area of combinatorial search problem solving, a set should be represented by a variable as opposed to a constructed term this allows us to have a deterministic set uni cation procedure which consists of testing in polynomial time the equality b e t ween set variables and ground sets (e.g. S = f1 2g). In addition, sets should range over domains so as to make use of powerful constraint propagation techniques. To achieve this, we propose a language which enables us to model a set-based p r oblem as a set domain CSP |where set variables range over set domains|, and which tackles set constraints by using consistency techniques. A set domain can be a collection of known sets of arbitrary elements like ffa bg fc dg fegg. It might happen that the elements of the domain are not ordered at all, and thus if large domains are considered, it is not possible to approximate the domain reasoning by a n i n terval reasoning as in some CLP(FD) systems. To cope with this, we propose to approximate a set domain by a set interval speci ed by its upper and lower bounds, thus guaranteeing that a partial ordering exists. This allows us to make use of consistency techniques by reasoning in terms of interval variations, when dealing with a system of set constraints. The set interval fg fa b c d eg] represents the convex closure of the set domain above.

The strengths of handling intervals in CLP have recently been proved when dealing, in particular, with integers and reals. On the one hand, interval reasoning does not guarantee that all the values from a domain are locally consistent, versus domain reasoning. On the other hand, it removes at a minimal cost some values that can never be part of any feasible solution. This is achieved by pruning the domain bounds instead of considering each domain element one by one. Interval reasoning is particularly suitable to handle monotonic binary constraints (e.g.

x y s s 1 ), where it guarantees the correctness properties of domain reasoning while being more e cient in terms of time complexity.

Interval reasoning using CLP

The introduction of real intervals into CLP aims at avoiding the errors resulting from nite precision of reals in computers. A real interval is an approximation of a real and is speci ed by i t s l o wer and upper bounds. It does not denote the set of possible values a variable could take b u t a v ariation of an in nite numberofvalues. Cleary [START_REF] Cleary | Logical arithmetic[END_REF] i n troduced a relational arithmetic of real intervals into logic programming based on the interpretation of arithmetic expressions as relations. Such relations are handled by making use of projection functions and closure operations, which correspond to the de nition of transformation rules expressing each real interval in terms of the other intervals involved in the relation. These transformation rules approximate the usual consistency notions. The handling of these rules is done by a relaxation algorithm which resembles the arc-consistency algorithm AC-3 [START_REF] Mackworth | Consistency in networks of relations[END_REF]. This approach prompted the development of the class of CLP(Intervals). A formalization of this approach i s g i v en in [START_REF] Benhamou | Interval Constraint Logic Programming[END_REF].

While CLP(Intervals) languages make use of consistency techniques, they do not model CSPs because the solving of a problem modelled in a CLP(Intervals) language searches for the smallest real intervals such that the computations are correct. It guarantees that the values which h a ve b e e n r e m o ved are irrelevant, but does not bind the real variables to a value. Set intervals in constraint logic programming resemble the real interval arithmetic approach in terms of interpreting set expressions (e.g. s s 1 s \ s 1 ) as relations and using interval reasoning to perform set interval calculus when handling the constraints. However, set intervals in constraint logic programming contribute to the de nition of a language which allows one to model and solve discrete CSPs. In practice, this corresponds to providing a labelling procedure in order to reach a complete solution. This requirement di ers from that of CLP(Intervals) languages where the completeness issue is still an open problem because of the in nite size of real intervals.

Contribution

This paper contains the following contributions:

A formal framework for solving a system of set constraints over set domains. This framework de nes the algebraic structure of the constraint domain over set intervals. It is generic and can be adapted to formalize the class of languages which m a k e use of consistency techniques as main constraint solving tool. A practical framework describing the Conjunto language which w e h a ve designed and implemented using the constraint logic programming platform ECL i PS e [START_REF] Ecrc | ECLiPSe (a) user manual, (b) extensions of the user manual[END_REF].

Applications developed in Conjunto. They illustrate the modelling facilities of the language and its ability to solve i n an e cient w ay large search problems [START_REF] Gervet | Conjunto : Constraint Logic Programming with Finite Set Domains[END_REF][START_REF] Gervet | Set Intervals in Constraint Logic Programming: De nition and Implementation of a Language[END_REF].

I Formal Framework

This part describes a constraint logic programming system dealing with sets which range over a nite domain |i.e., sets which belong to a powerset| and whose solver is based on consistency techniques.

A CLP system is parameterized by its computation domain and more generally by its constraint domain [START_REF] Ja | Constraint Logic Programming: a Survey[END_REF]. The computation domain is the algebraic structure over which constraints are applied to set variables and the constraint domain is the algebraic structure over which consistency techniques are performed in terms of set interval reasoning. A clear distinction should be made between them. On the one hand, the user manipulates sets in a logic-based language and on the other hand set interval calculus is performed to search for set values as illustrated on the following gure.

Computation domain

User level

Constraint domain

Set interval calculus level transformation rule

[{6},{6,13}] [{13},{13,5}] = {} D2 <-[{13},{13,5}] D1 <-[{6}, {6}] X D1, Y D2, X Y = {} Y [{13},{13, 5}], X [{6},{6,13}], X Y = {}
A constraint logic programming language with sets, set operations and relations is not expressive enough to tackle set-based search problems. In particular optimization problems require the statement of a cost function which necessarily deal with quanti able, i.e., arithmetic, terms. To cope with this, an extension of the language is presented and consists in adding to the language syntax and to the constraint domain of the system a class of functions which map sets to integers (e.g. the set cardinality # , t h e s e t w eight, etc.). These functions are called graded functions when they map elements from a lattice (e.g. a p o werset equipped with the operations \ and the partial ordering ) t o t h e s e t o f i n tegers.

Basics of powerset lattices

Some de nitions, properties and results on lattices are necessary to understand the main features of the formal description of the system. These can be found in [START_REF] Birkho | Lattice T h e ory[END_REF], Graetzer, 1971[START_REF] Gierz | A Compendium of Continuous Lattices[END_REF]. The particular lattice we deal with is the powerset lattice. To g i v e a n i n tuitive idea of the subsequent use of these de nitions, some examples relating to powerset lattices are given. Readers familiar with these notions can skip this subsection.

Lattices

Definition 1 A poset (also known as partially ordered set) is a set S equipped with a binary relation (formally a subset of S S) that satis es the following laws:

P1. Re exivity 8x x x P2. Antisymmetry (x y and y x) ) (x = y) P3. Transitivity (x y and y z) ) x z Example: Let S be a nite set and P(S) the set of all subsets of S or powerset of S. Then the set inclusion is easily seen to be a partial order on P(S). P(S) is a p oset.

Definition 2 Let S be a p oset, X a subset of S and y an element of S. Then y is a meet or greatest lower bound or glb for X i : y is a lower bound for X, i.e., if x 2 X then y x and, if z is any other lower bound for X then z y

The notation we use is y = V (X).

Definition 3 Let S be a p oset, X S and y 2 S. Then y is a join or least upper bound or lub for X i : y is an upper bound for X, i.e., if x 2 X then y x and, if z is any other upper bound for X then z y

The notation we use is y = W (X).

Proposition 1 Let S be a p oset and X a s u b s e t o f S. Then X can have at most one meet and at most one join.

Proof: By P2, meet and join are clearly unique whenever they exist. If a and b are two meets then we h a ve on the one hand a b and on the other hand b a. This infers a = b.

The following property establishes a link between and the pair ( V , W ) as actual meet and join.

Property 1 (Consistency property) Let S be a p oset. Then for all x y 2 S,

x y , x = V (fx yg)

x y , y = W (fx yg)

Proposition 2 (Graetzer, 1971) The following de nitions are e quivalent: (i) A poset is a lattice i every nite subset has a meet and a join.

(ii) A poset S is a lattice i every two elements have a meet and a join.

Example: The powerset P(X) is a lattice where t h e m e et operator is the intersection \ and the join operator is the union . Every two elements x y of P(X) have a meet x \ y and a join x y.

The partial order as set inclusion satis es the consistency property:

x y = y , x y , x \ y = x

This equivalence de nes the correspondence b etween the relational de nition of the structure P(X) \ ] in terms of properties of the partial order (existence o f a glb and a lub) with its algebraic de nition in terms of properties of the operations \.

Intervals in powerset lattices

Reasoning with and about intervals within a powerset lattice constitutes the core of our system. The following de nitions and properties give the basic properties of set intervals in powerset lattices. A set interval delimited by t wo sets x and y is speci ed by the syntax x y] s u c h t h a t x y. In case x = y this interval is reduced to a singleton. One important t a s k i n s e t i n terval reasoning is the computation of set intervals which describe the smallest convex powerset containing a collection of sets. This subsection focuses on the de nitions and properties of these convex set intervals.

Definition 4 An interval of two arbitrary sets x y in a powerset lattice is the set x \ y x y]. x y ) x \ z y \ z x y ) x z y z

Example: This property is extremely useful when reasoning about set intervals in a powerset lattice P (X). Consider the following inclusion relations between elements of P (X): 

Set intervals in CLP

Consider an arbitrary collection of sets. Take the smallest convex set which c o n tains this collection of sets. This convex part denotes a set interval. This concept of set interval is the means we use to reason with and about sets in a CLP system. On the one hand the user manipulates sets in a logic-based language and on the other hand set interval calculus is performed to search for set values. This section describes the algebraic structure of the system called the constraint domain. This is the structure over which set interval calculus is performed.

Preliminaries

Let S be the set of prede ned function and predicate symbols necessary to reason with and about sets in the language:

S = f \ n 2 a b] g
The predicate symbol2 a b] applied to a variable s will be interpreted as the double ordering a s b.

The set of constants de nes the domain of discourse of the language. It extends the Herbrand universe to provide the concept of set constant. Definition 6 The domain of discourse is the powerset D S = P(H u ) where H u refers to the Herbrand universe A set constant is any element from P(H u ) represented by the abstract syntax fe 1 : : : e n g where the e i belong to H u .

Definition 7 A set variable is any variable taking its value in P(H u ). Definition 8 A set expression S of D S where s 1 s 2 are set constant or variables is inductively de ned b y : s 1 s 2 j s 1 \ s 2 j s 1 n s 2 Notations. Set variables will be represented by the letters x y z s. Set constants will be represented by the letters a b c d. Natural numbers will be represented by the letters m n and integer variables by v w. All these symbols can be subscripted.

Computation domain

The computation domain of the system is the powerset algebra D S which i n terprets (over the domain of discourse D S ) the function symbols \ n belonging to S in their usual set theoretical sense (i.e., is the empty set, n the set di erence, etc.).

The interpreted set union and intersection symbols have the following algebraic properties:

C. x \ y = y \ x

x y = y x commutativity As. (x \ y) \ z = x \ (y \ z) (x y) z = x (y z) associativity I.

x \ x = x x x = x idempotence Ab. x \ (x y) = x x (x \ y) = x absorption

Constraint domain

The constraint domain represents the structure of the system over which set interval calculus is performed. This structure is built from the computation domain equipped with the predicate symbols 2 a b] belonging to S and interpreted as constraint relations. The predicate symbol is interpreted as the set inclusion and the predicate 2 a b] is interpreted as the set domain constraint. This relation constrains a set variable to take its value in a speci c domain. Since the main idea of the system is to perform set interval calculus, we m ust guarantee that the domain of any set variable is an interval. Example: The constraint s 2 f3 1g f3 1 5 6g] means that the elements 3 1 a r e de nite elements of s (they belong to s) and that 5 and 6 are possible elements of s.

Set intervals have been used so far to specify the domain of a set variable. Regarding set expressions, the domain of a union or intersection of sets is not a set interval because it is not a convex subset of D S (e.g. I = f1g f1 3g] fg f2 6g], f1 3g f6g 2 I but fg f1 3 6g] 6 I). It is possible to maintain such disjunctions of domains during the computation, but this leads to a combinatorial explosion. This handling of \holes" can be avoided by considering the convex closure of a set expression domain. Consequently, the constraint domain of the system is de ned as the powerset lattice over the convex parts of P(D S ) (convex subsets of D S ), equipped with a convex closure operation. Convex closure operation To ensure that any set domain is a set interval, we de ne a convex closure operation which associates to any element of P(D S ) its convex closure as being a set interval, element o f D S . Definition 15 The convex closure operation conv : P(D S ) ! D S is such that conv : x ! x satis es:

x = fa 1 :::

a n g ! x = \ ai2x a i ai2x a i ]
For example, the convex closure of the set ff3 2g f3 4 1g f3gg belonging to P(D S ) is the set interval f3g f1 2 3 4g].

Property 3 An element x of P(D S ) is convex under the above convex closure operation when x is equal to its \closure" x.

Corollary 1 All singleton sets are c onvex.

In the following, the operations T ai2x a i and S ai2x a i will be respectively written glb(x) a n d lub(x) w h i c h stand for greatest lower bound and least upper bound of x, respectively. can be interpreted by \any element of x belongs to x (thus to glb(x)) and any element de nitely not in x (not in lub(x)) does not belong to x". This allows the set calculus to be performed in D S while ensuring that the computed solutions are valid in D S . Property C3 guarantees that the partial order is preserved in D S . D S equipped with the operation conv allows us to de ne the constraint domain from an algebraic point of view, i.e., from the properties of the union and intersection operations in D S . x y = x y and x \ y = x \ y Finally P3 implies that = .

Set interval calculus

In order to satisfy the properties P1, P2 and P3, w e de ne a set interval calculus within D S . This consists in deriving equality relations from the following ordering relations:

a b] c d] a c b d] and a b] \ c d] a \ c b \ d]
This is achieved by making use of the convex closure operation. The resulting set interval calculus is described as follows:

a b] c d] = a c b d] a b] \ c d] = a \ c b \ d] P(D s ) = P(D s ) a n d =
With regard to the set di erence operation a b]n c d], its set theoretical de nition is x n y = x \ y 0 where y 0 is the complement o f y. The complement o f a s e t i n terval c d] is the set interval D s n d D s n c] which is characterized by the fact that it does not contain the elements in c and that the elements of d should not a priori be de nite elements of this interval. So the convex closure of a set interval di erence is:

a b] n c d] = a n d b n c]
The consistency property x y , y = x y and x y , x = x \ y (cf. 2.1.

property 1 ) c haracterizes by the set operations of a powerset lattice (in fact by either of them). This embeds the notions of right inclusion (y = x y), which de nes the least upper bound (join operator) for x and y to be y, and the left inclusion (x = x \ y), which de nes the greatest lower bound (meet operator) for x and y to be x. From an operational point of view, obtaining such a c haracterization is essential. However since computations are performed in C D , this property needs to be de ned for set intervals using te set interval calculus within D S .

Consider two s e t i n tervals a b] and c d]. They denote powersets and thus sets. Consequently we h a ve:

a b] c d] , a b] = a b] \ c d] , c d] = c d] a b].
Using the set interval calculus, this is equivalent to: 

a b] c d] , a b] = a \ c b \ d] , c d] = c

Graded functions

The expressivity of the system can be increased if some graded functions are applied to sets. A graded function maps a non quanti able term to an integer value denoting a measure of the term. The set cardinality is one example of such a function. They allow the user to deal with optimization functions in a set-based language (e.g. minimizing the cardinality of a set). The constraint domain presented so far does not contain any s u c h graded functions. In this subsection, we extend the language alphabet and the constraint domain of the system to deal with such functions. In order not to limit the extension of the language to the set cardinality function, the general case of an arbitrary graded function f is studied.

Definition 18 A g r aded function f is a function from D S ] to N (set of positive integers) which maps each element x 2 D S to a unique m such that f(x) = m and which satis es: s 1 s 2 ) f(s 1 ) < f (s 2 ) ( is the strict inclusion and < the arithmetic inequality)

The convex closure of a graded function f is required to deal with elements from D S . The closure function, written f, maps elements from D S to a subset of the powerset P(N ) containing intervals of positive i n tegers. This subset is designated by N .

Example: Let s be a set and #s its cardinality (a positive integer). Consider the constraint s 2 fg f1 2g]. The cardinality function # is approximated by #.

Intuitively we h a ve #(s

) = 0 2]. Definition 19 Let f : D S ! N . The function f : D S ! N is derived f r om f as follows: f( a b] ) = f(a) f (b)] Property 5 If s 2 a b] then f(s) 2 f( a b]). Proof: By de nition f is a graded function. So if a s b then we h a ve f(a) < f(s) < f (b). Consequently we h a ve f(x) 2 f(a) f (b)] which means f(s) 2 f( a b]).
This property guarantees that the output of the function f applied to a set domain contains the actual graduation value of the concerned set variable.

Extended constraint domain

Graded functions add expressive p o wer to the language. They can be embedded as prede ned symbols in the language, if the constraint domain is extended to deal with integer intervals and integer variables. The constraint domain associated with integer intervals is that of integer interval domains (subset of the standard constraint d o m a i n o ver nite integer domains). It is de ned by the structure:

F D = N (N +) = 6 = 2 m n] ]
where the relation 2 m n] is interpreted in N as the integer domain constraint such that: x 2 m n] m n] is equivalent t o m x n. The other symbols are interpreted in their usual arithmetic sense. The extended constraint domain of our system should contain F D .

The extended constraint domain C D e with graded functions, is the structure:

D S D S f 2 a b] ] F D
C D e interprets graded function symbols as unary set operations with respect to their intended meaning. For example the symbol # is interpreted as the set cardinality operation.

Execution model

The execution model is based on constraint solving in C D e . It is a top-down execution model which de nes the operational semantics of the system. The model describes how the constraints are processed over C D e and what they lead to. The idea consists in (1) constraining each set variable to range over a set domain, and ( 2) removing some values of the set domains that can never be part of any feasible solution. This is achieved by making use of local consistency techniques adapted to the handling of constraints de ned in C D e . A transformed system is commonly called a locally consistent system. One necessary condition for dealing with local consistency techniques is that each s e t v ariable ranges over a set domain.

De nition of an admissible system of constraints

The set of prede ned constraints in C D e can contain any o f t h e f o l l o wing: set domain constraints s 2 a b] where s is a set variable. set constraints S S 1 where S S 1 are set expressions (comprising constants, variables and possibly set operation symbolsinf \ ng). graduated constraints f(S) 2 m n] where f is any prede ned graded function and m n] a n y element i n N (i.e., a n i n teger if m = n or an integer domain).

Definition 20 An admissible system of constraints in C D e is a system of constraints such that every set variable s ranges over a set domain.

From n-ary constraints to primitive o n e s

The prede ned constraints might denote n-ary constraints like s 1 s 2 s 3 \ s 4 .

Ensuring the local consistency of these constraints via interval re nement methods requires us to express each set variable in terms of the others. Since there is no inverse operation for \ n there is no way t o m o ve all the operation symbols on one side of the constraint predicate. So it is necessary to decompose n-ary constraints into primitive o n e s .

Consider the following set of basic set expressions fs \ s 1 s s 1 s n s 1 g. The proposed method consists in approximating each basic set expression by a new set variable with its appropriate domain. The resulting constraints are binary or unary ones called primitive constraints.

Definition 21 A primitive constraint is (1) a prede ned set constraint containing at most two set variables or, (2) a graduated c onstraint containing at most one set variable.

In the former example the n-ary constraint is approximated by the system of constraints: s 1 s 2 = s 12 s 3 \ s 4 = s 34 s 12 s 34 This approach is similar to the relational form of arithmetic constraints over real intervals introduced by Cleary (Cleary, 1 9 8 7 ).

A relation denoting a basic set expression represents a subset of the Cartesian product of the set domains attached to each set variable. In order to deal with the consistency of these relations, we de ne projection functions which allow e a c h set domain to be expressed in terms of the others. Consider a relation r a 1 b 1 ] a 2 b 2 ] a 3 b 3 ]. The set it denotes must belong to the domain D S over which the computations are performed. Since D S contains convex sets, each v alue of a projection function must be a convex set, that is a set interval. Consequently, t o each projection function designated by i we associate its closure i . The closure is derived from i by making use of the closure operator de ned above w h i c h satis es: i = conv( i ) i represents the approximation of this projection of the relational form r on the s i -axis.

Definition 22 The i-th projection function i of a relation r denoting a set expression is the mapping :

i = convfs i 2 a i b i ] j 9 (s j s k ) 2 a j b j ] a k b k ] such that j k 6 = i : (s i s j s k ) 2 rg
These relational forms of set expressions are not visible to the user but they are necessary to de ne the local consistency of an n-ary constraint.

Consistency notions

The standard notions of consistency [START_REF] Mackworth | Consistency in networks of relations[END_REF] applied to integer domains state conditions that must be satis ed by each element belonging to a variable domain. For example, arc-consistency states conditions that must be satis ed by each v alue belonging to a variable domain:

Definition 23 A binary constraint c(x y) such that x 2 D x and y 2 D y is arc consistent if and only if (1) for any value i 2 D x , there is a value j 2 D y such that c(i j) is true, and ( 2) for any value j 2 D y , there is a value i 2 d x such that c(i j) is true.

This domain reasoning approach is not useful for set variables since set domains speci ed by set intervals can contain an exponential number of elements (e.g. the set interval fg f1 : : : n g] contains 2 n elements). Instead, we derive conditions that must be satis ed by the set domain bounds. These conditions guarantee that a constraint relation which does not hold for the bounds of the variable domains does not hold for any set between these bounds. For this purpose we de ne here the local consistency notions for each constraint appearing in an admissible system.

Consider a set variable s. The lower and upper bounds of the domain of s will be respectively de ned by the functions glb(s) a n d lub(s).

Definition 24 Let s 1 s 2 be a primitive set constraint. We say that this constraint is locally consistent if and only if: SC1. glb(s 1 ) glb(s 2 ) and SC2. lub(s 1 ) lub( s The local consistency of the relational forms of basic set expressions is de ned through the consistency of the projection functions. Since the set domain of a basic set expression is approximated it is clear that we cannot get the equivalent of arcconsistency. Some elements in the resulting set interval are meant to ful ll \holes" and are not expected to be part of any feasible solution.

Theorem 1 A relation r denoting the relational form of a basic set expression is locally consistent if and only if each of the projection functions i describing r is locally consistent. b 0 = b \ d c 0 = c a fs 2 a b] s 1 2 c d] s s 1 g 7 ;! f s 2 a b 0 ] s 1 2 c 0 d ] s s 1 g When s s 1 denote set expressions, the relational forms are created and the following additional inference rule is necessary to deal with the projection functions.

For each projection function i describing the domain of an s i appearing in a set expression, we h a ve:

I2. a 0 i = a i c b 0 i = b i \ d f s i 2 a i b i ] i = c d] g 7 ;! f s i 2 a 0 i b 0 i ]g 4.4.2.
For primitive graduated c onstraints.

The constraint f(s) 2 m n] s u c h that s 2 a b] describes a mapping from an element belonging to a partially ordered set to an element belonging to a totally ordered set. Consequently, it might occur that two d i s t i n c t e l e m e n ts in a b] h a ve the same valuation in m n]. This implies that inferring the local consistency of this constraint might require re ning a b] only if a single element i n a b] satis es the constraint. If this element exists, it corresponds necessarily to one of the domain bounds since they are uniquely de ned and are strict subset (or superset), of any element in the domain. Thus, the value of the graded function mapped onto them cannot be shared. The inference mechanism is depicted by the following rules. min() and max() are functions which take as input a collection of integers and return respectively the minimal and maximal integer value of this collection.

I3. m 0 n 0 ] = max(m f(a)) m i n (n f(b))] f s 2 a b] f (s) 2 m n]g 7 ;! f s 2 a b] f (s) 2 m 0 n 0 ] g I4. n = f(a) f s 2 a b] f (s) 2 m n]g 7 ;! f s = a g I5. m = f(b) f s 2 a b] f (s) 2 m n]g 7 ;! f s = b g 4.4.3

. For domain constraints

The inference rules de ned here, describe the cases when two distinct set domains are applied to a single set variable, or when the set domain of a set variable is reduced to one value or is inconsistent.

I6. a = b f s i 2 a b] g 7 ;! f s = ag I7. a b f s i 2 a b] g 7 ;! f a i l I8. a 0 = a c b 0 = d \ b fs 2 a b] s 2 c d]g 7 ;! f s 2 a 0 b 0 ]g
Three similar inference rules exist for the integer domain constraints. They are not speci c to our system but are recalled hereafter since we also deal with integer domains. The integer variable is speci ed by v. The behaviour of all the inference rules I1 to I11 is captured by the following scheme.

Let us denote a set/graduated constraint relation by c and its arity b y k. Let us represent an inference rule as a mapping from a Cartesian product of set/integer domains, onto another Cartesian product.

Let j2f1 :: kg a j b j ] j2f1 :: kg a 0 j b 0 j ] b e t wo distinct Cartesian products of the domains of the variables appearing in c. These Cartesian products can be made into ordered sets by imposing the strict set inclusion ordering de ned by: j2f1 :: kg a j b j ] j2f1 :: kg a 0 j b 0 j ] , 8 j 2 f 1 : : k g a j b j ] a 0 j b 0 j ] i.e., all the elements in a j b j ] are in a 0 j b 0 j ].

An inference rule applied to a constraint relation c maps a Cartesian product j2f1 :: kg a j b j ] o n to a newly computed Cartesian product of domains. Each new domain is the output of a projection i of onto the i-axis (cf. De nition 22). A projection function i derives a new domain by i n tersecting c with j2f1 :: kg a j b j ], projecting the result back o n to the i-axis, and computing the convex closure of this projection. Thus, an inference rule is de ned in algebraic terms by: ( j2f1 :: kg a j b j ]) = i2f1 :: kg i ( j2f1 :: kg a j b j ])

One can easily see that this generic procedure (and thus each inference rule) is: (i) correct (all possible solutions are kept) since only irrelevant v alues are removed from the domains, (ii) contracting ( nal domains are subset of the initial domains), since the domains can only get re ned, and (iii) idempotent (the smallest domains have been computed the rst time), since every element that can be removed has been removed the rst time.

Moreover, an inference rule applicable to c is inclusion monotone if: j2f1 :: kg a j b j ] j2f1 :: kg a 0 j b 0 j ] ) ( j2f1 :: kg a j b j ]) ( j2f1 :: kg a 0 j b 0 j ]) This means that smaller initial domains yield smaller nal domains.

Lemma 1 The inference rules are inclusion monotone.

Proof: The monotonicity property of the inference rules follows from that of the projection functions.

Assume that 8j 2 f 1 : : k g : a j b j ] a 0 j b 0 j ]. Each projection function i (i 2 f1 :: kg) is monotone since the set intersection is isotone (Property 2) and the convex closure operation is monotone (Property 4 ) . This implies that: 8i 2 f 1 :: kg : conv (( c \ j2f1 :: kg a j b j ]) i ) conv (( c \ j2f1 :: kg a 0 j b 0 j ]) i ) which is equivalent to: 8i 2 f 1 :: kg : i ( j2f1 :: kg a j b j ]) i ( j2f1 :: kg a 0 j b 0 j ]) , and consequently to:

( j2f1 :: kg a j b j ]) ( j2f1 :: kg a 0 j b 0 j ]). Thus is monotone.

Operational semantics

The inference rules described so far can be applied to individual constraints. The operational semantics shows how t o c heck and infer the consistency of a system of constraints. This system should correspond to an admissible system of constraints.

The consistency of such a system results from the consistency of each constraint appearing in it. The operational semantics is described by the following algorithm.

Let a tuple (c s ds ) denote a constraint c over a set of variables designated by s where each variable s i is constrained by a domain constraint d si . The set of relevant domain constraints with respect to s is designated by ds . The initial set of constraints to be considered is designated by G. The set of domain constraints is designated by A. A set C which represents the constraint store contains the constraints whose consistency has been checked. The operational semantics is based on one non deterministic transition rule which t a k es as input one constraint c in G and applies to it the adequate local inference rule using a depth rst search strategy.

Each constraint c is determined to be locally consistent if the inference rule infers consistent domains. This might require some domain re nements and consequently a need to reconsider some constraints in C whose variables intersect with those in c. Such constraints are moved from C to G. The constraint c is then added to the constraint store C and another constraint i s selected in G. The last state of the resolution is reached once no goal remains in G, or when a failure is encountered (i.e., at least one set domain a b] o r i n teger interval m n] i s such t h a t a 6 b or m 6 n). The general schema of the algorithm is depicted in the following gure. begin Initialize G to the set of all the constraints in the admissible system Initialize C to the empty s e t Initialize A to the empty set while G is not empty do begin select and remove a constraint ( c s) f r o m G select and remove the relevant domain constraints ds in G A apply the adequate inference rule on (c s ds ) w h i c h returns (c s ds 0 ) if ds 0 is inconsistent then exit with failure else if ds 6 = ds 0 then begin ds ds 0 for each (p ṽ) i n C do if s \ ṽ 6 = then remove ( p ṽ) f r o m C and add it to G end if ds \ G 6 = then remove the domain constraints in ds \ G from G and add them to A add (c s) t o C.

end end

This whole process amounts to considering a transition system on states where each state contains the constraints as yet unconsidered and the constraints which have already been checked out. One state i is speci ed by t h e tuple hG i A i C i i.

The initial state of the transition system is speci ed by the tuple hG 0 i where all the constraints need to be checked. The nal state is either fail or h A 0 C 0 i. Theorem 2 A transformed system of constraints h A C i is locally consistent if a n d o n l y i f e ach domain constraint in A is locally consistent.

Proof: This follows simply from the various inference rules. Inferring the consistency of a system amounts to considering the consistency of each constraint i n conjunction with the already consistent ones. An inconsistency is detected if one of the inference rules I7 or I10 is successfully applied which means a failure is encountered in one (integer, set) domain.

This algorithm resembles the relaxation algorithm used by CLP(Intervals) systems [START_REF] Lee | Interval Computation as Deduction in CHIP[END_REF]) also referred to as xed point algorithm in [START_REF] Benhamou | CLP (Intervals) revisited[END_REF][START_REF] Benhamou | Interval Constraint Logic Programming[END_REF] All of those can be seen as an adaptation of the AC-3 algorithm [START_REF] Mackworth | Consistency in networks of relations[END_REF] where domains are speci ed by intervals. The only di erence between the algorithms lies in the inference rules applied. The generic algorithm satis es the following properties of xed point algorithms : termination, existence of a unique xed point independent of the constraint ordering, and correctness.

Theorem 3 The algorithm always terminates.

Proof: This comes from the fact that the domains are nite and can only get re ned (contractance property of the inference rules). Also, if a failure is detected, the algorithm terminates with f a i l .

Theorem 4 The algorithm has a unique xed p oint independent of the ordering of the inference rules.

Proof: [START_REF] Older | Constraint Arithmetic on Real Intervals[END_REF] p r o ved that propagation methods based on the AC-3 algorithm compute a unique xed point independent of the ordering of the inference rules, if the states of the iteration process can be ordered within a lattice and if the inference rules applied are contracting, idempotent and inclusion monotone. They show that the contractance and idempotence properties guarantee the existence of a xed point. In addition, due to the monotonicity of the inference rules, the xed point is unique and independent of the ordering of the inference rules.

In our case, the only things that change during our iteration process are the bounds of the domains. Thus the states can be characterized by the set of domains. The domains are partially ordered by the set inclusion within the lattice of set and integer domains D S N. Additionally, w e h a ve s h o wn (section 4.4.4) that the contractance, idempotence and inclusion monotone properties are satis ed by our inference rules. Thus, the generic algorithm has a unique xed point independent of the ordering of the inference rules.

Theorem 5 If a solution exists, it can be derived from the consistent system of constraints.

Proof: This follows directly from the monotonicity of the convex closure operation and the correctness of the inferences rules applied. Monotonicity guarantees that the actual value of a set or integer lies in the approximated domains. Moreover, the inference rules are correct, so all possible solution values are kept.

Satis ability issue

Ensuring the satis ability of a consistent system requires guaranteeing that a solution exists. This is not possible when both symbols and \ belong to some n-ary constraints since we w ork on domain approximations. However satis ability c a n b e g u a r a n teed in some particular cases which are of practical interest (eg. for constraints of the form s 1 \ s 2 = ). The following properties give the equivalences and/or implications which exist between the lower and upper bounds of a set expression domain and the lower and upper bounds of the set variables invoked.

Properties 7 [START_REF] Pawlak | Rough Sets: Theoretical Aspects of Reasoning about Data. D: System theory, Knowledge engineering and Problem solving[END_REF] 1. glb(s 1 ) s 1 lub(s 1 ) 2. lub(s 1 s 2 ) = lub(s 1 ) lub(s 2 ) 3. glb(s 1 \ s 2 ) = glb(s 1 ) \ glb(s 2 ) 4. lub(s 1 \ s 2 ) lub(s 1 ) \ lub(s 2 ) 5. glb(s 1 s 2 ) glb(s 1 ) glb(s 2 ) Properties 7-2 and 7-5 show respectively that the union operation preserves the upper bounds but not the lower bounds. By duality, properties 7-3 and 7-4 show respectively that the intersection preserves the lower bounds but not the upper bounds. This means that inferring the local consistency of an n-ary constraint containing only the set union symbolisachieved by computing the exact upper bounds of each s e t v ariable and by a p p r o ximating the lower bounds of the set variables using the set interval calculus. The dual case is considered for a n-ary constraint containing the set intersection symbol. Consequently, w e h a ve the following properties: Property 8 Let s 1 \ s 2 = s 12 be the relational constraint associated to the set expression s 1 \ s 2 . If this relational constraint is locally consistent then we have glb(s 1 ) \ glb(s 2 ) = glb(s 12 ). Property 9 Let s 1 s 2 = s 12 be the relational constraint associated to the set expression s 1 s 2 . If this constraint is locally consistent then we have lub(s 1 ) lub(s 2 ) = lub(s 12 ).

With respect to the primitive set inclusion constraint s 1 s 2 , w e h a ve p r o ved at an earlier stage that if this constraint is locally consistent then it is arc-consistent (cf. property 6). In other words, the domain bounds are possible values for the set variables as well as any set value between the bounds.

Theorem 6 A l o cally consistent system built from set domain constraints, primitive set inclusion constraints and relational constraints containing either the union or intersection symbol is satis able if the domain constraints embedded in the system are satis able.

Proof: Clearly, if some set domain constraints are not locally consistent, the system is not consistent and a fortiori not satis able. Otherwise, it is always possible to construct a solution to this system. By property 8, all the relational constraints of the form s 1 \ s 2 = s 12 are true if we assign to each set variable the lower bound of their domain. These assignments also hold for the primitive set inclusion constraints. By property 9, all the constraints of the form s 1 s 2 = s 12 are true if we assign to each set variable the upper bound of their domain. These assignments also hold for the primitive set inclusion constraints. Thus in either of the two consistent systems of constraints we guarantee that a solution exists. Note that a system containing both forms of relational constraints can be locally consistent but not globally consistent: assigning respectively to each set variable the lower bound of its domain (or the upper one) does not lead to a solution. With respect to graduated constraints, consistency does not guarantee satis ability s i n c e a consistent graduated constraint f(s) = m does not guarantee that some elements of the domain of s might satisfy the constraint. The satis ability for systems containing such constraints is not provable unless the solver performs exhaustive computations at an exponential cost in the largest upper bound among the set domains.

Example: Consider the system of constraints: s 1 s 2 s 3 2 fg f1 2 4 5g] s 1 s 2 = s 12 s 12 s 3 = f1 2 4 5g s 1 \ s 2 = s 21 s 21 \ s 3 = fg It is locally consistent but not satis able. No possible value for each set variable leads to a solution.

IIPractical Framework

The formal framework has given us the structure of a set-based system whose solver is based on consistency techniques. It constitutes the basis of the design of a practical language called Conjunto (Conjunto means \set" in Spanish). Conjunto is a constraint logic programming language designed and implemented to reason with and about sets ranging over a set domain. Its functionalities (apart from those of a logic-based language like Prolog [START_REF] Colmerauer | Prolog, bases th eoriques et d eveloppements actuels[END_REF]) are set operations and relations from set theory together with some graded functions which provide set measures like cardinality, weight, etc. The graded functions map set domains to subsets of the natural numbers ( nite domains). This requires from an implementation point of view to establish a cooperation between two s o l v ers (the set constraint solver of Conjunto and a nite domain solver). In this part, we describe the implementation of Conjunto which raises among others the issues of (1) this cooperation between two s o l v ers, (2) the dynamic handling of a system of constraints by means of delay mechanisms, (3) the speci c set data structure which is required to attach all the relevant information related to a set variable, (4) the way set calculus is achieved in algorithmic terms. Since Conjunto aims at solving set-based combinatorial search problems, the local consistency ensured by the solver via some local transformation rules should be enriched by a labelling procedure in order to reach a complete solution. This procedure is described together with some programming facilities which enhance the expressive p o wer of the language.

Design of Conjunto

We describe the functionalities of the Conjunto language and omit a detailed description of the traditional predicates and functions on Prolog terms [START_REF] Colmerauer | Prolog, bases th eoriques et d eveloppements actuels[END_REF].

Syntax

The Conjunto language is a logic-based programming language with the alphabet of a Prolog language (constants, predicates, functions, connectives, etc). It is characterized by a signature which c o n tains the following set of prede ned function and predicate symbols in their concrete syntax: the constant {}. the binary set predicate symbolsf`<, `<>, `::, #, weightg and arithmetic predicate symbols f= 6 =g. the binary set function symbols f\/, /\, \g and the arithmetic sum symbol +.

Definition 27 [START_REF] Lloyd | Foundations of logic programming[END_REF] An atomic formula (or atom) is de ned as follows:

If p is an n-ary predicate and t 1 : : : t n are terms, then p(t 1 : : : t n ) is an atom.

The atoms which are built from set terms and prede ned predicate symbols in are called constraints. They are subject to a speci c interpretation in Conjunto.

A program built from the language is based on de nite clauses of the form:

(1) a : ;b 1 ::: b n and ( 2) : ;g 1 : : : g n where a is an atom and the b i g i are atoms or constraints. ( 1) is called a program clause and (2) a program goal. The constraints constitute the core functionalities of the language and are characterized by a speci c terminology and semantics.

Terminology and semantics

The main objective of Conjunto is to perform set calculus over sets de ned as elements from a powerset domain. Some constraints like set cardinality or set weight require us to deal also with nite domains, that is integers and arithmetic constraints.

Definition 28 The computation domain is the set D = P(H u ) H u where P(H u ) is the powerset of the Herbrand universe.

Terminology

The terminology gives names to the predicate and function symbols in and de nes the notions of set domains and set terms necessary to reason with and about sets in D.

The symbols in f`<, `<>, `::, #, weightg refer respectively to the set inclusion constraint predicate, the set disjointness constraint predicate, the set domain constraint, the set cardinality constraint predicate and the weight constraint p r e dicate. The symbols in f\/, /\, \g represent the concrete syntax of the set operations \ n. They will be interpreted in their usual set theoretical sense the set di erence is a complementary di erence (e.g. s n s 1 = fx 2 s j x = 2 s 1 g). The other symbols in refer simply to the arithmetic operations they denote.

Definition 29 A ground set is an element of P(H u ) which represents a nite set of Herbrand terms delimited by the characters f and g.

Example: {2,3,f(f(u,o))} is a ground set.

Definition 30 A set variable is any variable taking its value in PH u .

Definition 31 A set term is de ned b y :

(1) any set constant a is a set term (2) any set variable s is a set term

The concepts of set domain and set expressions are those from the formal description.

The syntax of a set variable is s = s { a,b]} where s{ a,b]} denotes the domain attached to a variable s. We i n troduce a new concept which i s t h a t o f w eighted set domain.

Definition 32 A weighted set domain is a speci c set domain where e ach element of the set domain bounds has the syntax (e m) such that e is a Herbrand term and m is a positive integer.

Example: S= S{ {(a,1)},{(a,1),(c,2),(d,2)}]} is a set variable whose weighted set domain is the set interval {(a,1)},{(a,1),(c,2),(d,2)}].

Similarly, v ariables denoting integers will take their value in a nite set of integers ( nite domain). In Conjunto these domains are approximated by i n teger interval domains. An integer interval domain is the convex closure of a nite set of integers and will be simply referred to as an integer interval.

Definition 33 An integer variable is a logical variable whose value lies in an integer interval.

Notation. Conjunto's predicate and function symbols are written in a bold font.

Set variables are denoted by s v w, set expressions t, i n teger variables are denoted by x y z, ground sets a b c d, i n tegers m n. These symbolsmay be subscripted.

Semantics

The interpretation of the elements of in D is given by distinguishing set constraints from graduated constraints.

A primitive set constraint is one of the following constraints: s `:: a b] is semantically equivalent t o a s b (cf. the 2 a b] a b predicate in the formal part). s `< s 1 is equivalent to the set inclusion relation s s 1 . s `<> s 1 is equivalent to the empty i n tersection of the two sets s s 1 .

Note that the set equality can be derived from the double inclusion: s `= s 1 , s `< s 1 and s 1 `< s.

Remark The set disjointness constraint `<> which w as not included in the formal part has been embedded as a primitive constraint in Conjunto mainly for practical reasons. Since the disjointness of two sets appears in almost all set based problems, it is simpler to use a speci c syntax and more e cient to handle it as a primitive constraint.

A primitive graduated c onstraint is one of the following: #(s x) is equivalent to the arithmetic equality # s = x where #s is the standard cardinality function of set theory. weight(s x) is semantically equivalent to the arithmetic operation P i m i = x such that (e i m i ) 2 s.

Definition 34 The constraint system of a Conjunto program is an admissible system (cf. de nition 20) of set constraints and graduated c onstraints where every set variable is constrained by a set domain constraint. In this admissible system of constraints the searched objects are the sets. The integer variables are not part of the initialization of the search space which is attached to the system. They constitute essentially a means to get to the nal solution. This is described in the following de nition.

Definition 35 A set domain constraint satisfaction problem is an admissible system of set and graduated constraints, i.e. a constraint satisfaction problem where the initial search space i s d e n e d by the set domains attached to the set variables.

Constraint solving

The constraint solving in Conjunto focuses on e ciency rather than on completeness. The Conjunto solver based on the xed point algorithm presented earlier aims at checking and inferring the consistency of an admissible system of constraints. This is achieved by: applying some local transformation rules, which allow for the consistency of one constraint t o b e c hecked/inferred, using a top-down search strategy, delaying consistent constraints which are not completely solved.

The Conjunto solver considers one constraint at a time and checks/infers its consistency in conjunction with the set of delayed constraints (constraint store). This process might require the local consistency of some delayed constraints to be reconsidered. These constraints are woken using a data driven mechanism based on suspension handling mechanisms. Each newly consistent constraint is added to the constraint store. The nal state of the program is achieved when all atoms appearing in a goal clause have been checked and when no further domain re nement i s required. This state is either denoted by \fail" when some constraints have been marked inconsistent o r i t c o n tains a set of delayed constraints together with the set variables and their associated domains. produces the instantiation S = {1} and no delayed goal since the initial goal is completely solved.

Programming facilities

One of the application domains we h a ve i n vestigated using Conjunto is the modelling and solving of set based combinatorial problems (e.g. set partitioning, bin packing, hypergraph computations). To allow the user to state short and concise programs, some programming facilities have been added to the initial set of primitive constraints. They consist of a collection of constraints de ned from the primitive ones, some predicates necessary to access information related to the variable domains, and a built-in set labelling procedure. The most important ones are presented below, others are described in [START_REF] Gervet | Set Intervals in Constraint Logic Programming: De nition and Implementation of a Language[END_REF].

Set domain access

Set domains are represented as abstract data types, and the users are not supposed to access them directly. So two predicates are provided to allow operations on set domains : glb(s s glb ) and lub(s s lub ). If s denotes a set variable, each term is respectively assigned the value of the domain's lower and upper bound. Otherwise it fails. Similar predicates are de ned to access integer domain bounds: min(x x min ) and max(x x max ).

Set labelling

Assigning a value to a set variable is a nondeterministic problem which can be tackled by di erent labelling strategies. Since the Conjunto solver uses local consistency techniques, an adequate strategy should aim at making an active use of the constraints in the constraint store. On the one hand, a procedure which w ould consist in instantiating a set by directly selecting an element from the set domain makes a passive use of the constraints whose consistency is only local. In the worst case this process might require considering all the elements belonging to a set domain even if some of them are irrelevant. On the other hand re ning a set domain by adding one by one elements to the lower bound of the domain is more likely to minimize the possible choices to be made. The refine predicate embedded in Conjunto behaves as follows: refine(s) labels s, i f s is a set variable. If there are several instances of s, it creates choice points. If s is a ground set, nothing happens. If not, the following actions are performed recursively until the set gets instantiated: (1) select an element e from the ground set lub(s) n glb(s), ( 2) add the membership constraint e in s to the program. This added constraint i s handled by the solver which checks its consistency in conjunction with the actual constraint store. In case of failure the program backtracks and (3) the nonmembership constraint is added (successfully) to the program so as to remove the irrelevant v alue e from the domain. The points The search tree generated during the labelling procedure and covered using a depth rst search strategy is described in the following gure.

S{[{},{2,3}]} S{[{2},{2,3}]} S{[{},{3}]} S={2,3} S={2} S={3} S={} S{[{1},{1,2,3}]} S{[{1,2},{1,2,3}]} S={1,2,3} S{[{1},{1,3}]} S={1,2} S={1} S={1,3} S{[{},{1,2,3}]}
The strategy, w h i c h consists in adding membership constraints to the program, aims in particular at making an active use of those graduated constraints whose consistency is only local.

Example: Consider the goal: :-S `:: {},{1,2,3}], #(S,1), refine(S).

The irrelevant branch e s o f t h e s e a r c h tree are cut in an a priori way i.e., no useless choice point is created. The search tree generated during the solving of this goal is depicted in the following gure.

S{[{1},{1,2,3}]} S={1} S{[{},{2,3}]} S{[{2},{2,3}]} S{[{},{3}]} S={2} S={3} S{[{},{1,2,3}]}

Optimization predicates

The notion of optimization is common in problem solving. It aims at minimizing or maximizing a cost function which denotes a speci c arithmetic expression. The notion of cost de nes a kind of measure or quanti cation applied to some terms. A set can not denote a quantity and is not measurable. Only its possible graded functions are. Thus there are no speci c optimization predicates for sets. Existing predicates embedded in a nite domains solver (e.g. for a branch and bound search) can be directly applied to expressions over integer intervals occurring in graduated constraints. For example, minimizing a set cardinality acts over a set through the link existing between a set variable and its cardinality.

Relations and constraints

When dealing with sets, it sounds quite natural to deal with relations and functions as well. Functions are more restrictive than relations since they constrain each element from its DS-domain (DS-domain stands here for departure set) to have exactly one image. Providing relations at the language level extends the expressive power of the language when dealing for example with circuit problems and matching problems originating from Operations research. In relation theory [START_REF] Fraiss | Theory of Relations, v olume 118 of Studies in logic and the foundations of mathematics[END_REF], a relation R is represented as a set of ordered pairs (x i y j ) such that x i belongs to the DS-domain d of R and y j to its AS-range (AS-range stands here for arrival set) a. In other words, a relation R on two ground sets d and a is a subset of the Cartesian product d a. Keeping this representation to deal with relations as speci c set terms containing pairs of elements can be very costly in memory. Indeed, the statement of the Cartesian product referring to a relation requires us to consider explicitly a huge set of pairs. This is very inconvenient. Instead, a relation in Conjunto is represented as a speci c data structure which is characterized by two ground sets (DS-domain and AS-range) and a list containing the successor sets attached to each element of DS-domain (Gervet, 1993, Gervet, 1993a). Considering one successor set per element splits the domain of a relation into a collection of set domains. The resulting value of a relation is clearly the union of the successor sets. This approach is close to the one introduced in the seminal work ALICE (Lauri ere, 1978) which dealt essentially with functions. However in ALICE there is no explicit notion of set domain.

Definition 36 Let a relation be r d a. The successor set s of an element x 2 d is the set s = fy 2 a j (x y) 2 rg.

Definition 37 A r elation variable r i s a l o gical variable whose value is a compound term birel(l d a) such that birel is a functor of arity three, l is a list of #d set variables s i such that s i `:: fg, a] and d a are two ground sets.

This compound term is associated to a free variable by means of the predicate r bin_r d --> a.

Example: The goal:

:-R bin_r {1,2} --> {a,b,c}.

creates the term: R = birel( Set1{ {},{a,b,c}]}, Set2{ {},{a,b,c}]}], {1,2}, {a,b,c})

The de nition of constraints applied to relation variables abstracts from stating directly constraints over the set DS-domain and AS-range or over the successor sets. The following constraints have been embedded in Conjunto: (i j) in_r r, ( i j) notin_r r which adds or retrieves pairs to the relation funct(r) which constrains a relation to be a function, inj(r) which constrains a relation to be an injective function, surj(r) which constrains a relation to be a surjective function, bij(r) which constrains a relation to be a bijective function. The schema of these constraints is directly derived from their usual interpretation issued from relation theory [START_REF] Fraiss | Theory of Relations, v olume 118 of Studies in logic and the foundations of mathematics[END_REF]. They are represented below using the mathematical cardinality operation #, the usual set operation symbols( \) and the arithmetic inequality ( ).

Constraints

Interpretation r bin_r d --> a r = birel(l d a) where l = fs i j 8i 2 d s i 2 f g ::ag (i j) in_r r if i 2 d j 2 a then j 2 s i (i j) notin_r r if i 2 d j 2 a then j = 2 s i Constraints Interpretation

funct(r) 8i 2 d #s i = 1 inj(r) #d #a #d = n s 1 \ s 2 = s 1 \ s 3 = : : : s n;1 \ s n = 8i 2 d #s i = 1 surj(r) #d #a #d = n s 1 s 2 ::: s n = a 8i 2 d #s i = 1 bij(r) #d = n #a = n s 1 \ s 2 = s 1 \ s 3 = : : : s n;1 \ s n = 8i 2 d #s i = 1
These schema tell us how e a c h constraint over a relation is described and implemented in Conjunto by means of set and graduated constraints. These constraints over relations do not require any speci c solver since the reasoning is based on the successor set variables. The Conjunto solver is simply used. The expressivity of these relation variables and constraints is illustrated in the set partitioning application presented subsequently.

Example: The goal:

:-R bin_r {1, 2} --> {a, b, c}, funct(R).

creates the term:

R = birel( Set1{ {},{a,b,c}]}, Set2{ {},{a,b,c}]}], {1,2}, {a,b,c})
and the list of delayed goals:

#(Set1{ {},{a,b,c}]}, 1), #(Set2{ {},{a,b,c}]}, 1)
Since the created compound term is not visible to the user, a collection of predicate relations allows him/her to access the properties of the relation: succs(r l ) instantiates l to the list of successor sets of r. dom(r s ) instantiates s to the DS-domain of r. ran(r s ) instantiates s to the AS-range of r. succ(r e s ) instantiates s to the successor set of the element e belonging to DS-domain, such that s = fx j (e x) 2 rg.

Implementation of Conjunto

The implementation of Conjunto was done in the ECL i PS e (ECRC, 1994) system which extends the plain Prolog language with features dedicated to the implementation of speci c constraint s o l v ers. The main features provided at the language level comprise the attributed variable data structure and the suspension handling predicates. An attributed variable is a special data type (Le [START_REF] Huitouze | A New Datastructure for Implementing Extensions to Prolog[END_REF][START_REF] Holzbaur | Metastructures vs. Attributed Variables in the Context of Extensible Uni cation[END_REF] which consists of a variable with a set of attributes attached and whose behaviour on uni cation can be explicitly de ned by the user in a way t h a t di ers from Prolog uni cation. Attributed variables aim at dealing with speci c computation domains distinct from the Herbrand universe. The suspension handling predicates provide means to (1) delay a goal or constraint, (2) store it in a speci c list with respect to one or several variables, (3) awake a list of delayed goals when some given conditions are satis ed. The suspension handling predicates allowed us to implement the data driven constraint handling in Conjunto. In addition, the Conjunto solver makes use of the nite domain library of ECL i PS e to deal with integer interval terms (as well implemented as attributed variables).

Set data structure

A set variable is not represented as a standard Prolog variable, but as an attributed variable which is subject to a dedicated uni cation algorithm. The internal representation of ground sets is also given since it in uences the time complexity o f t h e transformation rules. Both the data structure and the internal representation of ground sets are not visible to the user and will be ignored in the description of the transformation rules.

Set variable representation

A s e t v ariable is an attributed variable comprising the following list of attributes. This structure stores for each s e t v ariable all the necessary information regarding its domain, cardinality, and weight ( n ull if unde ned) together with three suspension lists. The attribute arguments have the following meaning: setdom: Glb,Lub] represents the set domain. The user can access it using the built-in predicates glb, lub.

card: C represents the set cardinality. This attribute C is initialized as soon as a set domain is attached to a variable. It is either an integer interval or an integer. It can be accessed and modi ed using speci c built-in predicates from a nite domain library.

weight: W represents the set weight. W is intialized to zero if the domain is not a weighted set domain, otherwise it is computed as soon as a weighted set domain is attached to a set variable. It can be accessed and modi ed using speci c built-in predicates from a nite domain library.

del_glb: Dglb is a suspension list that should be woken when the lower bound of the set domain is updated.

del_lub: Dlub is a suspension list that should be woken when the upper bound of the set domain is updated.

del_any: Dany is a suspension list that should be woken when any set domain re nement is performed.

Ground set representation

The choice for the internal representation of sets is independent of the algorithms, and not visible to the user. However, it plays a role in the time complexity of the di erent set operations. In contrast to integer intervals, the time complexity for operations on ground sets ( + ; versus \ n) can not be considered as constant for it closely depends on the internal representation of a set. In Conjunto each ground set is represented by a sorted list where the time complexity for any set operation ( \ n) is bounded from above b y O(d) w h e r e d is #lub(s) + # glb(s) and s the set with the largest domain.

Since we work essentially on set domains, another approach has been tried out which consists in representing a set domain as a boolean vector mapped onto a list containing the actual value of the elements. The upper bound is speci ed by the s e t o f e l e m e n ts whose corresponding 0-1 variable has the value 1 or 0-1 (undetermined). The lower bound is speci ed by the set of elements whose corresponding 0-1 variable has the value 1. This approach reduces the time complexity o f t h e and \ operations to O(#lub(s)) where lub(s) is the largest domain upper bound.

But this leads to much larger memory usage due to the size of the domains used in practice and to the handling of two lists (the list of 0-1 variables and the list of actual values).

From now on, the value of d in the complexity results will always stand for #lub(s) + # glb(s).

Set uni cation procedure

A Conjunto program attaches a speci c semantics to set terms. This semantics requires to extend the Prolog uni cation to the one of set terms. The behaviour of the set uni cation procedure comprises the following tests and inferences:

the uni cation of a logical variable and a set variable. The logical variable is bound to the set variable. the uni cation of a ground set and a set variable. The set variable is instantiated to the ground set if it belongs to its domain. the uni cation of two set variables. The two variables are bound to a new variable whose domain is the convex intersection of the two domains (cf. set interval calculus). If this domain is empty the uni cation fails. the uni cation of a set variable with any other term fails.

Local transformation rules

Consistency notions and inference rules have been de ned in the formal part for primitive set constraints and for the general case of projection functions and graduated constraints respectively. Here, we m a k e use of these de nitions to de ne the transformation rules which c heck and infer the local consistency of each primitive constraints implemented in Conjunto. The basic idea consists in pruning the set domains attached to the set variables by r e m o ving set values which c a n n e v er be part of any feasible solution. Set values are removed by adding elements to the lower bound of the domain and/or by removing elements from the upper bound.

Transformation rules for primitive set constraints

Primitive set constraints are s `< s 1 and s `<> s 1 where s and s 1 denote set variables ranging over a set domain.

Consider the set inclusion constraint s 1 `< s 2 such that s 1 2 d 1 , s Complexity issues. The time complexity for each transformation is bounded by O(d) since only one set operation is applied each time.

Projection functions for n-ary constraints

Constraints over set expressions require a special handling mechanism if we w ant to express each s e t variable in terms of the others involved in a constraint. This point requires us to tackle these n-ary constraints as \mini-programs". The approach implemented in Conjunto consists in approximating an n-ary constraint b y

(1) associating each basic set expression (s 1 \/ s 2 , s 1 /\ s 2 , s 1 \s 2 ) with its relational form, (2) applying inductively this process until the n-ary constraint c a n b e expressed as a binary one. The relational forms of set expressions are derived by creating a new set variable whose domain is approximated by using the set interval calculus. The relational forms correspond to the following constraints:

union (s 1 s 2 s ) $ s 1 \/ s 2 `= s inter (s 1 s 2 s ) $ s 1 /\ s 2 `= s diff (s 1 s 2 s ) $ s 1 \ s 2 `= s
The local consistency of these 3-ary constraints ensures that no triples satisfying the constraint are excluded. The inference is performed using transformation rules that make use of the projection functions. Each projection function allows each set domain to be expressed in terms of the others (with respect to one constraint). Each such projection uniquely de nes a smallest set domain which contains the possible solution values. Three projection functions are required per relational constraint. They are depicted in the following gures.

Projection functions associated to the constraint union(s 1 s 2 s ) such that s 1 2 d 1 s 2 2 d 2 s 2 d. T5 holds also for s 2 and a similar rule exists for d 2 .

T5. glb(d 0 1 ) glb(d 1 ) glb(d) n lub(d 2 )

lub(d 0 1 ) lub(d 1 ) \ lub(d) T6. glb(d 0 ) glb(d) glb(d 1 ) glb(d 2 ) lub(d 0 ) lub(d) \ (lub(d 1 ) lub(d 2 ))
The union of two sets represents a logical disjunction. So it is very unlikely that the addition of new elements to glb(d) requires modifying the lower bound of the domains of s 1 or s 2 . The one case which requires such a re nement occurs if some elements belong to the lower bound of d and can never belong to one of the two sets (cf. T5). Consequently they should be added to the other one.

Projection functions associated to the constraint inter(s 1 s 2 s ) such that s 1 2 d 1 s 2 2 d 2 s 2 d. T7. holds also for d 2 .

T7. glb(d 0 1 ) glb(d 1 ) glb(d)

lub(d 0 1 ) lub(d 1 ) n ((lub(d 1 ) \ glb(d 2 )) n lub(d)) T8. glb(d 0 ) glb(d) glb(d 1 ) \ glb(d 2 ) lub(d 0 ) lub(d) \ lub(d 1 ) \ lub(d 2 )
The intersection of two sets represents a logical conjunction. So any addition of elements to one of the three domains requires modifying at least one of the lower bounds of the domains. A pruning of the upper bound of these domains is less frequent. However, it might occur in the case depicted in T7 which corresponds to the following con guration: some elements are de nite ones of s 2 (or s 1 ) and possible ones of s 1 (or s 2 ). If they cannot belong to s then they should be removed from the upper bound of the domain of s 1 (respectively s 2 ).

Projection functions associated to the constraint diff(s 1 s 2 s ) such that s 1 2 d 1 s 2 2 d 2 s 2 d:

T9. glb(d 0 1 ) glb(d 1 ) glb(d) lub(d 0 1 ) lub(d 1 ) n (lub(d 1 ) n (lub(d) lub(d 2 ))) T10. glb(d 0 2 ) glb(d 2 ) lub(d 0 2 ) lub(d 2 ) n glb(d) T11. glb(d 0 ) glb(d) (glb(d 1 ) n lub(d 2 )) lub(d 0 ) lub(d) \ (lub(d 1 ) n glb(d 2 ))
The second part of the rule T9 considers a particular case where the upper bound of d 1 should be pruned. If lub(d 1 ) c o n tains elements which do not belong both to the upper bound of d and to the upper bound of d 2 , then these elements cannot belong to s 1 . Both conditions must be satis ed to prune lub(d 1 ).

Complexity issues. Time complexity f o r each transformation rule is bounded by O(d) times the number of basic set operations, which is bounded by 4 for the rules T7 and T9.

Remark. The relational constraints are transparent to the user at the programming level. However, any temporary state of a program is given in terms of these newly created constraints.

Example: A locally consistent constraint of the form: S1 \/ S2 `< S2 /\ S3 is stored using the set of delayed goals:

union(S1, S2, S12), inter(S2, S3, S23), S12 `< S23.

Graduated c onstraints: cardinality and weight constraints

Graduated constraints deal with set variables and integer variables. Inferring the local consistency of these constraints might require re ning the integer domains or assigning a value to a set. Since graded functions are not bijective functions, a modi cation of the integer domains is not a su cient condition to require a set domain re nement. The pruning for the set cardinality and the weight constraints achieved by the following transformation rules. It guarantees that (1) the values removed from the domains cannot be part of any feasible solution, (2) if a solution exists, its value lies in the remaining set and integer domains.

Consider the set cardinality constraint #(s x) where s 2 d and x 2 m n]. x is an integer variable. We have:

T12. m 0 n 0 ] max(m #glb(d)), min(n,#lub(d))] T13. d 0 glb(d) if #glb(d) = n T14. d 0 lub(d) if #lub(d) = m
The transformation rules for the weight constraint are similar. The only di erence lies in the initial computation of the integer intervals. The constraint s o l v er is based on the generic xed point algorithm described in the formal part. It applies these rules to check/infer the consistency of an admissible system of constraints in an incremental way. Incrementality refers to the nature of the Conjunto solver which stores each newly locally consistent constraint and handles the consistency of each constraint in conjunction with the constraint store.

Complexity issues Let G be the set of all the constraints to be considered and l its size. The cost of one transformation rule is bounded by O(d) (d being the largest #lub(s) + # glb(s)). For one constraint the algorithm can be iterated at worst d 0 times if d 0 = # lub(s) ; #glb(s). If these iterations are necessary for all the constraints the worst time complexity i s t h e n O(ldd 0 ).2 This time complexity does not occur in practice since a constraint is not systematically reconsidered if some of its variable domains get modi ed. Indeed, the constraints are stored in various suspension lists so as to avoid reconsidering them when there is no need to do so. These lists are described below.

Suspension lists Three di erent lists are attached to each set variable. They are meant to improve the time complexity and thus the e ciency of the solver by splitting the list C so that only those constraints concerned with the speci c domain re nement are woken. Corresponding to each set variable s i with domain d i , e a c h of the three lists could contain the following goals: Q glb contains the primitive constraints for which a modi cation of the lower bound of d i might require reconsidering the constraints. It contains only constraints of the form s i `< s j .

Q lub contains the primitive constraints for which a modi cation of the upper bound of d i might require reconsidering the constraints. It contains the constraints of the form: s j `< s i s i `<> s j , (and its symmetrical s j `<> s i ).

Q any contains the remaining constraints for which a n y set domain modi cation might require reconsidering them. In other words it contains the relational constraints (relational forms of the set union, intersection and di erence operations) and the graduated constraints in which t h e v ariable s i appears.

In addition, the graduated constraints are also stored in the list of delayed goals attached to the integer variables appearing in it. While graduated constraints are delayed only once, they are attached to two lists and thus might be reactivated with respect to two di erent conditions. This process establishes the dynamic cooperation between the Conjunto solver and the nite domain solver. It guarantees that the local consistency of a graduated constraint i s a l w ays maintained within a constraint system.

Solver modularity

The Conjunto solver can be embedded in any logic-based language provided a set of constraint solving facilities is given or can be de ned. These facilities comprise (1) attributed variables or a similar structure which links a set variable to its domain and the required lists of delayed goals, [START_REF] Lindner | Topics on Steiner Systems, v olume 7 of Annals of Discrete Mathematics[END_REF] suspension handling mechanisms to deal with delayed goals, (3) possibly a nite domain library to tackle set based optimization problems. The following gure shows the modules and functionalities required during the execution of a Conjunto program. 

IIIApplications

We show the applicability of the Conjunto language to the modelling and solving of set based search problems. The focus is on the expressiveness and the e ciency of the language when dealing with search problems and optimization problems arising from operations research and combinatorial mathematics.

Set domain CSPs

The modelling and solving of a set domain CSP follows the usual procedure for CSPs which consists of the problem statement, the labelling procedure and possibly the search for an optimal solution.

The labelling can be achieved by using the pre-de ned labelling procedure refine described in the practical framework or by de ning a new labelling procedure based on speci c labelling strategies. An e cient set labelling procedure should not try to directly instantiate a set to one of its domain elements. The reason is that by doing so, the satisfaction of those constraints for which only a local consistency is guaranteed is reached in a passive w ay.

The concept of optimality is related to the notion of minimizing or maximizing a cost function. This function necessarily denotes a measure, takes as input an arithmetic expression and returns an integer value. Possible cost functions associated with a set domain CSP are the sum of the set cardinality v alues, the sum of the weights, etc. Such a function constrains the sets via their associated measure and consequently no speci c optimization predicate is required to deal with sets. The user can make use of existing predicates developed for integer domain CSPs with an optimization criterion. One of these predicates used in a subsequent application (set partitioning), performs the branch and bound search.

The predicate min_max(Goal, Cost) searches for a solution to the goal Goal that minimizes the value of the linear term Cost using the branch and bound method from operations research ( P apadimitriou and Steiglitz, 1982). As soon as a partial solution to Goal is found whose cost is worse than the previous solution the search is not explored any further and a new solution is searched for.

Another predicate is often used to minimize the cost of a solution within a xed range: min_max (Goal, Cost, Min, Max, Percent). This predicate also makes use of the branch and bound method with some restrictions. It starts with the assumption that the value Cost to be minimized is less than or equal to Max. As soon as a solution is found whose minimized value is less than Min, this solution is returned. When one partial solution is found, the search for the next better solution starts with a minimized value Percent % less than the previous one.

The use of these predicates in a set domain CSP requires the de nition of Goal as a set labelling procedure call, plus a graduated constraint whose integer value is Cost. The solving of min_max/2/5 will execute the labelling procedure and incrementally re ne the integer domain involved in the graduated constraint. Once all the sets are labelled the integer domain becomes one value (the cost) which can be evaluated. The optimization process will then constrain the integer variable appearing in the graduated constraint to have its value in a new domain whose upper bound is lower than the cost previously computed.

Modelling facilities

The two problems presented hereafter come from the areas of combinatorial mathematics [START_REF] Lueneburg | Tools and fundamental Constructions of Combinatorial Mathematics[END_REF]) and operations research. The rst one |the ternary Steiner problem| is to nd a speci c hypergraph whose nodes are integer variables. Our approach illustrates how a n h ypergraph whose nodes are integer variables can be modelled as a simple graph whose nodes are set variables. The second problem is a set partitioning problem usually represented by mathematical models and solved using integer linear programming techniques. Here it is modelled as a set domain CSP.

Ternary Steiner problem

The ternary Steiner problem has its origins in combinatorial mathematics. It belongs to the class of block theory problems which deal with the computation of hypergraphs. A h ypergraph is a graph with the property that some arcs connect collections of nodes. This problem has only recently been addressed in computer science. (Beldiceanu, 1990a) addresses this problem for the rst time. The approach consists in representing the problem as an integer domain CSP in a constraint logic programming (CHIP [START_REF] Dincbas | The Constraint Logic Programming Language CHIP[END_REF]), using the new concept of global constraints. The integer domain CSP modelling corresponds to the hypergraph representation: the integer variables represent the nodes and the global constraints represent the hyperarcs.

Problem statement The statement i s t a k en from (Beldiceanu, 1990a). A ternary Steiner system of order n is a set of T = n(n ; 1)=6 triples of distinct elements in f1 ::: ng such that any t wo triples have at most one element i n common. The mathematical properties of this problem prove t h a t n modulo 6 has to be equal to 1 or 3 [START_REF] Lindner | Topics on Steiner Systems, v olume 7 of Annals of Discrete Mathematics[END_REF]. One solution of Steiner 7 is for example: f1 2 6g f1 3 5g f2 3 4g f3 6 7g f2 5 7g f1 4 7g f4 5 6g The integer domain CSP modelling or hypergraph representation uses three nodes, or variables, ranging over f1 : : : n g to represent a triple fX Y Zg. The constraints are (1) ordering constraints between the three nodes (X < Y < Z ) s o a s t o r e m o ve equivalent triples under permutations of the elements (2), any triple must have a t most one element in common with the other triples of nodes. This amounts to constraining each pair of a triple to be pairwise distinct from any other pair appearing in another triple. This requires constraining all the n(n ; 1) possible pairs (6 per triple X, Y, Z]: X,Y], Y,X], X,Z], Z,X], Y,Z], Z,Y]) to be pairwise distinct. This approach i s sound but far too costly in variables and constraints. A global constraint all_pair_diff has been de ned in (Beldiceanu, 1990, Beldiceanu, 1990a) to free the user from specifying all the pairwise distinct pairs.

If each set of three nodes, describing a triple, can be represented as one variable, then the modelling is simpler and requires less variables. Such a modelling corresponds to a set domain CSP approach. Also, the constraints applied between each set of three nodes become one constraint b e t ween two triples (set variables). Thus, the set domain CSP models a hypergraph with respect to the integer domain CSP modelling.

Problem modelling Modelling the problem as a set domain CSP involves representing each t r i p l e a s one set variable. Let S i 1 < i < T denote the T set variables which represent the triples. Their domains are initialized to the set domain {},{1,...,n}].

The constraint \any t wo triples have at most one element in common" is simply represented by: #( S i /\ S j ) =< 1. The constraint generation is summed up in the short program: for each triple S. I f n = 7, the rst set is instantiated to f1 2 3g. Then the system tries to instantiate the second set by rst adding the element 1 to its lower bound. This domain re nement requires reconsidering the constraint #(S1 /\ S2, C). This results in a re nement of the domain of S2 by a removal of the values 2 and 3 from the upper bound of its domain. At this stage in the resolution, the re ned domains are: S1 = {1,2,3}, S2 `:: {1},{1,4,5,6,7}], S3,S4,S5,S6,S7] `:: {},{1,...,7}].

Computation results

The problem was solved in 0.8 sec on a Sun4/40 for n = 7. Six choice points were created during the solution step. (Beldiceanu, 1990a) says that 21 choice points were generated and 0.08 sec were su cient t o s o l v e the problem. This di erence in choice points and time was surprising. Unfortunately the global constraint and the program developed were not available and so, in order to make a sound comparison, we d e v eloped the same program as described in the paper using the ECL i PS e integer domain library. The choice points and the time required were then similar to the Conjunto approach, but the program was much less natural.

The complexity of this problem grows exponentially with n. In (Beldiceanu, 1990a) the problem has not been tackled for larger values than 7. Indeed, it turned out that using the same program to solve the problem when n = 9 leads to a combinatorial explosion. We de ned a labelling strategy which consists in constraining each element to belong to at most (n;1)=2 triples. Indeed, there are at most n;1 distinct pairs containing one element i and a triple containing i must contain 2 of these pairs. In practice this labelling strategy corresponds to a simple occur check before adding one element to a set domain. This does not help when n = 7 but for n = 9 it reduced the number of choice points from 7180 to 116 and consequently the computation time from 501 sec. to 18 sec.

Remark. For one value of n there exists more than one solution. The search for all the possible solutions requires us to take i n to account the symmetries inherent to the problem i.e., those which do not depend on the modelling. A permutation of two s e t s d o e s n o t c hange the actual solution but corresponds, from a computational point of view, to new instances of the set variables. In fact, the modelling of a search problem as a set domain CSP removes the symmetries that come from an integer domain CSP approach. Consequently, set constraints resemble some global constraints in terms of problem solving and pruning ability, but to cope with this actual symmetries of the problem a global reasoning on sets is necessary.

The set partitioning problem

The set partitioning problem [START_REF] Gondran | Graphs and algorithms[END_REF]) is an optimization problem that comes from operations research. Consider a mapping from a set of elements to a collection of equivalence classes each o f w h i c h c o n tains a subset of these elements, and has a speci c cost. The objective is to nd a subset of the classes such that they are all pairwise disjoint, each element i s m a p p e d o n to exactly one class and the total cost of the selected classes is minimal. This problem is currently tackled as a 0-1 integer linear programming problem using the following mathematical model:

minimize (c x) (a ij ) x = e m
where c is a cost vector 1 n, ( a ij ) i s a n m n known matrix comprising 0 and 1 values, x is an n 1 v ector of 0-1 variables and e m is a vector of m entries equal to 1. We h a ve: 8i 2 Dom 8j 2 f 1 : : : n g a ij = 1 if i 2 S j , 0 otherwise Each equivalence class is denoted by a s e t S j .

Example: A 0-1 modelling corresponds to the following system of constraints: min c 1 x 1 + c 2 x 2 + c 3 x 3 + c 4 x 4 + c 5 x 5 + c 6 x 6

x 1 + x 3 + x 5 = 1

x 1 + x 2 + x 3 + = 1

x 1 + x 3 + x 6 = 1 x 4 + x 5 + x 6 = 1 x 4 +

x 6 = 1

Each column represents an equivalence class. Each line refers to one element i n f1 :: 5g. The equality constraints specify that an element can belong to exactly one equivalence class.

Problem statement The mathematical statement of the problem is depicted here in terms of relations and set constraints. Consider a mapping R from Dom to Ran which is constrained to be an application. Let the DS-domain be Dom= f1 2 ::: mg and the AS-range be a family Ran of n subsets of Dom such that Ran = fS 1 : : : S n g where each S j is an equivalence class (a ground set) and: A cost set S c is associated to the elements S i of Ran by considering a weighted set composed of elements (S i w i ). The nal problem is to determine a partition P such that: X i w i is minimal This statement corresponds to the approach used with the Conjunto language.

Problem modelling Let a relation R on the ground sets Dom and Ran be constrained to be an applicative mapping. Each successor set is constrained to be a subset of the proposed sets. These constraints are not su cient t o s o l v e the problem. Two other requirements are necessary: the nal set P of equivalence classes should contain only disjoint sets.

an instantiated successor set should also represent the successor set of all its predecessors. This corresponds to adding two constraints which w i l l b e c hecked using the forward checking inference rule (i.e., once a successor set becomes ground). Informally, as soon as one successor set succ(R i fs k g) becomes ground we m ust have: 8j 2 Dom succ(R j s j ) if j 2 s k s j = fs k g if j = 2 s k s j \ f s k g = (1) Example: The statement of the previous example corresponds to the following set of constraints Conjunto constraints: R bin_r {1,2,3,4,5} --> {{1,2,3},{2},{1,2,3}, {4,5},{1,4},{3,4,5}}, appl(R), succ(R, 1, S1), S1 `< {{1,2,3},{1,4}}, succ(R, 2, S2), S2 `< {{1,2,3},{2}}, succ(R, 3, S3), S3 `< {{1,2,3},{3,4,5}}, succ(R, 4, S4), S4 `< {{4,5},{3,4,5}}, succ(R, 5, S5), S5 `< {{4,5},{3,4,5}}.

Each element i 2 f 1 ::: 5g is mapped to a set S iwhose domain contains the possible equivalence classes (ie. those which c o n tain i). Note that columns 1 and 3 in the ILP modelling correspond here to one equivalence class f1 2 3g. The search space associated to these problems is usually very large and simpli cation rules are applied in order to reduce the initial problem size (e.g. in (Ho man and [START_REF] Ho Man | Solving Airline Crew-Scheduling Problems by Branch-and-Cut[END_REF]Padberg, , P adberg, 1979))). They consist in removing rows and columns in the adjacency matrix formulation. This corresponds to removing, in a deterministic manner, redundant sets from the successor set domains, and to bounding some successor sets to the same variable. The main operations amount to checking disjointness and/or inclusion of sets and to computing cliques over the successor set domains. This is achieved in a very natural manner using Conjunto (for a full description of the modelling see [START_REF] Gervet | Set Intervals in Constraint Logic Programming: De nition and Implementation of a Language[END_REF]).

Problem solving One important strength of solvers based on constraint propagation techniques is their dynamic behaviour thanks to the delay m e c hanism. In particular, once the simpli cation rules have been applied, their ripple e ects on the set of constraints allows to dynamically reduce the problem size. Linear programming solvers require the whole problem to be considered once again.

A large application has been developed, in which it is necessary to look for an optimal solution using the predicate min_max/5 and to consider a speci c labelling strategy. The strategy aims at selecting a set among the remaining ones whose cost is the lowest.

The labelling procedure considers each successor set S i in order. The set E which belongs to the upper domain bound of S i and which has the lowest cost is selected, and added to S i . A choice point is created and in case of failure the program backtracks. The previous state is restored and the set E is removed from the domain of S i . To solve the goal labelling(LSuccs, S), take_min(C), w e rst label all the sets, instantiate the weight o f the set domain of S to its minimal value and then search for a better solution according to the criteria given.

Computation results A set partitioning problem describing a 0-1 matrix of size 17x197 was implemented using the approach presented here. The complete program takes 200 lines of Conjunto code. The problem was taken from the (Ho man and [START_REF] Ho Man | Solving Airline Crew-Scheduling Problems by Branch-and-Cut[END_REF] library. The heuristics led to a simpli ed problem within 7 seconds and the optimal solution was found within 13 seconds on a Sun4/40. The proof of optimality required 31 additional seconds. (Ho man and Padberg, 1992) make use of the simplex method combined with a tailored branch and cut search to tackle set partitioning problems (crew scheduling problems). The optimum solution to the 17x197 problem is found in 0.06 seconds on a VAX 8800.

On the one hand, the exibility and conciseness of the Conjunto approach i s a strength compared with existing mathematical models. On the other hand, constraint propagation techniques are not competitive when compared with global methods like the simplex (e.g. in (Ho mann andPadberg, 1992, Guerinik andVan Caneghem, 1995)). While completing this work, it appeared to us that the set domain CSP approach is promising when investigating feasibility issues that are problematic with the simplex method. The simplex stops when the model is detected to be inconsistent but it cannot detect the reasons for failure. The inherent incremental solving of local consistency techniques can be of a great help. In addition, the partitioning problem appears as a sub_problem in numerous real life applications (eg. timetables, bus line balancing), which are currently solved using integer domain solvers. While integer domain CSP are well suited to the scheduling constraints of these problems, a set domain CSP can provide an easy way t o tackle the partitioning constraints. The cooperation between the solvers is not a problem, provided that the constraints which i n volve set and integer variables can be attached to both. A real life application is worth considering.

E ciency issues: A c a s e s t u d y

The previous section illustrated the applicability of the system for dealing with a large class of search problems involving sets, relations, graded functions and optimization criteria. The question is: \can a gain in expressiveness be combined with a gain in e ciency ?". From a pruning point of view, the one-to-one correspondence between a set variable ranging over a set domain and a vector of 0-1 variables guarantees that if both sorts of variables are handled using the same labelling procedure (cf. refine), the pruning will be exactly the same. If there is a gain, it might therefore come from the saving in memory utilization and consequently from the garbage collection time. This point is illustrated through an integer linear programming optimization problem: the bin packing problem.

Problem description Bin packing problems belong to the class of set partitioning problems [START_REF] Garey | Computers and intractability, A guide to the theory of NPcompleteness[END_REF]. A m ultiset of n integers fw 1 : : : w n g is given that speci es the weight elements to partition. Another integer W max is given that represents the weight capacity. The aim is to nd a partition of the n integers into a minimal number of m bins (or sets) fs 1 :: s k g such that in each bin the sum of all weights does not exceed W max . This problem is usually stated in terms of arithmetic constraints over binary variables and solved using various operations research or constraint satisfaction techniques over binary nite domains. It requires one matrix (a ij ) to represent the elements of each set, one vector x j to represent the selected subsets s k and one vector w i to represent t h e w eights of the elements a ij . The cost function to be optimized is the total number of bins.

The mathematical formulation in 0-1 CSP and set domain CSP is described in the following gure. 0-1 CSP abstract formulation set domain CSP abstract formulation P m j=1 a ij x j = 1 f o r a l l i 2 f 1 : : n g s 1 \ s 2 = fg : : : s n;1 \ s m = fg s 1 ::: s m = f(1 w 1 ) : : (n w n )g where:

x j = 0 ::1 1 if s j 2 f s 1 : : s k g 0 otherwise s j 2 fg f(1 w 1 ) : : (n w n )g] a ij = 0 ::1 1 if i 2 s j 0 otherwise P n i=1 a ij w i W max 8j 2 f 1 : : : m g weight(i w i ) = w i P #glb(sj ) i=1 weight(i w i ) W max 8s j Under these assumptions, the program to solve i s t o minimize the number of bins:

min x 0 = P m j=1 x j minx 0 = # fs j j s j 6 = fgg Problem statement Let P = f (1 w 1 ) : : : (i w i ) ::: (n w n )g be a non empty set of items i with a weight w i . The aim is to partition P into a minimal number of N bins such that the sum of the w i in a computed subset of P does not exceed a limited weight W m a x . A bin is represented by a set variable with initial domain fg P ]. The union of all bins should be equal to P (represented using the all_union predicate). All the bins should be pairwise disjoint ( all_disjoint predicate). Problem solving The labelling procedure makes use of the rst t descending heuristic. This heuristic sorts the elements (i W i ) in decreasing order of their weight. Bins are then lled one after another, which is more e cient than lling all the bins in parallel. The optimization predicate is the classical one for packing problems which initializes the number of bins N to the value weight(P)=Wmax and increases it at each call of goal predicate in case of failure. The solution is the rst successful partition. This program was used to solve a large instance of 80 items partitioned into 30 sets. The optimal solution was found in about 22 seconds on a SUN 4/40.

Experimental results and comparisons A comparative study was made with a i n teger domain (0-1) formulation implemented using the nite domain library of ECL i PS e . For the encoding of sets and set constraints, we used respectively lists of binary variables and arithmetic constraints on the variables described previously. The arithmetic constraint predicates were handled using the ECLiPSe solver of arithmetic constraints over nite domains. It is based on consistency techniques which perform a reasoning about variation domain bounds or about variation domains, depending on the constraint predicate. The 0-1 integer domain program was encoded so as to use the same rst t descending heuristics and the same labelling procedure as the set domain CSP program. The following array g i v es the results regarding time consumption together with space utilization.

Criterion

Conjunto The two programs di er in the data structure used, and thus in the constraints applied to these data. T h e r s t p o i n t to note is that this di erence has an impact both on the space usage (stack peaks where the peak value indicates what the maximum amount allocated was during the session) and on the cpu time. The space utilization comprises, among other stacks, the global stack and the trail stack. The data structure is largely responsible for the growth of the global stack peak. The di erence in space utilization (stack sizes) between the two approaches comes from the set-like representation as a list of zero-one domain variables versus two sorted lists in Conjunto. The lists of zero-one variables are never reduced because retrieving an element from a set corresponds to setting a variable domain to zero. This is not the case with the set domain representation.

The trail stack is used to record information (set domains or lists of zero-one variables) that is needed on backtracking. The number of backtracks in the two program execution is the same, so the di erence comes from the amount of information recorded.

The garbage collection number is the times garbage collections are performed which is closely linked to the global and trail stack because the garbage collection on both at the same time. Thus, the di erence in the garbage collection number comes again from the space utilization.

The di erence between the cpu times is due rst to the time needed for garbage collection which is a direct consequence of the size of the global and trail stacks and secondly to the time needed for performing operations on the data.

Pro ling the cpu time consumption indicates that half of time spent i n t h e FD program resolution is the time needed for performing arithmetic operations on the zero-one variables. The weight constraint applied to each set is one of the most expensive computations. The weight constraint a i1 w 1 + a i2 w 2 + ::: a in w n w max which i s w oken each t i m e a n a ij is set to 1, consists of a Cartesian product of two lists. In the Conjunto program, it consists in constraining the sum of weights w i directly available from the elements (i w i ) of a domain upper bound. Another costly computation in the FD formulation, is the computation of the largest weight not already considered for one set. This requires checking the value of the zero-one variable, and if this value is one, considering the weight associated to this variable. A w eight is not considered if the corresponding domain variable is not instantiated. In the Conjunto program, this computation corresponds to the di erence of the two bounds of a set domain, and the resulting set contains the elements (i w i ) w h i c h

have not yet been considered. Computing this di erence is in fact the most time consuming step in the Conjunto program resolution, because it is also performed when computing disjoint sets, but it represents half of the cpu time consumption of arithmetic operations.

This application shows that set constraints together with set domains are expressive enough to embed the problem semantics, and to avoid encoding the information as lists of binary variables or handling additional data (the list of weights). It also shows that consistency techniques for set constraints are e cient enough to solve such combinatorial problems on sets.

General remarks

These applications have illustrated how the solving of set-based optimization problems is possible thanks to the graduated constraints (set cardinality and weight constraints).

With regard to an integer domain CSP, a set domain CSP approach c o n tributes transparency with respect to the mathematical de nition of set problems, and allows the user to go from a hypergraph to a graph representation, thus reducing the numb e r o f v ariables and simplifying the constraint statement phase. As far as eciency is concerned, the rst application (ternary Steiner problem) showed that the solving of set constraint a c hieves a pruning identical to that of global constraints. The cpu were also similar.

The second application (set partitioning) makes us of the one-to-one correspondence between a set variable ranging over a set domain and a 0-1 vector which allows us to model 0-1 Integer Linear Programming (ILP) problems as set domain CSPs. The modelling of 0-1 ILP problems as set domain CSPs in a constraint l o g i c programming language shows the programming facilities of logic programming and enhances the class of CSPs. In particular, a CSP view of 0-1 ILPs brings exibility to the modelling and can be useful when (1) unpure 0-1 ILP problems are to be tackled, [START_REF] Lindner | Topics on Steiner Systems, v olume 7 of Annals of Discrete Mathematics[END_REF] when their feasibility is problematical with ILP tools, (3) and when small 0-1 ILP problems are involved in some real CSP applications (eg. timetables, bus line balancing, etc).

The last application (bin packing) showed how a 0-1 CSP can be modelled more concisely as a set domain CSP using Conjunto with a possible gain in e ciency. The gain comes essentially from the time needed for garbage collection which is more important in the 0-1 CSP approach w h i c h uses a larger amount o f v ariables.

Discussion and related works

Today, the Conjunto solver is available as a library in the ECL i PS e platform, developed at ECRC. Independently of our work, the concept of set domains was brie y introduced in [START_REF] Puget | Programmation par contraintes orient ee objet[END_REF] and several set constraints are implemented in the ILOG solver [START_REF] Caseau | Constraints on Order-Sorted Domains[END_REF]Puget, 1994, Puget, 1996). Detailed comparisons with the ILOG approach are di cult since ILOG solver is an industrial implementation not fully described in the public domain. However, personal communications with Jean-Fran cois Puget indicate that the two approaches are similar but di er on one main point: the generic algorithm used to handle set constraints. ILOG solver uses AC-5 ( Van Hentenryck et al., 1992) whereas we m a k e u s e of propagation methods based on the AC-3 algorithm [START_REF] Mackworth | Consistency in networks of relations[END_REF].

A related line of work concerns the class of CLP(Sets) languages, that we h a ve presented in the introduction (Walinski, 1989[START_REF] Dovier | Embedding Extensional Finite Sets in CLP[END_REF][START_REF] Bruscoli | Compiling Intensional Sets in CLP[END_REF]. None of them is directly motivated by the class of applications we a r e dealing with these approaches aim mainly at exploiting the expressiveness of constructed sets. Our study of set-based logic programming and CLP(Sets) languages came to the conclusion that complete solvers have s e v ere e ciency problems due to the nondeterministic nature of the constructed set uni cation and its exponential complexity. Indeed, recent attempts have been made to tackle the bin packing problem using set constraints over constructed sets the exponential uni cation procedure of constructed sets led to a combinatorial explosion. Our approach | e v en though it adds a lower level of abstraction than the LP or CLP approaches based on constructed sets| is more realistic and e cient when one aims at solving set-based search problems. The main di erence is that we u s e v ariables with set domains and hence have a trivial uni cation procedure.

While our work has essentially aimed at de ning a practical language towards the solving of applications, it has provided us with a matter for a formal denition of the language. The formal framework distinguishes between the computation domain of the constraint logic programming language, and the constraint domain over which the computations are actually performed. These two l e v els of discourse are linked together by a p p r o ximations and closure operations. Up to now, the class of CLP(FD) languages are de ned as constraint logic programming languages, but their formal de nition is still based on the formal framework de ned by Van Hentenryck that is, embedding consistency techniques in logic programming ( Van Hentenryck, 1989). The formal description of the Conjunto language can be used to give a formal de nition of the class of CLP languages which e m bed consistency techniques as main constraint solving techniques.

We believe that some further research on applications and algorithms is needed. The concept of graduated constraints helps us with tackling set-based optimization problems, and studying the cooperation between two s o l v ers (Conjunto and integer domain solvers), but the search space of such problems is de ned with set domains essentially. The Conjunto language has not been used so far to tackle real life applications de ned over a search space containing also integer domains. Applications involving scheduling constraints and set constraints are still to be developed. In particular, they would allow us to gure out whether it is possible or not to work on a mixed-search space. Time tables, bus line balancing, are some of the applications.

Regarding the class of consistency methods we h a ve been using, we h a ve essentially considered node and arc consistency techniques applied to set and graduated constraints. It sounds interesting to go beyond this, to use path consistency algorithms, and to take i n to account the latest researchs on the topology of constraint graphs. Some issues might be di erent from those already established with respect to integer domain CSPs. In this respect, the study of the ratio complexity/pruning is very important.

It would also be interesting to extend the set domain concept to that of lattice domains in order to cope with symmetry problems. For example, considering the lattice domains ff1 3g f1 2gg and ff1 2 3gg, w e h a ve ff1 3g f1 2gg v ff1 2 3gg. A set of constraints applied to variables ranging over lattice domains would ease the modelling and solving of set based problems dealing with the search for equivalence classes (partitioning, covering). They would remove t h e symmetries which come from permutations of instances of set variables. A solution to a set-based problem would not be a list of instantiated set variables but the one value of a lattice variable. Thus the order of the sets which de ne the lattice value would be irrelevant. Constraints over lattices would model a set domain CSP as a lattice domain CSP, and thus add a higher level of expressiveness with respect to set domains. On the other hand, the practical framework corresponding to embedding lattice intervals in CLP requires further works describing the algorithms and studying the trade-o between expressiveness and e ciency.

  a x b and c y d x and y belong to the respective intervals a b] and c d]. From property 2, we infer a \ c x \ y b \ d and dually for the union operation. So if x and y are only de ned f r om the intervals they belong to, their union and intersection can be approximated by the new intervals a c b d] and a \ c b \ d]. Proposition 3 A c l o s e d set interval x \ y x y] is convex. Proof: Let I = x\y x y] b e a s e t i n terval. If z t2 I then z \t 2 I and z t 2 I, and by Property 2 : z \ t z t] I.

  Definition 13 The set of all convex parts of P(D S ) is a subset of P(D S ) ordered by set inclusion and designated b y D S . Definition 14 The constraint domain C Dis the algebraic structure of the lattice D S of set intervals ordered by set inclusion such that: C D= D S D S 2 a b] ]

Property 4

 4 The operation conv(x) = x = glb(x) l u b (x)] has the following propx y, then x y Monotonicity If we consider the relation as a logical implication, the extension property C1

  Definition 16 The constraint domain C Dis a powerset lattice D S 2 a b] ] with the family D S of set intervals that satis es: P1. Each union of elements of D S is also an element of D S P2. Each nite intersection of elements of D S is also an element of D S P3. P(D S ) and the empty set fg are elements of D S . Properties P1 and P2 de ne the distributivity o f and \ in D S . It follows from P2 and the rst statement o f P3 (P(D S ) 2 D S ) that a convex closure operation satisfying C1-C3 is de ned in C D . This operation is conv. Because of P1 and P2 this operation satis es:

  a d b] , a c b d Definition 17 Assuming that a b] c d] specify set domains, the consistency property in C Dis de ned b y : a b] c d] , a c b d This de nition of consistency gives us the necessary conditions to be satis ed when checking and/or inferring consistency of the set inclusion constraint o ver set domains.

  2 ). Property 6 A primitive set constraint is locally consistent if an only if it is arcconsistent. Proof: This property holds because the operations and \ are isotone. The domain constraint s 2 a b] is equivalent t o 8e s 2 a b] w e might h a ve s = a e s . The isotony o f means that a e s b ) a e s a b (since a b). Assume the domain constraints s 2 a b] s 1 2 c d]. The set constraint s s 1 is interval consistent i : a c and b d , 8e s 2 a b] a e s c e s and b e s d e s , 8e s 2 a b] 9e s1 2 c d] e s1 = c e s such t h a t e s e s1 , s s 1 is arc-consistent. Definition 25 A primitive graduated c onstraint f(s) 2 m n] is locally consistent i : SC3. f(glb(s)) m and f(lub(s)) n
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 2 and (3) correspond to the disjunctive set of constraints:

  Consider the weight constraint weight(s y) where s 2 d y 2 m n] and P (e k m k )2 glb(d) m k = w glb and P (e k m k )2 lub(d) m k = w lub . We have: T12'. m 0 n 0 ] max(m w glb ) m i n (n w lub )] T13'. d 0 glb(d) if m = w lub T14'. d 0 lub(d) if n = w glb 6.4. Complexity of the constraint solver

  cardinality of each set variable in the list Lsets to be equal to 3. The predicate intersect_atmost1 generates the main constraint t o b e satis ed by each pair of triples.Problem solving The resolution makes use of the labelling procedure refine(S)

  Ran is a partition of Domif and only if:

j2f1 2 :

 2 :: ng S j = Dom ^8S j S k 2 P 0 S j \ S k =

  The consistency notions de ne conditions to be satis ed by set domain bounds so that a set constraint is locally consistent. If such conditions are not satis ed this means that elements in the domain are irrelevant. Local consistency can be inferred by moving such elements \out of the boundaries of the domain" which means pruning the bounds of the domain. The essential point is that a re nement of both bounds allows us to prune a domain. Reducing the set of possible values a set could take c a n b e a c hieved either by extending the collection of de nite elements of a set i.e., adding elements to the glb of a set domain, or by reducing the collection of possible elements i.e., removing elements from the lub of a set domain. Both computations are deterministic.4.4.1. For set constraintsConsider the constraint s s 1 such t h a t s 2 a b] s 1 2 c d]. Inferring its local consistency amounts to possibly extending the lower bound of the domain of s 2 and to possibly reducing the upper bound of the domain of s 1 . This is depicted by the

	following inference rule:
	I1.
	Definition 26 A p r ojection function i associated to the relation r j2f1 ::: 3g a j b j ] is locally consistent if and only if: SC4. glb( i ) a i and b i lub( i )
	4.4. Inference rules

  2 2 d 2 . The transformation rule makes use of the lower and upper ordering of the set inclusion. Making this constraint consistent m i g h t require adding elements to the lower bound of the domain d 2 and removing elements from the upper bound of d 1 . The Consider the disjointness constraint s 1 `<> s 2 such that s 1 2 d 1 , s 2 2 d 2 . The only possible re nement aims at removing elements from each upper bound of a set domain which are de nite elements of the other set. This constraint is locally consistent if the re ned domains for the variables are:

	re nements lead to the new domain bounds:	
	T1. glb(d 0 1 ) T2. glb(d 0 2 )	glb(d 1 ) glb(d 2 ) glb(d 1 )	lub(d 0 1 ) lub(d 0 2 )	lub(d 1 ) \ lub(d 2 ) lub(d 2 )
	T3. glb(d 0 1 ) T4. glb(d 0 2 )	glb(d 1 ) glb(d 2 )	lub(d 0 1 ) lub(d 0 2 )	lub(d 1 ) n glb(d 2 ) lub(d 2 ) n glb(d 1 )
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