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Abstract. Uncertain data due to imprecise measurements is commonly
specified as bounded intervals in a constraint decision or optimization
problem. Dependencies do exist among such data, e.g. upper bound on
the sum of uncertain production rates per machine, sum of traffic dis-
tribution ratios from a router over several links. For tractability reasons
existing approaches in constraint programming or robust optimization
frameworks assume independence of the data. This assumption is safe,
but can lead to large solution spaces, and a loss of problem structure.
Thus it cannot be overlooked. In this paper we identify the context of ma-
trix models and show how data dependency constraints over the columns
of such matrices can be modeled and handled efficiently in relationship
with the decision variables. Matrix models are linear models whereby the
matrix cells specify for instance, the duration of production per item, the
production rates, or the wage costs, in applications such as production
planning, economics, inventory management. Data imprecision applies to
the cells of the matrix and the output vector. Our approach contributes
the following results: 1) the identification of the context of matrix mod-
els with data constraints, 2) an efficient modeling approach of such con-
straints that suits solvers from multiple paradigms. An illustration of the
approach and its benefits are shown on a production planning problem.

Key words: Data uncertainty, data constraints, Interval reasoning, Interval
Linear Programs

1 Introduction

Data uncertainty due to imprecise measurements or incomplete knowledge is
ubiquitous in many real world applications, such as network design, renewable
energy economics, investment and production planning (e.g. [13, 18]). Formalisms
such as linear programming or constraint programming have been extended and
successfully used to tackle certain forms of data uncertainty. Bounded intervals
are commonly used to specify such imprecise parameters, which take the form
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of coefficients in a given constraint relation. In such problems, uncertain data
dependencies do exist, such as an upper bound on the sum of uncertain produc-
tion rates per machine, the sum of traffic distribution ratios from a router over
several links. To our knowledge, existing approaches in Operations Research as-
sume independence of the data when tackling real world problems essentially to
maintain computational tractability. This assumption is safe in the sense that no
potential solution to the uncertain problem is removed. However, the solution set
can be very large even if no solution actually holds once the data dependencies
are checked, since the problem structure is lost. Thus accounting for possible
data dependencies cannot be overlooked.

In this paper we tackle these issues, by identifying the context of matrix
models, where we show how constraints over uncertain data can be handled
efficiently. Matrix models are of high practical relevance in many combinatorial
optimization problems where the uncertain data corresponds to coefficients of
the decision variables. Clearly, the overall problem does not need to be itself a
matrix model. With the imprecise data specifying cells of an input matrix, the
data constraints correspond to restrictions over the data in each column of the
matrix. For instance in a production planning problem, the rows would denote
the products to be manufactured and the columns the machines available. A data
constraint such as an upper bound on the sum of uncertain production rates per
machine, applies to each column of the matrix. In this context, we observe that
there is a dynamic relationship between the constraints over uncertain data and
the decisions variables that quantify the usage of such data. Uncertain data
are not meant to be pruned and instantiated by the decision maker. However,
decision variables are, and the solver controls their possible values. This leads
us to define a notion of relative consistency of uncertain data constraints, in
relationship with the decision variables involved, in order to check and infer
consistency of such constraints. For instance, if an uncertain input does not
satisfy a dependency constraint, this does not imply that the problem has no
solution! It tells us that the associated decision variable should be 0, to reflect
the fact that the given machine cannot produce this input.

Our main contribution lies in identifying the context of matrix models, to
study the efficient handling of uncertain data constraints. To our knowledge,
this is a first efficient handling of uncertain data constraints in combinatorial
problems. Our approach contributes the following within this context: 1) identify
the role of uncertain data constraints and their impact on the decision variables,
2) propose a new cousistency notion of the uncertain data constraints and a
model that implements it efficiently. We illustrate the benefits and impacts of
our approach on a classical production planning problem with data constraints.

The paper is structured as follows. Section 2 summarizes the related work,
while Section 3 gives the intuition of our approach. Section 4 defines our ap-
proach, and Section 5 illustrates it. A conclusion is given in Section 6.
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2 Related work

In the past 15 years, the generic CSP formalism has been extended to account
for forms of uncertainty: e.g. numerical, mixed, quantified, fuzzy, uncertain CSP
and CDF-interval CSPs [6]. The numerical, uncertain, or CDF-interval CSPs,
extend the classical CSP to approximate and reason with continuous uncertain
data represented by intervals; see the real constant type in Numerica [19] or the
bounded real type in ECLiPSe [7]. The solution sets produced can be very large.
This led to some research to extract the relationship between uncertain data
that satisfy dependency constraints and possible solutions by applying regression
analysis techniques [11]. The fuzzy and mixed CSP [9] coined the concept of
uncontrollable variables, that can take a set of values but their domain is not
meant to be pruned during problem solving (unlike decision variables). Some
constraints over uncontrollable variables can be expressed and thus some limited
form of data dependency modeled, mainly in a discrete environment.

The general QCSP formalism introduces universal quantifiers where the do-
main of a universally quantified variable (UQV) is not meant to be pruned,
and its actual value is unknown a priori. There has been work on QCSP with
continuous domains, using one or more UQV and dedicated algorithms [2,5,
15]. Discrete QCSP algorithms cannot be used to reason about uncertain data
since they apply a preprocessing step enforced by the solver QCSPsolve [10],
which essentially determines whether constraints of the form VX, VY, C(X,Y),
and 3Z,VY,C(Z,Y), are either always true or false for all values of a UQV. This
is a too strong statement, that does not reflect the fact that the data will be
refined later on and might satisfy the constraint.

Closer to our approach are the fields of Interval Linear Programming [14, 8]
and Robust Optimization [3,4], whereby in the former we seek the solution set
that encloses all possible solutions whatever the data might be, and in the latter
the solution that holds in the larger set of possible data realization. They do
offer a sensitivity analysis to study the solution variations as the data changes.
However, to our knowledge, uncertain data constraints have been ignored for
computational tractability reasons.

3 Intuition

The main novel idea behind our work is based on the study of a problem struc-
ture. We identify the context of matrix models where uncertain data correspond
to coefficients of the decision variables, and the constraints over these apply to
the columns of the input matrix. Such data constraints state restrictions on the
possible usage of the data, and we show how their satisfaction can be handled
efficiently in relationship with the corresponding decision variables.

In this context, the role and handling of uncertain data constraints is to
determine ”which data can be used, to build a solution to the problem”. This
is in contrast with standard constraints over decision variables, which role is to
determine "what value can a variable take to derive a solution that holds”. We
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illustrate the context and our new notion of uncertain data constraint satisfaction
on a production planning problem inspired from [12].

Example 1. Three types of products are manufactured, Py, P>, P3 on two dif-
ferent machines Mj, M>. The production rate of each product per machine is
imprecise and specified by intervals. Each machine is available 9 hrs per day,
and an expected demand per day is specified by experts as intervals. Further-
more we know that the total production rate of each machine cannot exceed 7
pieces per hour. We are looking for the number of hours per machine for each
product, to satisfy the expected demand. An instance data model is given below.

Product ‘Machine M1 Machine M2 ‘Expected demand

Py 2,3] [5,7] (28, 32]
P, 2, 3] [1,3] [25, 30]
Ps [4, 6] [2,3] [31, 37]

The uncertain CSP model is specified as follows:
[2,3] % X1 4[5, 7] * X12 = [28, 32] (1)
[2,3} * X21 + [1,3] * XQQ = [25,30] ( )
[4, 6] * X31 + [2, 3] * X32 = [31, 37] (3)
Vj€{1,2}2X1j+X2j+X3j§9 ()
Vie{1,2,3},Vj € {1,2}: X;; >0 (5)

Uncertain data constraints:
ain € [2,3],a21 € [2,3],a31 € [4,6], an +az +az <7 (6)
a2 € [5,7],a22 € [1,3],a32 € [2,3], a1z + a2 +ag2 <7 (7)
Consider a state of the uncertain CSP such that X;; = 0. The production

rate of machine M; for product P; becomes irrelevant since Xy; = 0 means
that machine M; does not produce P; at all in this solution. The maximum
production rate of M; does not change but now applies to P> and P3;. Thus
X11 = 0 infers ay; = 0. Constraint (6) becomes:

asi € [2,3],a31 € [4,6], a1 +asz <7 (8)
Assume now that we have a different production rate for P; on M;:
a1 € [2,3],a21 € [2,3],a31 € [8,10], a1 + a2 +asz <7 (9)

P; cannot be produced by M since az; € [8,10] j{ 7, the total production rate
of M; is too little. This does not imply that the problem is unsatisfiable, but
that P3 cannot be produced by M;. Thus a3 ﬁ 7 yields X3; = 0 and az; = 0.
a

4 Our approach

We now formalize our approach: define the context of matrix models we identified
and the handling of uncertain data constraints within it.
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4.1 Problem definition

Definition 1 (interval data). An interval data, is an uncertain data, specified
by an interval [a,a), where a (lower bound) and @ (upper bound) are positive real
numbers, such that a < a.

Definition 2 (Matrix model with column constraints). A matriz model
with uncertain data constraints is a constraint problem or a component of a
larger constraint problem that consists of:

1. A matriz (Asj) of input data, such that each row i denotes a given product
P;, each column j denotes the source of production and each cell a;; the
quantity of product i manufactured by the source j. If the input is bounded,
we have an interval input matriz, where each cell is specified by [a;;,as;].

2. A set of decision variables X;; € RT denoting how many instances of the
corresponding input shall be manufactured

3. A set of column constraints, such that for each column j: X;la;;,@;] Q cj,

where @ € {=, <}, and ¢; can be a crisp value or a bounded interval.

To reason about uncertain matrix models we make use of the robust counter-
part transformation of interval linear models into linear ones. We recall it, and
define the notion of relative consistency of column constraints.

4.2 Linear transformation

An Interval Linear Program is a Linear constraint model where the coefficients
are bounded real intervals [8,3]. The handling of such models transforms each
interval linear constraint into an equivalent set of atmost 2 standard linear con-
straints. Equivalence means that both models denote the same solution space.
We recall the transformations of an ILP into its equivalent LP counterpart.

Property 1 (Interval linear constraint and equivalence). Let all decision variables
X;; € R, and all interval coefficients be positive as well. The interval linear
constraint C = X;[a;, @) * Xy Q [¢, ] with @ € {<, =}, is equivalent to the

following set of constraints depending on the nature of @Q. We have:

1. C = Ei[ail,@] *Xil

2. C = Z‘i[ail,aTl] * Xy

C={Yiaaqx Xy < N Xiag*Xy>c}

[IVAN

[c1, @] is transformed into: C' = Y;ay * Xy <@
[c1, @) is transformed into:

Note that case 1 can take a different form depending on the decision maker
risk adversity. If he assumes the highest production rate for the smallest demand
(pessimistic case), the transformation would be: C' = Yja; * X; < ¢. The
solution set of the robust counterpart contains that of the pessimistic model.

Ezample 2. Consider the following constraint a; * X + as * Y = [120, 150] (case
2), with a; € [0.2,0.7],a2 € [0.1,0.35], X, Y € [0,1000]. It is rewritten into the
system of constraints: [; : 0.7« X +0.35%xY > 120 A I : 0.2%x X +0.1xY < 150.

The transformation procedure also applies to the column constraints, and is
denoted transf. It evaluates to true or false since there is no variable involved.
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4.3 Relative consistency

We now define in our context, the relative consistency of column constraints
with respect to the decision variables. At the unary level this means that if
(X'L'j = 0) then (aij = O)7 if = transf(a,ij@cj) then (Xz] = O) and if Xij >0
then transf(a;;Q@ ¢;) is true.

Definition 3 (Relative consistency). A column constraint X;a;Q ¢; over
the column | of a matriz I x J, is relative consistent w.r.t. the decision variables
Xu if and only if the following conditions hold (C4. and C5. being recursive):

C1. Vi € I such that X; > 0, we have transf(X;a; Q ¢;) is true

C2. Vk € I such that {—~transf(X;1a,Q ¢;) and transf(X;a,;Q ¢;)} is true,
we have Xg; > 0

C3. Vi € I such that X;; we have i,transf(a; Q ¢;) is true

C4. Yk € I, such that —transf(ay Q ¢;), we have Xy = 0 and Xix,a4Q ¢ is
relative consistent

C5. Vk € I, such that Xy = 0, we have Xixpay4Q ¢ is relative consistent

Ezxample 3. Consider the Example 1. It illustrates C4. and C5, leading to the
recursive call to C3. Let us assume now that the X;; are free, and the column
constraint [2, 3]+ [2, 3] +[4, 6] = [7,9]. Rewritten into 2+2+4 < 9,3+3+4+6 > 7,
we have X3; > 0, since 34+3 2 7 and 3+ 3+6 > 7. It is relative consistent with
X371 >0 (CQ)

4.4 Column constraint model

Our intent is to model column constraints and infer relative consistency while
preserving the computational tractability of the model. We do so by proposing a
Mixed Integer Interval model of a column constraint. We show how it allows us
to check and infer relative consistency efficiently. This model can be embedded
in a larger constraint model. The consistency of the whole constraint system is
inferred from the local and relative consistency of each constraint.

Modeling column constraints Consider the column constraint over column I:
Yilai, @] @ ¢. It needs to be linked with the decision variables Xj;. Logical
implications could be used, but they would not make an active use of consistency
and propagation techniques. We propose an alternative MIP model.

To each data we associate a Boolean variable. Each indicates whether: 1) the
data must be accounted for to render the column constraint consistent, 2) the
data violates the column constraint and needs to be discarded, 3) the decision
variable imposes a selection or removal of the data. Thus the column constraint
in transformed state is specified as a scalar product of the data and Boolean vari-
ables. The link between the decision variables and their corresponding Booleans
is specified using a standard mathematical programming technique that intro-
duces a big enough positive constant K, and a small enough constant .
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Theorem 1 (column constraint model). Let X;; € RT be decision variables
of the matriz model for column l. Let By be Boolean variables. Let K be a large
positive number, and A a small enough positive number. A column constraint

Yilaa, @] Q ¢

1s relative consistent if the following system of constraints is bounds consistent

transf(X;[aq, @] X B Q ¢;) (10)
Vi,O < Xil < K x Bil (11)
Vi, A X Bil < X“ (12)

The proof is omitted for space reasons.

5 Illustration of the approach

We illustrate the approach on the production planning problem. The robust
model is specified below. Each interval linear core constraint is transformed into
a system of two linear constraints, and each column constraint into its robust
counterpart.

For the core constraints we have:

2% X114+ 5% X120 <32, 3% X114+ 7% X102 > 28,
2% Xo1 +  Xo2 <30, 3% Xo1 + 3% Xag > 25,
4% X371+ 2% X390 §37, 6% X314+ 3 * X32 231,
Vi€ {1,2}, Xu; + Xaj + X35 <9,

Vie {1,2,3},V5 € {1,2} : X;; >0,

Vi, j, Xi; > 0,B;5 € {0, 1},

And for the column constraints:
a1 € [2,3],a21 € [2,3],a31 € [4,6], a11 + a2 + a3 <7 and
a2 € [5,7],a22 € [1,3],a32 € [2,3], ai2 + a2z + as2 < 7 transformed into:

2*Bll+2*B21+4*Bgl S?,

5% Bia+ B2+ 2% B3 <7,

Vi€ {1,2,3},7 € {1,2} 0< X;; < K x Byj,
Vi € {1,2,3},] S {1,2} Ax B < X5

We consider three different models: 1) the robust approach that seeks the
largest solution set, 2) the pessimistic approach, and 3) the model without
column data constraints. They were implemented using the ECLiPSe ic in-
terval solver [7]. We used the constants K=100 and A = 1. The column con-
straints in the tightest model take the form: 3 * Bj; + 3 % By; + 6 % B3; <
7 and 7*Blg+3*B22+3*ng < 7.

The solution set results are summarized in the following table with real values
rounded up to hundredth for clarity. The tightest model, where the decision
maker assumes the highest production rates has no solution.
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Variables With column constraints Without column constraints
Robust model Tightest model
Booleans Solution bounds|Solution bounds Solution bounds

X1 0 0.0..0.0 — 0.0 .. 7.00
X2 1 4.0..4.5 — 0.99 .. 6.4
X1 1 3.33..3.84 — 0.33 .. 7.34
Xo9 1 4.49..5.0 — 0.99 .. 8.0
X3 1 5.16..5.67 — 1.66 ..8.67
X39 0 0.0..0.0 — 0.0..7.0

Results From the table of results we can clearly see that:

1. Enforcing Bounds Consistency (BC) on the constraint system without the
column constraints, is safe since the bounds obtained enclose the ones of
the robust model with column constraints. However, they are large, and the
impact of accounting for the column constraints, both in the much reduced
bounds obtained, and to detect infeasibility is shown.

2. The difference between the column and non column constraint models is also
interesting. The solutions show that only X7; and X35 can possibly take a
zero value from enforcing BC on the model without column constraints. Thus
all the other decision variables require the usage of the input data resources.
Once the column constraints are enforced, the input data a;; and azs must be
discarded since otherwise the column constraints would fail. This illustrates
the benefits of relative consistency over column constraints.

3. The tightest model fails, because we can see from the solution without col-
umn constraints that as; and az; must be used since their respective X;;
are strictly positive in the solution to the model without column constraints.
However from the tight column constraint they can not both be used at full
production rate at the same time. The same holds for a12 and ass.

All computations were performed in constant time given the size of the prob-
lem. This approach can easily scale up, since if we have n uncertain data (thus n
related decision variables) in the matrix model, our model generates n Boolean
variables and O(2n + 2) = O(n) constraints. This number does not depend on
the size or bounds of the uncertain data domain, and the whole problem models
a standard CP or MIP problem, making powerful use of existing techniques.

6 Conclusion and future work

In this paper we have identified the context of matrix models to account for
uncertain data constraints efficiently. Such models are common in many appli-
cations ranging from production planning, economics, or inventory management
to name a few. In this context, we defined the notion of relative consistency, and
a model of uncertain data constraints that implements it effectively. An inter-
esting challenge to our eyes, would be to investigate how the notion of relative
consistency can be generalized and applied to certain classes of global constraints
in a CP environment, whereby the uncertain data appears as coefficients to the
decision variables.
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