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Abstract

In this paper we describe an iterative development processto ded with speaulative mnstraint optimizaion
projeds. Speaulative projeds are ill -defined in nature, as they are often new to the aistomer organization
who wishes to anticipate market changes, but also becaise their main complexity lies in completing the
problem definition. We nsider one speaulative gplication tackled in the Chi c- 2 Esprit projed by
different partners. Risk management in the aea of energy trading. The ill-defined and incomplete
comporents of the problem are: 1) model adequacy, 2) multi-criteria objedive, and 3 forecast data. We
show how the constraint techndogy can help refining the problem definition by bulding iterative models
and methods to address the incomplete parts incrementaly. Ead partner applied his own techndogy
using constraint programming, mathematicd programming and locd seach tedhniques. Findly we
discussthe new patentials for constraint techndogy to ded with stochastic problems.

1. INTRODUCTION

Constraint techndogy with various forms of hybridization has iown in the past decale its
flexibility and efficiency to tackle well-defined projeds, where the main ojedive isto model an
exiging problem and to buld efficient solution methods. However, littl e has been published on
using the techndogy to cope with speaulative projeds where an additional complexity lies in
handling the ill -defined comporents of the problem definition. Speaulative projeds appea for
instance when the austomer organization wishes to anticipate market changes, and wonders to
which extent the arrent approach shoud be revisited and hav. In such cases, users exped our
tedhndogy to help with identifying rew issues based ontheir current experience and knovledge,
and to complete the problem definition by poviding models and solutions. The standard
methoddogicd processconsisting d problem definition, design and solving is inadequate in this
stuation kecause the main gad isto refine the problem definition as oppased to solely solving it.

' Chi c- 2 focuses on Creding Hybrid solutions for Industry and Commerce. Its adivities concern the tackling o
indwstrial Large Scde Combinatorial Optimization applicaions using hylrid algorithms, and the building d a
methoddogy for LSCOs. Seehttp://www.icparc.ic.ac.uk/chic2/.



This is quite anew challenge for constraint tedindogy, and we propose to addressit using an
iterative prototyping approad.

In this paper we describe aspeaulative projed tadkled within the Chi c- 2 Esprit projed in the
past two yeas: risk management in energy trading. Currently, eledricity supdiers sgn energy
contrads with generator companies to satisfy best the end-consumers demand and minimize the
energy cost. With the coming deregulated market in England and Wales, supgiers foresee a
increased degreeof financial risks coming from an increased vdatility in eedricity prices (i.e.
the forecat price data will be more uncetain). This will require supdiers to change
fundamentally their current approadh in order to assessand control the new risks associated with
uncetain forecat data. Energy supdiers wish to anticipate the market changes by bulding
portfolios of energy contrads that will maximize potentia profits while minimizing the risks.
The main technicd issues amourt to: 1) evaluating the mnsistency of the aurrent constraint
model, 2) deriving means to refine and pasbly complete the problem definition. The
incomplete wmporents are the @st function which involves svera criteria including a
measurement of risk, and the forecast data for which no reasonable probability distribution can
be seaured a priori.

We present an iterative prototyping development processto evaluate the aurrent model and refine
the problem definition. Ead successve prototype is developed with a spedfic purpose. A new
prototype is built from the previous ones by adjusting the model of the problem and tackling a
new ill -defined comporent. Starting from a smple model to formulate the cre problem, the
prototypes iterate towards more complex models that address the multi-criteria issue and the
uncetainty in forecat data. For ead tedhnicd isaue, we propase modeling and visualizaion
means to tackle them in the most redi stic manner.

Ead applicaion addressed within the Chi c- 2 Esprit projed was tackled by severa projea
partners for a fixed period (one to three months). The objedive was to explore different
modeling and algorithmic goproadhes based ona common problem definition. With resped to
the Energy trading applicaion, |C-Parc was the main partner and hes been working with ICL,
Euro-Dedsion, and Bouygtes. In this paper we present ead partner’s olution to addressthe
various ill -defined comporents. The main contributions arising from this case study are: 1) the
adive role of constraint techndogy in iterative prototyping to hande speaulative projeds, 2) the
use of goa programming techniques from Operations reseach to ded with over constrained
problems, 3) the role of visualizaion tods to ded with multi-criteria optimization, and 4) the
introduction d simulation models in constraint programming to refine the problem definition and
ded with urcertain forecast data

This paper is gructured in four stages that reflea bath the different working partnerships with
|C-Parc, and the iterative prototypes we have implemented. Sedion 2 pesents the definition o
the problem and the businesscase. Sedion 3 pesents the first prototype to model and solve the
core problem. Sedion 4 describes the seoond pototype to address the multi-criteria asped.
Sedion 5 pesents a smulation model that deds with the stochastic nature of the problem.
Finaly we @nclude with the lesons we have leant form this applicaion and daw some
reseach perspedives.



2. PROBLEM DEFINITION

2.1 Businesscase

The dedricity chain works as follows in England and Wales. power generators provide
eledricity to the national eledricity Podl, and eledricity supgiers purchase dedricity from the
Pod in order to satisfy the demand from their end-consumers (see Figure 1). As a trading
pradice, the price of eledricity is st by the Pod and varies every haf hou. The dedricity
price is cdculated acording to the maximum amournt of eledricity consumed by the end
consumers for every half houly period. End-consumers demand can also be unpredictable due
to fadors such as weaher changes, econamic growth, spedal events or smple bad forecasting.
So pod prices are extremely volatile and unpedictable. Consequently, the risk of Eledricity
Suppiers not being able to make any profit (When buying and selli ng eledricity) isvery high.
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Figure 1: Eledricity supply and trading chain

To proted themselves from the Pod price fluctuations and vdatility, eledricity Suppiers and

Generators use a financia instrument, i.e. a @ntrad which effedively fixes the price of

eledricity for the purchase of a pre-set volume of eledricity over a given contrading period.

Currently, Suppiers work on ceriving ogima portfolios of contrads (between eledricity

supdiers and generators) that cover their forecast demand for a period d 12 rolling months such

that their financial risks are minimized and their potential profits are maximized. The adual

measure of the financia risksisbased ontwo criteriaill ustrated below:

* The demand exposure. Sum of al distances between the demand forecat and the mntrads
cover at any oretime.

» The expeded energy cost. Sum of al diff erences between the Pod price forecast and the total
cost of the expeded values of seleded contrads.
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Figure 2: Demand exposure and expeded energy cost

When the Chi c- 2 projed started, the deregulation d the energy trading market in England and
Wales was planned, enforcing energy Suppiers to beaome energy Traders as well. Deregulation
would have various consequences on the way current Suppiers work:



1. The forecast trends and seasona patterns in energy costs would become more volatil e as they
would be subjeda to the financial market fluctuations as well as the ad¢ual energy demand
market. The market becomes more fluid and dayers more alventurous. New risk fadors take
place adthe seledion d optimal contradsto hedge the risks is a much more difficult task.

2. In anon ceregulated market, supgiers can seaure contrads with energy generators for along
period (e.g. over 1 yea) and are given time to seled and regatiate the contrads most suited to
their demand. After deregulation, traders will have to react much faster to the changes.

3. For the energy supdiersinvaved in the Chi c- 2 projed, the building d contrad portfolios
Is being dore by manual effort with the ad of spreadsheds. However, they have drealy
readied the limit of spreadsheds tods. Deregulation requires an increase in nunber of
contrads to be cmnsdered at any gven time which means that a new model and better
methods need to be found lefore the market isfully deregulated.

2.1.1 Problem spedficity

There ist various ftware and stand-alone padkages for risk management and patfolio
optimizaion mostly based onthe seminal work of Markowitz [13] that relate to dedsion theory
and uility theory. However, risk management in the dedricity trading market is a unique
problem in many ways.

« Eledricity isnot a storable ammmodity, supdy isaways equal to demand.

e Eledricity price set by the Pod change every half houw. The fluctuation trends and

seasonal patterns do nd match with any ather commodity.
» Thesupgy iscontinuots every hou, every day, every week and every yeda.

Our users, i.e. energy supdiers, did na find any software or stand-alone padkage aldressng the
energy trading problem, mainly becaise they are not looking for fully optimized solutions but for
aDedsion Suppat System (DSS telling them “how to revise today’ s best pradice to cope with
the coming deregulated market”. Consequently, the problem as gedfied by the users isill -
defined for different reasons: it is a new problem to them, the forecast data ae uncertain, and the
financial risks might involve new fadors.

2.1.2 Expedations of the users in the deasion suppat tool

For the nea future, the main interest of the users lies in a bespoke DSS that considers their
current pradice and tunes or revises it towards a new model and solution to risk management.
For instance they would like to know to which extent the arrent rules of the company
governing patfolio management are best viewed as ft or hard rules (constraints). In addition,
the users exped to use the DSSto make informed judgment on which contrads to choose best
depending ontheir risk adversity and confidencein data forecast. The aiteriato be optimized for
the portfolio seledion shoud idedly derive anew measure of the financial risks.

2.2 Problem formulation

Theinitia user requirements are defined as foll ows. Given:

» Eledricity demand and priceforecast for every half houly period d arolling yea (12 months
starting from September)

» A st of contrad profiles with a known shape spedfied by its baseload unt, duration (e.g. one
month, six months, one yea), and unt price

* A set of company rules (constraints)

Minimizethe demand exposure and expeded energy cost (current financial risks) of the cmmpany
by bulding a portfolio of contrads for the next 12 months such that the company rules are



satisfied. The unknawvns are the seledion (Y es/No) of contrad profil es and the volumes attached

to the contrads. A contrad volume cmmits the baseload urit to an integer value.

The company rules are aset of constraints defined by:.

* Thetota volume mvered by ead seleded contrad shoud na exceal 500GWh

* Thetota cost of eat seleded contrad shoud na exceal 15million pound

e Thevolume of a wntrad iseither nil or greaer than 10MW

* Thetotal cover of contrads soud remain uncer the dedricity demand curve or 10% abowe.
Even thoughwe have studied bah cases, for reasons of space we will present the results for
the under cover case only. Results and comparisons between bah cases can be foundin [6].

Remark: A baseload unt gives the unitary shape of a @ntrad, and is (most commonly) built

ontime periods divided into week days (WD) and week-end days (WE) where eat day isitself

divided into 4 houly periods (i.e. 6 * 4). A four houly periodis cdled an EFA period. This
terminadogy will be used throughou al the problem design and solving stages. For example a
contrad profile that covers 4 houly periods 3, 4 and 5 duing Monday to Friday is defined by
the foll owing loadshape, where x is the volume (dedasion veriable) to instantiate:

WD345

EFA [WD1 | WD2 | WD 3| WD4 | WD5 | WD6 | WE1 | WE2 | WE3 | WE4 | WES | WE6

MW 0 0 X X X 0] 0] 0] 0] 0] 0] 0]

2.3 Algebraic model

The dgebraic model structures and formulates the user requirements aroundthe foll owing items:
sets and indices, inpu data, constraints, dedsion variables and cost function [3]. It is presented
below.

2.3.1 Setsandindices

Let P={p,..., p} be aset of profiles (load shape, duration, strike price).

Let C ={c,...,C} be aset of contrads (profiles + fixed vaume).

Let M ={m,...,mz} be dl the monthsin the rolling yea.

Let | ={i,..,ix} be aset of 12 EFA time periodindices, where the first six indices denote EFA
periods for week days andthe last six, EFA periods for week-end cays.

2.3.2 Inpu data

* Relativeto aprofilep

price(p) - initia priceof the profile.
name( p) : name of the profile.

* Relativetoa mntrad c.
It contains the information inherited from the arrespondng urique profile.

duration(c) . list of months covered by the cntrad.

str_price(c) . strike price of a cntrad. It isapiecewise linea function defined by the
initia profile price plusfive pence per 50 MW.

tot _cover(c) : total number of base loads covered by the contrad (computed using the
EFA system scding).

shape(c, i) : base load for the EFA periodi inthe WD/WE load shape (i [({1,...,12}).

+ Rdativeto demand forecast



The inpu data for demand are average data that transform the 365 x 48 matrix into a 12x12
matrix. This is the aurrent users pradice that consders the average demand for a week per
month and dvides the 48 helf houly periods into 6 * 4 houly periods. A digtinction is made
between week days and week-end days to match with the contrad profil es.

demAvr(m i) . average demand. It represents the average demand per day in a month m.
A WD can be acce=d uwsingindices i in{1,...,6} , anda WE using indices
iin{7,..12%.

denmlot . total demand over the whdefinancia yea.

» Relativeto pod priceforecasts

pPppAvr(mi) . average Pod Purchase Price forecast data for eadh EFA period i
(11..12) of month m.
pspAvr(mi) . average Pod Selling Price forecast data for eady EFA period i

(11..12) of month m.

* Rdativetothe mnstraints

max Vol = 500GWh, maximal volume of cover allowed per contrad.

di st Dem = 500 GWh, maximal difference between total contrads cover and total
demand.

max Cost = 15M£, maximal grossvalue (volume times grike price) of a contrad.

2.3.3 Dedsionvariables

cvol(c) : volume of a contrad c, initialized to the semi-continuows interval [0,10,..,500.
_ [0if the ontrad isnot seleded
- % 10 otherwise (< 500

bod(c) : bodean variable indicaing whether a wntrad cis €leded or nat.

2.3.4 Constraints

The @nstraints are the aurrent rules of the company. They are hard constraints unless geafied
otherwise.

1) Thevolume of a mntrad iseither 0 ar greder than 10
Oc JC:10% bod(c) < cval(c)
Oc 0C:100000 x bod (c) = cvol(c)
2) The volume mvered by eat seleded contrad shoud na exceaed 500GWh.
OcOC:tot _cover(c)x4xcvol(c) < maxVol
3) The gross value (strike price times volume mvered) of eadh sdleded contrad shoud na
excea 15million pound.
OcOC:tot _cover(c)x4xcvol(c)xstr_ price(c) <nmaxCost
4) The company is under-covered against demand by nomore than 500GWh in the rolling 12
months.

deniot —di st Dems< ; DZ t ot _cover (c)x4xcvol(c) <deniot
Cl wOW|wduration(c)

5) The company is left under-covered against demand by nomore than a given percentage in
therolling 12months (80-100%).

0.8xdenTot < ; t ot _cover (c) x4 xcvol(c) < denfot
Cl WOW|w

uration(c)



6) The company shoud be cvered by a given percentage of the 80%-100% of the demand

forecat for each EFA of ead averaged monthly week.
OmOM,0i 01,

0.8xdemAvr (m,i) < Zshape(c,i) xcvol(c) <demAvr (mji)

c0c| miduration(c)

2.3.5 Objedivefunction (criteria to ogimize)

The airrent criteriato minimize ae:

* The expeded energy cost over the financial yea.
fenergy_cost = > demAvr (mi)x pspAvr (mi)-

mOM 0

( Z(4xcvol (c) xbod (c) xshape(c,i)) x (pppAvr (mi)-stri ke_pr () )

mOM il cO0C|mCduration(c)

* The demand exposure.

fdemand = > » |demAvr (mi)- % (cvol(c) x bool(c) x4 x shape(c,i))

mOM i cOC|mXime(c)

3. FIRST PROTOTYPE

Our first objedive isto ensure that the constraint set is consistent and that the solution produced
is redigtic to the users. This gage has been addressed by Euro-Dedsion and IC-Parc with
dightly diff erent implementations of the dgebraic model.

3.1 Deterministic model for the wre problem

In order to focus on the feasibility chedk, we mnsider one main dedsion criteriato ogimize the
demand exposure. The reason is that we do nd know yet abou any correlation between the
demand exposure and the expeded energy cost. Thus by working with ore aiterion we hope to
make sure with the users that the optimized solutionis acairate and redistic.

3.1.1 Asaumptions made

Thefirst prototype is built using the foll owing assumptions:
» Consider aset of 20 dfferent profil es (loadshape, duration, price)
* Condder dl the mnstraints given by the user
* Consider one demand and priceforecat at atime
* Minimizethe demand expasure mainly

3.1.2 Mode for the objedivefunction

The demand exposure is a sum of distances between demand forecat and contrads cover, i.e. a
sum of absolute values’. An absolute value can be modeled either using two inequality
constraints or by introducing a difference of two pasitive variables and minimizing their sum.
We used the semond alternative sinceit considers twicelessconstraints. Even thoughit introduces
new variables, it maps better with the dgorithm we used. This corresponds to the following
formulation:

? In the under cover case the demand shoud always be greaer than the cntrac cover thus the difference must be
paositive. But since we dso considered the over case where the difference ca be negative, we defined a generic
model for the demand expaosure.



OmOdM,0i O1,
goalPlus(m,i) -goalMinus(m,i) =denmAvr (m,i) - ;shape(c,i)X4xcvoI(c)><boo|(c)
cOC|mCduration(c)

The function to minimizeis z Z goalPlus(m,i) +goalMinus(m,i) .

mOM il

3.1.3 Two dfferent models

A study d the mathematicd fedures of the dgebraic model showed us that the problem
formulation describes a pure integer linea programming model.

IC-Parc’s model. 1C-Parc first coded the dgebraic model as a Constraint Satisfaction Problem
(CSP [12] using the ECL'PS Il platform [10]. The objedive was to investigate how good CP
can perform on this type of problems. The dedsion variables range over discrete domains and
correspond to the mntrad seledion variables (in [0,1]) and the @ntrad volumes (in
[0,10,..500]). The objedive functionisto minimizethe demand exposure.

Euro-Dedsion's moddl. Euro-Dedsion coded the dgebraic model as an Integer Linea
Programming (ILP) model using the LP-Todlkit® system. The objedive function is a weighted
sum of demand exposure (high weight) and expeded cost (small weight). Since a ontrad cost
depends on its volume, this approach leals to a nontlinea expeded energy cost function. In
order not to handle nontlinea functions, Euro-Dedsion creded a piecewise linea function by
generating an a priori set of contrads for ead profile (10) with an associated vdume and fixed
cost.

3.2 Resolution algorithms

3.2.1 UsingECL'PS

IC-Parc chedked the mnsistency of the constraint set by applying constraint propagation and a
simple labelling pocedure on the mntrad seledion first. Infeasibility of the cnstraint set was
deteded duingthe constraint propagation plese. It appeaed clealy that some of the @nstraints
6) aone were inconsistent. We relaxed the lower bounds imposed by constraints 6) on the
coverage of contrads, the problem becane feasible. IC-Parc then seached for optimal integral
solutions using kranch and bound This turned ou to be very inefficient unless we devised
powerful heuristics based on the expeded value of the ntrads and their coverage power.
However, due to the linea nature of the model, IC-Parc dedded at this point to use alinea
solver. The model presented previousy was then solved using the Mixed Integer Linea
Programming library of ECL'PS (CPLEX [4]). We obtained in 3-4 seconds an ogtimal solution
to the relaxed problem on a Sparc Server 2 170 (two 167Mhz CPU’s) depending onthe data
set. The relaxed problem consists of allowing the mntrad’s volumes to take red values. The
computed solutions correspond to an MILP model where the bodean variables take discrete
values and the @mntrad volumes take red values.

The solver failed to find ogimal integer solutions for contrad volumes in a limited amourt of
time. However, users mentioned at this dage, that the integrality constraint over the wntrad
volumes was nat a hard ore. In pradice traders compute red values for the contrad volumes
and roundthem to get integer values which are eaier to ded with their clients.

° Modelli ng language of Euro-Dedsion, seehttp://www.eurodedsion.fr



3.2.2 Using LP-Tod kit

Euro-Dedsion wsed a Mixed Integer Programming solver (OSL) to solve the feasible model.
The integral case was gudied by considering a preprocessng model where 10 contrads were
generated for ead profile, and their respedive strike price were fixed and totally ordered. In
this model the energy cost is part of the objedive function, so the solutions obtained differ from
IC-Parc ones. The seledion d contrads attached to a same profile, is such that one contrad is
seleded orly if the volume of the previous contrad (in price ordering) has readed its maximum
vaue (50MW). This is dore atomaticdly thanks to the global behaviour of linea
optimizaion. Althoughthis approacd requires the handing d a predefined number of contrads
per profile, it alows usto have an exact pre-computation d the expeded value of ead contrad
(used in the expeded energy cost criterion).

On a SunSparc 10 workstation, solving the relaxed problem (volume variables take “red”
values) took 24 semnds. An integer solution was avail able dter abou 3 minutes using kranch
and boundseach (withou proof of optimality). It was lessthan 0.015% far from the optimum
of therelaxed problem.

3.3 Resault & Analysis

The initial problem definition had no feasible solution kecaise the problem was over-
constrained. Indedd, the lower bounds of the constraint set 6) required the @ntrad cover to be
a any time & most at 80 % of the demand curve. In fad, high pe&s of the demand curve muld
never be 80% covered by the mntrads avail able due to their very flat shapes (as oppased to the
high fluctuations in the demand curve). The solution to this problem was either to relax the
lower boundconstraints (into soft constraints) or to alow for new profil e shapes that would be
more flexible. Both approades have been implemented bu we only presented the first one.

Condtraint relaxation hes been achieved by introducing god variables. The modeling technique
cdled “Goa programming’[2] comes from Operations reseach and ams a solving ower-
constrained problems as unconstrained ones where the objedive is to try to satisfy a set of soft
constraints as much as posshle. Goal variables introduce adistance that expresss the degree of
satisfiability of a @nstraint. Minimizing the distance ams at reducing the degree of
unsatisfiability of a @nstraint. In ou applicaion, the model for the relaxed constraint set 6)
corresponced to the modeling d the demand expasure, where we introduced a goal variable in
ead constraint, and minimized their sum as part of the objedive function.

Conwvincing the usersthat their initial problem had nofeasible solution was naot an easy task. But
they finally acknowledged that the lower bound on contrad coverage imposed by constraints 6)
corresponced to an ided case. In pradice Supgiers allow themselves to bre& the rules. Figure
3 shows a solution produced with agoal programming model. The irregular curve represents the
demand forecast, and the more regular curve represents the @ver of the seleded contrads. The
days are numbered from October 1 1998to September 30 1999 Clealy some pe&ks in winter
(e.g. days 40 to 100 could na be mvered at 80% by the given contrad profiles. The
discontinuity at day 151 ill ustrates the shift between winter and summer in terms of contrad
profiles and demand forecast.



volume per week

—#—20051.22723
——21674.93455

Volume (MWh)

52 weeks

Figure 3: Solution with unconstrained lower bounds

4. SECOND PROTOTYPE

The objedive of the first prototype was to investigate the feasbility and algorithmic issues. We
defined and modeled the problem as a pure wmbinatorial seach problem by making a set of
asumptions that ignaed the ill -defined aspeds. the st function was reduced to ore main
criterion (the demand exposure), and the data were nsidered knavn with certainty. The
prototype gave us alot of fruitful insight to the problem and showed that:

» The feashbility ched helped the user seang that a set of hard constraints needed to be soft

constraints and that new profil es were required.
* Therelaxed constraint set was easily solvable by mixed integer linea programming methods.

However, it was clea that the set of assumptions made was too restrictive with resped to the
client's expedations. Also, it highlighted that the adual complexity of the problem lies in its
definition andmodeling rather than its slving. Consequently, the main dredion for further work
was to concentrate on the definition d the red problem and its redistic modeling. The main
points to be aldressed were the modeling d uncertainty relative to the inpu forecast data, and
the modeling d a multi-criteria objedive function. Both aspeds are very complex issies in
terms of modeling and solving (whether one uses mathematicd programming a constraint
programming). In the second pototype, IC-Parc dedaded to work on the multi-criteria
comporent.

The smplest approach to model multi-criteria optimizaion problems is to define aunique st
function as a weighted sum of all the aiteria. However, when the users do nd know explicitly
the correlation ketween the different criteria it is very difficult to weigh the aiteriain aredistic
manner. SO IC-Parc dedded to buld a deterministic multi-criteria model by means of an
interadive visual system. The objedives were 1) to study the correlation between two well -
defined criteria: the demand exposure & a risk measurement and the expeded profit, and 2 to
visuali ze the solutions when tuning the st function. This required an extension d the dgebraic
model. This sdion describes the demonstrator built by 1C-Parc to addressthese objedives.



4.1 Multi-criteria model

Given:

» Eledricity demand and priceforecasts 12x12average matrices

* A set of 20 contrad profiles (duration, unit price, and load shape)

* A set of hard and soft constraints that set bound onthe locd and dobal contrad coverage,

Find the contrad volumes that:

e Minimizethe demand exposure,

* Maximize the epeded profit (sum of expeded value of ead contrad multiplied by the
volume of cover).

The epeded value of one contrad is defined by the diff erence between the pod price forecast
for ead EFA period covered by the mntrad and the ontrad strike price The dgebraic

formulation d expeded profit per contrad is.
OcOC,

Ez (pppAvr (mi) xshape(c,i)
foroit(C) = cvol(C) x T z shape(c.l)

-str_price(c)

I

The total expeded profit isthe sum of ead expeded profit: Z forofit(C)

cc
The model considers dternatively one of the two criteria in the objedive function and
constrains the other one by setting bound onits passble value.

4.2 Algorithm

The users provided us with a list of preferences to gude the dedsion making process Even
thoughit was difficult to classfy these preferences in a mathematica or hierarchicd way it
appeaed that the seledion d contrads with pasitive expeded value was appropriate. So we
considered this well -defined heuristic.

We developed a graphicd interfacein TCL-TK [14] to make the seledion d criteriainteradive,
and to visualize the solution poduwced. Via the demonstrator interface users could seled an
objedive function among 1) maximize the epeded profit, and 2 minimize the demand
exposure. They could set dynamicdly a global constraint to restrict the bound on the non
optimized dedsion criterion.

Since the model has an MILP structure similar to the one solved in the first prototype, the MILP
library of ECL'PS proved to beided. Some graphicd solutions areill ustrated in appendix A.

4.3 Results

The results obtained provided us with good material to analyze the relations between the two

criteria and their influence on the solutions produced. When ogimizing on ead criterion

independently we obtained very diff erent results that can be summarized as foll ows:

* Minimizing the demand exposure rresponds to a pure two dmensiona bin packing problem
(minimizethe uncovered spaceby pitting as many oljeds as passble in the spacs.

* Maximizing the expeded profit corresponds to a pure knapsack problem (maximize the total
profit by seleding as many contrads as possble that fit into the two dmensional space.



The adual problem is neither of them, but a compromise between padking and krepsack.
However, sinceonly the dedsion maker knows which combination is best, we generated a set of
solutions based on ore aiterion while cnstraining the other one (and vceversa). Thisled to the
drawing d an efficient frontier (function d one aiterion against the other one) depicted in figure
4. It isapowerful means for the deasion maker to make informed judgments.
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Figure 4: Efficient frontier

The figure shows that both criteria work against ead ather. The minimal exposure (2742 MW)
corresponds to the worst profit, and respedively the optimal profit per unit (435 EMW)
corresponds to the worst expaosure. An explanation is that contrads with goodsurfaceof cover
speaadly in high pe&s of demand in winter (which minimize epaosure) have low or negative
expeded value and thus do nd bringapriori any profit.

The demonstrator had many pasitive results. First it helped us understanding faster abou the
criteria arrelation and their impad of the solutions produced in avisual manner. Seoond, it was
a powerful communicaion too between developers and wsers. It helped the users express and
refine their requirements. Finaly, it has been used to demonstrate Utility companies what could
be dore with the mnstraint techndogy with resped to “risk management dedsion suppat
systems’.

However, some alditional requirements nealed to be fulfill ed before we readed a “good model

of the user’ sred problem. These requirements were:

e A revison d risk measurement. Demand exposure & defined dd nad represent a financia
measure of risk sinceit was formulated as a quantitative measure of eledricity cover.

e Deding with urcertainty in the inpu data sets. Data were forecast data whose uncertainty
needed to be considered and modeled.

5. THE STOCHASTIC NATURE OF THE PROBLEM

For spedfic “problem understanding’ purposes, the first two prototypes considered a
deterministic model of the energy trading problem, where we aaumed that the input data were
known with certainty. But the problem of “risk management in energy trading’ is essentiadly a
stochastic problem. The inpu data ae forecast data whaose reliability is uncertain. Making
dedsions under such condtions of uncertainty (data subjed to changes) is core to this
combinatorial problem.



Deding with urcertainty is gill a broad reseach topic in constraint programming and
combinatorial optimizaion in general. There is no clea answer as to which model shoud be
used to model the data and assessthe risksin the dedsion making process This edion describes
a risk model propased by IC-Parc that attempts to measure and assss the risk in demand
exposure, aswell asasmulation model developed by Bouygues that evaluates the risk fador.

5.1 Risk model

The users sy “Riskisalways related to the risk of not making profit which is affeaded by demand
exposure and pod price eyposure. The weight on demand and pice risks varies depending on
the time of the yar and the time of the day. To atrader, the demand exposure is actualy the
exposure of availahility. Indeed, the lack of eledricity available at peak periods is the main
cause for high pice fluctuations. Thus, there is a high cost associated with buying eedricity
when there isno paver set available at stand-by condtion. Hence the pricewill not be too high
at off peak period even if demandis a lot higher thanexpeded. Thisis because there is enough
avail ability to supdy the unexpeded rise in demand”

It is clea that asessng and measuring the risk is esential to this problem, as well as finding
methods to control it. However, the risk fador is gill ill -defined. At this dage of the projed the
deregulation d the dedricity market has been pcstpored and the dient has abandored his sach
for aDSSdue to company re-organizaion isales. |C-Parc and Bouygues were having nofurther
advise from the dient in deriving nrew models.

Based onthe dowe trader’s remark, |C-Parc defined a wmncept of risk exposure that expresses
demand exposure in money terms. The idea @nsists of attaching a level of risk to ead EFA of
uncovered demand. The leve is defined by introducing a st fador based on a percentage of
the forecast pod price This alows profit and risk exposure to be measured in a cmmon cost
unit.

The inpu data model remains unchanged: eledricity demand and pod price 12x12matrices. In
apre-processng step, arisk fador is computed for ead pant of the 12x12matrix by taking into
acourt the nature of the pe&s in demand, i.e. how high they are and when dothey take place
(which EFA period). So for ead demand period d the 12x12 matrix is associated a function
fecthat returns a percentage of the pod forecast price We mnsidered three different
percentages:

e 30% (highrisk) if exposure greaer than 100MW.

e 10% (medium risk) if exposure greaer than 50MW (lessthan 100MW).

e 0% (low risk) if exposurenil.

The function f.. becomes the indicaor of risk adversity. When minimizing the risk one shoud
am at covering high pe&s in demand in a better way than while minimizing demand expaosure.
This approach shoud idedly be an elegant compromise between the bin padking and the
knapsadk models highlighted previoudly. Testing the validity of the risk function together with
the value of the percentages, was part of the allaboration ketween IC-Parc and Bouygtes.

Thus, the new model isbased ontwo criteriato ogimize
* Minimize risk exposure. Risk exposure is very close to the definition d demand exposure
but contains the extra percentage fador. We have:



OmOM,0i OI,

fis(mi) = |demAvr (mi)= 5 (shape(c,i) x cvol(c)) x frerc(m,i)

cOC|mOduration(c)

The risk exposure function to minimizeis defined byz Z fris«(m,i) .
mOM it

 Maximize peded profit. The expeded profit of one mntrad is the same & in the previous
model Z forofit(C) such that:

cac

Uc OC,
(pppAvr (mi) xshape(c, i)

Zshape(c,i)

farait(C) = cvol (C) x 3™ -str_price(c)

[

5.1.1 IC-Parc’ demonstrator

IC-Parc extended the demonstrator presented in sedion 4 with the risk exposure aiterion.
Optimal solutions to the MILP model were foundin 1sec on a Sparc Server 217Q The multi-
criteria optimizaion was dore by considering the risk exposure & the st function, and
constraining the expeded profit to range within restricted bound. We ran a set of experiments
on minimizing the risk exposure. They showed us that the risk exposure function we have
creaded dd na influence the solution dfferently than the initial demand exposure function
(withou a risk fador). One reason could be that the contrad profiles provided as inpu data,
were too regular in shape to fit high peaks in demand whatever the risk exposure was. Ancther
reason could be the dhoice of the Pod price percentages attached to the risk fador. If this
percentage istoo low for high periods of demand then it does not push any contrad to fulfill the
gaps. We have tuned this percentage severa times and it did na yield tremendous variations on
the solution.

The demonstrator pointed ou that the deregulationin the energy trading market would definitely
require energy tradersto consider new types of profiles. Current profiles sem too redtrictive. In
fad, an ICL consultant in the field confirmed this point and expressd the ideaof introducing
options and aher derivatives in the portfolio management system. However, at this dage of the
problem understanding, this would have extended qute cnsiderably the fuzzinessof the model
and poblem formulation.

5.1.2 Bouygues solve

The main olgedive of Bouygtes, as far as the deterministic risk model was concerned, was to
investigate how goodconstraint programming with locd seach techniques could perform against
the MILP solver. The seach agorithm is a Least Discrepancy Seach (LDS) [8], i.e. a branch-
and-boundagoarithm with a control over the depth of the seach treeto be explored, extended
with the gready heuristic of best expeded profit. The branching is dore on the seledion o
contrads. The heuristic determines the best contrad to pick. Then we aeae a toice paint with
two branches: “to pick or not to pick the seleded contrad”. Note that the seledion is dynamic
becaise the expeaed profit of a mntrad depends on the patential volume (a priori unknawvn) that
might be seleded. Thisagorithm isincomplete becaise we do nd try all possble volumes (from
a predetermined interval): we ather pick the maximal admissble volume (from its domain) or
we dedde not to pick any (seeFigure 5).
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Figure 5: Branching scheme on the picking o contracts

There is no evaluation d a lower-boundfunction kecause the few smple estimates we tried dd
nat yield interesting results (not enough puning pover). Propagationis very smple and limited
to upditing the maximal admissble volume for ead contrad (whether the wntrad is picked or
nat).

Because this algorithm uses no lower boundng, it is nat adequate for solving a large problem.
However, Bouygues naticed that the first branch at ead nock is amost always a good choice
sinceit correspondto a “ good” heuristic. When applying an LDS strategy we explore the sub-
treeof the seach spacewhere right branches (contrad refusals, on the right side of a graphicd
top-down representation) can be picked alimited number of timeslessthan avaueK. For K =0,
no contrad is refused and the heuristic of best expeded profit direds the seledion. For small
values of K we have apadynomia algorithm (the degree of which is K). In fad this approach
amourts to fixing the minimum number of contrads to be picked. If n (15in ou case) is the
initial number of passble mntrads, LDS constrains usto have & least n -K contrads sleded.

Bouygles agorithm is approximate: ead solution found at a noce is feasible, but the optimal
solution may be missed, either becaise the wrong contrads were seleded (rare) or becaise the
wrong vdumes were asgned (frequent). We rreded this last problem using a locd
optimizaion method

Local Optimization in CLAIRE’. The locd optimizaion step is cdled at eah nock of the
previous each tree Its goa is to improve the ast function (expeded profit minus expeded
risk) while keegoing the previoudy seleded values for ead contrad volume within the final
bound that were established duing the seach. Ead contrad volume ranges initialy in an
interval [0 .. MaxVol] which must contain the final value that will be eventually seleded. A
dedsion in the seach tree has an impad on this interval in arder to limit the domain to be
explored in the locd optimizaion. The goal isto try to increase the volume of contrads. This
amourts ether to increasing the airrent volume of a @ntrad by an increment or to pushing a
contrad that was not yet seleded (volume nil) in the portfolio. Namely, if we have assgned the
volume of a wntrad Cvol(i) to Vol (in[MinVoal .. MaxVol]) alocd move from this nocde of the
seach tree orresponds to an dternative dhoice aleft choice moves the MinVol value (initialy
0) to Vol + increment, and a right choice moves MaxVol to the airrent value of the volume
Cvol (seeFigure 6).

* Seehttp://www.dmi.ens.fr/users/laburthe/claire.ntml



Cvol(i) = Vvd

Cvol > Vol y \ Cval <=Vd

MinVol =Vol +inc MaxVol =Val

Figure 6: Local optimization step

Locd moves are made using a simple push model. For any new contrad we ad a small quantity
(using afixed increment). This addition to the mntrad volume might creae some over-cover for
the global portfolio of contrads. We remove the excessusing a greedy heuristic. The greedy
heuristic is based onremoving the most significant contributor to the over-cover, using at most
the exad quantity that makes it the most significant contributor. A move is positive if the
volume obtained after this substitution is better than the original. We seach for al possble
moves (for al contrads) and seled the best one. We stop as oonas there is no dtrictly pasitive
move, that is there is no improvement. To speead upthe mnvergence process we use aset of
deaeasing increments for pushing rew contrads and we end the locd optimizaion pocedure
only when noincrement can produce an improvement.

As mentioned previoudly, the quantities that can be alded or removed duing a locd move ae
bounded by the interval [MinVol .. MaxVol]. This ensures that the locd search started at two
different nodes will not produce the same solution.

5.1.3 Results

Bouygles obtained the optimal solution wsing smply the grealy algorithm and the locd
optimization step. This sems to be nothing more than a wincidence since we have observed a
small but significant difference between LDS(3) and LDS(0) on randamly generated problems,
where 3 and Orepresent different values of K (number of discrepancies allowed). Bouygues ran
comparisons with IC-Parc’s approach on 3 dff erent problems only, but the estimate is that LDS
seach isdefinitely closer than 1% from optimal.

From a modeling acarracy paint of view, the risk fador does not seem to influence the dedsion
making pocess A more insghtful analysis of this point will result from the next model: the
simulation model.

5.2 Simulation model

Bouygues designed a simulation model based ona set of smple probability distributions for the
two sets of data parameters: the demand and the pod price The (crude) model refleds our
limited understanding d demand and pod price forecast. Although it refleds what was
expressed by expertsin the field, it shoud na be taken at facevalue but is rather an interesting
indication d what can be acomplished through simulation. The job d colleding a redistic
statisticd model for demand and pod priceforecast remainsto be dore.

Short-term demand forecasting is usually very predse. The avail ability of a wedth o data has
produced predse models. Longterm demand forecasting, on the other hand, is adversely affeded
by two things. First, eledricity demand is grondy correlated with climate variations, that are
hard to predict six months in advance Sewmnd, there ae afew spedal days in the yea (such as



the acedent of Lady Diana) that are hard to predict and that creae pedks which cause major
troudes.

5.2.1 Description

Bouyges model for demand isto add two corredive termsto the forecast values:

* A randam uniform distribution (within +/- 8%) that is drawn for ead month which refled the
climate variation.

* A sguaed randam distribution (within +/- 16%) that reflea spedal occasions that could na
be forecasted. A different value isdrawn for eat day.

Similarly, the smulation model for the pod priceis defined as the sum of 1) origina forecast, 2)
climate variation (same term as for the demand model), and 3 a randam uniform distribution
(+/- 10%) that refledsthe “ ndse” aroundthe pod price The market games that define the pod
price make it extremely volatile and there is no well -establi shed model for forecasting pod price
since it is linked to demand fluctuations. The variation bound that we used to instantiate the
model refled our current understanding d the model. However, because this model is © crude
and ou understanding so incomplete, we adualy tested four scenarios, that correspondto the
following parameters:

* Scenario O climate variation +/- 10%, spedal days +/- 25%, pod pricevariation +/- 15%

* Scenario 1 climate variation +/- 8%, spedal days +/- 16%, pod pricevariation +/- 10%

e Scenario 2 climate variation +/- 6%, speda days +/- 9%, pod pricevariation +/- 8%

e Scenario 3 climate variation +/- 4%, speda days +/- 4%, pod pricevariation +/- 4%

Scenario 0 introduces more fluctuations, while scenario 3is the dosest to the forecat demand
and pod price The principle of the smulation is smple. Each run d the smulation daws a
randam distribution for demand and pod price The aciated profit isthen computed acording
to the formula. Bouygues performed 100 separate runs and computed the mean value and the
standard deviation d the profit.

5.2.2 Resultsandlessons learnt

Table 1 presents the results using the four scenarios in the smulation model. For eat scenario
we give the mean value of the profit p and the standard deviation in the form p £ x. The risk
fador indicaes how much we considered the risk function.

Risk faaor Scenario 0 Scenario 1 Scenario 2 Scenario3
0.0 1955+ 0.541 | 2146+ 0.397 | 2.257+ 0.292| 2.32+ 0.186
0.03 1538+ 0.379 | 1803+ 0.261 | 1.934+ 0.173| 2.00+ 0.102
0.1 0.903+ 0.306 | 1348+ 0.209 | 1.613+0.132| 1.755+ 0.072

Table 1: Different Scenariosfor the Smulation M odel

The dgorithm used was the grealy agorithm. A reading from left to right shows that the
undesirable side-effeds (high ceviation) tend to dsappea if the forecast is closer to the redity
(scenario 3), as we might exped. Still it i s interesting to seethat there is nat a single instance
where the risk-fador in the @st function makes nse. The reduction in the standard deviation
(minimized risk) is aways obtained with a bigger reduction in the mean value of the profit (loss
of profit).

The lesons we have leant from this st of experiments may be summarized as foll ows:



* The risk-fador is not meaningful to the problem. Although we obtained a significant
reduction d the standard deviation, thus minimized the risk, this is at such an expense in
terms of average profit that it does not make any business ense. We tried dff erent values of
the risk fador but there was no good @ue. The Stuation depends obviously on the price
distribution d the set of contrads. Moreover, different data set from the ones provided by the
users could have yield dff erent results.

* The energy trading problem is a stochastic problem. Trying to solve it while ignaiing the
stochastic nature makes nse only if there is a didadic purpose in using a deterministic
model.

e Simulation helps to validate amodel and its econamic function. It provided us with a lot of
insights abou the businessimpli caions of the model.

6. CONCLUSIONS

In this paper we have presented a cae study in risk management deding with “how to tadle ill -
defined applicaions using constraint techndogy’. We have shown the use of iterative
prototyping combined with technicd means to address incomplete comporents of a problem
definition. The gproadh hes highlighted aspeds we believe ae esential and which are:

Credo 1 lIterative prototyping is an adequate development process that allows an incremental
refinement of the model with the users. However, its use sets requirements on having
high level modeling languages like ECL'PS and CLAIRE, to enhance and tune the
model in an efficient and flexible way.

Credo 2 The first modd shoud idedly be smple enough (no urcertainties) to chedk the
adequacy and validity of the wre problem formulation. If it is infeasible, goa
programming is an efficient modeling technique to ded with over-constrained problems.
Users are often reluctant to admit that their model has no feasible solution.

Credo 3 Multi-criteria optimizaion appeas in most red world applicaions and is often
cumbersome to model. When the arrelation between the different criteria is not well
establi shed, a weighted oljedive functionis unredistic. We believe that optimizing on
one aiterion while @nstraining the othersis a pradicd approad to seach for potential
correlation. Also, the use of an interadive visua interface on top d a DSS is an
excdlent means to draw efficient frontiers and allow the users to make informed
judgments.

Credo 4 Building simulation models is a pradicd and cost effedive means to get more insight
on ill-defined problems when seaching for the alequate problem definition (e.g. cost
function). Simulation models can be eaily designed using constraint techndogy.

This geaulative work led us to refine the definition d the problem with the users. However, in
terms of modeling urcertain data and assessng the risks, more work is required. In this find
sedionwe present diredions for future reseach work in dedsion making unar uncertainty [5].

6.1 Risk and dedsion making

Risk management deds with uncertainty in the occurrence of an urforeseen event (a change in
demand a price data), and the impact on the dedsion making pocessif the unforeseen event
ocaurs [9]. Since the 50s, risk management problems have been tadkled by mathematicd
programming tools based on dility theory, dedsion theory, and game theory (e.g. see[11][1])
but to ou knowledge @nstraint programming hes not yet been used na contributed to this
applicaion damain.



From a “dedsion theory” point of view, dedson making undr uncertainty commonly means
that no probability distributions of the data ae avail able or can be seaured a priori [15]. Our risk
management problem exemplifies this stuation. Demand and pice data may experience
seasonal variations and trends. They are non-stationary (time dependent). Therisk liesin having
a portfolio of contrads that is exposed to any randam fluctuation. Designing an adequate data
model isa mmplex task. It istadkled in mathematicd programming wsing approximation models
(figure 7).
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Figure 7: Approximation modelsfor data representation

The data ae ather 1) reduced to a certainty case, and thus considered deterministic, 2) attaded
to randamly generated probability distributions, or 3) attached to well studied probability
distribution generated by forecating models. The dhaiceis usualy driven by the nature of the
data’. Eadh type of approximation corresponds to a mathematicd model for dedsion making
under uncertainty: a smple deterministic model, randam stochastic models, or stochastic models
resulting from a forecating model. Deterministic models average the data by their mean and
reduce the problem to ore under certainty. Stochastic models are based on generating probability
distributions and studying the best and worst case scenarios. Forecasting models are designed to
deted trends and seasonal variationsin past data and are usually the basis for a future reasonable
stochastic model.

The results we have presented in sedions 3 and 4 correspondto the first approximation: dedsion
making unar certainty. Even thoughwe introduced a dedsion criterion that measures risk as the
demand exposure, our deterministic data representation dd na reflea the uncertainty in trends.
In sedion 5we presented some experiments based ona simulation model. This requires further
work among which an inpu from the dient to adjust the modd and introduce probability
distributions. Concerning the use of forecasting models to identify trends and seasonal patterns
in the data, our client explained that forecating methods even thoughreliable for short term
planning, are naot reliable for long term planning (one yea in ou case). They are not worth
considering for analyzing trends and fluctuation in eledricity demand and pricedata.

6.2 Future work

One natural diredion is to develop a better smulation model and to perform more complete
experiments. We dso nedl to find ancther cost function that represents a better model for risk.

® Several methods exist to charaderize data; they are mainly based onthe mmputation d their mean and variance
(measure of the spread, degreeof uncertainty)



This can be dore in an empiricd manner using a smulation tod or with a more analyticd
approacdh based on risk charaderizaion, meaurement and control [9]. Many dfferent
approades can then be taken to buld approximation models amongwhich:

Introduwing stochastic models in constraint programming. We ould generate probability
distributions, and consider a well-defined cost function such as maximizing the difference
between the mean and the standard deviation d the profit.

Substituting the stochastic goproach with a sampling strategy. We may suppcse that we have a
finite set of scenarios that are represented by pod price and demand forecast, and that our godl
iIsalso to minimize a ombination d mean and worst case profit. Sinceit is clea that we have
reatied a good uné@rstanding d how to solve the basic problem, we ae well equipped to
attack a multi-sample version. Approades based on case-based dedsion theory can then be
considered (see[7]) andintroduced in a cnstraint programming framework.
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Appendix A

The first screen presents a @ntrad portfolio that maximizes the expeded profit. The initial
demand forecat is siown in the badkground as a chart model of the 12x12 matrix (12 EFA
periods per month). The seleded contrads are drawn ontop d the demand forecast and listed in
the small window (with their volume of unit cover). The @ntrad names gedfy which time of
the yea the antraad profiles correspondto (O for October, W for winter, S for summer, and A
for annual), and which EFA period they cover.

Uncovered demand (MW) : 6958

Expected profit (£) : 428.0

wDE12W : 50 MW
wDWEL12W : 20 MW
wEZ456R @ 39 MW

Dismiss |

Qct

| |

Dismiss | MNumetical results |

The second screen presents a portfolio that minimizes the demand exposure. A different set of
contrads was produced with different associated vdumes. One can seethat it covers the demand
forecat more dosely (seeEFA periods 5 and 6in November). The anourt of uncovered demand
was reduced by more than half but the expeded profit has dropped from 4288MW to 251
£/IMW.

Uncovered demand (MW) : 3304

Expected profit (£) : 251.0

15445 @ 12 MW

wDEL2W : 11 MW
wDWELZW : 47 MW
wE3456R : 27 MW
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