
HAL Id: hal-01742387
https://hal.umontpellier.fr/hal-01742387v1

Submitted on 24 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancing Set Constraint Solvers with Lexicographic
Bounds

Andrew Sadler, Carmen Gervet

To cite this version:
Andrew Sadler, Carmen Gervet. Enhancing Set Constraint Solvers with Lexicographic Bounds. Jour-
nal of Heuristics, 2008, �10.1007/s10732-007-9028-0�. �hal-01742387�

https://hal.umontpellier.fr/hal-01742387v1
https://hal.archives-ouvertes.fr

Enhancing Set Constraint Solvers with

Lexicographic Bounds

Andrew Sadler and Carmen Gervet

Imperial College, London SW7 2AZ, U.K.

Abstract. Since their beginning in constraint programming, set solvers
have been applied to a wide range of combinatorial search problems, such
as bin-packing, set partitioning, circuit design, and Combinatorial Design
Problems. In this paper we present and evaluate a new means towards
improving the practical reasoning power of Finite Set (FS) constraint
solvers to better address such set problems with a particular attention
to the challenging symmetrical set problems often cast as Combinato-
rial Design Problems (CDPs). While CDPs find a natural formulation
in the language of sets, in constraint programming literature, alterna-
tive models are often used due to a lack of efficiency of traditional FS
solvers. We first identify the main structural components of CDPs that
render their modeling suitable to set languages but their solving a tech-
nical challenge. Our new prototype solver extends the traditional subset
variable domain with lexicographic bounds that better approximate a
set domain by satisfying the cardinality restrictions applied to the vari-
able, and allow for active symmetry breaking using ordering constraints.
Our contribution includes the formal and practical framework of the new
solver implemented on top of a traditional set solver, and an empirical
evaluation on benchmark CDPs.

Keywords: Constraint Programming, Artificial Intelligence, modelling lan-
guages.

Introduction

Combinatorial Design Problems are NP-hard problems which have applications
in areas as diverse as error-correcting codes, sport scheduling, Steiner systems
and more recently networking and cryptography (e.g. see [13] for a survey).
They deal essentially with the search for families of sets with certain properties
subject to constraints including intersection and cardinality restrictions. Such
problems find a natural and concise formulation in the language of Finite Sets
but they exhibit properties that make them hard to solve with existing Finite
Set solvers. While a combinatorial design problem is defined in terms of discrete
points, or sets, in the Constraint Logic Programming framework it is modeled as
a constraint satisfaction problem (CSP) with variables representing the points
or sets and having a domain of values. Conceptually these domains are sets of

possible instantiations but in practice it is often a requirement that the domains
be approximated for efficiency reasons.

Consider the domain of a set variable known to be a subset of {1, ..., 100}.
There are 2100 = 1267650600228229401496703205376 possible values for this set.
Clearly an explicit exhaustive enumeration of domain values is space prohibitive.

A common approach to approximating variable domains is to use upper and
lower bounds (where ”upper” and ”lower” are defined by some appropriate or-
dering on domain elements) which are known to enclose the actual domain.
Finite Set (FS) domains are ordered by inclusion (the subset ⊆ order) and have
bounds which are ground sets e.g. X ∈ [{1}, {1, 2, 3}]. The lower bound, de-
noted glb(X), contains the definite elements of the set,{1}, while the upper
bound lub(X), contains in addition the potential elements {2, 3}. The set do-
main attached to X specified by the interval [glb(X), lub(X)] describes the set
of values: {{1}, {1, 2}, {1, 3}, {1, 2, 3}}.

The constraint reasoning is based on local bound consistency extended to
handle set constraints [43, 21]. Set constraints are built on the set inclusion
relation together with set operations symbols ∩,∪, \, || (cardinality) applied to
set variables. We refer to such finite set constraint systems as ”traditional subset
bound solvers”, which are basically in the Conjunto style described in [23]. The
subset bounds representation is compact and benefits from interval reasoning
techniques which allow us to remove at a minimal cost set values that can never
be part of any solution. However, it can cause important inferences to be missed
and in general the bounds are not possible solution values. This is one of the
three main deficiencies we have identified in traditional subset bound solvers.

The second one concerns the reasoning with graded functions, such as the
set cardinality or weight constraints. The basic propagation rules of such solvers
did not make active use of the cardinality information. The cardinality func-
tion (||) maps from a set of values to a single value. In the context of subset
bound solvers it allows the modeller to tackle a wider range of problems than
Finite Set constraints alone including optimization problems. For example if we
consider the system of constraints: X, Y ⊆ {a, b, c, d}, |X| = 2, Z = Y \ X, one
should be able to infer that |Z| ≤ 2, which is not the case in traditional subset
bound solvers. By separating, for example, the cardinality information from the
domain of the set variable, the system is depriving itself of potentially valuable
information which could be used to speed the search for a solution.

The third one is strangely also one of their advantages. By choosing to model
problems with finite set variables, as opposed to many other possible approaches,
one is often avoiding the introduction of symmetries into the model itself. For
instance, instead of having a single variable s1 to represent a 3 element set, one
could model the set as a vector of FD variables (x1, x2, x3) with each variable vi

being used to hold a single element of the set when it becomes known. In such a
model however, the vectors (1, 2, 4) and (4, 2, 1) would both represent the same
set. This is an example of a symmetry induced by the model. Clearly, when sets
are core to the problem structure a set model is at once close to the high-level
natural description and less prone to modelling induced symmetries. However,

there are other types of symmetries such as sets-of-sets symmetries which often
occur in the problems that we consider. Traditional subset bound solvers do
not allow set variables to contain other set variables as elements. Hence such
modelling symmetries can still exist at the set variable level.

In this paper, we present a novel approach to strengthen constraint propa-
gation and reduce symmetries actively. Our enhanced Finite Set solver features
a ”hybrid” domain representation. The idea, first presented in [49], consists of
strengthening the propagation of FS constraints in a tractable way, by extending
the concept of subset bound domain. We introduce lexicographic bounds to more
closely approximate the true domain of a set variable, specially by guarantee-
ing that the lexicographic bounds satisfy the cardinality restrictions (unlike the
subset bounds), and thus strengthen constraint propagation. This total ordering
also allows us to curtail set symmetries in a simple and effective manner using
lexicographic constraints (unlike subset bounds).

This paper is mainly based on the Ph.D. dissertation of A. Sadler [46]. It is
structured as follows. In section 2 we survey recent advances in FS solvers, that
address some of the deficiencies we described, often in ways complementary or
orthogonal to our approach. Section 3 defines the class of problems we address.
Section 4 introduces the concept of hybrid set domain that enriches traditional
subset bounds with lexicographic bounds. In section 5 and 6 we describe the
operational semantics and implementation of the new solver. Section 7 evaluates
the approach. We give some directions for further developments in section 8 and
conclude in section 9.

1 Related work

Subset bound solvers have shown their flexibility and modelling abstraction in
representing discrete optimization problems (e.g. [2, 4, 15]). The solver removes
inconsistent set values by pruning elements of the subset domain bounds that
can never be part of any feasible solution [43, 21, 23]. As the use of subset bound
solvers has increased and new application domains have emerged as candidates
for set solvers, their limitations have become clearer. These are chiefly due to the
poor domain approximation, the ineffective use of set cardinality information,
and the difficulty of curtailling set symmetries.

Though implementation details vary, at their core the finite set solvers of
SOLVER [29], ECLiPSe [50], FACILE [3], MOZART-OZ [39, 40], B-Prolog [59] and
CHOCO [33], all have the subset bounds as domain representation. In recent years,
much research has focused on improving finite set solver effectiveness. It explores
i) new set cardinality inferences, ii) the development of global set constraint, iii)
the search for more expressive set domain representations, iv) the application of
symmetry breaking techniques to sets.

The Cardinal solver of Azevedo is a subset bound solver, which offers en-
hancements intended to strengthen the use of the cardinality information [1].
Traditional set solvers such as Conjunto have a cardinality component but use
the cardinality information (and other graded functions like weight) in a uni-

directional way, meaning that when a set domain gets refined its cardinality is
pruned. Azevedo’s work exploits new inferences with application to digital cir-
cuit diagnosis and warehouse location [2, 1]. The main strength of Cardinal is
the stronger pruning of the cardinality component through additional cardinal-
ity inferences associated with each basic set operation. The solver combines arc
consistency and bound consistency on the set cardinality. While this enables to
detect unfeasibility in cases and reduces the cardinality bounds further, it affects
the set bounds essentially upon instantiation. The system cannot create a strong
interaction between the cardinality component and the set bounds component
because of the set domain representation (sets of equal size are incomparable).
A total lexicographic ordering addresses this point in particular by representing
the cardinality information in the set domain itself (i.e. lex bounds). Also, the
cardinality inferences do not address the issue of active domain pruning using
symmetry breaking constraints.

The work on global set constraint propagators is also motivated by con-
straint reasoning in the presence of cardinality information together with im-
proving domain approximation. It focuses mainly on deriving effective global
propagators for symbolic constraints which are most common in discrete search
problems involving sets, such as atmost1, distinct, stating respectively that
n sets of known cardinality should intersect pairwise in atmost one element, or
not be equal [47], or the disjoint and partition constraints for sets of known
cardinality [29, 48, 7]. Theoretical results helped determine whether such global
constraints could infer anything more than their decompositions [58], as well as
determine the tractability of a range of global set constraints [7]. Their practical
effectiveness yet remains to be shown.

Regarding the effectiveness of set domain representation, Hawkins, Lagoon
and Stuckey propose a radically different approach to the standard subset bound
domains [34]. They show that Reduced Ordered Binary Decision Diagrams (ROB-
DDs) [9] can be used to represent full domains efficiently. Basically they consider
a set domain with all its possible values and use existing efficient C libraries to
represent such a domain with ROBDDs and demonstrate techniques for combin-
ing ROBDDs in ways that correspond to basic FS constraints (e.g. ∈, ||,⊆,∩,∪).
Recently, the ROBDD approach was evaluated on different set domain represen-
tations showing the flexibility of the approach to implement any set domain
representation [26], including the lexicographic bounds first introduced in [49].
The authors carried out a comprehensive and comparative evaluation of the dif-
ferent domain representations using ROBDDs on several standard benchmark set
problems [26]. The high performance results when compared with common set
solvers demonstrate, in particular, the synergy between the ROBDD data struc-
ture and most domain representations including lexicographic bounds. Note that
this synergy is strongly dependent on the relative ordering of ROBDD variables
when representing set constraints. An optimal ordering of the boolean variables
guarantees a linear representation for binary and ternary set constraints except
for the cardinality which requires a quadratic number of ROBDD nodes [26].

The identified weaknesses of traditional subset bound solvers have been par-
tially overcome via these extensions. While we first researched towards deriving
global set constraints to overcome some of these weaknesses [47, 48], the analysis
of the characteristics and behaviour of the global constraints lead us to propose
a more general and extensible approach to achieving our aims. The approach
presented in this article does not alter the set based constraint model and is
complementary to the Cardinal approach (the rules of Cardinal can be added
if necessary), and orthogonal to the ROBDD approach and global set constraint
approach.

Finally, it is worth mentioning recent advances in symmetry breaking tech-
niques to sets [4, 16, 51]. In particular, [51] prove that a successful and tractable
symmetry breaking technique during search over integer domains based on dom-
inance detection, becomes NP-hard for set models that contain set variables and
value symmetry. This could suggest that adding static symmetry breaking con-
straints to the model can be a practical venue for set variable symmetries. Our
approach goes in this direction.

2 Challenging problems

To this date, set solvers have been applied to tackle small and large size com-
binatorial search problems ranging from bin packing [21], set partitioning [41,
23], digital circuit [2], and more recently combinatorial design problems [4, 34,
26, 46]. We focus here on CDPs, because they have application in very diverse
areas, find a natural formulation in the language of sets, but are especially hard
to solve with existing set solvers. We identify the key properties they feature, as
a preliminary step towards improving set solvers suitability.

Combinatorial Design Problems (CDP) find a natural formulation in the lan-
guage of sets: ”The concept of configuration is a mapping of a set of objects into
a finite abstract set with a given structure” [6]. When the finite abstract set
is composed of subsets each of fixed size k, these subsets are known as blocks.
Traditional instances of CDPs that involve blocks are often found in combina-
torial and design theory [12], but real world problems such as tournament and
conference scheduling [10], and cryptography [13], also frequently exhibit this
structure. Their significance is felt acutely in real world applications such as op-
tical network design and routing (WDM, DWDM, SONET). CDPs are amongst
the most challenging problems to solve due to their structural properties and
symmetric setting. While the approach presented in this article is suitable for
any set problem, it was first motivated by the concise formulation, yet inherent
difficulty set solvers have when addressing combinatorial design problems. In
this section we study the structural properties of CDPs from a set modelling
perspective pointing at the challenges they raise for set solvers.

Combinatorial design falls under the combinatorics branch of discrete mathe-
matics. It concerns the enumeration side of combinatorial design analysis, where
it is not sufficient to just know that a configuration exists, but it is also necessary

to see the configuration explicitly instantiated. That is, to see the arrangements
of objects in the finite abstract set.

Definition 1. (Combinatorial Design Problem - CDP) Characterised by the
base set of objects (A) and the collection of constraints (C) that define the struc-
ture of an abstract set (S), find (A, S), a mapping (or assignment) of elements
from A into S such that C is satisfied.

A solution to a CDP therefore, is an assignment of base objects into the
structured set such that the constraints are satisfied. The following network
design example illustrates, in more concrete terms, the type of problem that can
be classified as a CDP.

The SONET problem arises from the deployment of transmission technology
over optical fibre networks .

The network contains a number of client nodes and there are known
demands (in terms of numbers of channels) between pairs of nodes [55,
54]. A SONET ring joins a number of nodes; a node is installed on a
SONET ring using a ‘add-drop multiplexer’ (ADM) that is capable of
adding and dropping the traffic (quite prohibitive). Each node can be
installed on more than one ring, and traffic can be routed between a pair
of client nodes only if they are both installed on the same ring: there is
no traffic allowed between rings. There are capacity limits on the rings
(in terms of both nodes and channels). The objective is to minimise the
total number of ADMs required, whilst satisfying all demands.

For a given number of ADMs, the problem becomes one of satisfaction i.e.
can the given traffic demands be met, and how many rings are required. In this
satisfaction problem, the base set of objects are the client nodes, which must be
assigned to the structured set of SONET rings. The CDP constraints are simply
the constraints of the problem mapped in the natural way. Using this CDP
as an example we will now briefly introduce four key properties which CDPs
exhibit and which can be exploited to more efficiently solve them. Not all CDPs
have these properties, and those that have some may not have all. However, the
following characteristics are to be found in most CDP problems.

Let us first clarify what we mean by the term structured set as it has bearing
on the properties we define. A set s is structured when it contains semantically
significant subsets that correspond naturally to objects in the problem domain
(e.g. one subset per ring, in the above example). Given this structure, a solution
to a CDP can be viewed in one of two ways: 1) as a mapping from base objects
to named (uniquely identified) subsets of s, or 2) as a mapping from named
subsets to base objects (i.e. the direction of mapping is reversed). In the above
example, we could express the solution assignment as a mapping from client
nodes to named rings, or named rings to client nodes. This observation leads to
the simple notion of duality.

Dualisable. Informally, the dual of a CDP is another CDP, where the role of base
objects and named sub-structures have been reversed. The base objects of the
former (primal) CDP take the place of named sub-structures in the structured
set of the dual CDP. Similarly the named sub-structures of the primal CDP’s
structured set become the base objects of the dual CDP. Since the primal and
the dual are CDPs, we can model both naturally with set constraints, and use
either to our advantage when searching for a solution.

Cardinality restrictions. Another consequence of having identified semantically
significant sub-structures is that the constraints of the problem will almost al-
ways impose restrictions on the sizes of these sub-structures, for example, the
maximum number of ADMs on any given ring. These problem constraints trans-
late to cardinality constraints in the set model, either fixing or otherwise con-
straining the cardinality of set variables. As has been mentioned earlier, existing
solvers do not reason strongly with these sorts of graded function constraints.

Intersection constraints. Often the relationship between sub-structures will be
defined in terms of the elements that they have in common. For example if there
is a traffic demand between two nodes, then the rings over which that traffic
is routed must be accessible to both source and destination nodes. In the dual
model for the above example, the rings on which two routers sit (i.e. the dual
sub-structures) must have a non empty intersection if there is a traffic demand
between them. Such intersection constraints are often combined with cardinality
constraints (e.g. non empty intersection:: |s∩ s1| 6= 0) and, as mentioned above,
such propagation can be improved.

Symmetries. Finally, the problem of inherent problem symmetries such as set-
of-sets symmetries apply to many CDPs. For example in the above problem, we
can permute the ring sub-structures of any valid assignment and we would still
get a valid assignment.

Existing computer-based approaches to tackle CDPs with complete solvers were
proposed early nineties and are essentially based on Integer Programming (IP)
and finite domain Constraint Programming (CP). Each paradigm requires a high
level of expertise to derive a good model, and often relies on hybridization to
improve effectiveness. Both use 0-1 matrices based on the characteristic vector
representation of a set (e.g. [24, 55, 37, 53, 54]).

It is our initial motivation to be able to express CDPs by natural and intu-
itive Finite Set models and have these models solved effectively. To achieve this
we need to improve the ability of FS solvers to reason with the four commonly
occurring CDP properties mentioned above: dualisable, cardinality and intersec-
tion restrictions, and value and set symmetries. Our contribution is to actually
do so by enriching the expressiveness of a set domain.

3 Hybrid set Domain

Notations. We use the following naming convention, where the letters a, b, c, d, e, f
are suffixed by the set variable names (which will be one of X, Y, Z). When we
refer to numeric elements of the domain we use the lowercase letter x, when we
refer to set values from the domain we use the lowercase letter s. Throughout
the paper, we use the abbreviation FD for finite (integer) domain and FS for
finite set domain.

This section presents the new concept of hybrid set domain: a new type of
bounds for the approximation of FS variable domains. In addition to approx-
imating the actual domain, these bounds represent actual set instances which
satisfy the cardinality restrictions. To the best of our knowledge, this is the first
time that a domain approximation with this property has been used for Finite
Set solvers.

3.1 Lexicographic Bounds - The FD Analogy

The use of lexicographic bounds to represent set variables allows us to: 1) keep a
compact representation for set variables, 2) build upon the analogy with bounds
reasoning for integer variables and its efficient and effective constraint propa-
gation e.g. the all_different constraint of [44]. Indeed, if we think of a FD
variable as a FS variable constrained to have exactly 1 element, then the do-
main of the FD variable corresponds directly to the lub of the FS variable. The
min/max bounds of the FD domain are the smallest/largest elements in the
lub. Extending the idea of min/max bounds to FS variables with arbitrary (and
non-fixed) cardinalities will require a suitable total order on the FS domain ele-
ments (as ≤ totally orders the FD domain elements). The bounds representation
[min,max] for integer variables is space and time efficient for simple operations.

Recently, new algorithms for global constraints showed how Generalized
Bounds Consistency (bounds consistency for n-ary constraints) offers a great
balance between effectiveness in constraint propagation and efficiency (e.g [45]).
This has been possible for two main reasons:

1. There is a total order on the elements of the interval domain, allowing for
the definition of a total order among the variables based on their bound
representation.

2. Integer variables take as assignment a single value, thus the bounds represent
potential assignments (unlike subset bounds).

We now investigate which of those strengths we can expect to inherit with a
proper representation of totally ordered set bounds. We propose a new bounds
representation for set domains based on an ordering different from the subset
order. The ordering is lexicographic and we define lexicographic bounds denoted
〈inf, sup〉. This new ordering relation defines a total order on sets of natural
numbers, in contrast to the partial order ⊆. We use the symbols ≺ (and �) to
denote a total strict (respectively non-strict) lexicographic order.

Definition 2. Let � be a total order on sets of integers defined as follows

X � Y iff X = ∅ ∨x < y ∨ (x = y ∧ X \ {x} � Y \ {y})
where x = max(X) and y = max(Y)

max denotes the arithmetically largest element of X or Y .

Example 1. Consider the sets {1, 2, 3}, {1, 3, 4}, {1, 2}, {3}, the list that orders
these sets with respect to � is [{1, 2}, {3}, {1, 2, 3}, {1, 3, 4}].

This lexicographic ordering for sets is not the only possible definition, nor
is it, perhaps, the most common when talking about sets. Its use comes from
two reasons: 1) for sets of cardinality 1 it is equivalent to the ≤ ordering of FD
variables and 2) usefully, it extends the ⊆ ordering and we have:

Theorem 1. ∀X, Y ∈ P(N) : X ⊆ Y ⇒ X � Y

Proof. If X ⊆ Y then either X = ∅ in which case X � Y for all Y , or ∅ ⊂ X ⊆ Y
in which case consider the max elements of X and Y (namely x = max(X) and
y = max(Y) resp.). Since X ⊆ Y we have that x ≤ y because X contains no
elements greater than those in Y , so if x < y then clearly by definition x ≤ y. If
x = y then we consider the next largest elements in each set and our arguments
hold recursively (since sets are finite). ⊓⊔

Theorem 1 is subsequently used in the hybrid domain to make inferences
between the two bounds representations for set variables (we also use this equiv-
alent implication with the direction reversed ∀X, Y ∈ P(N) : x 6⊆ Y ⇐ X 6� Y).
Consider the following example, as an illustration of what can be inferred.

Example 2. Suppose we know that a particular set X is lexicographically bounded
upwards by the set {3} (i.e. X � {3}). The above inference tells us that any
set strictly greater than {3} can never be a value for X. By definition, any set
containing any number greater than 3 (>) is lexicographically greater (≻) than
{3}, and hence we can conclude that such numbers can never occur in X and
should be removed from the lub.

If we view sets from their characteristic functions (i.e. 1 if an element is in
the set, 0 otherwise), our ordering can be considered the same as the decreasing
lexicographic order applied to the zero-padded 0/1 characteristic vector repre-
sentation of a ground set.

More explicitly, for any two sets of integers X and Y , and their corresponding
characteristic vector representation X and Y in decreasing order, we have the
following equivalence:

X � Y iff X ≤lex Y

Example 3. Consider X = {4, 1} and Y = {4, 3, 2}, equiv X = [0, 1, 0, 0, 1] and
Y = [0, 1, 1, 1, 0].

Clearly we have X � Y and X ≤lex Y

A common use of this ordering is in search problems to break symmetries
(e.g. on SAT clauses [14] or on vectors of FD variables [17, 19]). It is important
to note that this is not the use to which we put the ordering here. We use this
ordering on ground sets as a means to approximate the domain of a FS variable
by upper and lower bounds w.r.t. this order. We will show in a later section how
we can implement a constraint to enforce the order between FS variables.

Multisets In the context of multisets, the lexicographic ordering can be extended
naturally by considering variants of the ”lexicographic elements list” approach
(i.e. write out the multiset in decreasing order and compare), or equivalently the
”lexicographic occurrence vectors” approach (i.e. instead of occurrence value
being simply 0 or 1, it defines the number of times an element appears). This
leads to an ordering of multisets based on the ordering of the elements within
the multisets (<) [31]. Since the element order is simply the natural order (<)
on integers, this ordering coincides with the lexicographic order we use.

3.2 Comparing Lexicographic and Subset Orderings

Let us consider the subset domain specifying the powerset P({1, 2, 3, 4}). Sets
of equal size are incomparable under ⊂ relation. On the other hand, with the
≺ relation we can create the totally ordered list of sets from the greatest to
the smallest: [{4, 3, 2, 1}, {4, 3, 2}, {4, 3, 1}, {4, 3}, {4, 2, 1}, {4, 2}, {4, 1}, {4},
{3, 2, 1}, {3, 2}, {3, 1}, {3}, {2, 1}, {2}, {1}, ∅].

Note that the sets above have been written with their elements in arithmetic
decreasing order, and all sets ”beginning” with a common sequence (e.g. all sets
beginning with {4, 3}) are to be found together. Similarly all beginning with {3}
are together, though not all the sets containing {3}. It is this grouping property
of the lex order, combined with its extension of the ⊆ order (Theorem 1) that
motivated the use of a co-lexicographic or decreasing ordering, because it is at
the heart of the hybrid inference rules.

If the increasing lex ordering �inc were considered instead, we would loose
the fundamental property of Theorem 1 and there would be no relationship
between the subset and lex bounds. For instance, the totally ordered list of
sets with this ordering from the greatest to the smallest is: [{4}, {4, 3}, {3},
{4, 2}, {4, 3, 2}, {3, 2}, {2}, {4, 1}, {4, 3, 1}, {3, 1}, {4, 2, 1}, {4, 3, 2, 1}, {3, 2, 1},
{2, 1}, {1}, ∅]. We have

{1, 3} ⊆ {1, 2, 3} 6⇒ {1, 3} �inc {1, 2, 3}

Given that the lexicographic order embeds the partial inclusion order (The-
orem 1), one could wonder whether it can replace it altogether.

Pros The lexicographic bounds overcome two major weaknesses of the subset
bounds. They enable the active use of 1) the cardinality constraints, and that
of 2) symmetry breaking constraints, with a strong and effective interaction
between both.

Cardinality reasoning The lexicographic bounds describe set values that satisfy
the cardinality constraints, unlike the subset bounds. The core reason is that
sets of equal size ordered lexicographically are comparable, which is not the
case under set inclusion. Thus the subset bounds can not be pruned subject to
cardinality changes, except upon instantiation or unification with another set
variable.

Example 4. Let the set X take 2 or 3 elements from {5, 4, 3, 2, 1}. The sub-
set bounds representation can not yield tighter bounds when considering the
cardinality restriction. We have X ∈ [∅, {5, 4, 3, 2, 1}]. However, with the lex
bound representation, we can directly prune the bounds. Let the initial bounds
describe the same initial domain X ∈ 〈∅, {5, 4, 3, 2, 1}〉 (25 = 32 unique sets).
When propagating the cardinality constraints, we are able to tighten the domain
to 〈{1, 2}, {3, 4, 5}〉 (26 unique sets). If the set cardinality becomes exactly 2 then
we have the lex bounds 〈{1, 2}, {4, 5}〉 which contains only 22 sets.

Symmetry breaking We illustrate below that applying symmetry breaking con-
straints between sets using a total ordering that coincides with the set domain
ordering guarantees effective propagation. The inclusion (partial) ordering on
the other hand, does not exploit symmetry breaking constraints actively.

Example 5. Let the sets X, Y range over a subset domain [{}, {1, 2, 3, 4, 5}]. An
ordering constraint between X and Y , X � Y (using Definition 2) will not prune
the subset bounds essentially because the domain ordering is partial and does
not coincide with the ordering constraint. On the other hand, with lex bounds
the initial bounds would be identical and the ordering constraint yields the new
domains: X ∈ 〈{}, {2, 3, 4, 5}〉, Y ∈ 〈{1}, {1, 2, 3, 4, 5}〉. We deduce that X has
atmost 4 elements, and Y contains atleast 1 element.

From this example, one can also see the interaction between the ordering
constraint and the set cardinality when reasoning upon lexicographic bounds.

Cons Despite its success allowing cardinality and symmetry breaking con-
straints to filter the set domain more actively, the lex bound representation
is unable to always represent certain critical constraints. Primary amongst these
constraints is the inclusion or exclusion of a single element. Such constraints are
not always representable in the domain because the lex bounds represent possi-
ble set values and not definite and potential elements of a set. Thus the subset
bound information needs to be kept.

Example 6. Consider the lex bound constraint X ∈ 〈∅, {1, 2, 3, 4}〉. The con-
straint 1 ∈ X yields new lex bounds of X ∈ 〈{1}, {1, 2, 3, 4}〉. Unfortunately not
all sets which lie in this range contain the element 1 (eg. {2, 3}). However the
constraint 4 ∈ X allows us to prune the bounds to X ∈ 〈{4}, {1, 2, 3, 4}〉 where
all the sets in the range do contain 4 by definition of the lex ordering.

It is the inability to capture such fundamental constraints efficiently in the
domain that lead us to consider a hybrid domain of subset and lexicographic
bounds.

3.3 Domain representation

The hybrid set domain extends the subset domain representation with extra
bounds representing the lexicographically smallest and largest instantiations of
the set, and bounds for the cardinality of the set.

The following table summarises the different domain approximations at hand.
We use [glb, lub] to denote the set of all sets which contain glb and are contained
in lub. We use 〈inf, sup〉 to represent the set of all sets which come after inf
and before sup in the � order.

type domain order minimal maximal

FD N ≤ (total) min max
FS (P)(N) ⊆ (partial) glb lub
FS (lex) (P)(N) � (total) inf sup

Formally, inf and sup denote the unique meet and join operators in the
totally ordered lattice (P(N),�) where P(X) is the powerset of X such that:

Property 1.
s � s1 ⇔ s = inf({s, s1})
s � s1 ⇔ s1 = sup({s, s1})

We represent the bounds which constitute the domain of a set variable as
X ∈ [aX , bX]|cX , dX |〈eX , fX〉, where aX/bX are lower/upper bound w.r.t. ⊆,
cX/dX are lower/upper bound w.r.t. |X| (cardinality), eX/fX are the smallest
lower/greatest upper bound w.r.t. �. We will in fact for the sake of brevity,
overload the ∈ symbol further and use X ∈ [aX , bX]|cX , dX | to indicate that the
variable X lies within the powerset lattice [aX , bX] and has cardinality in the
range cX ..dX .

Definition 3. A hybrid domain D =< [aX , bX], |cX , dX |, 〈eX , fX〉 > is such
that:

1. aX ⊆ eX ⊆ bX , aX ⊆ fX ⊆ bX : The definite elements (aX) are in both lex
bounds, and these bounds do not contain any element which is not a possible
one (bX)

2. |aX | ≤ cX , dX ≤ |bX |: The size of the subset bounds is an outerbox for the
set cardinality bounds.

3. |eX |, |fX | ∈ [cX ..dX]: The size of the lex bounds belongs to the range specified
by the cardinality bounds.

The hybrid domain specifies the set {s | aX ⊆ s ⊆ bX , cX ≤ |s| ≤ dX , eX �
s � fX}.

4 Execution model

The execution model describes the constraint solving in the elected constraint
domain. It is a top-down execution model which defines the operational seman-
tics of the system. The model describes how the constraints are processed and
what they lead to. In our case, it basically extends the subset bound constraint
model presented in [23] to deal with lexicographic bounds in a hybrid domain.
The idea consists in (1) constraining each set variable to range over a hybrid set
domain, and (2) enforcing local consistency, i.e. removing some values of the set
domains that can never be part of any feasible solution by pruning the various
interval bounds. This is achieved by making use of local consistency adapted to
the handling of the finite set constraints over a hybrid set domain.

4.1 Preliminaries

A finite set model, formulates a CDP as a set constraint satisfaction problem
(set-CSP) with variables representing the points or sets and having a domain of
values. A classical constraint satisfaction problem (CSP) models combinatorial
problems in terms of relations (constraints) specified over a set of variables with
corresponding domains of possible values. A set-CSP is a CSP where the vari-
ables can be set variables or integer variables. The solving of a CSP is handled
by interleaving constraint propagation (domain reduction) and search. The con-
straint propagation can be formally defined by the level of consistency enforced
for each constraint or system of constraints. When dealing with domains which
are approximated by bounds, the common cost effective approach ensures that
the bounds of the domain, when assigned to the variable, can be extended to
a complete assignment. This notion of bounds consistency is used in many FD
solvers where bounds are the min/max domain elements. When dealing with FS
domains represented as bounds ordered by the ⊆ relation, the bounds (glb/lub)
cannot, in general, be extended to a complete assignment because, among oth-
ers, of the presence of cardinality restrictions e.g. X ⊆ {1, 2, 3, 4}|X| = 2, not
all subsets of {1, 2, 3, 4} have 2 elements. A notion of Set Bounds Consistency
describes the consistency level achieved. It is recalled below.

Let the function symbol sol denote a particular solution to a set-CSP such
that si = sol(Xi) should be read as si is the value of the set variable Xi in
the solution sol with support in the other variables. The set of all solutions
to a set-CSP is represented by the symbol sol+. Let C(S) denote a constraint
relation C applied to a set of set variables S.

Definition 4. (SBC) For a general constraint C(S), such that sol ∈ sol+
C(S),

to be Set Bounds Consistent (SBC), the following two conditions must be met:

1. for Xi ∈ S, for x ∈ lub(Xi) ∃ sol ∈ sol+
C(S) : x ∈ sol(Xi)

2. for Xi ∈ S, (∀ sol ∈ sol+
C(S)(x ∈ sol(Xi))) ⇒ x ∈ glb(Xi)

The constraint must be satisfiable. All elements in the upperbounds of set variable
domains must occur in at least one solution (1). Any element which occurs in a
given set in all solutions must be in the lowerbound of that set variable domains
(2).

Definition 5. A primitive set constraint is a set constraint that involves only
one set constraint or a set operation in relational form (e.g. X = Y ∩ Z).

Definition 6. An admissible system of constraints is a system of constraints
such that every set variable X ranges over a set domain.

4.2 SBC+

The notion of SBC needs to be revised for our hybrid set domain. The main
issue is that the hybrid set domain uses multiple bounds to specify a set, and
associates to it its cardinality bounds.

Let us consider the hybrid set domain as a two dimensional box where one
dimension corresponds to the set value and the second to the cardinality value.
This representation views the hybrid domain as one constraint relation subset of
the cartesian product [c, d]× [e, f] commonly called a box (the lex bounds are an
inner approximation of the subset bounds). Ideally we wish to derive the tightest
possible box that satisfies a constraint such that the lex and cardinality bounds
can belong to a solution, but the best that can be guaranteed effectively for all
set constraints is a smaller box such that the subset bounds are SBC and the
other bounds enclose the solution. Therefore we extend the SBC notion above
to SBC+ with a fourth condition.

Definition 7. (SBC+) Given a constraint C, over the set of variables S, C is
SBC+ if and only if:

– There exists sol ∈ sol+
C(S) for C(S) to be SBC, and

– for Xi ∈ S, (sol(Xi), |sol(Xi)|) ⊆ [inf(Xi), sub(Xi)]×[min(|Xi|),max(|Xi|)]

A set solution value must be between its lex bounds and its cardinality between
the cardinality bounds.

A set-CSP is SBC+ if and only if each constraint in it is SBC+.

In other words, SBC+ ensures that for a satisfiable constraint, all elements
in the subset lower bounds belong to all solutions, elements in subset upper
bound belong to atleast a solution, and the lex and cardinality bounds contain
the solution value.

4.3 Enforcing local consistency

The consistency notions define conditions to be satisfied by the different bounds
in the hybrid domain so that a set constraint is SBC+. This is achieved by re-
peatedly removing unsupported values from the hybrid domains of its variables.

The essential point is that a refinement of all bounds allows us to prune a do-
main. Reducing the set of possible values a set could take can be achieved either
by reducing the subset bounds (extending the collection of definite elements of
a set i.e. or by reducing the collection of possible elements i.e.) or pruning the
lex bounds or cardinality bounds in the usual FD sense, w.r.t. their respective
orderings. All computations are deterministic.

Approach We define the operational semantics of the new hybrid FS solver as
a system of logical transformation rules which must all be satisfied. To avoid
unnecessary duplication of content, and to focus precisely on our contributions
to the state of FS solvers, we assume that some mechanism is already in place
to enforce:

– SBC over a standard subset bound solver for the subset bounds of our hybrid
domain, and

– Standard FD bounds consistency for the cardinality bounds and arithmetic
constraints.

The relevant inference rules can be found in [23]. We present essentially the
new inference rules pertaining to the lexicographic bounds with respect to the
domain and primitive constraints.

Since this is a constraint system, it is possible to have a system which is
unsatisfiable. In the event such a system is detected, we introduce the syntactic
constraint fail to indicate that the store in unsatisfiable. Also for clarity we
adopt the notation that any ”primed” bound (e.g. a′

X) appearing in the inference
indicates the new value of that bound in the new state.

For the hybrid domain constraint Consider the domain constraint X ∈
[aX , bX]|cX , dX |〈eX , fX〉. Inferring its local consistency, SBC+, amounts to pos-
sibly pruning each interval present in the domain such that the various bounds
of our hybrid domain hold according to our representation and semantics of a
hybrid domain as given in Definition 3, and that the conditions stated in De-
finition 7 hold. In particular we must ensure that i) any set solution value Xi

must be between its lex bounds, and ii) |Xi| between its cardinality bounds.
This is enforced by pruning the subset bounds from the lex bounds (rules 1–2),
the cardinality bounds from the subset and lex bounds (rules 3–4), and the lex
bounds from the subset and cardinality bounds (rules 5–6).

It derives that enforcing SBC+ yields tighter subset bounds than SBC be-
cause the lex bounds enable the addition of new elements to the glb and the
removal of elements from the lub. This is depicted by the following rewrite rules
describing the conditions to be satisfied by each bound (and its potential new
value):

IR 1 a′
X = aX ∪ {x

∣

∣x ∈ eX ∩ fX ∧ ∀x′∈(eX∪fX)\(eX∩fX) x′ < x}

IR 1. states, in essence, that any elements which form a common “beginning”
to both lex bounds from the max values, should be part of the glb. Thus changes

to the lex bounds can impact the glb. For instance if eX = {5, 4, 3} and fX =
{5, 4, 2} then we infer that 5 and 4 are required elements to be included in aX

since any solution set value inbetween eX and fX contains those elements.

IR 2 b′X = bX \
{

x
∣

∣{x} ∪ aX ≻ fX ∨
(

dX − |aX | = 1 ∧ {x} ∪ aX ≺ eX

)}

IR 2. tells us when elements can never be part of the set because their in-
clusion would violate the lex bounds. There are two such cases, indicated by the
disjunction in the definition of the set of elements to exclude.

– Firstly, no element can be included, which is greater than the max of fX . If
added to the glb this would cause it to be greater than (≻) the lex upper
bound fX which is not possible. This follows from Theorem 1.

– The second case arises when there is at most one more element which could
be added to the set (ie. when dX−|aX | = 1), in such a situation any potential
element if added to the glb must not cause it to be less than (≺) the lex lower
bound eX .

The reasoning goes as follows to remove from the lub (bX) all the elements
that cannot appear in any sets within the lex bounds. We consider all the dif-
ferent cases for a value y ∈ bX . (case 1) If y ∈ bX \ aX and {y} ∪ aX ≻ fX ,
then y 6∈ X since we require X � fX , thus we infer y 6∈ bX . If y ∈ fX ∪ eX

it can not be excluded from X as it is in at least one lex bound. (case 2) If
y ∈ bX \ (fX ∪ eX), and {y} ∪ aX instantiates X (|aX | ≤ dX − 1) such that
X � eX then we require y 6∈ bX otherwise such a set value has no support in the
domain constraint. In the last case y can not be forbidden: y ∈ bX \ (fX ∪ eX)
and |aX | < dX − 2, then we can always find a value z ∈ fX (e.g. z = fXn

) such
that s = aX ∪ {y, z} is consistent.

IR 3 c′X =

{

max(|aX |, cX) if aX = eX

max(|aX | + 1, cX) otherwise

By definition of the hybrid domain and the subset ordering between the
different bounds, we have |aX | ≤ cX ≤ |eX |, |fX | ≤ dX ≤ |bX |. The lower
cardinality bound relates to the size of |aX | and |eX | since eX is the smallest lex
bound that contains aX and whose size is between cX and dX .

If aX = eX then necessarily |aX | = |eX | thus cX ≥ |aX |. Otherwise we have
aX ⊂ eX and since eX � X clearly aX ⊂ X which implies |X| ≥ |aX | + 1 ⇒
cX ≥ |aX | + 1.

IR 4 d′X =

{

min(|bX |, dX) if bX = fX

min(|bX | − 1, dX) otherwise

The upper cardinality bound relates to the size of |bX | and |fX | since fX is
the greatest lex bound subset of bX that contains aX and whose size is between
cX and dX .

We have either fX = bX or fX ⊂ bX . In the first case the lub sets the
maximum number of element any instance of X could have, thus dX ≤ |bX |. In
the second case fX ⊂ bX implies that X ⊂ bX thus by definition of the partial
inclusion ordering we have |X| ≤ |bX | − 1.

IR 5 e′X = inf ({s | s ∈ [aXbX]|cX , dX | ∧ s � eX})

IR 6 f ′
X = sup ({s | s ∈ [aXbX]|cX , dX | ∧ s � fX})

IR 5. defines the new lex-inf as the smallest successor under � of the current
inf such that the domain constraint holds. In a dual manner, IR 6. defines the
new lex-sup as the greatest predecessor of the current sup under � such that
the domain constraint holds. This relates to the following property, essential for
the contracting, inclusion monotone and idempotent properties of the inference
rules.

Property 2. (lex domain inclusion) We have 〈e, f〉 ⊆ 〈e′, f ′〉 iff e � e′ ∧ f ′ � f

Proof.

〈e, f〉 ⊆ 〈e′, f ′〉 ⇔ ∀s ∈ 〈e, f〉 ⇒ s ∈ 〈e′, f ′〉
⇔ ∀s, e � s � f ⇒ e′ � s � f ′

⇔ e � e′ ∧ f � f ′

Together, IR 5. and IR 6. ensure that the lex bounds of the domain can
only undergo monotonic reduction. They derive respectively the smallest and
greatest lex bounds that satisfy the hybrid domain constraint. The rewrite
rules give a declarative definition of the functions. The operational descrip-
tion is given when describing our implementation. This declarative setting is
also used below when describing the new lex bounds of expressions like inf
({s | s ∈ [aX , bX]|cX , dX |〈eX , fX〉 ∧ s � eX}). The reason is that the actual
algorithms depend heavily on the choice of data structures and since there are
many choices, we give the conditions in a data structure agnostic form.

For primitive set constraints We express the logical inference rules as rewrite
rules which operate on a conceptual constraint store when some conditions are
met. The conditions relate to the domain bounds and as such the rules constitute
a data-driven operational description of the solver. Where it is unambiguous
to do so, we omit the domain constraints (i.e. constraints of the form X ∈
[aX , bX]|cX , dX |〈eX , fX〉) from the constraint store. The transformation rules
have the following form signifying that ”the changes occur when the conditions
hold”:

Conditions

{ Changes to the constraint store }

Finally, we use the syntax tell(C) which indicates that the constraint C has
been newly added to the store. It allows the definition of actions which are
operationally associated with such additions.

The hybrid domain constraints must be consistent or the solver fails:

IR 7
eX ≻ fX ∨ bX ⊆ eX ∨ bX ⊆ fX ∨ aX ⊇ fX

{

X ∈ [aX , bX]|cX , dX |〈eX , fX〉
}

7−→
{

fail
}

If the domain becomes empty then clearly we should fail. Again, the fail-
ure conditions that deal solely with the subset or cardinality bounds are not
presented here (see [23]).

The hybrid domain constraint is solved with respect to the lex bounds if:

IR 8
eX = fX

{

X ∈ [aX , bX]|cX , dX |〈eX , fX〉
}

7−→
{

X = eX

}

The following rules present the additional inferences to enforce SBC+ on
each primitive constraint with respect to the lex bounds.

Ordering Constraint - {X � Y }

IR 9
e′Y = inf({s | s ∈ [aY , bY]|cY , dY |〈eY , fY 〉 ∧ s � eX})

{

X � Y
}

7−→
{

X � Y
}

IR 10
f ′

X = sup({s | s ∈ [aX , bX]|cX , dX |〈eX , fX〉 ∧ s � fY })
{

X � Y
}

7−→
{

X � Y
}

The same inferences exist for the strict ordering constraints and it requires
strict total order.

Inclusion (X ⊆ Y) Strict inclusion (⊂) requires strict total orders (≺ and <).

IR 11 {

tell(X ⊆ Y)
}

7−→
{

X ⊆ Y, tell(X � Y), tell(|X| ≤ |Y |)
}

Intersection (X ∩ Y = Z) Similar rules exist for the variable Y .

IR 12 {

tell(Z = X ∩ Y)
}

7−→
{

Z = X ∩ Y, tell(Z ⊆ X), tell(Z ⊆ Y)
}

IR 13
e′X = inf({s | s ∈ [aX , bX]|cX , dX | ∧ |s ∩ aY | ≤ dZ ∧ |s ∩ bY | ≥ cZ})

{

Z = X ∩ Y
}

7−→
{

Z = X ∩ Y
}

IR 14
f ′

X = sup({s | s ∈ [aX , bX]|cX , dX | ∧ |s ∩ aY | ≤ dZ ∧ |s ∩ bY | ≥ cZ})
{

Z = X ∩ Y
}

7−→
{

Z = X ∩ Y
}

Union - {X ∪ Y = Z} Similar rules exist for the variable Y .

IR 15 {

tell(Z = X ∪ Y)
}

7−→
{

Z = X ∪ Y, tell(X ⊆ Z), tell(Y ⊆ Z)
}

IR 16
e′X = inf({s | s ∈ [aX , bX]|cX , dX | ∧ |s ∪ aY | ≤ dZ ∧ |s ∪ bY | ≥ cZ})

{

Z = X ∪ Y
}

7−→
{

Z = X ∪ Y
}

IR 17
f ′

X = sup({s | s ∈ [aX , bX]|cX , dX | ∧ |s ∪ aY | ≤ dZ ∧ |s ∪ bY | ≥ cZ})
{

Z = X ∪ Y
}

7−→
{

Z = X ∪ Y
}

Difference - {X \ Y = Z}

IR 18 {

tell(Z = X \ Y)
}

7−→
{

Z = X \ Y, tell(Z ⊆ X)
}

IR 19
e′X = inf({s | s ∈ [aX , bX]|cX , dX | ∧ |s \ bY | ≤ dZ ∧ |s \ aY | ≥ cZ})

{

Z = X \ Y
}

7−→
{

Z = X \ Y
}

IR 20
f ′

X = sup({s | s ∈ [aX , bX]|cX , dX | ∧ |s \ bY | ≤ dZ ∧ |s \ aY | ≥ cZ})
{

Z = X \ Y
}

7−→
{

Z = X \ Y
}

IR 21
e′Y = inf({s | s ∈ [aY , bY]|cY , dY | ∧ |aX \ s| ≤ dZ ∧ |bY \ s| ≥ cZ})

{

Z = X \ Y
}

7−→
{

Z = X \ Y
}

IR 22
f ′

Y = sup({s | s ∈ [aY , bY]|cY , dY | ∧ |aX \ s| ≤ dZ ∧ |bY \ s| ≥ cZ})
{

Z = X \ Y
}

7−→
{

Z = X \ Y
}

Arbitrary Predicate Satisfaction Constraint (satisfies) The satisfies constraint
relation allows the modeller to enforce arbitrary unary constraints which can
be specified as predicates which must hold for valid values of the set. Rather
than have the modeller create their own bespoke filtering algorithms for their
arbitrary constraints, we provide the following simple unary constraint which
takes a predicate and ensures that the predicate holds for the lex bounds eX

and fX .

IR 23
e′X = inf({s | s ∈ [aX , bX]|cX , dX |〈eX , fX〉 ∧ pred(s))

{

Xsatisfies pred
}

7−→
{

Xsatisfies pred
}

IR 24
f ′

X = sup({s | s ∈ [aX , bX]|cX , dX |〈eX , fX〉 ∧ pred(s))
{

Xsatisfies pred
}

7−→
{

Xsatisfies pred
}

These two inference rules allow any arbitrary predicate defined i) to evaluate
to true for ground sets, ii) to act as a constraint and iii) to interact with the
other more conventional constraints in order to trigger further propagation and
domain pruning.

Properties of the inference rules In a traditional subset bound solver, the
inference rules are proven correct (all possible solutions are kept), contracting
(final domains are subset of the initial domains), and idempotent (the smallest
domains have been computed the first time). The proof is performed by repre-
senting each inference rule as a mapping from a Cartesian product of domains
to another Cartesian product of domains [23].

The main difference here is that each domain is not one single interval but a
box (Cartesian product of intervals with their respective partial/total orderings).
The reasoning on one interval extends naturally to that over a box where each
interval within it satisfies the constraints.

Property 3. Boxes specifying hybrid domains are partially ordered by set inclu-
sion.

Proof. By definition we have [a, b] ⊆ [a′, b′] iff ∀x ∈ [a, b] ⇒ x ∈ [a′, b′]. For subset
bound domains this is equivalent to a ⊆ a′ and b ⊆ b′. For lex bounds this is
equivalent to a � a′ and b � b′ (property 2), and for the cardinality bounds this
is equivalent to a ≥ a′ and b ≤ b′. Thus in the case of a box describing a hybrid
domain we have: [a, b]|c, d|〈e, f〉 ⊆ [a′, b′]|c′, d′|〈e′, f ′〉 iff [a, b] ⊆ [a′, b′] ∧ |c, d| ⊆
|c′, d′| ∧ 〈e, f〉 ⊆ 〈e′, f ′〉. ⊓⊔

Furthermore as each interval is convex the box is convex. As a consequence,
the same approach and results hold as each box is a convex closure of a hybrid
domain. The inference rules above are i) correct since only irrelevant values are
removed from the domains, ii) contracting since the domains can only get refined,
and iii) idempotent since every element that can be removed has been removed
the first time. The inference rules are inclusion monotone since smaller initial
domains yield smaller final domains.

4.4 Operational semantics

The inference rules described so far can be applied to individual constraints.
The operational semantics shows how to check and infer the consistency of an
admissible system of constraints. The consistency of such a system results from
the consistency of each constraint appearing in it. The operational semantics is
described by a standard relaxation or fixed point algorithm [35, 5], which can be
seen as an adaptation of the AC_3 algorithm [38] where domains are specified by
intervals. Our algorithm is similar to the one used for a subset bound set solver.
The only difference between the algorithms lies in the inference rules applied.

Theorem 2. The fixed point algorithm satisfies the standard properties of: ter-
mination, existence of a unique fixed point independent of the constraint order-
ing, and correctness.

It follows directly from the properties of the inference rules (contractance of the
inference rules relates to termination and unicity, idempotence to unicity, and
monotonicity to correctness and unicity properties). The computation of the
fixed point which is unique and independent of the constraint ordering relates
to the structure of the boxes:: propagation methods based on the AC-3 algo-
rithm compute a unique fixed point independent of the ordering of the inference
rules, if the states of the iteration process can be ordered within a lattice and if
the inference rules applied are contracting, idempotent and inclusion monotone
[42]. Older and Vellino show that the contractance and idempotence properties
guarantee the existence of a fixed point. In addition, due to the monotonicity of
the inference rules, the fixed point is unique and independent of the ordering of
the inference rules. In our case, the only things that change during our iteration
process are the bounds within the boxes. Thus the states can be characterized by
the set of boxes. The boxes are partially ordered by the set inclusion within the

lattice of set and integer domains. Additionally, the contractance, idempotence
and inclusion monotone properties are satisfied by our inference rules. Thus, the
generic algorithm has a unique fixed point independent of the ordering of the
inference rules.

5 Practical Framework

The execution model has given us the structure of the hybrid set domain system
whose solver is based on consistency techniques. It constitutes the basis of the
design of a prototype solver. Its functionalities (apart from those of a logic-based
language like Prolog) are set operations and relations from set theory together
with the set cardinality which is partly handled by a finite domain solver. In
this part, we describe the implementation of our prototype which raises among
others the issues of (1) dynamic handling of a system of constraints by means
of delay mechanisms, (2) specific set data structure required to attach all the
relevant information related to a hybrid set domain, (3) algorithms to implement
the inference rules effectively.

We implemented our prototype hybrid-domain solver in the constraint logic
programming system ECLiPSeusing, as a base, the ic-sets library. Therefore,
we begin with a brief overview of the ECLiPSesystem in general and this library
in particular.

5.1 ECLiPSe

Historically the ECLiPSe language is derived from the Prolog family of logical
languages, but has been extended in many directions to make the modelling and
solving of combinatorial problems easier [50]. Perhaps the most important ex-
tensions as far as writting constraint solvers is concerned, is the addition to the
Prolog language of attributed variables [30, 28] and suspended goals. ECLiPSe
implements a general delayed computation scheme whereby goals (computations)
may be suspended (delayed) until some conditions are met at which time they
are re-awakened1. This essentially allows computations to progress in a data-
driven manner, where changes to some data structure can trigger computation.
The typical data structures which trigger such delayed computations are the
attributes of constrained logic variables. ECLiPSe allows an arbitrary number
of domains to be attached to a single variable in the form of attributes which
consist of a domain representation and a collection of suspension lists into which
suspended computations may be stored. Using this general suspension mech-
anism, a simple constraint solver can awake the goals when the domain of a
variable changes. Such a mechanism offers a natural and convenient method of
implementing logical inference rules, such as those used to describe the hybrid
set domain solver.

1 Many other constraint programming systems support both attributed variables and
suspended goals, e.g. Ciao, Sicstus, SWI-Prolog.

As well as simple data-driven computation, the ECLiPSe language provides
many solvers, facilities for user-defined constraints and the ability to build new
solvers on top of existing ones. The ECLiPSe system facilitates writing constraint
solvers by providing a wide range of efficiently implemented data structures (in-
cluding hash-tables, lists (ordered and unordered), heaps, multi-dimensional ar-
rays and graphs), along with algorithms which operate on them (sorting, search-
ing, finding shortest paths etc.). These features make it quick and easy to imple-
ment many (though not all) algorithms efficiently. In addition ECLiPSe boasts
a wealth of existing constraint solvers and search support libraries, which are
easy to integrate with.

5.2 Extending ic-sets

ic_sets uses attributed variables where an array of 0/1 variables represents the
subset-bounds of the set domain, which is restricted to integers. Notification
of domain changes is performed using the general suspension mechanisms of
ECLiPSe with the addition of a pair of notification ports where notice of element
addition (resp. removal) is given. The addition of these notification ports allows
for a more efficient implementation of many operations on the subset domain
representation, than could be achieved without. Indeed most operations take
constant time for each element included/excluded from a variable’s domain.

The ground representation of sets in the ic_sets library as shipped with
ECLiPSe is a list of integers in ascending order. In order to simplify computations
between ground sets and our lex bounds, we altered ic_sets so that the ground
representation was a list of integers in descending order. This change does not
affect the complexity or efficiency of the ic_sets solver in any way. This choice
of ordered lists makes it easy to work with ground sets in the context of a
Prolog system, but does incur an overhead when mixing ground set values and
non-ground set variables, as the system must convert between the array and
list representations. For the subset bounds domain, such occasions are rare in
practise and the overhead is slight. This is not the case with the lex bounds
however, as typically these will need to be compared against ground sets much
more often. It is partially because of this increased frequency of comparison that
we chose to use the same (ordered list) representation for our lex bounds.

Ground Set Representation We represent ground sets as a list sorted in
decreasing element order, following our lexicographic ordering. Since we deal
exclusively with ordered lists of numbers, we can optimise certain set operations
w.r.t. our lists. The worst case complexity for set operations on this ground set
representation is linear in the size of the set. Clearly this could be optimized
using a binary tree or BDDs data structures. However, this would have meant
reconsidering the ic_set solver itself. In the scope of evaluating the pruning
gain from a hybrid domain we first built a prototype on top of ic_sets.

Hybrid Domain Data Structure As mentioned earlier, in order to evaluate the
new concept of the hybrid set domain and its applicability, we chose to adapt

the existing ic_sets solver by adding the extra inference rules to it. To support
these inference rules we needed to extend the data structure which described the
set domains.

In addition to the array of logical variables which represent the glb and lub
subset bounds and the FD cardinality variable (with its associated min and max
bounds), we add two ground sets representing the inf and sup lexicographic
bounds. These two ground sets are represented by the decreasing ordered lists
described above.

Also, in addition to the existing suspension lists of the ic_sets attribute,
namely added, removed, card min and card max, we add two new suspension
lists: lex min and lex max. Goals suspended in one of these two lists will be
woken whenever the inf or sup bound changes respectively.

So as to minimise the performance penalty for models which do not make use
of the cardinality information or lex bounds, we retain the 0/1 variable array
representation for the subset bounds that ic_sets uses. However, there are
many occasions when we need access to the glb and lub separately in list form
(i.e. not encoded in the 0/1 array), since computations using ground sets (such
as the lex bounds) are more efficient if performed using a list representation.
To this end we investigated a number of ways that this could be achieved. We
considered the following approach: caching. Use a valid flag in the domain to
indicate that the pre-generated list representations are a valid representation
of the current 0/1 array. When the lists are required, if they are invalid, then
re-generate them, store them and set the flag to valid. If they are valid then
simply use them. Any modifications to the 0/1 array results in the flag being
set to invalid. The caching method proves to be efficient in practice because
it interacts nicely with the priority based data-driven implementation of our
inferences rules. It mitigates the performance overheads of building the hybrid
solver on top of an existing solver whose implementation has been optimised
based on assumptions that are no longer valid.

ECLiPSe gives the algorithm designer the ability to specify the relative im-
portance of constraints (inferences) by means of a rudimentary priority scheme.
At an implementation level, when adding goals back into the resolvent, the order
is dependent on a priority which is attached to the suspended goal (1 to 6, 1
being the highest priority). The effect of the priority scheme is that all woken
goals with a higher priority will execute before any lower priority ones. As a
general rule, it is suggested that goals which terminate quickly be given higher
priorities than longer running ones.

With this in mind, in our implementation we leave the existing subset bound
propagators at priorities 3 and 4, as was the case in ic_sets, and add our
various lex bound propagators at priorities 5 and 6. If the subset inferences
alone are sufficient to detect an unsatisfiable constraint store, then the priorities
will ensure that our lex inference rules computation will never be started and
hence the conversion between 0/1 array and lists will not be performed.

Unification Procedure When constraining two set variables X and Y to be equal,
we intersect their domains as shown below and merge all suspension lists attached

to each attribute. Clearly we need to maintain SBC+ for the new domains. The
new bounds resulting from the unification of X and Y are given below:

a′
X ≡ a′

Y = aX ∩ aY b′X ≡ b′Y = bX ∪ bY (1)

c′X ≡ c′Y = max(cX , cY) d′X ≡ d′Y = min(dX , dY) (2)

e′X ≡ e′Y = sup({eX , eY }) f ′
X ≡ f ′

Y = inf({fX , fY }) (3)

5.3 Implementing the Inference Rules

As was detailed above, a number of computations must be made, values calcu-
lated and operations performed in order to implement the inference rules of our
hybrid domain.

In the rules which describe our solver, many bound updates are specified
using the inf and sup functions. Recall that these are analogous to the min and
max functions of integer arithmetic and an efficient implementation is essential
to the efficient propagation of the associated inference rules.

As used in the definition of our inference rules, the inf and sup functions allow
us to succinctly describe the new values of lex bounds. They do not, however,
translate simply into any naturally efficient algorithm for computing the new
value.

Example 7. By analogy with FD bounds, consider the following definition for
the new finite domain lower bound (c′Y) of the FD variable (Y) involved in the
FD constraint X = Y + 3.

c′Y = min({y | cY ≤ y ∧ y ≤ dY ∧ y + 3 ≥ cX ∧ y + 3 ≤ dX})

This can be read as defining the new bound (c′Y) to be the minimum value y
which is in the variable’s range and which has a supporting value in the domain
of X.

Though this is a perfectly valid definition of the relationship between cY , dY ,
cX and dX , it gives no clue as to how efficiently calculate c′Y . We know that an
efficient method (assuming that we can efficiently compute numeric subtraction
and comparison) is to define c′Y as

c′Y =

cX − 3 if cY < cX − 3
cY if cY ≤ dX − 3
fail otherwise

An efficient implementation of the above example is possible because we
know:

– How to algebraically rewrite some of the conditions.
– That the resulting expressions are functions (i.e. have only a single output).
– That the min can be replaced by conditional if statements.
– That there is an efficient implementation of subtraction (in hardware).

In order to duplicate this feat of efficient computation for our inf and sup func-
tions we would require the equivalent of lex-bound set algebraic manipulation.
Since we are not aware of such an algebra, we define an algorithm that computes
the inf and sup functions. Algorithm 1 computes the smallest lex bound that
satisfies the domain constraint.

The basic approach taken to compute the inf bound (i.e. the lexicographically
smallest value satisfying some condition) is to intelligently enumerate possible set
values in a lexicographically increasing order until one is found that satisfies the
conditions: satisfies the cardinality (it records the number of elements added to
the result and the remaining glb and lub elements) and subset bounds restrictions
of the domain constraints. It terminates the ”for” loop when these limits are
reached (line 5 and 8). The first value returned will be the lexicographically
smallest value in a hybrid set domain, corresponding to the value of inf({s |
s ∈ [aX , bX]|cX , dX |〈eX , fX〉}). The glb inclusion is performed line 12, the eX =
s⊕ [y | ys]∧ x < y and lexgreat tests line 14 can be performed in constant time
by having a flag indicate if the partially generated set (s) is necessarily within
the bounds and by removing any preceeding elements from the bounds if s is
a prefix of either. These tests ensure that the partially built inf bound remains
within the existing lex bounds.

Algorithm 1 Computing the smallest lex bound

Input: Domain bounds [aX , bX]|cX , dX |〈eX , fX〉
Output: s

1: glbs← |aX |;
2: lubs← |bX |;
3: s← [];
4: foreachtail [x|xs] ⊆ bX do

5: if |s|+ glbs = dX then

6: s← s ⊎ aX ; {only remaing glb elements can be included}
7: return s

8: if |s|+ lubs = cX then

9: s← s⊕ [x|xs]; {all remaining lub elements must be included}
10: return s

11: if x ∈ aX then

12: s← s⊕ [x];
13: glbs← glbs− 1;
14: else if eX = s⊕ [y | ys] ∧ x < y or lexgreat(s⊕ [x], fX) then

15: exclude x

16: else

17: choose

18: exclude x

19: or

20: include x

21: s← s⊕ [x];
22: lubs← lubs− 1

Note the use, on line 17, of a non-deterministic choice statement. The oper-
ational semantics of this statement is that the first branch is taken, and only if
some failure happens in subsequent computations does the computation return
to the state immediately before the choice and resume after taking the second
branch. Such a notion will be familiar to Prolog programmers as the disjunc-
tion connective (;), but also exists in other high level modelling languages as it
allows for a more compact representation of algorithms which perform search.
The reason for this choice point is that the new inf bound does not build on the
existing one in terms of values (except if they are required elements) it just has
to be a successor of it, the first satisfiable one.

The related algorithm for computing the sup function (i.e. the lexicograph-
ically largest value first satisfying the domain conditions) is very similar and
differs only in lines 18 and 20 which are exchanged [46]. Each of these algorithms
allows us to compute the new lex bounds satisfying the domain transformation
rules IR 5 and IR 6 in O(v) time, with v = |bX |.

Example 8. Let us assume we have X ∈ [{4}, {1, 2, 3, 4, 5}]|3, 3|〈{4, 2, 1}, {2, 4, 5}〉.
We now add the constraint 3 ∈ X. The glb bound is updated to {3, 4} and the
lex bounds need updating too. The inf bound is updated using Algorithm 1.
It proceeds from the lub list representation [5, 4, 3, 2, 1] by determining which
element starting from 5 is required (lines 9,12) or excluded (line 14) or either. 5
is excluded at the choice point. 4 and 3 are included (line 12), 2 is excluded at
the choice point (line 18), and 1 is included because the test line 8 is satisfied
(|{4, 3}| + 1 = cX = 3). The new inf bound is returned {4, 3, 1}. The sup will
also be updated to {4, 3, 2} ({5, 4, 3} would be greater than the current sup).

The complexity of re-establishing SBC+ (inference rules IR 1, IR 2, IR

3, IR 4, IR 5 and IR 6) on a hybrid domain constraint until a fixed point is
reached takes in the worst case O(v) using Algorithm 1 and its decreasing lex
order counterpart to update the lex bounds.

We prove this by considering the different bounds in order:

IR 1, IR 2:: Additions to aX (or removals from bX) may result in the con-
stant time modification of cX (resp. dX) and then the O(v) time modification
of eX .

IR 3, IR 4:: Incrementing cX can only trigger O(v) time updates to eX and
fX or an instantiation of the set if cX = |bX |. Decrementing bX will similarly
cause eX and fX updates, but may also trigger the removal of elements from
bX . Since there are atmost v elements to be removed from bX , this process can
be repeated no more than O(v) times. By delaying the updates off eX and fX

until bX and dX have stabilized, we can maintain the O(v) overall worst case
complexity.

IR 5, IR 6:: Advancing eX may also lead to updates of aX and bX . These
in turn may cause eX updates, but since there can be atmost v subset bound
updates, the process must terminate in O(v) steps. And similarly for retreating
fX .

5.4 Predictor Function

Algorithm 1 and its counterpart allow us to quickly compute (in order) new
potential lex bounds. However in a system of constraints they need to be tested
against the other criteria of the inference rules for an arbitrary set constraint.
Though this proved adequate for small domains, the time to compute bounds
satisfying even very simple conditions can grow exponentially as the actual do-
main sizes do. To combat this problem we extended Algorithm 1 in a general
way to incorporate the other conditions of the inference rules at each step of the
algorithm.

Algorithm 2 INTPRED Predictor routine for the Z = X ∩ Y

Input: X Domain bound [aX , bX]|cX , dX |〈eX , fX〉
Input: Y Domain bound [aY , bY]|cY , dY |〈eY , fY 〉
Input: X Domain bound [aZ , bZ]|cZ , dZ |〈eZ , fZ〉
Input: Loop variables s, x, xs from Algorithm 1
Output: The symbolic values include, exclude or either

1: temp1← |s ∩ bY |; {number of potential intersection elements in bounds}
2: temp2← cZ − |temp1|; {number of extra intersection elements required}
3: if temp1 ≥ cZ ∨ (|xs ∩ bY | ≥ temp2 ∧ temp2 ≤ dX − |s|) then

4: if x ∈ aY then

5: temp3← |s ∩ aY |;
6: if temp3 = dZ then

7: return exclude

8: else if temp3 < dZ then

9: return either;
10: else

11: Fail
12: else

13: temp4← |xs| − |xs∩ aY |; {number of non-intersecting elements remain-
ing}

14: temp5← cX − |s| − temp4; {number of intersecting elements required}
15: if temp4 < cX ∧ temp5 + |(aX \ s) ∩ aY |+ |s ∩ aY | > dZ then

16: return include

17: else

18: return either

19: else

20: return include

We achieved this by allowing constraints to pass in predictor functions which
determine, using the current state of the algorithm variables, whether the current
element must or must not be part of the result. The lex-bound test of the
original algorithms can be seen as a special case of these predictor functions.
In general, for the constraints listed, these tests which are called at most once
per potential element, can be computed in O(|bX |) time thus giving us a O(|bX |2)
time algorithm for computing the new lex bounds for a system of constraints.

We illustrate the concept by giving the predictor function INTPRED used for
the intersection constraint, in Algorithm 2. Intersection constraints form a core
part of many CDPs. The predictor function is called within the ”foreach” loop
of Algorithm 1 and uses the terms s, x, xs from this loop as input to its test in
a way similar to the lex bound tests on line 14 of Algorithm 1.

The inclusion (resp. exclusion) of an element occurs in the following condi-
tions: An element must be included if 1) it is in aX , 2) omission would necessar-
ily violate eX , 3) all remaining lub elements (including this one) are required to
meet cX , or additionally: i) Any set of size cX made without this element must
exceed the intersection size dZ , ii) no set of size dX made without this element
can reach the intersection size cZ . An element must be excluded if: 1) it is not in
bX , 2) inclusion would necessarily violate fX , 3) the cardinality bound dX has
been reached, or additionally: i) Any set of size cX made with this element must
exceed the intersection size dZ , ii) No set of size dX made with this element can
reach the intersection size cZ . Function INTPRED shows how to compute these
conditions. The possible return values of the function are include (meaning
that the element must be included in the bound), exclude (meaning that the
element must not be included in the bound) and either (meaning that it does
not matter whether the element is included or excluded and the decision should
be left up to the default branching rule of the generate algorithm). The predic-
tor functions for other constraints would follow a similar pattern. Table 1 shows
the times taken using this enumeration with predictor function approach and
compares it with the Algorithm 1 and its counterpart.

c Alg. 1 + counterpart (ms) with predictor (ms)

1 2.77 2.76
2 3.89 3.78
3 4.16 4.10
4 6.67 4.21
5 8.86 4.40
6 13.40 4.47
7 19.56 4.81
8 31.67 5.06
9 49.07 4.22
10 75.28 2.36
11 107.81 4.82

Table 1. Time taken to reach fixed point for X ∈ [∅, {16, ..., 1}|c| ∧ |X ∩
{6, 5, 4, 3, 2, 1}| ≤ 1 using ”Algorithm 1 and its counterpart” and ”predictor function”

Multisets A brief note on extending this hybrid domain representation and inf
and sup computation scheme to deal with multisets. The hybrid set domain
presented, and its associated implementation data structures (i.e. ordered lists

for the glb, lub, inf and sup bounds), can be extended to multisets in the obvious
way (i.e. the multisets glb, lub, inf and sup bounds represented with ordered
lists containing duplicates). Both the lex-order generating algorithm 1 and the
above predictor functions can be applied directly and with trivial modifications
to hybrid multiset domains. However, if instead of an explicit fully enumerated
list representation for multisets (e.g. {4, 4, 3, 1, 1, 1}) a more compact run-length
encoded list was used (e.g. {42, 31, 13}) then the predictor functions could be
modified to return a numeric range indicating how many of the current elements
must be present in the result and how many at most may be present. The
symbolic return values of include, exclude and either would be replaced
with a pair of numbers ((o, p)) indicating the minimum number of elements that
must be included (o) and the maximum that may be (p). A range of (0, 0) would
signify that the result must not contain the current element at all.

6 Experimental Results

To illustrate the benefits of our hybrid domain over the traditional subset bound
solver and closely related FD models (where a block is specified using the char-
acteristic vector of a finite subset) we considered a class of CDPs from design
theory and combinatorics as well as a network design problem. In this paper we
present our results on the SONET problem and benchmarks on Steiner systems.
More results can be found in [48, 46]. These problems were chosen because they
each have natural and intuitive FS model which exhibit different constraints and
structures and they have been addressed before which allows us to draw compar-
isons. A 2GHz Pentium 4 with 1GB of RAM was used for all our experiments.

Unless otherwise stated the search procedure used in the following problems is
simple: Each set variable is fully instantiated before moving to the next, in a fixed
order. Each set is instantiated by first trying to include, then on backtracking,
exclude the largest unassigned element from its domain as this strategy best
exploits the lex ordering.

The purpose of the experiments that we run is twofold:

– Firstly, we seek to evaluate the effectiveness of our inference rules at strength-
ening the propagation phase and therefore reducing the search phase of solv-
ing CDPs using a FS solver.

– Secondly, we are evaluating our implementation of these rules in the proto-
type solver to better understand how a hybrid domain set solver should/could
be implemented.

6.1 The SONET problem

As we mentioned in section 3, this problem is a CDP that involves minimizing the
number of ADMs while satisfying the demand constraints (partitioning among
a set of channels).

Model For our experiments we implemented a simple primal/dual set model
for the topology of the network, with the assignment of traffic handled by simple
FD sum constraints tied to the set variables with reified inclusion constraints.

The problem instances are specified by a weighted undirected demand graph
G = 〈V,E〉 where the weight of each edge ((f, t, c)k ∈ E) signifies the number
of channels (c) required between the two nodes (f and t), and a demand k to
be satisfied over this edge. The demand is seen as a number of channels that is
split among the different rings that contain the pair of nodes f, t. In addition,
we have the set of available rings (R), the maximum number of nodes which
may be attached to a single ring (RingSize), the number of nodes (|V |) and the
maximum number of channels each ring can accommodate (MaxChannels).
In our FS model, primal sets (Xi) represent the nodes assigned to rings, and
dual sets (X ′

j) represent the rings on which a node sits. The model can now be
specified as follows.

for i ∈ R Xi ⊆ V (4)

for i ∈ R |Xi| ≤ RingSize (5)

for j ∈ V X ′
j ⊆ R (6)

for j ∈ V X ′
j ⊃ ∅ (7)

for (f, t, ⋆) ∈ E X ′
f ∩ X ′

t ⊃ ∅ (8)

for i ∈ R, j ∈ V j ∈ Xi ⇐⇒ i ∈ X ′
j (9)

∑

i∈R

|Xi| =
∑

j∈V

|X ′
j | (10)

Equations (9) and (10) bind the primal and dual variables and Equation (8)
requires that nodes which have demands between them must lie on at least one
common ring. The above model captures the connectivity of the network design
but fails to ensure sufficient capacities on the rings. To handle this, we have a
finite domain channel allocation variable Yik for each ring i and demand k. This
FD variable represents the number of channels of the demand which are sent
over the given ring.

for (f, t, c)k ∈ E Yik ≥ 0 (11)

for (f, t, c)k ∈ E
∑

i∈R

Yik = c (12)

for i ∈ R
∑

(f,t,c)k∈E

Yik ≤ MaxChannels (13)

We tie the two models together with the following simple constraints which
ensure that demands are only routed across rings if they contain both nodes.

for (f, t, c)k ∈ E, i ∈ R Yik > 0 ⇒ (f ∈ Xi ∧ t ∈ Xi) (14)

Finally, since the rings are indistinguishable, we post a lexicographic ordering
between ring variables so as to reduce redundant search.

for 0 ≤ i < |R| Xi � Xi+1 (15)

The number of ADMs required by a solution is equal to the sum of the ring
cardinalities and so we seek to minimise this value:

minimise
∑

i∈R

|Xi| (16)

Operationally, we use the continue mode of the general lib(branch and

bound) library of ECLiPSe, which proceeds by incrementally reducing the up-
perbound of the objective function and searching for a new solution.

Experiments We make use of several benchmark instances of the SONET
problem first studied by Sherali and Smith [55, 52] and more recently by B.
Smith [53, 54]. These benchmarks are split into three categories: small, medium
and large. The small test instances were easy to solve and are omitted here for
space reasons. Medium instances have 10 nodes, 6 rings available, each ring can
accomodate 5 ADMs and 25 traffic channels. There are 15 demand pairs. Large
instances have 13 nodes, 7 rings available, each ring can accomodate 5 ADMs
and 40 traffic channels. There are 25 demand pairs.

We actually present two versions of the SONET problem here — the full
problem with all the above constraints, and a simplified problem where the band-
width limit for each ring is relaxed (i.e. rings can carry unlimited bandwidth).
We do this for two reasons:

1. Without the bandwidth limits, the problem can be naturally modelled en-
tirely using set variables and constraints, as it simplifies to a problem of
defining the network topology. Hence we can more clearly see the perfor-
mance benefits of our extra hybrid inferences, and the problem instances are
less tightly constrained.

2. With the bandwidth limits, we see how FD and FS models can be naturally
combined to provide concise models which, with powerful solvers, can be
made to propagate efficiently.

We compare our hybrid solver against a traditional subset bound solver,
ic-sets, using the same simple model and simple search strategy and against
the constraint model presented in [53]. We simply label the primal set variables
(Xi) first using the standard biggest element first, in-before-out scheme, then (if
required) label the demand variables (Yik) trying small domain values first.

Results Table 2 shows the results for the medium-sized instances of the prob-
lem ignoring ring capacities. The columns headed ”ADMs” show the minimum
number of ADMs for which a solution was found; those marked with an aster-
isk (*) were proved optimal in the time allowed (3000 seconds = 50 minutes).
Note that the final row of each table shows the average backtracks and runtimes,

which are only lowerbounds for the actual values if timeouts occurred. It is clear
that the extra inferences of the hybrid domain have a massive impact on both
the number of backtracks and the runtimes. This is thanks to the combination
of cardinality inferences on the lex bounds, and symmetry breaking constraints
that prune actively the lex bounds. Indeed the subset bound solver was unable
to even find the optimal number of ADMs in 2 instances within the time limit
and could not prove optimality for 4 of them. The hybrid solver finds and proves
optimality in 4.86 seconds and 1338 backtracks on average, an improvement of
strictly more than 99.59% and 99.89% respectively.

hybrid domain subset bound

Instance ADMs bt time(sec) ADMs bt time(sec)

1 *14 1791 6.57 *14 2560365 2445.1
2 *14 803 3.25 *14 1186455 1187.07
3 *14 740 3.18 *14 702488 715.53
4 *13 518 2.58 *13 386263 388.92
5 *15 2265 8.48 *15 1437099 1314.69
6 *14 1130 4.39 *14 1554749 1425.94
7 *13 218 0.95 *13 45639 47.64
8 *14 548 2.09 *14 646413 636.58
9 *15 3662 12.56 17 2973240 2997.2
10 *14 802 3.18 *14 366644 351.54
11 *12 229 1.0 *12 75777 70.46
12 *15 1782 5.8 15 3145512 3005.67
13 *15 1921 6.4 16 3125485 3003.48
14 *15 2353 8.06 15 3350260 3505.26
15 *15 1315 4.38 *15 1397653 1266.53

Average 1338 4.86 1213741 1177.04

Table 2. Medium-sized uncapacitied SONET instances

Similar results can be seen for the harder problem when capacities are taken
into account. Table 3 shows an average reduction in runtime of strictly more
than 98.33% and a drop in backtracks of strictly more than 99.43%.

Results for larger instances shown in Tables 4 and 5 display similar im-
provements in both search space and runtime. The hybrid solvers strengthens a
traditional subset bound solvers with dramatic improvements both in backtracks
and CPU time. In cases only the hybrid solver could reach and prove optimality
in the give time limit.

The benefits of our hybrid solver are clearly demonstrated on this problem.
A natural, concise, simple, in fact minimal specification of the problem can
be effectively used to solve even the hardest of instances, without the need for
specialised search strategies or redundant constraints. Also given that the dual
of a CDP is a CDP itself, a natural set formulation can be used for both the
primal and the dual with basic channeling constraints.

hybrid domain subset bound

Instance ADMs bt time(sec) ADMs bt time(sec)

1 *16 8688 35.29 18 2177051 3005.82
2 *16 3990 15.73 16 2122083 3001.64
3 *14 740 4.14 *14 702488 1102.43
4 *14 910 5.25 *14 604631 1005.52
5 *16 5414 22.92 16 2182592 3007.28
6 *17 35507 153.9 18 2277675 2998.23
7 *14 823 3.85 *14 284440 427.26
8 *16 2988 10.99 16 2053975 3012.57
9 *17 48736 207.04 20 1857591 3020.47
10 *16 10633 49.93 17 2127676 3004.50
11 *16 8268 33.13 16 2193006 3003.46
12 *17 16072 56.62 18 2097853 3003.23
13 *15 2745 11.26 17 2178804 3003.77
14 *15 3209 14.5 17 1874238 2999.95
15 *15 1315 5.4 *15 1396372 2051.25

Average 10002 42.00 >1742031 >2509.83

Table 3. Medium-sized capacitied SONET instances

hybrid domain subset bound

Instance ADMs bt time(sec) ADMs bt time(sec)

1 *22 477920 1608.27 34 2239681 3000.02
2 24 872261 3000.05 33 1888859 3000.02
3 *22 65108 196.64 30 2299899 3000.02
4 *23 481504 1510.02 33 2016097 3000.02
5 23 872223 3000.05 33 2098161 3000.01
6 27 883061 3000.05 34 1850383 3000.02
7 *20 214200 770.22 34 2102120 3000.02
8 *20 10105 36.61 29 2314607 3000.02
9 22 767895 3000.06 33 2051824 3000.02
10 27 965648 3000.05 34 2005265 3000.02
11 25 873919 3000.05 35 2099437 3000.02
12 *20 102717 396.44 32 1969604 3000.02
13 *21 255590 1024.30 32 1878671 3000.02
14 32 958159 3000.05 35 1966647 3000.02
15 30 1010305 3000.05 35 1944136 3000.02

Average 587374.33 1969.53 2048359.40 3000.02

Table 4. Large-sized uncapacitied SONET instances

hybrid domain subset bound

Instance ADMs bt time(sec) ADMs bt time(sec)

1 *22 532065 2248.68 34 1483657 3000.02
2 25 701311 3000.06 34 1317386 3000.02
3 *22 65039 227.71 31 1468889 3000.02
4 *23 476205 1767.82 34 1418783 3000.02
5 23 717284 3000.06 33 1384010 3000.02
6 27 710189 3000.06 34 1288818 3000.02
7 *22 270310 1163.94 34 1460390 3000.02
8 *20 11688 54.73 29 1482336 3000.02
9 23 648634 3000.06 33 1368335 3000.02
10 27 728733 3000.06 34 1322042 3000.02
11 27 697775 3000.06 35 1465305 3000.02
12 22 653016 3000.06 32 1255272 3000.02
13 *21 255590 1300.91 33 1254258 3000.02
14 32 727303 3000.06 - - 3000.02
15 31 787821 3000.06 35 1324310 3000.02

Average 532197.53 2250.96 1378127.93 3000.02

Table 5. Large-sized capacitied SONET instances

The results for the capacitied instances, where the FS model is used in con-
junction with a FD model of the capacities, show that our hybrid FS solver
can interact well with FD models and solvers. While the results for the large in-
stances demonstrate that the prototype implementation scales well. Our stronger
inferences and tighter domain approximation allow these problems to be solved
many orders of magnitude faster than subset bound solvers.

Comparison with 0-1 CP models An alternative CP approach to the SONET
problem was proposed in [53, 54]. The first approach ignores the demand capac-
ities of the rings due to their additional complexity. It considers a 0-1 matrix
formulation and derives tailored approaches to break symmetries in order to de-
rive and prove optimality efficiently. The decision variables are 0/1 variables xik

that take the value 1 if the node i is assigned to ring k. Set variable are used to
express constraint (8). The search is driven by the 0-1 variables. The problem
has been addressed using the ”armoury of CP modelling” quoting the author in
order to derive efficient results. Given the effort spent on re-modelling, we will
compare against the initial models that resemble most our simple primal/dual
set model and basic heuristic search technique.

Table 6, taken directly from [53], gives the results of the 0-1 CP model en-
riched with implied constraints, variable and value ordering heuristics, and dy-
namic symmetry breaking (SBDS). It showcases results of the instances given in
Table 2 without optimization. The results are based on only 4 rings instead of
the 6 given in the benchmarks since as the author says ”they are sufficient for
all optimal solutions”. This clearly reduces further the time to derive and prove
optimality.

With SBDS No symmetry breaking

Instance Value F P time(sec) F P time(sec)

1 14 1 15 0.11 1 15 0.07
2 14 1 25,044 11.6 1 188,664 52.4
3 14 24 103 0.14 24 324 0.21
4 13 1,618 27,264 12.8 3,922 172,315 58.2
5 15 1 82,531 40.6 1 745,525 287
6 14 1 36,901 16.8 1 279,085 91.6
7 13 922 933 0.81 2,126 2,137 1.33
8 14 1,657 28,206 12.4 4,180 187,902 52.9
9 15 36,395 71,960 41.3 133,684 507,068 196
10 14 374 435 0.36 983 1,256 1.03
11 12 320 331 0.35 751 762 0.91
12 15 1,022 117,855 62.3 4,976 1,292,875 553
13 15 1,870 89,117 47.0 10,770 1,018,949 433
14 15 9 71,127 35.5 9 908,497 387
15 15 4 53,851 26.0 5 468,969 180

Table 6. Table of [53]: Solving medium-sized uncapacitied SONET instances, allowing
only 4 rings, with and without symmetry breaking, using ILOG Solver. ’Value’ is the
minimum number of ADMs required. F is the number of backtracks (fails) to find the
optimal solution, P is the total number of backtracts to prove optimality. Time is the
cpu time in sec. on a 600MHz Celeron PC.

The 0-1 and set models are quite similar (primal and dual models with finite
subsets represented as sets or 0-1 variables) but differ in their resolution. The 0-1
model is solved by branching on the 0-1 variables, adding implied constraints,
heuristics, and dynamic symmetry breaking techniques; whereas the set model
branches on the set variables, uses a simple labelling strategy and breaks symme-
tries by adding stating lexicographic ordering constraints. The main observation
is that the 0-1 CP approach is not robust: its behaviour varies a lot among the
instances while the set-CSP model and hybrid solver (see table 2) is reliable,
suggesting that instances 5, 9 and 14 are the hardest. This can be due to the
role of the variable ordering heuristics which suits some instances and not others
in the 0-1 CP model. Finally, bearing in mind that the set approach considers
the full problems (i.e. 6 rings) it still outperforms the 0-1 CP model in 10 out of
15 cases, shown in bold in Table 6.2

To improve performance the 0-1 CP model was strengthened with numer-
ous redundant constraints and constraints which (though not strictly speaking
redundant) will hold true for at least one optimal solution. In an attempt to
find solutions more quickly, in [53], the author also employs dynamic symmetry
breaking, handcrafted search heuristics and specialised code to detect optimal-
ity. This extra remodelling effort is rewarded with fast optimal solutions for
medium-sized instances of the problem ignoring ring capacities with an average

2 Though the experiments were performed on a slower computer, they were performed
using Solver which performs basic FS and FD operations much faster than our
prototype solver.

time of 1.4 seconds. The model was further improved together with its perfor-
mances, in [54] by considering the number of ADMs needed by each node as
decision variables (instead of the assignment of a node to a ring), together with
three different variable ordering heuristics. The outcome was an improvement
of few orders of magnitude towards the simpler approach, with solutions to the
capacitied instances (using Solver 6.0 on a 1.7GHz Pentium M PC).

6.2 t-designs

Definition 8. (t-design). Let A = {1, 2, ..., v}. Let S be a collection of distinct
k-element subsets of A. The pair (A,S) is a t− (v, k, λ) design iff 0 < t ≤ k <
v, λ > 0 and every t-element subset of A is contained in exactly λ of the blocks
in S.

In general t− (v, k, λ) designs are referred to as t-designs, A is known as the
base set and the elements of S are called blocks. Note that in the above definition
the pair (A,S) is a configuration satisfying the constraints of the design, and we
refer to S as an instance of the design.

We first present generic models for any t − (v, k, λ) design and will look
experimentally at Steiner systems (ie. t−(v, k, 1) designs) [36]. We consider three
models (primary, dual and primal+dual), with and without symmetry breaking
ordering constraints. Recall that the dual model is an alternative yet still natural
and intuitive model for many CDPs which may allow certain problem constraints
to be expressed more concisely and/or to improve propagation in conjunction
with the primal model.

Generic t-design Models We will give three complete models for t-designs,
all of which are parameterised by the t parameters: the number of elements (v) in
the base set (V = {1, ..., v}), the cardinality of each block in the design (k), the
number of blocks (λ) that any t element subset of V must appear in. Recall also
the packing number Dλ(v, k, t) which defines the number of blocks in a design.
For convenience, we number each block from 1 to Dλ(v, k, t) and denote the set
of all such block numbers as B = {1, ..., Dλ(v, k, t)}.

Primal Model Primal set variables Xi correspond directly to blocks in the design.

for i ∈ B Xi ⊆ V (17)

for i ∈ B |Xi| = k (18)

for is ⊆ B, |is| = λ + 1 |
⋂

i∈is Xi| < t (19)

Equation 19 ensures that any subset common to more than λ blocks must
have strictly fewer than t elements, thus ensuring that the blocks form at least a
packing. The packing is known to be a design because of the number of blocks.

Optionally we can remove some of the symmetries by enforcing an order
between the primal variables.

for 1 ≤ i < |B| Xi � Xi+1 (20)

In some cases the � constraint can be strengthened to ≺, for example when
λ = 1.

Dual Model Dual set variables X ′
j correspond to the set of block identifiers for

blocks containing the element j.

for j ∈ V X ′
j ⊆ B (21)

for j ∈ V |X ′
j | = Dλ(v − 1, k − 1, t − 1) (22)

for js ⊆ V, |js| = t |
⋂

j∈js X ′
j | = λ (23)

Equation 23 is a direct translation of the ”t element subset occurs in exactly
λ blocks” condition for t-designs.

As with the primal model, we can post ordering constraints to break sym-
metries here as well.

for 1 ≤ j < |V | x′
j � X ′

j+1 (24)

Primal+Dual Model Though the above two models are both complete descrip-
tions of the t-design problem, they can be combined to provide stronger propa-
gation. Such a combination is a simple matter of adding channelling constraints
to tie the primal and dual set variables together.

for i ∈ B, j ∈ V j ∈ Xi ⇐⇒ i ∈ X ′
j (25)

Experiments - Steiner Systems (λ = 1) Recall that Steiner Systems are
t-designs where the λ parameter is 1.

Definition 9 (Steiner Systems). A steiner system S(t, k, v) is a set A of v
points and a family of subsets of size k of A (called blocks) such that any t points
in A appear in exactly one block.

To demonstrate the benefits of our approach on existing models we adopt the
common Steiner system set model of

(

v
t

)

/
(

k
t

)

set variables representing the blocks
of the design, constrained such that the pairwise intersection contains at most 1
element. We call this the primal model.

Another way to model Steiner systems and Design problems in general us-
ing set variables, is to employ the dual model. Instead of modelling the blocks
themselves as set variables we number the blocks 1..b, and have a set variable
corresponding to each point of the base set which contains the block numbers
in which the element occurs. A global constraint atmost1 is defined and does

strictly more than just constraining the size of the dual-sets [47]. We find how-
ever that the full inferences of this constraint are costly to attain and instead, in
our experiments, we settle for a simple redundant constraint that constrains the
number of times an element may appear in the design to be exactly r. This sec-
ond model we refer to as the +dual sum model as it can be easily implemented
by summing vectors of reified inclusion Booleans.

Table 7. Backtracks to find first soln.

backtracks

primal +dual sum
S(t, k, v) subset hybrid subset hybrid

S(2, 3, 07) 6 0 0 0
S(2, 3, 09) 4521 384 2398 15
S(2, 3, 15) 90 0 0 0
S(2, 3, 31) 930 0 0 0
S(2, 4, 13) 19 0 1 0
S(2, 5, 21) 40 0 0 0
S(3, 4, 08) 60 2 8 2
S(3, 4, 16) 4136 132 240 132
S(3, 6, 22) 3048 42 92 42

Table 8. Time to find first soln.

time (s)

primal +dual sum
subset hybrid subset hybrid

0.01 0.01 0.01 0.01
2.95 1.63 3.23 0.13
0.41 1.01 0.18 1.06
31.3 100.9 6.83 99.63
0.04 0.14 0.02 0.14
0.16 2.97 0.1 2.83
0.05 0.07 0.03 0.08

41.59 59.7 7.11 54.69
15.29 77.48 2.47 54.98

Table 7 clearly shows the benefit that our hybrid domain brings in reduc-
ing the size of the search space. In many cases removing backtracks altogether
and in others reducing the number by as much as 159 times. Table 8 shows
the computational cost of maintaining this higher level of consistency. In many
cases the time taken to find the solution actually increases. This is especially
pronounced when the search space is large and solutions are relatively easy to
find. Consider the S(2, 3, 31) system which contains 155 blocks, each of which
can be instantiated to one of

(

31
3

)

= 4495 values, this constitutes quite a large
search space out of which 930 backtracks is a relatively small number. With the
“+dual sum” model this instance can be solved without backtracks using the
simple subset domain representation and so the extra mechanism for reasoning
with the hybrid domain can only add overhead.

However, when considering harder problems such as the S(2, 3, 09) instance,
12 blocks each with

(

9
3

)

= 84 possible values, the 4521 backtracks is a more
significant proportion of the search space. The reduction of this number to 384
by the hybrid domain results in a 44.7% reduction in the runtime. With the
“+dual sum” model, the reduction of the backtracks by 99.3% results in runtime
reduction of 96.0%.

To investigate whether we had simply been “lucky” or “unlucky” to find
(resp. not find) solutions quickly we ran experiments to find all solutions to
the various designs. Due to the large numbers of (symmetric) solutions that
exist for steiner systems, we were only able to find all solutions to the S(2, 3, 7)

in a reasonable time. Table 9 shows, for the primal model, that the overheads
associated with our hybrid domains is almost exactly balanced by the reduced
search space (87.1% fewer backtracks and 2.5% less runtime). For the “+dual
sum” model we observe a 52.4% reduction in backtracks which, given the current
implementation, does not come with a reduction in runtime. It appears that the
performance results on Steiner systems are caused by cases where the system of
constraints would ”stall” in a way similar to FD constraints (x < y, y < x). This
is discussed in Section 8 with some directions to address this point.

domain model time(s) backtracks bt/sol

subset primal 609 1557048 10.30
hybrid primal 594 200507 1.33
subset +dual sum 378 410479 2.71
hybrid +dual sum 462 195349 1.29

Table 9. Time and backtracks taken to find all 151200 solutions of S(2, 3, 7)

6.3 Symmetry

Much work has been done recently to improve the efficiency of searching for
solutions of highly symmetric problems. We compare our work with develop-
ments in one particular family of symmetry breaking techniques, the lex-ordered
symmetry breaking constraint in 0-1 incidence matrix models.

The idea put forward in [27], consists of showing how a 0-1 matrix model for
Steiner systems can be enhanced by the use of a specialised global constraint
which combines symmetry breaking and the sum constraint. An experimental
evaluation is carried out on small instances of Steiner systems. The authors show
how existing symmetry breaking techniques like lex [17, 19] can be combined with
more conventional constraint like the sum constraint to both increase the amount
of pruning and (in some instances) reduce the time taken to solve problems.
They demonstrate their technique on finding and proving the non-existence of a
number of small Steiner systems.

The model chosen is a 2D matrix of 0/1 FD variables where rows correspond
to the characteristic function of a block, and columns therefore correspond to
the dual sets mentioned earlier. A constraint on the magnitude of the scalar
product between any two rows corresponds to the restriction that two sets may
intersect in at most 1 element. The authors compare the effect of posting lex
constraints on both the rows and the columns (>lex R ≥lex C), with posting lex
on the columns (≥lex C) and a specialized constraint called LexGreaterAndSum

on the rows. We will denote this specialized constraint which combines the lex

ordering with the sum constraint as (>
P

lex R) for brevity.
For comparison, our model is the same as that presented in the previous

section where set variables correspond to rows, with the addition of dual sets
(corresponding to the columns). Simple channelling constraints maintain the
correspondence between the sets. The lex constraints are enforced locally be-
tween adjacent rows and adjacent columns using the inference rules IR 9. and

IR 10. The dual sets are not constrained to have a fixed cardinality since no
such constraints existed on the columns in the matrix model. We implement the
exact same labelling strategies, row-wise and column-wise, as used in [27] by
channelling to a matrix of reified inclusion Booleans.

Table 10. Comparison with table 1 of [27]. Row-wise labelling.

Prob No sym breaking >lex R ≥lex C >
P

lex
R ≥lex C ≻ R � C

S(t, k, v) btracks time(s) btracks time(s) btracks est time(s) btracks time(s)

S(2, 3, 6) 6194 2.7 13 0.0 11 0.0 7 0.0
S(2, 3, 7) 6 0.4 2 0.0 1 0.0 0 0.0
S(2, 3, 8) - >16hr 740 0.7 390 0.7 58 0.3
S(2, 3, 9) 4521 5.6 336 0.5 250 0.5 12 0.2
S(2, 3, 10) - >16hr 723209 1339.8 433388 1136.4 12346 167.8

Table 11. Comparison with table 3 of [27]. Column-wise labelling.

Prob No sym breaking >lex R ≥lex C >
P

lex
R ≥lex C ≻ R � C

S(t, k, v) btracks time(s) btracks time(s) btracks est time(s) btracks time(s)

S(2, 3, 6) 26351 9.8 46 0.0 27 0.0 22 0.0
S(2, 3, 7) 585469 340.6 151 0.1 52 0.1 42 0.2
S(2, 3, 8) - >16hr 6837 5.5 1962 3.1 1314 3.7
S(2, 3, 9) - >16hr 90561 98.0 8971 14.0 5232 18.0
S(2, 3, 10) - >16hr 37861490 48789.8 3701480 9478.1 1906918 7226.4

In tables 10 and 11 we duplicate and extend the results of [27], adding for
comparison the final column showing how our model performs. Note that the
third column contains the backtrack values from the original paper3, with the
runtimes being scaled by the same factor as the runtimes for the previous col-
umn for which we were able to duplicate backtrack counts. From these results our
hybrid domain model not only outperforms the plain double-lex constrained ma-
trix model in terms of search space reduction and runtimes, but also outperforms
the specialized LexGreaterAndSum constrained model as well; providing, in the
hardest of the problems, a 95.0% backtrack reduction compared to the double-
lex model and further 48.5% compared to the specialized LexGreaterAndSum

model. Runtimes drop by 85.2% and 23.8% respectively as well.

Results The hybrid domain provides a natural data structure for the lex or-
dering constraints (≺ and �) and the set constraints of the problem (∩ and
| |) to interact effectively. By keeping a high level set-CSP model, but enhanc-
ing the domain representation and local inferences, we can reason at least as
strongly and efficiently as less intuitive FD matrix models and without the need
to identify and create specialized global constraint propagation algorithms. Our
hybrid domain and inferences subsume the inferences of this global constraint

3 The experiments were run using ILOG Solver 5.3 on a 1GHz pentium III processor
with 256 Mb RAM under Windows XP

for these problems. The main strength is that the lex ordering of the symmetry
breaking constraints coincides with the lex bounds ordering, and combined with
cardinality restrictions leads to powerful pruning.

7 Improving Performance

Without any alterations to the set model, our hybrid domain solver is able to
significantly reduce the search space for many problems compared to traditional
subset bound solvers. However the performance results are not all similar. There
is a discrepancy between the spectacular improvements on the SONET problem
viz. the subset bound solver and the more moderate ones on the Steiner systems.
We have identified two performance issues during our further experimental work
on the Steiner systems [46]. They are presented here with directions towards
addressing them successfully.

7.1 Implementation of a Bespoke Hybrid Solver

The implementation of our solver on top of ic_sets solver gives modularity and
flexibility to implement the algorithms in any CLP system equipped with a sub-
set bound and FD solver. However, solvers like ic_sets use a domain structure
which is optimised according to the assumption that all domain updates (subset
bounds) can be performed using single element insertions or deletions. Explicitly
enumerating the subset bounds is assumed to be a rare operation and therefore
an array of variables is used which allows constant time insertions and deletions
at the expense of subset bounds enumeration.

In our hybrid solver, enumeration of the subset bounds is an essential op-
eration, more essential (i.e. more frequently applied) than single element inser-
tions or deletions. As such, the hybrid inferences use a list structure to make
enumeration efficient at the expense of insertions/deletions. In our prototype
we maintain both structures simultaneously, but even allowing for the caching
method described in section 6, there is a time overhead to update them both as
well as the space overhead of storing them both. A bespoke hybrid domain solver
should use a common data structure tuned to make enumeration and comparison
as efficient as possible. We also note that ic-sets does not use the cardinality
inference rules presented in [2]. The current prototype does not use them either,
but with an optimized bespoke hybrid solver, it will be interesting to evaluate
their effectiveness.

Bitmaps Depending on the existing ground set representations within a given
set solver, the following equivalence between the characteristic vector and the
characteristic binary number order can be very useful if ground sets are repre-
sented within a RAM machine as bitmaps, since most CPUs contain hardware
to perform the ≤ test in constant time (for bitmaps up to a certain size). By
treating the sets characteristic 0/1 vector as a binary number, we can see that
the lexicographic order corresponds directly to the natural ≤ order on these

numbers (as also noted in [14]). Recall that a characteristic number (NX) for
the ground set X is defined by: NX ≡ Σx∈X2x. Using this notation we get the
following equivalence:

X � Y iff NX ≤ NY

BDD An alternative approach is the use of Binary Decision Diagrams. Recent
results on the use of Reduced Ordered Binary Decision Diagrams (ROBDD) have
shown their flexibility and efficiency in propagating over full set domains but also
lex bounds, subset bounds, cardinality bounds [26]. In particular it illustrates
the synergy between ROBDD data structures and lex bounds, in that it requires
a smaller number of nodes to store the bounds compared to a full domain or
cardinality bounds. Such an efficient implementation with an optimal ordering
of the boolean variables guarantees a linear representation of most primitive
set constraints, and can outperform set solvers such as ic-sets and MOZART
on a set of combinatorial problems. Efficient libraries exist such as CUDD for
manipulating such data structure [56].

7.2 Pathological cases

The second performance issue was less straightforward to identify. Despite the
ability to compute individual lex bounds and achieve SBC+ on the hybrid do-
main constraint in time polynomial in the size of the lub, we have detected cases
where our approach can suffer from requiring an exponential amount of time to
reach a fixed point for a system of FS constraints.

This problem is highlighted by the following simple constraint system, which
has obvious analogies with pathological cases in FD bounds reasoning.

Example 9. X ≺ Y ∧ Y ≺ X

The actions of the generic rules IR 25 and IR 26 on the lex bounds of the
set domains is to iteratively reduce the actual domain size by two until the
domains become empty. As mentioned above this is clearly analogous to the
action of bounds consistent propagation of the corresponding X < Y ∧ Y < X
system of FD constraints. But unlike the FD case which takes O(min(|bX |, |bY |))
steps to terminate as the domains are |bX | in size, the set domains may take
O(min(|2|bX |, 2|bY |)) time to exhaust since their domains may be much larger.

Example 9 is an extreme case where the constraint system is unsatisfiable,
and is a common problem for any bounds reasoning system. During the analysis
of our experimental results, we discovered conditions under which our prototype
solver would exhibit similar behaviour when the constraints system is satisfiable
as in Example 10. Interestingly this point was also raised when evaluating the
benefits of ROBDDs to model lex bound constraint propagators, but the reasons
were not identified.

Example 10. Consider the task of pruning the lex lower bounds of X, given the
system of constraints in Table 12. The table shows the different potential values
of eX which will be generated by the inference rules for the two intersection
constraints. Each potential value taking O(|bX |) steps to generate.

X ⊆ {9, 8, 7, 6, 5, 4, 3, 2, 1}
|X| = 3
|X ∩ {9, 8, 7, , 5, 3, 1}| ≥ 3 (C1.)
|X ∩ {9, 8, 7, 6, 4, 2}| ≥ 3 (C2.)

Initial (C1.) (C2.) Fixed Point
{3, 2, 1}

{5, 3, 1} {6,4,2}
{7, 3, 1} {7,4,2}
{7,5, 1} {7,6,2}
{8, 3, 1} {8,4,2}
{8,5, 1} {8,6,2}
{8, 7, 1} {8,7,2}
{8,7,3} {8,7,4}
{8,7,5} {8,7,6}
{9,3,1} {9,4,2}
{9,5,1} {9,6,2}
{9,7,1} {9,7,2}
{9,7,3} {9,7,4}
{9,7,5} {9,7,6}
{9,8, 1} {9,8,2}
{9,8,3} {9,8,4}
{9,8,5} {9,8,6}

{9,8,7}

Table 12. Exponential time to reach fixed point for simple system of two intersection
constraints C1. and C2.

In our implementation of the inference rules we revise the lex bounds ac-
cording to applicable inference rules on an individual basis until a fixed point
is reached. This means that it is possible for two (or more) inference rules to
repeatedly reduce the lex bounds of a number of variables until one of the do-
mains has been exhausted. It is this worst case behaviour that causes the hybrid
solver to ”stall” on some of the Steiner instances mentioned earlier. The poten-
tially exponential number of steps required to reach a fixed point stems from the
treatment of each constraint individually (or locally). A more powerful approach
could take a global view. For the problem of calculating lex-bounds which simul-
taneously satisfy a number of simple constraints, as in the above example, we
could make use of the predictor functions introduced in Section 6.5. Since the
predictor functions determine a priori whether a given element must be included
or excluded from a bound in order to ensure that a single simple constraint can
be satisfied, we could combine the results from multiple predictor functions in
parallel.

For the above example this would result in the production of the correct
fixed point value {9, 8, 7} with a single call to the parallel bound computation
function, taking only 21 steps of the generation algorithm (v.s. the 33× 9 = 297
(values-returned × steps-per-value) steps of the non-parallel case).

8 Contribution and Perspectives

We have presented the formal and practical framework of an enhanced FS solver
with lexicographic bounds and inference rules. It is able to reason more strongly

about FS models without requiring any changes to the set-CSP model. The new
solver is based on a much tighter approximation of the set variable’s domain,
whereby the lex bounds satisfy the cardinality restrictions and the associated lex
ordering allows to break symmetries effectively using lex ordering constraints.
These properties of a set domain are novel and facilitate the stronger reasoning
and interaction between constraints. The benefits are demonstrated experimen-
tally illustrating how the structural properties of CDPs we have extracted can
be modeled and tackled effectively, with spectacular improvements over subset
bound solvers specially on the SONET problem. When a 0-1 CP model is cho-
sen instead of the set model and more elaborate symmetry breaking techniques
are used —compared to a simple lex ordering among set variables—, our hybrid
domain and inferences subsume the inferences of those approaches, and is more
robust on the instances presented.

Future work involves investigating new means to render the interaction be-
tween those three components (subset bounds, lex bounds and cardinality bounds)
even stronger, as well as taking the steps identified in the previous section to
improve performance.

Acknowledgements We thank the anonymous reviewers for their insightful com-
ments.

References

1. F. Azevedo. Constraint Solving over Multi-Valued Logics. Application to Digital
Circuits. Frontiers in Artificial Intelligence and Applications, 2003.

2. F. Azevedo and P. Barahona. Cardinal: an extended set solver. in Proceedings of
Computational Logic, 2000.

3. N. Barnier and P. Brisset. Facile: A Functional Constraint Library. In CICLOPS’01
workshop, help alongside with CP-2001.

4. N. Barnier and P. Brisset. Solving the Kirkman’s Schoolgirl Problem in a Few
Seconds. In M. Wallace, editor, Proceedings of CP-2004.

5. F. Benhamou. Interval Constraint Logic Programming. In A. Podelski, editor,
Constraint Programming: Basics and Trends, LNCS 910, 1995.

6. C. Berge, Principles of Combinatorics. New York: Academic Press, 1971.

7. C. Bessière, B. Hnich, E. Hébrard, and T. Walsh. Disjoint, Partition and Intersection
Constraints for Sets and Multiset Variables. In M. Wallace, editor, Proceedings of
CP-2004, LNCS 3258.

8. C. Bessière, B. Hnich, E. Hébrard, and T. Walsh. The Tractability of Global Con-
straints. In M. Wallace, editor, Proceedings of CP-2004, LNCS 3258.

9. R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-Decision Dia-
grams. ACM Comput. Surv., 24(3), 293–318, 1992.

10. R. Campbell. A minimum distances basketball scheduling problem, 1976.

11. J.G. Cleary. Logical arithmetic. In Future Generation Computing Systems, chapter
2(2),1987.

12. C. J. Colbourn and J. H. Dinitz, editors. The CRC Handbook of Combinatorial
Designs, CRC Press, 1998.

13. C. J. Colbourn, J.H. Dinitz, and Stinson. Applications of Combinatorial Designs
to Communications, Cryptography, and Networking. In Surveys in Combinatorics,
London Mathematical Society Lecture Note Series 187. Cambridge University Press,
1999.

14. J. Crawford, M. Ginsberg, E.M. Luks, and A. Roy. Symmetry breaking predicates
for search problems. In Fifth Int. Conf. on Knowledge Rep. and Reasoning , 1996.

15. A. Eremin, F. Ajili, and R. Rodosek . A Set-based Approach to the Optimal IGP
Weight Setting Problem. In Proceedings of INOC -2005.

16. T. Fahle, S. Schamberger, M. Sellman. Symmetry breaking. In Proceedings of
CP’01, pp 93–07, Springer 2001.

17. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, T. Walsh. Break-
ing row and column symmetries in matrix models. In Proceedings of CP02, Springer
2002.

18. I. Gent,W. Harvey, T. Kelsey and S. Linton. Generic SBDD Using Computational
Group Theory. In Proceedings of the Ninth International Conference on Principles
and Practice of Constraint Programming (CP’03), Springer, 2003.

19. I.P. Gent, P. Prosser, B.M. Smith. A 0/1 encoding of the gaclex for pairs of vectors.
In ECAI-W9 Modelling and Solving Problems with Constraints, 2002.

20. C. Gervet. New Structures of Symbolic Constraint Objects: Sets and Graphs. In
Third Workshop on Constraint Logic Programming (WCLP’93), 1993.

21. C. Gervet. Conjunto : Constraint Logic Programming with Finite Set Domains.
In M. Bruynooghe, editor, Proceedings of ILPS -1994.

22. C. Gervet. Set Intervals in Constraint Logic Programming: Definition and Imple-
mentation of a Language. PhD thesis, Université de Franche-Comté, France, Sep-
tember 1995. European thesis, in English.

23. C. Gervet. Interval Propagation to Reason about Sets: Definition and Implemen-
tation of a Practical Language. In CONSTRAINTS journal 1(3), 1997.

24. C.D. Godsil. Linear Algebra and designs. Manuscript (229p.), 1995.
25. P. Hawkins, V. Lagoon, and P.J. Stuckey. Set bounds and (split) set domain

propagation using ROBDDs. In G. Webb and X. Yu, editors, Proceedings of AI’04:
Australian Joint Conference on Artificial Intelligence, LNCS 3339, 2004.

26. P. Hawkins, V. Lagoon, and P. Stuckey. Solving Set Constraint Satisfaction Prob-
lems using ROBDDs. Journal of Artificial Intelligence Research 24, 2005.

27. B. Hnich, Z. Kiziltan, T. Walsh. Combining symmetry breaking with other con-
straints: lexicographic ordering with sums. In Proceedings of SymCon workshop held
alongside CP’03, 2003.

28. C. Holzbaur. Metastructures versus attributed variables in the context of extensible
unification. In M. Bruynooghe and M. Wirsing, editors, Proceedings of PLILP’92.
vol.631 LNCS, Springer, 1992.

29. Ilog. User’s manual. ILOG Solver 6.0 Sept., 2003.
30. S. Le Huitouze. A New Datastructure for Implementing Extensions to Prolog. In

Proceedings of PLILP-1990, LNCS 456.
31. Z. Kiziltan. Symmetry Breaking Ordering Constraints. PhD thesis, Uppsala Uni-

versity, Sweden, 2004.
32. Z. Kiziltan and T. Walsh. Constraint Programming with Multisets. In Proceedings

of the SymCon-02 workshop, held alongside CP-2002.
33. F. Laburthe. CHOCO: Implementing a CP Kernel. http://choco.sourceforge.net/,

2000. In Proceedings of TRICS , held alongside CP-2000.
34. V. Lagoon and P.J. Stuckey. Set domain propagation using ROBDDs. In M.

Wallace, editor, Proceedings CP-2004, LNCS 3258.

35. J.H.M. Lee and H. van Emden. Interval computation as deduction in CHIP. In
Journal of Logic Programming, 16(3–4):255-276, 1993.

36. C.C. Lindner and A. Rosa. Topics on Steiner Systems, volume 7 of Annals of
Discrete Mathematics. North Holland, 1980.

37. H. Liu, F. Tobagi. A novel efficient technique for traffic Grooming in WDM SONET
with Multiple Line Speeds. In Proceedings of IEEE ICC. 2004.

38. A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
1977.

39. Mozart/Oz, http://www.moxart-oz.org/.
40. T. Müller and M. Müller. Finite Set Constraints in Oz. In Workshop Logische

Programmierung , Burkhard Freitag and Dietmar Seipel, editors, 13, 1997.
41. T. Müller. Solving Set Partitioning Problems with Constraint Programming. In

Proceedings of PAPPACT -1998.
42. W. Older and A. Vellino. Constraint Arithmetic on Real Intervals. In F. Benhamou

and A. Colmerauer, editors, Constraint Logic Programming: Selected Papers. MIT
Press, 1993.

43. J-F. Puget. PECOS a High Level Constraint Programming Language In Proceed-
ings of Spicis, 1992.

44. J-F. Puget. A fast algorithm for the bound consistency of alldiff constraints. In
Proceedings of AAAI’98, 1998.

45. C-G. Quimper, A. Lopez-Ortiz, P. van Beek, and A. Golynski. Improved algorithms
for the global cardinality constraint. In Proceedings of the 10th International Con-
ference on Principles and Practice of Constraint Programming, Toronto, September,
2004.

46. A. Sadler. Strengthening Finite Set Constraint Solvers through Active Use of
Problem Structure, Symmetries and Cardinality Information. PhD thesis, University
of London, Imperial College, 2005.

47. A. Sadler and C. Gervet. Global Reasoning on Sets. In FORMUL’01 workshop on
modelling and problem formulation held alongside CP-2001.

48. A. Sadler and C. Gervet. Global Filtering for the Disjointness Constraint on Fixed
Cardinality Sets. Technical report ICPARC-04-02, March 2004.

49. A. Sadler and C. Gervet. Hybrid Set Domains to Strengthen Constraint Propaga-
tion and Reduce Symmetries. In M. Wallace, editor, Proceedings of CP-2004, LNCS,
2004.

50. J. Schimpf, A. Cheadle, W. Harwey, A. Sadler, K. Shen, and M. Walllace.
ECLiPSe Technical report 03-1, IC-Parc, Imperial College London, 2003.

51. M. Sellman and P. van Hentenryck. Structural Symmetry Breaking. In Proceedings
of IJCAI’05, 2005.

52. H. D. Sherali and J. C. Smith. Improving discrete model representations via sym-
metry considerations. Management Science, 47:1396–1407, 2001.

53. B.M. Smith. Search strategies for optimization: Modelling the sonet problem. In
2nd International Workshop on Reformulating CSPs, 2003.

54. B.M. Smith. Symmetry and Search in a Network Design Problem. In Proceedings
of CP’AI-OR’05, LNCS 3524, Springer, 2005.

55. J.C. Smith. Tight discrete formulations to enhance solvability with applications
to production, telecommunications and air transportation problems. PhD thesis,
Blacksburg, Virginia, 2000.

56. F. Somenzi. CUDD: Colorado University Decision Diagram package.
http:/vlsi.colorado.edu/ fabio/CUDD/.

57. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-
gramming Series. The MIT Press, 1989.

58. T. Walsh. Consistency and Propagation with Multiset Constraints: A Formal
Viewpoint. In Proceedings of CP-2003, LNCS.

59. N.F. Zhou. B-Prolog http://www.probp.com/.

