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Identifying organisms is a key step in accessing information related 
to the ecology of species. Specifically, large-scale monitoring of spe-
cies distribution dynamics is essential in the context of global change. 
Such monitoring requires intensive occurrence data, but such data 
are lacking due to the level of expertise necessary to correctly iden-
tify and record living organisms. This is especially true for plants, 
which are one of the most difficult groups to identify, with more 
than 350,000 known species on earth. The Rio Conference of 1992 
(the Earth Summit, United Nations Conference on Environment 
and Development [UNCED], Rio de Janeiro, Brazil, 3–14 June 

1992 [http://www.un.org/geninfo/bp/enviro.html]) recognized 
this taxonomic gap as a major obstacle to the global implementa-
tion of the Convention on Biological Diversity. Gaston and O’Neill 
(2004) discussed the potential of using automated identification ap-
proaches, typically based on machine learning and multimedia data 
analysis methods, to produce more intensive occurrence data. They 
suggested that if the scientific community is able to (1) overcome 
the production of large training data sets, (2) more precisely iden-
tify and evaluate error rates, (3) scale up automated approaches, 
and (4) detect novel species, it will then be possible to initiate the 

Applications in Plant Sciences 2018 6(2): e1029; http://www.wileyonlinelibrary.com/journal/AppsPlantSci © 2018 Botella et al. Applications in Plant Sciences 
is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America. This is an open access article under the terms of the Creative Commons 
Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is 
not used for commercial purposes.

INVITED SPECIAL ARTICLE
For the Special Issue: Green Digitization: Online Botanical Collections Data Answering Real-World Questions

Species distribution modeling based on the automated 
identification of citizen observations
Christophe Botella1,2,3,4, Alexis Joly1, Pierre Bonnet3,5,7 , Pascal Monestiez4, and François Munoz6

A P P L I C AT I O N  A R T I C L E

Manuscript received 8 September 2017; revision accepted 2 
January 2018.
1 Institut national de recherche en informatique et en  
automatique (INRIA) Sophia-Antipolis, ZENITH 
team, Laboratory of Informatics, Robotics and  
Microelectronics–Joint Research Unit 5506-CC 477, 161 rue Ada, 
34095 Montpellier CEDEX 5, France
2 Institut National de la Recherche Agronomique (INRA), Joint 
Research Unit Botanique et modélisation de l’architecture des 
plantes et des végétations (UMR AMAP), F-34398 Montpellier, 
France
3 AMAP, Université de Montpellier, Centre de Coopération 
Internationale en Recherche Agronomique pour le 
Développement (CIRAD), French National Center for Scientific 
Research, INRA, IRD, Montpellier, France
4 BioSP, INRA, Site Agroparc, 84914 Avignon, France
5 CIRAD, UMR AMAP, F-34398 Montpellier, France
6 Université Grenoble Alpes, Laboratoire d’Écologie Alpine, CS 
40700, 38058 Grenoble CEDEX, France
7 Author for correspondence: pierre.bonnet@cirad.fr

Citation: Botella, C., A. Joly, P. Bonnet, P. Monestiez, and F. 
Munoz. 2018. Species distribution modeling based on the  
automated identification of citizen observations. Applications in 
Plant Sciences 6(2): e1029.

doi:10.1002/aps3.1029

PREMISE OF THE STUDY: A species distribution model computed with automatically identified 
plant observations was developed and evaluated to contribute to future ecological studies.

METHODS: We used deep learning techniques to automatically identify opportunistic plant 
observations made by citizens through a popular mobile application. We compared species 
distribution modeling of invasive alien plants based on these data to inventories made by 
experts.

RESULTS: The trained models have a reasonable predictive effectiveness for some species, but 
they are biased by the massive presence of cultivated specimens.

DISCUSSION: The method proposed here allows for fine-grained and regular monitoring of 
some species of interest based on opportunistic observations. More in-depth investigation of 
the typology of the observations and the sampling bias should help improve the approach in 
the future.

  KEY WORDS    automated species identification; citizen science; crowdsourcing; deep  
learning; invasive alien species; species distribution modeling.

http://www.un.org/geninfo/bp/enviro.html
https://orcid.org/0000-0002-2828-4389
mailto:pierre.bonnet@cirad.fr
http://crossmark.crossref.org/dialog/?doi=10.1002%2Faps3.1029&domain=pdf&date_stamp=2018-03-14


Applications in Plant Sciences 2018 6(2): e1029� Botella et al.—Species distribution modeling based on automatically identified observations  •  2 of 11

http://www.wileyonlinelibrary.com/journal/AppsPlantSci� © 2018 Botella et al.

development of a generic automated species identification system. 
Such a system should then open important opportunities for studies 
in biology, ecology, and related fields.

Since Gaston and O’Neill (2004) raised the question, enormous 
work has been done on the development of automated approaches 
for plant species identification (Casanova et  al., 2009; Yanikoglu 
et al., 2014; Lee et al., 2015; Champ et al., 2016; Goëau et al., 2016; 
Joly et  al., 2016; Wilf et  al., 2016; Wäldchen and Mäder, 2017). 
Deep learning techniques in particular have been recently shown 
to achieve impressive recognition performance (Goëau et al., 2017). 
Some of these results were integrated into effective web or mo-
bile tools and have initiated close interactions between computer 
scientists and end-users such as ecologists, botanists, educators, 
land managers, and the general public. One remarkable realiza-
tion in this domain is the Pl@ntNet mobile application (Affouard 
et  al., 2017). It is used in an eponymous citizen science initiative 
(SciStarter, available at https://scistarter.com/project/16909-Plnt-
Net) by a growing number of users around the world (more than 
6 million downloads since 2013), and tens of thousands of plant 
pictures are submitted each day. Because a large fraction of this ob-
servation stream is geolocalized, it has great potential in terms of 
biodiversity monitoring and species distribution modeling (SDM). 

As the use of opportunistic data coming from citizen science initia-
tives has already been proven by Giraud et al. (2016) to strengthen 
the estimate of relative bird species abundance, we can expect 
other potential uses for such data types in a botanical context with  
Pl@ntNet.

Acquiring a large amount of opportunistic data still occurs at 
the expense of data quality and reliability, however. Many irrelevant 
pictures are submitted by the users of the Pl@ntNet application. 
This includes non-plant pictures, plant pictures of poor quality, or 
pictures of taxa that are not in the designated checklist (e.g., potted 
plants, ornamental and horticultural varieties, hybrids). Because 
the machine learning algorithm is not able to filter all of these pic-
tures, many of them result in false positives (i.e., they are predicted 
as occurrences of species belonging to the checklist). Indeed, for a 
species automatically identified from a picture, two problems may 
induce identification error: (1) there is an intrinsic taxonomic un-
certainty given the picture alone (i.e., it does not contain the discri-
minant visual pattern[s] that would make an expert certain about 
the exact species identification) or (2) the species was misidentified. 
Figure 1 illustrates typical examples of identification errors for Acer 
monspessulanum L. In Fig. 1B, one can see that the small symmet-
rical lobes at the base of the leaf might be confused with those of 

FIGURE 1.  Four unvalidated Pl@ntNet plant pictures representing, or identified as, Acer monspessulanum and their respective predicted confidence 
values for the highest ranked species (the sum of scores over all species is always 100). (A) The species is A. monspessulanum and is well predicted. 
(B) The species is A. monspessulanum, but the model confounds it with A. campestre. (C) The species is A. monspessulanum or A. pseudoplatanus, but 
the species cannot be determined with the fruit only; there is an intrinsic taxonomic uncertainty. (D) The species is Hedera helix but is predicted as A. 
monspessulanum because this leaf is quite similar, as one can compare with (A).

https://scistarter.com/project/16909-PlntNet
https://scistarter.com/project/16909-PlntNet
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a young specimen of A. campestre L., which is probably the cause 
of the model uncertainty. Figure 1C well illustrates the problem of 
taxonomic uncertainty, as several species cannot be distinguished 
by the feature recorded in the observer’s image where there is high 
proximity of the confidence values of the first two species. Finally, 
Fig. 1D shows a leaf of Hedera helix L. with three major lobes that 
have strong visual similarity to those of the A. monspessulanum leaf. 
Manually cleaning such large and noisy data streams is not possible. 
These problems imply that all species are not equal in their potential 
for automatic identification. There are several factors that make a 
species automatically identifiable from a photograph: the scale of 
the discriminant visual pattern (for example, there are many issues 
with the Poaceae family because discriminant features are often too 
small to be easily captured with a photograph), the visual saliency 
of the pattern compared to other species, and the temporality of the 
pattern due to the phenology of its organ.

In this article, we explore the possibility of exploiting automat-
ically identified observations, without human validation, for SDM. 
Specifically, we study the impact of the degree of uncertainty of the 
retained occurrences when training the popular MAXENT niche 
modeling approach (Merow et al., 2013). Given the type of Pl@nt-
Net users, candidate species have to be automatically identifiable by 
non-expert observers who are often not familiar with the discrimi-
nant part of the plant that needs to be photographed. In addition, 
species that are visually similar in pictures must be avoided, and 
the chosen species must be well illustrated in the predictive model 
training database. In addition to these criteria that allow automatic 
species identification, we must take into account the requirements 
using SDM on presence-only data to acquire meaningful results. 
More precisely, the species must have contrasted environmental 
preferences regarding the study domain, its realized habitat must 
not be overly constrained by its dispersal capacity or important his-
torical perturbations, and there must be enough observation points 
regarding the environmental variables considered.

Considering these constraints on species selection, the available 
data, and the potential use-cases, we applied our protocol to the mod-
eling of the distribution of five species classified in major and mod-
erate categories of invasion by the National Mediterranean Botanical 
Conservatory of Porquerolles for the southeastern region of France 
(Conservatoire botanique national méditerranéen de Porquerolles, 
2018). Invasive species represent a major economic cost to our soci-
ety (estimated at nearly €12 billion a year in Europe) and are one of 
the main threats to biodiversity conservation (Weber and Gut, 2004). 
The early detection of the appearance of these species is a key ele-
ment in managing them and reducing the cost of such management. 
The analysis of Pl@ntNet data can provide a highly valuable response 
to this problem because the presence of these species is often corre-
lated with that of human activity (and thus to the density of Pl@nt-
Net data occurrences), and the constant flow of observations enables 
annual monitoring of species distributions.

METHODS

Automatic species identification and the Pl@ntNet workflow

We first present the workflow of the Pl@ntNet system that yields 
automatically identified observations. To compute automatic spe-
cies identification, we use a convolutional neural network (CNN). 
CNNs have been shown to considerably improve the accuracy of 

automated plant species identification compared to previous meth-
ods (Grinblat et al., 2016; Ghazi et al., 2017; Goëau et al., 2017). More 
generally, CNNs recently received much attention in the computer 
vision community because of the impressive performance they can 
achieve on a large variety of classification tasks. Details of the CNN 
architecture and of the training procedure we used in this study are 
provided in Appendix 1. The network was trained in a supervised 
manner on a set of 332,000 humanly validated plant images belong-
ing to approximately 11,000 species and an additional rejection 
class (containing non-plant pictures taken by Pl@ntNet users, e.g., 
faces, animals, manufactured objects). These species cover a large 
part of the European and North African floras, according to the net-
work of people initially involved in the production and validation of 
these data (this network was initiated with the Tela Botanica non-
governmental organization [http://www.tela-botanica.org] and the 
network of French-speaking botanists, composed of professionals 
and amateurs). This data set also includes a few hundred species 
of common tropical plants from two tropical regions: the Indian 
Ocean region and tropical Amazonia. Data from these two regions 
were collected by scientists and engineers from research institutes 
and universities working on these flora, representatives of the Tela 
Botanica network in these regions, and Pl@ntNet users. The data 
validation process was conducted using the IdentiPlante web tool 
(http://www.tela-botanica.org/appli:identiplante), essentially dedi-
cated to the Tela Botanica community, and was also accessible on 
the Pl@ntNet Android app. These applications display all botanical 
records shared by the project members. Logged-in users are able to 
provide new identifications, post comments, and vote on previous 
identifications. The revised data are regularly crawled by the visual 
search engine, which picks up observations considered correctly 
identified according to a predefined set of rules on the votes and on 
possible conflicts. These validation tools allow coverage of a grow-
ing number of species, from 800 in 2013 up to 11,000 in 2016.

Species distribution modeling using automatically identified 
Pl@ntNet observations

We performed SDM based on the unvalidated Pl@ntNet obser-
vations made in France in 2016. In total, the data represent ap-
proximately 2 million observations (most observations have only 
one image and some have up to five images). Each image x was 
passed to the CNN to receive an automated species prediction in 
the form of a categorical distribution p(k|x) estimating the prob-
ability that the image x is from the k-th species (according to the 
softmax classification layer of the CNN). For the observations 
composed of several images, the predictions were simply averaged 
(i.e., p(k|x) = 1/nx · ∑p(k|xi) for an observation x composed of nx 
images xi). We then kept only the observations for which the most 
probable species (denoted as kmax) belonged to the set of the five 
potential invasive species considered in our study: Acer negundo 
L., Carpobrotus edulis (L.) N. E. Br., Erigeron karvinskianus DC., 
Opuntia ficus-indica (L.) Mill., and Reynoutria japonica Houtt. 
The resulting number of occurrences per species and per interval 
of confidence values p(kmax|x) is provided in Fig. 2. For low values 
of p(kmax|x), the level of noise is important (e.g., with several false 
positives for p(kmax|x) < 30%). For the highest values of p(kmax|x) 
(e.g., p(kmax|x) > 95%), the level of noise is more reasonable but 
the number of occurrences is also much lower. Thus, to maximize 
SDM performance, one could expect a positive trade-off with an 
intermediate threshold.

http://www.tela-botanica.org
http://www.tela-botanica.org/appli:identiplante
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To validate the species distribution models trained from au-
tomatically identified data, we used a second reference data set 
comprising count data collected and validated by French expert 
naturalists. This data set, referred to as Inventaire National du 
Patrimoine Naturel (INPN; https://www.gbif.org/dataset/75956ee6-
1a2b-4fa3-b3e8-ccda64ce6c2d; Dutrève and Robert, 2016), comes 
from the Global Biodiversity Information Facility (https://www.
gbif.org/). The underlying occurrences were collected in various 
contexts, including floras and regional catalogs, specific invento-
ries, field notebooks, and surveys carried out by botanical conserv-
atories. We kept only a subset of these data corresponding to the 
five invasive species considered in our study. The resulting data set 
contains 20,810 occurrences (see Table 1 for the detailed numbers 
per species) aggregated in 3242 quadrat cells of 100 km2 distributed 
on a regular grid of 5175 quadrat cells covering the French territory.

Species distribution models were computed via MAXENT 
(Phillips et al., 2004, 2006), a popular environmental niche mod-
eling method. In particular, we used the implementation of the 
maxnet (Phillips et  al., 2017) R package that expands the input 
environmental variables with several functions (including lin-
ear, quadratic, threshold, hinge, and first-order interactions). 
Because we used presence-only SDM, we used pseudo-absence 
localities for model parameterization (see Appendix  2 for more 
details). MAXENT was computed on a set of 29 input environ-
mental variables, including bioclimatic, pedological, topological, 

hydrographical, and land cover variables from CHELSA Climate 
data 1.1 (Karger et al., 2017), Consultative Group on International 
Agricultural Research–Consortium for Spatial Information 
(CGIAR-CSI) potential evapo-transpiration (ETP) data (Zomer 
et al., 2007, 2008), ESDBv.2 (Panagos, 2006; Van Liedekerke et al., 
2006; Panagos et al., 2012), U.S. Geological Survey Digital Elevation 
data, the Institut National de l’information Géographique et 

FIGURE 2.  The number of Pl@ntNet observations per species and per 
confidence values p(kmax|x).

TABLE  1.  Detailed number of occurrences in the Inventaire National du 
Patrimoine Naturel (INPN) data set by species.

Species name
No. of  

observations
No. of 100-km2 

areas

Acer negundo L. 5217 904
Carpobrotus edulis (L.) N. E. Br. 484 114
Erigeron karvinskianus DC. 711 306
Opuntia ficus-indica (L.) Mill. 120 44
Reynoutria japonica Houtt. 14,278 2623

TABLE 2.  List and details of the environmental descriptors used in this study.

Name Description Nature Valuesa Local image

CHBIO_2 Mean monthly 
temp (max, min)

quanti. [7.8, 21.0] Yes

CHBIO_7 Temp. annual range quanti. [16.7, 42.0] Yes
CHBIO_8 Mean temp. of 

wettest quarter
quanti. [−14.2, 23.0] Yes

CHBIO_9 Mean temp. of 
driest quarter

quanti. [−17.7, 26.5] Yes

CHBIO_10 Mean temp. of 
warmest quarter

quanti. [−2.8, 26.5] Yes

CHBIO_11 Mean temp. of 
coldest quarter

quanti. [−17.7, 11.8] Yes

CHBIO_13 Precip. of wettest 
month

quanti. [43.0, 285.5] Yes

CHBIO_14 Precip. of driest 
month

quanti. [3.0, 135.6] Yes

CHBIO_15 Precip. seasonality 
(CV)

quanti. [8.2, 26.5] Yes

CHBIO_18 Precip. of warmest 
quarter

quanti. [19.8, 851.7] Yes

CHBIO_19 Precip. of coldest 
quarter

quanti. [60.5, 520.4] Yes

etp Potential 
evapotranspiration

quanti. [133, 1176] Yes

alti Elevation quanti. [−188, 4672] Yes
shade Shade level quanti. [0, 1] No
slope Ground slope quanti. [0, 13457] No
dmer Distance to 

coastline
quanti. [|0, 32767|] No

droute Distance to roads quanti. [|0, 32767|] No
proxi_eau <50 m to fresh 

water
bool. {0, 1} Yes

awc_top Topsoil available 
water capacity

ordinal {0, 120, 165, 
210}

Yes

bs_top Base saturation of 
the topsoil

ordinal {35, 62, 85} Yes

cec_top Topsoil cation 
exchange capacity

ordinal {7, 22, 50} Yes

crusting Soil crusting class ordinal [|0, 5|] Yes
dgh Depth to a gleyed 

horizon
ordinal {20, 60, 140} Yes

dimp Depth to an 
impermeable layer

ordinal {60, 100} Yes

erodi Soil erodibility class ordinal [|0, 5|] Yes
oc_top Topsoil organic 

carbon content
ordinal {1, 2, 4, 8} Yes

pd_top Topsoil packing 
density

ordinal {1, 2} Yes

text Dominant surface 
textural class

ordinal [|0, 5|] Yes

clc Ground occupation categ. [|1, 48|] Yes

Note: bool. = Boolean data; categ. = categorical data; CV = coefficient of variation of 
monthly precipitation; quanti. = quantitative data.

aData presented in curly brackets ({ }) contain the list of all possibles values of the variable, 
i.e., a discrete ensemble; square brackets ([ ]) indicate the continuous range of values that 
can take the variable, i.e., a continuous interval; vertical lines indicate the range of integers 
between the two bounds given, i.e., a discrete interval.

https://www.gbif.org/dataset/75956ee6-1a2b-4fa3-b3e8-ccda64ce6c2d
https://www.gbif.org/dataset/75956ee6-1a2b-4fa3-b3e8-ccda64ce6c2d
https://www.gbif.org/
https://www.gbif.org/
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forestière–Système d’Administration Nationale des Données et 
Référentiels sur l’Eau (IGN-SANDRE) BD Carthage, CORINE 
Land Cover 2012 data, and IGN ROUTE500 data. The detailed 
methodology of how these variables were collected and formatted 
is described in Appendix  3. The full list of the variables used is 
presented in Table 2. For each of the considered species, we com-
puted seven models with varying levels of minimal confidence 
of species occurrences, i.e., different threshold values pmin(kmax|x) 
of the categorical probability p(kmax|x). We know that the global 
sampling effort in Pl@ntNet is highly correlated with human 
population density and the proximity to roads and to the coast-
line. In our study, the sampling intensity was so high compared 
to the species abundance that we strongly overestimated the spe-
cies abundance in cities, on beaches, and on roads. Consequently, 
we fitted MAXENT models, including variables of urban areas, 
proximity to roads, and distance to the coastline. In the predicted 
abundance function, we then kept these variables constant across 
space to cancel the effect of the sampling effort (see Appendix 2 
for more details). This approach has already been proposed and 
successfully used in the literature of SDMs (Warton et  al., 2013; 
Stolar and Nielsen, 2015). The predictive effectiveness of the mod-
els was then assessed using the INPN count data as a validation set. 
We used two evaluation metrics: (1) the true skills statistics (TSS) 
equal to the sum of the sensitivity and the specificity minus one (as 
described in Allouche et al., 2006), and (2) the accuracy on 10% 
densest quadrats (A10DQ; see Appendix 2 for more details). The 
TSS is the sum of sensibility and specificity minus one when com-
paring the SDM predicted presences/absences of a species with the 
references (the INPN data set). It is a meaningful measure to eval-
uate the model’s ability to detect presences while simultaneously 
minimizing false positives. It is computed through binarization 
of SDM continuous prediction based on the threshold that max-
imizes the TSS. We chose the A10DQ as a complementary metric 
because it evaluates the accuracy of the models in predicting the 
quadrats with the highest abundance (INPN count), which is an 
especially interesting property from the perspective of invasive 
species management.

RESULTS

Figure 3 displays the evaluation metrics as a function of the con-
fidence threshold pmin(kmax|x) applied to filter the automatic pre-
dictions. We found that the confidence threshold had variable 
influence depending on the species, but there was an overall trend 
represented by the average curve (Fig. 3, black solid line). Too-low 
thresholds did not allow for filtering identification errors suffi-
ciently, thus the model was biased by the presence of too many irrel-
evant occurrences. A too-high threshold (above 70%) also degraded 
the model performance (in particular, the accuracy of the quadrat 
cells with the higher level of counts; see Fig. 3) because the number 
of retained occurrences in the training set decreased significantly 
with increasing threshold. Models based on too few occurrences 
could not provide a relevant prediction of species distribution. With 
the current Pl@ntNet data, the chosen species, and the variables, a 
confidence threshold of 70% represented a good compromise for 
SDM. It filtered identification errors effectively for most species 
while retaining enough occurrences for model training. The most 
problematic species was Reynoutria japonica: it had very poor TSS 
for all thresholds (a TSS score of 0 would be a random prediction of 
presence and absence), indicating that the SDM did not distinguish 
presence and absence zones very well. This species is the most wide-
spread, which leads to poor SDM performances. Nevertheless, for 
the best threshold, A10DQ showed that 20% of the densest INPN 
quadrats were predicted by the model fitted on Pl@ntNet, which 
is significantly better than a random ranking of quadrats (which 
would give an average of 10% and a standard deviation of 1.3%). 
Consequently, the model could capture information on the dis-
tribution of Reynoutria from the Pl@ntNet data. Conversely, very 
good results were obtained for both metrics for Opuntia ficus-indica 
and Carpobrotus edulis.

Figure 4 further shows the distributions predicted for each spe-
cies using pmin(kmax|x) = 70%. For comparison, we also displayed 
the expert count data of INPN, as well as the specificity and sen-
sitivity of our model measured with that data (at TSS max). Most 
regions with high INPN counts were reasonably well predicted by 

FIGURE  3.  Predictive effectiveness of the species distribution models trained on Pl@ntNet data as a function of the confidence threshold value 
pmin(kmax|x) showing accuracy on the 10% densest quadrats (A) and true skill statistics (TSS; conversion of prediction value into presence/absence with 
the threshold that maximizes TSS) (B).



Applications in Plant Sciences 2018 6(2): e1029� Botella et al.—Species distribution modeling based on automatically identified observations  •  6 of 11

http://www.wileyonlinelibrary.com/journal/AppsPlantSci� © 2018 Botella et al.

FIGURE  4.  Maps of species distribution models computed from Pl@ntNet data (based on pmin(kmax|x) = 70%) and of expert count data from the 
Inventaire National du Patrimoine Naturel (INPN). The sensibility and specificity used for the computation of the true skill statistics (for pmin(kmax|x) 
= 70) is provided for each species.
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the models. Accordingly, sensitivity values were generally accurate 
for most species. Nevertheless, there were also regions for which 
the Pl@ntNet model and INPN data disagreed; in these regions the 
Pl@ntNet model predicted high abundances but there were none 
or very few occurrences in the INPN data. The strongest disagree-
ment occurred for Reynoutria japonica, i.e., the taxon for which the 
specificity was the lowest. Other false-positive prediction regions 
included the west coast for Opuntia ficus-indica and Carpobrotus 
edulis and the “Golfe du Lion” (arc on the southeast coast) for O. 
ficus-indica and Erigeron karvinskianus.

DISCUSSION

Visual inspection of Pl@ntNet observations occurring in such 
false-positive regions revealed that for the vast majority such ob-
servations did not correspond to erroneous identifications (pmin 
(kmax|x) = 70% is a high enough threshold to remove noise effi-
ciently). Rather, they corresponded to real occurrences that can be 
classified in three main categories (see Fig. 5 for examples of obser-
vations belonging to the different categories). The first category can 
be qualified as cultivated specimens, i.e., specimens planted and/
or maintained by humans such as gardening plants, house plants, 
ornamental plants in city parks, etc. Most occurrences of Opuntia 
ficus-indica on the west coast belonged to this category. A second 

category of observations could be qualified as casual invasive spec-
imens, i.e., isolated specimens that often flourish close to human 
construction but that do not form self-replacing populations. 
Cultivated and casual invasive specimens present in the observa-
tions reveal that the species is able to grow in a great diversity of 
habitats. These specimens should be identified, either to (1) filter 
them for model learning, (2) evaluate the correlation between spe-
cies gardening intensity and its abundance in wild surroundings, 
or (3) learn more complex models that integrate dispersal mech-
anisms and quantify more precisely the importance of gardening 
intensity on the species’ capacity to colonize a region. To identify 
cultivated specimens, several options are possible: for example, 
learning models can be used to identify the context of the picture 
or the user can be asked to clarify the type of environment where 
the observation was made, especially when observations appear 
ambiguous. Apart from the issue of correctly predicting species oc-
currences in the wild, frequent occurrences of cultivated and casual 
invasive specimens in a region where there is no presence in the 
wild can reflect the risk of future invasion in the wild.

A last category of observations can be qualified as newly in-
ventoried invasive specimens, i.e., non-isolated specimens living 
in natural areas that have yet to be inventoried in the INPN data. 
Notably, the majority of occurrences of Carpobrotus edulis on the 
west coast belong to this category. Newly inventoried invasive spec-
imens could provide an early warning for territory managers. For 

FIGURE 5.  Pl@ntNet observations with a species prediction score of more than 70% for plants living in natural conditions or cultivated for ornamen-
tal purpose.
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example, we found newly inventoried specimens of Reynoutria ja-
ponica in the Pl@ntNet data, and we suspect that poor performance 
of its SDM could reflect a negative bias in the evaluation metrics of 
this species. Typically, specimens occurring outside of presence ar-
eas identified by experts and not categorized as cultivated or casual 
invasive should be prioritized for expert validation.

In this study, our sampling effort correction approach was based 
on prior knowledge of sampling intensity in the Pl@ntNet data. We 
could not evaluate the errors related to the sampling effort bias with-
out complementary systematic survey data. Nevertheless, the INPN 
data have their own heterogeneity in the spatial distribution of the 
sampling effort. These data were collected by independent regional 
conservatories, and variations in sampling by different workforces 
may have introduced regional heterogeneity. Furthermore, some 
zones are not surveyed by conservatories, typically cities in most 
cases, which tends to bias the Pl@ntNet model error in urban ar-
eas. The study of global sampling effort bias is crucial for exploit-
ing presence-only data collected without protocol. The spatially 
heterogeneous sampling effort is especially problematic when it is 
correlated with environmental variables impacting the species dis-
tribution. For example, the sampling effort is correlated with the 
distance to the coastline, which is also a variable influencing the 
abundance of Opuntia ficus-indica, Erigeron karvinskianus, and 
Carpobrotus edulis. Because our bias correction method removes the 
distance to the coastline effect, it partially removes the ability of the 
model to capture this effect on the species distribution. When we in-
cluded these variables in the predicted distribution of the three spe-
cies (results not presented in this article), we found a much greater 
predicted abundance gradient toward the coast. However, the maps 
presented in Fig. 4 show that the model captured a part of the coastal 
effect through other variables that are correlated with the distance to 
coastline. The same problem will occur with other invasive species 
that tend to grow near roads as a result of constant perturbation 
or dispersal mechanisms. More generally, we note that the presence 
of invasive species is strongly influenced by human activity. It is 
also highly correlated with observational intensity in opportunistic 
presence-only data. Thus, this category of species represents a major 
methodological challenge for improving SDM based on presence-
only data and represents a clear path for future research.

CONCLUSIONS

This study is the first to evaluate the potential of automated iden-
tification of opportunistic plant observations for modeling species 
distributions. The described methodology allowed us to analyze 
the potential usefulness of the Pl@ntNet data. By comparing SDMs 
trained on Pl@ntNet unvalidated observations with validated in-
dependent count data on a large spatial scale, we found that the 
data are rich enough to be used for SDM with only a single year 
of data collection. However, we also showed that distributions re-
ported from Pl@ntNet data do not precisely match those of ex-
pert data. The main reasons for these deviations appear to be the 
presence of cultivated or casual invasive specimens in the data set, 
the detection of real presence in new areas, and the limits of the 
sampling bias correction method. Noticing these limits allowed us 
to underline significant research challenges for SDMs and to pro-
vide possible methods to usefully integrate information provided 
by opportunistic citizen science observations into conservation 
management.
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APPENDIX 1. Detailed architecture and training procedure of the 
convolutional neural network used to compute the automated 
identifications.

The main strength of convolutional neural network (CNN) 
technologies comes from their ability to learn discriminant 
visual features directly from the raw pixels of the images without 
exponentially increasing the model variables as the dimensionality 
grows (Goodfellow et al., 2016). This is achieved by stacking 
multiple convolutional layers, i.e., the core building blocks of a 
CNN. In general, a convolutional layer takes images as input 
and produces as output feature maps corresponding to different 
convolution kernels while looking for different visual patterns.

To get to specific choices in the architecture, we used an 
extended version of the GoogleNet model (Szegedy et al., 2015) 
that is a very deep CNN that stacks several so-called inception 
layers. As in Carranza-Rojas et al. (2017), we extended the base 
version with batch normalization (Ioffe and Szegedy, 2015), which 
has been proven to speed up convergence and limit overfitting, 
and with a parametric rectified linear unit (PReLU) activation 
function (He et al., 2015) instead of the traditional rectified linear 
unit (ReLU).

To improve the generalization ability of the network, we used 
transfer learning, which is a powerful paradigm to overcome the lack 
of sufficient domain-specific training data. Deep learning models 
have to be trained on thousands of pictures per class to converge 
on accurate classification models. It has been shown that the first 
layers of deep neural networks deal with generic features (Yosinski 
et al., 2014) so that they are generally usable for other computer 
vision tasks. Consequently, they can be trained on arbitrary training 
image data. The last layers contain more or less generic information 
transferable from one classification task to another. These layers are 
expected to be more informative for the optimization algorithm than 
a random initialization of the weights of the network. Therefore, a 
common practice is to initialize the network by pre-training it on a 
large available data set and then fine-tune it on the scarcer domain-
specific data. Many networks are pre-trained on the generalist data 
set ImageNet (Deng et al., 2009), which covers a large variety of visual 
concepts, including animals, vehicles, and manufactured objects. 
Because the GoogleNet model we used was already pre-trained on 
this generalist data set, we used the following methodology for fine-
tuning it on our data set of 11,000 species (using the Caffe framework 
[Jia et al., 2014]):

https://doi.org/10.1007/s11831-016-9206-z
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1.	 The linear classification layer was replaced by a new one aimed at 
classifying the new classes (i.e., the 11,000 species). It was initial-
ized with random weights and the learning rate was multiplied 
by 10 for this layer.

2.	 The other layers were kept unchanged to initialize the network 
with the weights learned from ImageNet.

3.	 The network was trained on the 332,000 plant images of our 
training set.

A batch size of 16 images was used for each iteration, with a 
learning rate of 0.0075 with images of 224 × 224 resolution. Simple 
crop and resize data augmentation was used with the default set-
tings of the Caffe framework.

APPENDIX 2. Description of Pl@ntNet data post-treatments, 
generation of quadrature points, and experimental procedure. Results 
were obtained using R.

Filtering of Pl@ntNet geolocated observations: We used the 
unvalidated observations collected by Pl@ntNet users during the 
year 2016. We kept only observations for which one of our five 
species was ranked first according to the identification score. We 
first selected those whose GPS geolocation falls in the French 
Metropolitan territory (polygon: getData(country=“FRA”,level=0), 
function from package raster) excluding Corsica, or are closer 
than 500 m to the coastline (because of coordinate error). 
Because observations are very often duplicated due to a repeated 
submission of the same set of pictures, we kept only one of the 
identical observations. Unsatisfactory automatic identification 
of the same specimen allowed the user to take new pictures of 
the specimen and submit it again. This kind of duplication was 
removed by the following procedure: for two occurrences closer 
than 60 sec in time and 100 m in space, we kept the one with 
highest p(kmax|x).

Quadrature points: MAXENT can be interpreted as a non-
homogeneous Poisson process model (Fithian and Hastie, 2013). 
Thus, computing a MAXENT model from observations requires 
integration of its intensity function over the spatial domain of study D 
(in this study, the French territory). For this purpose, it approximates 
the integral with quadrature points, also called “pseudo-absences,” 
that represent the distribution of the environmental descriptors on 
D. As our domain was wide, and some of our descriptors vary with 
high spatial frequency (like distance to roads or proximity to fresh 
water), we used a high number of quadrature points. We generated 
101,632 points on a grid with a similar spacing of 0.025 in longitude 
(approximately 2 km) and latitude (approximtely 2.8 km), and 
strictly included in the French polygon (see above).

Prediction of model relative abundance for a plot and 
attribution of quadrature points to plots: With a fitted 
MAXENT model, we can evaluate its intensity function at every 
quadrature point via environmental descriptors, which gives a 
high-resolution map of predicted relative abundance across 
France. This fine-resolution prediction includes the effect of high-
frequency variables. However, to compare model predictions 
to counts on quadrat cells, we need to upscale our prediction: 
according to the properties of the inhomogeneous Poisson 
process, the law of the number of points falling in a quadrat cell 
is a Poisson law whose parameter is the integral of the intensity 

function over the quadrat cell. Because the quadrature points 
are regularly spaced, we can approximate this integral up to a 
factor (common to every quadrat cell because they have the same 
area) with the mean of intensity values over quadrature points 
contained in the quadrat cell. For some cells located mainly 
above sea or ocean, some did not contain any quadrature points, 
thus we attributed the closest one while removing it from its 
original plot. In this way, quadrat cells contained an average of 
17.1 quadrature points.

Bias-corrected model prediction: We know that there is 
sampling bias in the Pl@ntNet observation data. The most 
important is high sampling effort in cities, close to roads, and 
near coastlines (because of use during tourist activities). In 
addition, we know that for the species of interest, distance to 
roads and cities has no strong link to real abundance. Because 
we want to remove the artificial importance of those variables in 
the concentration of observations, one strategy is to integrate the 
sampling variables in the intensity function, as is now commonly 
done in such cases (Warton et al., 2013). If there is no perfect 
linear link between sampling and abundance variables, we will 
correctly infer our abundance model. Finally, we predict an 
unbiased relative abundance by setting the sampling variables to 
a constant value everywhere in space. However, we cannot do this 
for the distance to coastline because this variable plays a key role 
in the real abundance of Carpobrotus edulis, Opuntia ficus-indica, 
and Erigeron karvinskianus.

Evaluation metric: The evaluation metric represents the 
proportion of the top 10% quadrats in terms of real count that 
are also in the top 10% in terms of model prediction. However, 
we have to define the last quadrat cell ranked in the top 10% 
for counts, which is problematic for some species because of ex 
aequo cells. That is why we defined the following procedure that 
is adjusted for each species in the percentage of top cells such that 
the metrics can be calculated and the percentage is the closest 
to 10%. It is known as accuracy on the 10% densest quadrats 
(A10DQ):

Where Np&c(i) is the number of cells that are contained in the 
Nc(i) higher cells both in terms of count and of model prediction.

Calculation of Nc(i): We order the cells by decreasing the count 
of i and note Ck the count of the k-th cell in this order. As we are 
interested in the quadrat cells ranked in the highest 10%, if C518 
> C519, we set Nc(i) = 518. Otherwise, C518 = C519 (ex aequo exists 
for 518th position), then we note sup the position of the last cell 
with count C519 and inf the position of the first cell with count C519. 
The chosen rule is to take Nc(i) such that Nc(i) = Min(|sup-518|, 
|inf-518|).

APPENDIX 3. Detailed methodology of how environmental 
variables were collected and formatted in our study.

We used data covering the French metropolitan territory, freely 
available on the web. The environmental descriptors are listed in 
Table 2. Because the original coordinate systems of the layers used 
varied among sources, we systematically converted them to WGS84 

Np&c(i)

Nc(i)
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using the rgdal package in R, which was the reference coordinate 
system for our observations, quadrature points, and quadrat cells. In 
the following points, we describe the sources, nature, and eventual 
transformations of those environmental data:

•	 CHELSA Climate data 1.1: These are raster data with worldwide 
coverage and 1-km resolution. A mechanistic climatic model 
is used to make spatial predictions of monthly mean-max-min 
temperatures, mean precipitations, and 19 bioclimatic variables 
that are downscaled with statistical models integrating histori-
cal measures of meteorologic stations from 1979 to the present 
(see Karger et al., 2017). The data are under Creative Commons 
Attribution 4.0 International License (available at http://chelsa- 
climate.org/downloads/).

•	 The ESDB v2, 1kmx1km Raster Library (Panagos, 2006; Van 
Liedekerke et al., 2006; Panagos et al., 2012): The library 
contains multiple soil pedological descriptor raster layers 
covering Eurasia at a resolution of 1 km. We selected 10 de-
scriptors from the library. They represent quantitative phys-
ico-chemical quantities of the soil (from the PedoTransfer 
Rules Database [PTRDB attributes, available at https://esdac.
jrc.ec.europa.eu/content/ptrdb-attributes]) that have been 
deduced from soil classification with expert rules, and their 
values are aggregated in intervals. As there are few possi-
ble intervals by variables (2−6), we integrated them as cat-
egorical variables in MAXENT. The data are maintained 
and distributed freely for scientific use by the European 
Soil Data Centre at http://eusoils.jrc.ec.europa.eu/content/
european-soil-database-v2-raster-library-1kmx1km.

•	 CORINE Land Cover 2012, version 18.5.1, 12/2016: This is a 
raster layer describing soil occupation with 48 categories across 
Europe (25 countries) at a resolution of 100 m. This classification 
is the result of an interpretation process applied to the earth’s 
surface with high-resolution satellite images. We set this varia-
ble as categorical in MAXENT with only 30 relevant categories 
for our purposes. This database of the European Union is freely 
accessible online at: http://land.copernicus.eu/pan-european/
corine-land-cover/clc-2012.

•	 CGIAR-CSI ETP data: The Consultative Group on 
International Agricultural Research–Consortium for 
Spatial Information (CGIAR-CSI) distributes this world-
wide monthly potential evapo-transpiration raster data. 
It is pulled from a model developed by Antonio Trabucco 
(Zomer et al., 2007, 2008). Rasters are estimated by the 
Hargreaves formula using mean monthly surface tempera-
tures and standard deviation from WorldClim 1:4 (http://
www.worldclim.org/version1), and radiation on top of at-
mosphere. The raster is at a 1-km resolution and is freely 

downloadable for a nonprofit use at http://www.cgiar-csi.org/
data/global-aridity-and-pet-database#description.

•	 U.S. Geological Survey Digital Elevation data: The Shuttle Radar 
Topography Mission achieved in 2010 by the Endeavour shuttle 
measured digital elevation at 3 arcs per second resolution over 
most of the earth’s surface. Raw measures have been post-pro-
cessed by the National Aeronautics and Space Administration 
and the National Geospatial-Intelligence Agency to correct 
detection anomalies. This gives a precision measurement of 
approximately 90 m for this variable. The data are available 
from the U.S. Geological Survey and are downloadable on the 
EarthExplorer (https://earthexplorer.usgs.gov/). See https://lta.
cr.usgs.gov/SRTMVF for more information.

•	 BD Carthage v3: BD Carthage is a spatial database holding infor-
mation on the structure and nature of the French Metropolitan 
hydrological network. We focus on the geometric segments rep-
resenting watercourses, polygons representing hydrographic 
fresh surfaces, and the ocean. The data have been produced by 
the Institut National de l’information Géographique et forestière 
(IGN) from an interpretation of the BD Ortho IGN. The data-
base is maintained by SANDRE under free license for non-profit 
use and is downloadable at: http://services.sandre.eaufrance.fr/
telechargement/geo/ETH/BDCarthage/FXX/2014/arcgis/.
For “proxi_eau,” i.e., the proximity to fresh water, we used 

QGIS (https://qgis.org/) to rasterize to a 12.5-m resolution, with 
a buffer of 50 m, (1) the shapefile COURS_D_EAU.shp and (2) 
the polygons of SURFACES_HYDROGRAPHIQUES.shp with 
attribute NATURE=“Eau douce permanente”. We then created 
the maximum of the proximity raster derived from COURS_D_
EAU.shp and SURFACES_HYDROGRAPHIQUES.shp (so the 
value of 1 corresponds to an approximate distance of less than 
50 m to a watercourse or hydrographic surface of fresh water). 
For “dmer,” i.e., the distance to the ocean, we calculated, using 
QGIS, the distance raster at a resolution of 12.5 m to polygons 
with attribute TYPE=“Pleine mer” in the shapefile SURFACES_
HYDROGRAPHIQUES.shp of BD Carthage up to a distance of 
32,767 m for storage format convenience.

•	 ROUTE500 1.1: This database register classifies road linkages 
between cities (highways, national roads, and departmental 
roads) in France in shapefile format, representing approxi-
mately 500,000 km of roads. It is produced under free license 
(all uses) by the IGN. Data are available online at http://
osm13.openstreetmap.fr/~cquest/route500/. For deriving the 
variable “droute,” the distance to the main roads networks, we 
used a similar procedure as for “dmer,” calculating the dis-
tance raster for all the elements of the shapefile ROUTES.shp 
(segments).

http://chelsa-climate.org/downloads/
http://chelsa-climate.org/downloads/
https://esdac.jrc.ec.europa.eu/content/ptrdb-attributes
https://esdac.jrc.ec.europa.eu/content/ptrdb-attributes
http://eusoils.jrc.ec.europa.eu/content/european-soil-database-v2-raster-library-1kmx1km
http://eusoils.jrc.ec.europa.eu/content/european-soil-database-v2-raster-library-1kmx1km
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
http://www.worldclim.org/version1
http://www.worldclim.org/version1
http://www.cgiar-csi.org/data/global-aridity-and-pet-database#description
http://www.cgiar-csi.org/data/global-aridity-and-pet-database#description
https://earthexplorer.usgs.gov/
https://lta.cr.usgs.gov/SRTMVF
https://lta.cr.usgs.gov/SRTMVF
http://services.sandre.eaufrance.fr/telechargement/geo/ETH/BDCarthage/FXX/2014/arcgis/
http://services.sandre.eaufrance.fr/telechargement/geo/ETH/BDCarthage/FXX/2014/arcgis/
https://qgis.org/
http://osm13.openstreetmap.fr/~cquest/route500/
http://osm13.openstreetmap.fr/~cquest/route500/

