K. Phelan and H. Mcdermid, The 22q13.3 Deletion Syndrome (Phelan-McDermid Syndrome), Molecular Syndromology, vol.2, pp.186-201, 2012.
DOI : 10.1159/000334260

B. P. Coe, Refining analyses of copy number variation identifies specific genes associated with developmental delay, Nature Genetics, vol.57, issue.10, pp.1063-1071, 2014.
DOI : 10.1038/gim.2012.164

G. M. Cooper, A copy number variation morbidity map of developmental delay, Nature Genetics, vol.455, issue.9, pp.838-884, 2011.
DOI : 10.1038/nature05329

M. C. Bonaglia, Molecular Mechanisms Generating and Stabilizing Terminal 22q13 Deletions in 44 Subjects with Phelan/McDermid Syndrome, PLoS Genetics, vol.42, issue.7, p.1002173, 2011.
DOI : 10.1371/journal.pgen.1002173.s009

A. Guilmatre, G. Huguet, R. Delorme, and T. Bourgeron, genes in neuropsychiatric disorders, Developmental Neurobiology, vol.32, issue.Part 1, pp.113-122, 2014.
DOI : 10.1523/JNEUROSCI.6107-11.2012

URL : https://hal.archives-ouvertes.fr/pasteur-01579806

C. S. Leblond, Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: A Gradient of Severity in Cognitive Impairments, PLoS Genetics, vol.22, issue.6, p.1004580, 2014.
DOI : 10.1371/journal.pgen.1004580.s019

URL : https://hal.archives-ouvertes.fr/inserm-01061498

C. M. Durand, Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders, Nature Genetics, vol.28, issue.1, pp.25-27, 2007.
DOI : 10.1016/j.tins.2005.01.008

URL : https://hal.archives-ouvertes.fr/inserm-00126175

V. Disciglio, Interstitial 22q13 deletions not involving SHANK3 gene: A new contiguous gene syndrome, American Journal of Medical Genetics Part A, vol.67, issue.7, pp.1666-1676, 2014.
DOI : 10.1074/jbc.M401563200

H. L. Wilson, Interstitial 22q13 deletions: genes other than SHANK3 have major effects on cognitive and language development, European Journal of Human Genetics, vol.264, issue.11, pp.1301-1310, 2008.
DOI : 10.1038/ejhg.2008.107

URL : http://www.nature.com/ejhg/journal/v16/n11/pdf/ejhg2008107a.pdf

P. Monteiro and G. Feng, SHANK proteins: roles at the synapse and in autism spectrum disorder, Nature Reviews Neuroscience, vol.503, issue.3, pp.147-157, 2017.
DOI : 10.1523/JNEUROSCI.3125-14.2015

A. M. Grabrucker, M. J. Schmeisser, M. Schoen, and T. M. Boeckers, Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies, Trends in Cell Biology, vol.21, issue.10, pp.594-603, 2011.
DOI : 10.1016/j.tcb.2011.07.003

J. Peça, Shank3 mutant mice display autistic-like behaviours and striatal dysfunction, Nature, vol.90, issue.7344, pp.437-442, 2011.
DOI : 10.1152/jn.00070.2003

A. Shcheglovitov, SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients, Nature, vol.27, issue.7475, pp.267-271, 2013.
DOI : 10.1634/stemcells.2008-1075

URL : http://europepmc.org/articles/pmc5559273?pdf=render

F. Yi, Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons, Science, vol.89, issue.3, pp.1-22, 2016.
DOI : 10.1152/physrev.00029.2008

URL : http://europepmc.org/articles/pmc4901875?pdf=render

H. Darville, Human Pluripotent Stem Cell-derived Cortical Neurons for High Throughput Medication Screening in Autism: A Proof of Concept Study in SHANK3 Haploinsufficiency Syndrome, EBioMedicine, vol.9, pp.293-305, 2016.
DOI : 10.1016/j.ebiom.2016.05.032

URL : https://hal.archives-ouvertes.fr/hal-01326262

A. Kolevzon, Phelan-McDermid syndrome: a review of the literature and practice parameters for medical assessment and monitoring, Journal of Neurodevelopmental Disorders, vol.6, issue.1, p.39, 2014.
DOI : 10.1186/2040-2392-4-17

S. M. Sarasua, Association between deletion size and important phenotypes expands the genomic region of interest in Phelan-McDermid syndrome (22q13 deletion syndrome), Journal of Medical Genetics, vol.48, issue.11, pp.761-766, 2011.
DOI : 10.1136/jmedgenet-2011-100225

L. Soorya, Prospective investigation of autism and genotype-phenotype correlations in 22q13 deletion syndrome and SHANK3 deficiency, Molecular Autism, vol.4, issue.1, p.18, 2013.
DOI : 10.1136/jmg.40.8.575

URL : https://hal.archives-ouvertes.fr/inserm-00843238

S. M. Sarasua, 22q13.2q13.32 genomic regions associated with severity of speech delay, developmental delay and physical features in Phelan???McDermid syndrome, Genetics in Medicine, vol.13, issue.4, pp.318-328, 2014.
DOI : 10.1101/gr.082701.108

S. M. Sarasua, Clinical and genomic evaluation of 201 patients with Phelan???McDermid syndrome, Human Genetics, vol.16, issue.11, pp.847-859, 2014.
DOI : 10.1038/ejhg.2008.107

S. U. Dhar, 22q13.3 deletion syndrome: Clinical and molecular analysis using array CGH, American Journal of Medical Genetics Part A, vol.16, issue.3, pp.573-581, 2010.
DOI : 10.1002/ajmg.a.33253

C. S. Leblond, Genetic and Functional Analyses of SHANK2 Mutations Suggest a Multiple Hit Model of Autism Spectrum Disorders, PLoS Genetics, vol.92, issue.Pt 11, p.1002521, 2012.
DOI : 10.1371/journal.pgen.1002521.s016

URL : https://hal.archives-ouvertes.fr/inserm-00834560

S. Girirajan, A recurrent 16p12.1 microdeletion supports a two-hit model for severe developmental delay, Nature Genetics, vol.316, issue.3, pp.203-209, 2010.
DOI : 10.1002/ajmg.a.30621

C. Babbs, and rare inherited mutations implicate the transcriptional coregulator TCF20/SPBP in autism spectrum disorder, Journal of Medical Genetics, vol.23, issue.11, pp.737-747, 2014.
DOI : 10.1093/hmg/ddt568

T. Tang and Y. , TAFA: a novel secreted family with conserved cysteine residues and restricted expression in the brain, Genomics, vol.83, issue.4, pp.727-734, 2004.
DOI : 10.1016/j.ygeno.2003.10.006

T. M. Boeckers, Proline-Rich Synapse-Associated Proteins ProSAP1 and ProSAP2 Interact with Synaptic Proteins of the SAPAP/GKAP Family, Biochemical and Biophysical Research Communications, vol.264, issue.1, pp.247-252, 1999.
DOI : 10.1006/bbrc.1999.1489

A. Philippe, Neurobehavioral Profile and Brain Imaging Study of the 22q13.3 Deletion Syndrome in Childhood, PEDIATRICS, vol.122, issue.2, pp.376-382, 2008.
DOI : 10.1542/peds.2007-2584

L. M. Oberman, L. Boccuto, L. Cascio, S. Sarasua, and W. Kaufmann, Autism spectrum disorder in Phelan-McDermid syndrome: initial characterization and genotype-phenotype correlations, Orphanet Journal of Rare Diseases, vol.39, issue.7, p.105, 2015.
DOI : 10.1007/s10803-009-0704-9

URL : https://ojrd.biomedcentral.com/track/pdf/10.1186/s13023-015-0323-9?site=ojrd.biomedcentral.com

J. L. Holder and M. M. Quach, loss-of-function mutations, Epilepsia, vol.54, issue.10, pp.1651-1659, 2016.
DOI : 10.1002/ajmg.a.30780

K. A. Aldinger, Cerebellar and posterior fossa malformations in patients with autism-associated chromosome 22q13 terminal deletion, American Journal of Medical Genetics Part A, vol.40, issue.1, pp.131-136, 2013.
DOI : 10.1136/jmg.40.8.575

URL : http://europepmc.org/articles/pmc3733662?pdf=render

J. I. Egger, R. J. Zwanenburg, C. M. Van-ravenswaaij-arts, T. Kleefstra, and W. M. Verhoeven, Neuropsychological phenotype and psychopathology in seven adult patients with Phelan-McDermid syndrome: implications for treatment strategy, Genes, Brain and Behavior, vol.24, issue.4, pp.395-404, 2016.
DOI : 10.1111/j.1601-5215.2011.00613.x

E. Tabolacci, Two brothers with 22q13 deletion syndrome and features suggestive of the Clark???Baraitser syndrome, Clinical Dysmorphology, vol.14, issue.3, pp.127-132, 2005.
DOI : 10.1097/00019605-200507000-00004

W. M. Verhoeven, J. I. Egger, M. H. Willemsen, G. J. De-leijer, and T. Kleefstra, Phelan-McDermid syndrome in two adult brothers: atypical bipolar disorder as its psychopathological phenotype?, Neuropsychiatric Disease and Treatment, vol.8, pp.175-179, 2012.
DOI : 10.2147/NDT.S30506

URL : https://www.dovepress.com/getfile.php?fileID=12568

S. G. Lindquist, Further delineation of the 22q13 deletion syndrome, Clinical Dysmorphology, vol.14, issue.2, pp.55-60, 2005.
DOI : 10.1097/00019605-200504000-00001

L. Sumoy, R. Pluvinet, N. Andreu, X. Estivill, and M. Escarceller, PACSIN 3 is a novel SH3 domain cytoplasmic adapter protein of the pacsin-syndapin-FAP52 gene family, Gene, vol.262, issue.1-2, pp.199-205, 2001.
DOI : 10.1016/S0378-1119(00)00531-X

F. Crittenden, H. R. Thomas, J. M. Parant, and C. N. Falany, Activity Suppression Behavior Phenotype in SULT4A1 Frameshift Mutant Zebrafish, Drug Metabolism and Disposition, vol.43, issue.7, pp.1037-1044, 2015.
DOI : 10.1124/dmd.115.064485

URL : http://europepmc.org/articles/pmc4468436?pdf=render

H. A. Teive, Spinocerebellar ataxia type 10 ??? A review, Parkinsonism & Related Disorders, vol.17, issue.9, pp.655-661, 2011.
DOI : 10.1016/j.parkreldis.2011.04.001

J. Stenman, Canonical Wnt Signaling Regulates Organ-Specific Assembly and Differentiation of CNS Vasculature, Science, vol.22, issue.7, pp.1247-1250, 2008.
DOI : 10.1080/01616412.2000.11740735

S. B. Rosso, D. Sussman, A. Wynshaw-boris, and P. C. Salinas, Wnt signaling through Dishevelled, Rac and JNK regulates dendritic development, Nature Neuroscience, vol.18, issue.1, pp.34-42, 2005.
DOI : 10.1016/j.ydbio.2003.06.003

G. Rosenberger, I. Jantke, A. Gal, and K. Kutsche, Interaction of alphaPIX (ARHGEF6) with beta-parvin (PARVB) suggests an involvement of alphaPIX in integrin-mediated signaling, Human Molecular Genetics, vol.12, issue.2, pp.155-167, 2003.
DOI : 10.1093/hmg/ddg019

L. Weiss, Y. Shen, and J. Korn, Association between Microdeletion and Microduplication at 16p11.2 and Autism, N. Engl. J. Med, vol.358, pp.2255-2265, 2014.
DOI : 10.1097/01.ogx.0000316305.61461.6f

URL : http://www.childrenshospital.org/bcrp/AutismNEJM_Walsh.pdf

B. A. Fernandez, Phenotypic spectrum associated with de novo and inherited deletions and duplications at 16p11.2 in individuals ascertained for diagnosis of autism spectrum disorder, Journal of Medical Genetics, vol.47, issue.3, pp.195-203, 2010.
DOI : 10.1136/jmg.2009.069369

T. Bourgeron, From the genetic architecture to synaptic plasticity in autism spectrum disorder, Nature Reviews Neuroscience, vol.511, issue.9, pp.551-563, 2015.
DOI : 10.1016/j.cell.2004.09.011

URL : https://hal.archives-ouvertes.fr/hal-01576592

D. A. Koolen, Mutations in the chromatin modifier gene KANSL1 cause the 17q21.31 microdeletion syndrome, Nature Genetics, vol.44, issue.6, pp.639-641, 2012.
DOI : 10.1242/jcs.060582

M. Zollino, Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype, Nature Genetics, vol.44, issue.6, pp.636-638, 2012.
DOI : 10.1136/jmg.40.8.575

S. Curran, J. W. Ahn, H. Grayton, D. A. Collier, and C. M. Ogilvie, NRXN1 deletions identified by array comparative genome hybridisation in a clinical case series ??? further understanding of the relevance of NRXN1 to neurodevelopmental disorders, Journal of Molecular Psychiatry, vol.1, issue.1, p.4, 2013.
DOI : 10.1006/geno.2002.6734

C. Lord, M. Rutter, and A. Le-couteur, Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders, Journal of Autism and Developmental Disorders, vol.93, issue.5, pp.659-685, 1994.
DOI : 10.1016/S0387-7604(12)80166-5

C. Lord, Autism diagnostic observation schedule (ADOS), Journal of Autism and Developmental Disorders, vol.30, issue.3, pp.205-223, 2000.
DOI : 10.1023/A:1005592401947

R. K. Yuen, Whole-genome sequencing of quartet families with autism spectrum disorder, Nature Medicine, vol.110, issue.2, pp.185-191, 2015.
DOI : 10.1073/pnas.1302575110

S. J. Sanders, Insights into Autism Spectrum Disorder Genomic Architecture and Biology from 71 Risk Loci, Neuron, vol.87, issue.6, pp.1215-1233, 2015.
DOI : 10.1016/j.neuron.2015.09.016

URL : https://doi.org/10.1016/j.neuron.2015.09.016

A. J. Gonzalez-mantilla, A. Moreno-de-luca, D. H. Ledbetter, and C. L. Martin, A Cross-Disorder Method to Identify Novel Candidate Genes for Developmental Brain Disorders, JAMA Psychiatry, vol.73, issue.3, pp.1-9, 2016.
DOI : 10.1001/jamapsychiatry.2015.2692

N. Huang, I. Lee, E. M. Marcotte, M. E. Hurles, and F. Huang, Characterising and Predicting Haploinsufficiency in the Human Genome, PLoS Genetics, vol.16, issue.10, p.1001154, 2010.
DOI : 10.1371/journal.pgen.1001154.s021

J. Kosmicki, Refining the role of de novo protein truncating variants in neurodevelopmental disorders using polpulation reference samples. bioRxiv. https://doi.org/10, p.52886, 1101.