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I. Introduction

Experimental research has been devoted to the de velopment of a new type of cation-exchange membrane (CEM) which can not only separate cations from an ions but also separate cations of different valences. This type of CEM has preferential selectivity. These CEMs can improve the performances of existing pro cesses without the addition of surface-active agents or polyelectrolytes in the solution to be treated [1][2][3].

These CEMs can be used in various applications �uch as the electrodialysis (ED) of seawater or spent mineral acids or in redox-flow batteries. Indeed, in the case of the sea-water concentration processes to obtain raw salt or edible salt, CEMs with preferential selectiv ity for monovalent cations can avoid the formation of �cales (e.g. CaCO 3 , CaSO 4 etc.) which can form in the concentration chambers [ 4,5].

Waste acids containing metallic salts are produced by several industries, such as pickling and surface treatment, the pigment industry and hydrometallurgy. Nowadays, these industries trend to treat these efflu ents in order to re-use and recycle pollutants and to conserve raw materials. CEMs with preferential selec tivity for monovalent cations would make the ED pro cess competitive with traditional processes. Moreover, the existing treatment of acid wastes is now controver sial for environmental reasons because diluted efflu ents are dumped into rivers or the sea, and sludge is deposited in dumps.

The synthesis of CEMs with preferential selectivity for monovalent cations would also enable the commer cial production of redox-flow batteries. This kind of battery is of great interest to NASA and in Japan, where it is a theme of the '•Moon-Light" project of the Ministry of International Trade and Industry [6].

A CEM can be made preferentially selective to monovalent cations by depositing a thin anion ex change layer on its surface [7]. The positive charges introduced on the surface create an electrostatic repul sion which is greater for multivalent cations than for monovalent cations [8,9]. The method that we have selected for obtaining a CEM with preferential permse lectivity for monovalent cations consists in immersing the CEM in an aqueous solution of polyelectrolyte which is adsorbed on the membrane surface. The method has been described previously by Sata [10]. Furthermore, this allows the use of a commercial CEM and a reference CEM; it is also a very convenient method which gives a surface film that is sufficiently stable for our experiments.

The aim of this work is to obtain a better under standing of the mechanism of preferential selectivity of modified CEM to protons. We describe the properties of a modified CEM both under equilibrium conditions and when it functions in an electrical field.

Experimental

The commercial cation-exchange membrane used in this study was a CRA membrane obtained from Solvay Co. It was composed of a poly(ethylene-tetrafluoroeth ylene) copolymer (ETFE) matrix cross-linked with di vinylbenzene and bearing sulphonic ion-exchange groups. This membrane has been specially designed for the treatment of effluents from metal pickling. Before measurements, the CRA membrane was equilibrated in the electrolyte solution for at least 24 h.

Surf ace modification

The surface of the CRA membrane was modified by adsorption or ion exchange of the polyelectrolyte polyethyleneimine (PEI) which was obtained from Fluka Chemika Co. PEI has a molar mass between 6 x 10 5 and 10 6 g. The membrane sample (area 25 cm 2 ) was placed in a 0.1 M aqueous HCl solution to equilibrate the sulphonic exchange sites with protons, after which it was immersed in a stirred PEI aqueous solution of given concentration at room temperature for 48 h. The concentration of PEI in the treatment solution was in the range 5-4000 ppm. The sample was then equilibrated with the electrolyte solution. We use the following nomenclature to define the modified membranes: the CRA membrane whose surface was modified in an aqueous solution containing X ppm of PEI is designated CRA-X.

The amount of adsorbed PEI was measured by determining the polyelectrolyte concentration before and after the immersion cycle. This concentration was analysed using the UV absorption spectrum of the copper-PEI complex [10]. To do this, the solution containing PEI was mixed with a cupric sulphate solu tion. The maximum absorption of the copper-PEI complex was located at 275 µm. Electron spectroscopy allows the determination of the thickness of the modi fied layer, which is estimated to be less than 1 µm.

Exchange capacity, water content and ion exchange isotherms

The techniques used to determine the exchange capacity, the water content and the ion-exchange isotherms have been described extensively in previous papers [11,12].

Electrical resistance and current-voltage measure ments

The electrical resistance was measured using the clip-cell described elsewhere [12]. The frequency of the applied current was 1000 Hz. The current-transmem brane potential difference curves for obtaining the values of the limiting current were recorded using the apparatus described previously by Taky et al. [13].

Preferential selectivity

The selectivity of the modified membranes towards Ca z+ with respect to protons and their selectivity to wards chloride ions were quantified as the relative transport number of these ions under a constant cur rent. The transport numbers were measured by means of radiotracers. Radiotracer measurements allow the determination of the unidirectional fluxes of ions ac cording to a technique described elsewhere [14]. 45 Ca labelled CaC1 2 for the Ca z+ -H + selectivity and 36 Cl labelled NaCl for the selectivity towards chloride ions were obtained from Amersham Radiochemical Centre. Current-voltage responses and radiotracer measure ments were carried out under identical concentrations on both sides of the membrane (symmetrical condi tions) and under constant hydrodynamic conditions. The principle of the measurements is illustrated in Fig. l(a) for the determination of calcium flux.

The Ni 2 + -H + selectivity was achieved using Hittorfs method in the asymmetric electro-electrodialysis cell shown in Fig. l(b). The anode compartment contained 200 ml of a mixed solution (0.5 M H 2 S0 4 + 0.5 M NiS0 4 ) while the cathode compartment contained only 50 ml of a 1 M H 2 S0 4 solution. The low volume of the cathode compartment facilitated detection of the con centration variations, while the larger volume of the anode compartment enabled this variation to be mini mized. The active surface area of the membrane was 7 cm 2 and the applied current density was 30 mA cm-2 .

The selectivity of the modified membranes towards sulphate ions was measured using the same asymmetric cell. In this case, the anode compartment was filled with 20 ml of a 0.05 M H 2 S0 4 solution and the cathode compartment contained 200 ml of a 2 M H 2 S0 4 solution in order to provide favourable condi tions for sulphate leakage. The applied current density was 50 mA cm -2 .

Results

Main characteristics of the modified mem b ranes

The amount of PEI adsorbed on the CRA mem brane was a linear function of the PEI concentration of the treatment solution (about 0.11 mg cm-2 PEI for 1000 ppm of PEI in the treatment solution). Therefore the amount of PEI adsorbed was very low. It could not be detected by X-ray photoelectron spectroscopy (XPS) analysis. Electron spectroscopy showed that the surface aspects of modified CRA-1000 and non-modified CRA membrane were similar. However, because the surface film was torn on a CRA-1000 sample, its thickness could only be estimated as being of the order of 10-2 µ, m.

The exchange capacities of the modified and non modified membranes did not vary significantly ranging from 2.14 to 2.16 mmol g-1 of dried membrane in the Na + form on going from the CRA to the CRA-1000 membrane). Similarly, the surface modification did not modify the water content, defined as the ratio of the amount of water inside the membrane to the mass of dried membrane (38%-39%). Consequently, it can be concluded that neither the exchange capacity not the water content are affected by surface modification.

Measurement of calcium fluxes
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Electrical resistance

The presence of a polyelectrolyte film at the surface of the CRA membrane increases its electrical resis tance. A balance has to be found between this in crease, which enhances the transmembrane potential difference, and the increase of the selectivity towards monovalent cations with respect to divalent cations. As shown in Fig. 2, when the modified CRA membranes are equilibrated in a 0.17 M NaCl solution, the values of their surface electrical resistances as a function of the PEI concentration in the treatment solution in crease from 1.6 n cm 2 for the non-modified CRA membrane to a maximum value of 7-8 n cm 2 for PEI concentrations greater than 2000 ppm.

When the modified CRA membranes were equili brated with a mixed solution of CaCl 2 + HCl, with a total charge equivalent concentration of 0.1 M, a de crease in the surface resistance with the molar fraction of proton inside the membrane was observed (Fig. 3). As with the membranes equilibrated with the 0.17 M NaCl solution, the increase in the PEI concentration in the treatment solution increases the electrical resis tance of the modified membranes. However, the elec trical resistance reaches a constant value when the PEI concentration of the immersion solution exceeds 100 ppm.

Ion-exchange isotherms

Ion-exchange isotherms between Ca 2+ ions and pro tons were determined using a technique described in detail elsewhere [11]. Fig. 4 shows that the ion-ex change isotherms are not significantly different for the modified membranes. Therefore the presence of the surface film of PEI does not affect the preference of the CRA membrane for divalent ions.

4. Current-voltage measurements

Current-voltage curves were recorded for the non modified CRA membrane and for the modified CRA-5 and CRA-1000 membranes for different Ca 2 + + H + contents in the equilibrating solutions (½CaCl 2 + HCI: 0.075 + 0.025, 0.05 + 0.05 and 0.025 + 0.075 mol 1-1 ).

In the field of applied current densities, from zero to 40 mA cm -2 , the limiting current density was never reached. The hydrodynamic conditions were kept con stant during all the experiments.

Thickness of the unstirred layer

When an ion crossing a homogeneous membrane passes directly from the aqueous solution to the mem brane phase, the thickness o of the unstirred layer can be deduced from the value of the self-diffusion flux 1 0 using the Helfferich equation [START_REF] Helfferich | Ion Exchange[END_REF]:
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where c is the electrolyte concentration, and t i and t i are the transport numbers of the counter-ion through the membrane and in the solution respectively. With fNa += 1 and t Na + = 0.385 in 0.1 M NaCl solution, we obtain o = 70 µm for the three membranes with an estimated discrepancy of 5 µm in o. This value of o is very close to that calculated for the non-modified CRA membrane. As expected, the Helfferich equation ( 1) is valid only when there is no resistance to the diffusion of ions at the membrane I solution interface.

Transport numbers of ions

The transport of an ion i is defined by

t i =zJ i F /j (3)
where z i is the valency of ion i, ljmol cm-2 s-1 is its unidirectional flux, j /mA cm-2 is the applied current density and F is the Faraday constant.

For both the non-modified and modified CRA membranes, the fluxes of the co-ions (Clfor the CaCl 2 + HCl mixed solutions and soJ-for the NiS0 4 + H 2 S0 4 mixed solutions) were always lower than 1 %. Therefore the current must be transported by the The experimental results are collected in Table 1. An example of the increase in the selectivity of the modi fied membranes is illustrated in Fig. 6, where the unidirectional flux of calcium ion is plotted versus the value of the current density for a �CaCL + HCI solution of 0.05 + 0.05 mol 1 - be ascribed to the entrance of low molar mass PEI molecules into the membrane [START_REF] Sata | [END_REF]. Another possible explanation of the increase in the electrical resistance of the membrane is the creation of neutral zones at the membrane I PEI film interface corresponding to the electrostatic bonds between the amino groups of PEI and the sulphonic acid groups of the membrane [4,18,19]. This would mean that, above a PEI concen tration of 100 ppm in the immersion solution, the number of ionic bonds between amino groups of PEI and sulphonic acid groups would be constant.

Jon-exchange isotherms and separation factors

As can be seen in Fig. 4, the exchange sites of the CRA and modified CRA membranes are preferentially balanced by divalent cations regardless of the proton content of the equilibrating solution. For the H + -Ca z+ exchange represented by the relation.

2H + + Ca 2 + <=> 2H + + Ca z+ (5)
where bars refer to the membrane phase, the separa tion factor K is defined as

X ca z+XH + K= -_ --- (6) 
xH + X ca z+ where X; is the equivalent ionic fraction of ion i [START_REF] Helfferich | Ion Exchange[END_REF]. As found for commercial cation-exchange membranes [11], for all the membranes studied the separation factor K is greater than unity and increases with the equivalent ionic fraction of the monovalent cation in the solution (Fig. 7). The easier entrance of divalent cations into the membrane could be explained by elec trostatic interactions between counter-ions and fixed ion-exchange sites inside the membrane [11]. The pres- ence of an anion-exchange film on the surface of the modified cation-exchange membranes does not affect this trend since all the curves in Fig. 7 merge.

Preferential selectivity towards protons

As shown in Fig. 5, the PEI film on the surface of the membrane causes a decrease in the transport num ber of the nickel cation from 0.28 to 0.10 when the nickel cation is in competition with a proton. Indeed, it has been reported that about 90% of amino groups of the adsorbed or ion-exchanged PEI are not bonded with sulphonic groups of the membrane [13]. There fore, in an acid solution, the PEI amino groups which are not fixed on the surface of the membrane are positively charged and form a repulsive barrier to the entrance of divalent cations into the membrane. Fur thermore, proton transport could be facilitated by the PEI amino groups. In fact, as the amino groups are proton acceptors, the proton would move by hopping from one amino group to another on entering the membrane.

The increase in the selectivity of the modified mem branes towards monovalent cations can be shown by a study of the transport numbers of counter-ions as well as by calculating the apparent rate constant of the interfacial transfer at the membrane I solution interface [11,20]. This part of the discussion deals with these two aspects.

Increase of the permselectivity towards monovalent cations

The transport numbers t ca z + of Ca 2+ ions were calculated from the value of the unidirectional diffu sion flux of calcium l ca z+ using the relation ( 7) In order to take into account the variation of this transport number with the composition of the e � uili brating solution, a relative transport number Tfi'! + is defined: (8) The variation of Tfi'! 2 + with current density is shown in Figs. 8(a) and 8(b) for the CRA and the CRA-1000 membranes respectively. Comparison of these two sets of curves clearly shows the increase in selectivity to wards the proton. Moreover, for the modified CRA-1000 membrane a total selectivity is observed for the composition ½CaC1 2 + HCl = 0.05 + 0.05 mol 1-1 and for a current density below 20 mA cm -2 • For this composition of the equilibrating solution, the electrical resistance increases from 2.1 to 4. 1 n cm 2 while the relative transport number decreases from 0.08 to zero and from 0.104 to 0.012 for applied current densities of 20 mA cm -2 and 30 mA cm -2 respectively.

Kinetics of ion transfer at the mem b rane I solu tion interface

When an ion-exchange membrane is exposed to an electrical field, both the interfacial electrochemical po larization and the kinetics of the ion transfers at the membrane I solution interface must be taken into ac count. The irreversibility of the ionic transfer is estab lished when the value of the unidirectional flux is very different from that of self-diffusion [20]. The difference between the kinetics of the entrance of ions into a membrane can be determined from their individual apparent rate constants k on the basis of the Butler Volmer equations. These equations were proposed for ion transfer through the interface between two non miscible solutions [21] and can be applied to an inter face between a solution and an ion-exchange mem brane regardless of whether the latter is liquid or polymeric. The apparent rate constants kc a 2+ and kw for the Ca 2+ + H + system are deduced from [11,20]. l c a 2 + = kc 3 2+c'(!.,i2 + ( 9a)

JH + = k H + C � (9b
) where c� 3 2 + and c � + are the concentrations of calcium ions and protons at the extreme end of the unstirred layer corresponding to x = 8 (Fig. 9). The values of the apparent rate constants kc 3 2+ and k H + can be ob tained both from the experimental values of the unidi rectional fluxes lc a 2+ and l H + and from the calculated values of the ionic concentrations at the extreme end of the anodic unstirred layer.

D etermination of the concentration profiles within the anodic unstirred layer

Transport processes in the membranes are complex mainly because of the large coupling between ionic fluxes and between ion and solvent fluxes, e.g. electro osmosis [22,23]. For an easier resolution of the trans port equations, the membrane was placed between two identical solutions of equal concentrations of a total of 0.1 mo! of unit charge. Moreover, the volumes of the external solutions are sufficiently large that concentra tion changes due to ion transport remain negligible. From this last condition, it can be assumed that steady state transport is attained and the electro-osmotic flux of solvent is minimized. In addition, the applied cur rent density was always lower than the limiting value in order to avoid flux of H + and OH-ions resulting from water-splitting at the membrane I solution interface.

Under these conditions, the ion transport can be described by the Nernst-Planck electrodiffusion equa tions at the membrane I solution interface. For the HCI + Ca CI 2 system, we obtain where s 0 is the permittivity of vacuum, E r is the relative permittivity, cf> is the electrical potential and p is the local charge density which is defined as

p = (2cca2++ C H +-c 0 -)F ( 12 
)
The aqueous polarization layer is a medium with no fixed charge distribution.

In previous work, Eqs. ( 10)-( 12) were solved by assuming electroneutrality within the unstirred layer [11]. From Eqs. (11) and (12) this assumption led to Eqs. (l0a), (l0b), (10c) and ( 14) were solved using an analytical method including dimensionless parameters. Both non-modified and modified membranes were used in this study. Although all the experimental values were established for current densities lower than the limiting value, it was not obvious that the electroneu trality could be assumed throughout the whole thick ness of the unstirred layer, especially in the close vicinity of the modified membrane surface. Conse quently, the concentration and potential profiles have been calculated taking into consideration both the electrodiffusion equations and the Poisson equation. In this case, the system of equations (10a)-(10c) and (11), which is a non-linear boundary problem, was derived using a numerical method.

Reduced variables are defined to simplify the equations:

t = - 8 cf> <!> = F - RT E o E r RT u = F z 2 lvco> F 8 C H +(xJ H = -- N ( O) Cc 8 2+<x) CA =2-- lvcoJ (15a) (15b) (15c) (15d) (15e) CL = Cc 1 -( x ) N ( O) lw8 u = D H +N ( O) l ca z+O v = Dca 2+N (O) 1 0 -8 w = Dc 1 -lvcoi ( 15f) (15g) (15h) (15i) 
where C H + ( x ) ' Cca2+ ( x ) and Cc i -( xl are the concentra tions of proton, calcium and chloride ions, and lvc oJ is the concentration of the bulk solution expressed in moles of unit charge per litre. We have [START_REF] Parsons | Handbook of Electrochemical Constants[END_REF] With the above transformations, the system of equa tions (l0a)-(l0c), ( 11) and ( 12) becomes

d z </> H + CA -CL + u dg 2 = 0 dCL d<f> --CL-=0 dg dg 1 dCA d<f> ---+C A-+v=0 2 dg dg dH d<f> -+H-+u=0 dg dg (17a) (17b) (17c) (17d) 
where the unknown parameters are H, CA, CL and <f>, and the boundary conditions are

H <�=OJ = H o CA < f =Ol = CA 0 CL ( f = O) = CL 0 <f> ( �=O) = 0 <f> ( �=l) = V (18a) (18b) ( 18c) (18d) (18e) 
V is the potential value obtained by assuming a con stant electrical field within the unstirred layer. The numerical solution method is presented in the Ap pendix. The calculations were performed with the fol lowing parameter values [START_REF] Con� | Electrochemical Data[END_REF]:

D H + = 9.3 X 10-5 cm 2 s-1 Dca2+ = 0.77 X 10-5 cm 2 s-1 8 = 70 µm T= 294 K R = 8.314 J mo1-1 K-1 F = 96500 C mo! -1 s 0 = 8.854 X 10-12 C v -1 cm-1 E r =75,4
The experimental values for J H + and l c a2+ were taken from Table 1.

Both concentration and potential profiles have been calculated for CRA, CRA-5 and CRA-1000 mem branes, for three compositions of the equilibrating so lutions ( {Ca Cl , + HCl: 0.075 + 0.025, 0.05 + 0.05 and 0.025 + 0� 075 �ol 1-1 ) and for four current densities j (5, 10, 20 and 30 mA cm -2 ). Of all these results, we have chosen to present only those for two membranes (the non-modified CRA membrane and the modified 

Apparent rate constant of the penetration of ions

The values of the concentrations for x = ii arc used for the calculations of the apparent rate constants k c ,,' + and k 11 + . It can be seen that in the binary system HCI + ½Ca Cl 2 = 0.05 + 0.05 mot 1-1 (Fig. J l(b)) there is an accumulation of Ca 2 + in the polarization layer and, of course, a depletion of protons.

The calculated values of the ratio of the apparent rate constants of the penetration of proton and calcium ions into the non-modified CRA membrane and the modified CRA-1000 membrane are reported in Table 2 for different values of the composition of the external solution. For the CRA-1 000 membrane with applied current densities below 20 mA cm 2 , the proton calcium separation is excellent.

Conclusion

This work shows that the origin of the active mecha nism of the adsorbed PEI layer is kinetic and not thermodynamic. The equilibrium exchange isotherm is not affected by surface modification, while the appar ent rate constant of the entry step of Ca 2+ into the membrane is substantially changed. The ratio of the apparent rate constants of proton with respect to the divalent cation is increased. To obtain the values of these apparent rate constants, it has been necessary to derive the Nernst-Planck-Poisson equation system in the polarization layer. In some cases, the current trans port through the modified membranes produces an accumulation of divalent ions on the aqueous side of the membrane I solution interface.

  ..::. C.;. E:..;.: M __ --+-----,

Fig. 1 .

 1 Fig. 1. Experimental cells: (a) determination of calcium flux by the radiotracer technique; (b) determination of the Ni 2 + transport num ber using Hittorfs method.

Fig. 2 .

 2 Fig. 2. Surface electrical resistance vs. concentration of PEI in the immersion solution.

Fig. 3 .

 3 Fig. 3. Surface electrical resistance vs. equivalent ionic fraction of protons in the membrane.

Fig. 4 .

 4 Fig. 4. Ion exchange isotherms: HCl + CaC1 2 solution.

  where D and c are the diffusion coefficient and the concentration respectively (bars indicate the mem brane) and d is the membrane thickness. The thickness o of the unstirred layer was determined with22 Na labelled NaCl solutions of concentrations ranging from 0.02 to 0.4 M. Plots 1/lZ a versus the reciprocal of the NaCl concentration for the CRA, CRA-5 and CRA-1000 membranes were straight lines whose slopes gave the value of o. For a self-diffusion coefficient of Na + given by D � a = 1.32 X 10 -5 cm 2 s-1[START_REF] Parsons | Handbook of Electrochemical Constants[END_REF], the values of o were 70 µm, 100 µm and 500 µm for the CRA, CRA-5 and CRA-1000 membranes respectively.
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 256 Fig. 5. Transport number t N ;'+ of the nickel ion vs. amount of adsorbed PEI.counter-ions only. For the 0.5 M H 2 S0 4 + 0.5 M NiS0 4 solution, the transport number t N iz+ of the nickel cation is plotted versus the amount of PEI adsorbed on and/or ion-exchanged with the membrane in Fig.5; t l'-i2+ decreases abruptly as the amount of PEI ad sorbed increases from 0 to 0.02 mg cm -2 and attains a constant value of about 0.10.For the CaC1 2 + HCl solutions, the determination of the unidirectional fluxes of Ca 2+ was achieved with current densities lower than the limiting values. Values of 1 11 + were deduced from those of le a ' + using the equation ( 4 ) The unidirectional fluxes of Ca 2 + obtained using the radiotracer technique were measured for the CRA, TableI
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 87 Fig. 7. Separation factor K vs. molar fraction of proton in the HCI + CaCl 2 electrolyte.
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 28 Fig. 8. Relative transport number T[j'l-' + vs. current density: (a) non-modified CRA membrane; (b) modified CRA-1000 membrane.

Fig. 9 .

 9 Fig. 9. Geometrical parameters a nd zones of the membrane I solution system.
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 1 Cc a 2 .F d<P ) l e 2,--De-'+ ---+ 2---F d<P ) l ei ---D c1 -------dx RT dxThe relation between the potential and the distribution of electrical charges is governed by the Poisson equation d z cf> p

  ca 2++ cw-cc 1 -) = 0(14) 

Fig. 10 .

 10 Fig. 10. Potential profiles within the unstirred layer of the anodic compartment: (a) non-modified CRA membrane; (b) modified CRA-1000 membrane. Solution: HCl + ½CaC1 2 , 0.05 + 0.05 mol unit charge 1 -1 • Symbols . concentrations calculated from the assumption of the constant electrical field (analytical resolution); dotted lines, concen trations calculated from the Nernst-Planck-Poisson equations (numerical resolution).

  

Appendix. The numerical algorithm

Partial resolution

The equations of the problem in the interval ]0,1[ are 

Eqs. (A12)-(A14) are discretized using a second order finite-difference scheme. The interval ]0,l[ is decomposed in subintervals of step h. We define the nodes t; = ih for i = 0, N + 1, with to = 0 and tN+ 1 = 1. Eq. ( 12 Standard Newton's method is used in order to solve the system (A27). At iteration k, the vector cf> k is computed using the following algorithm ( cp 0 is a given vector):

where VF is the Jacobian of F (the tangent matrix).

The main difficulty is the computation of this ma trix. This is a lower Hessenberg matrix (a lower trian gular matrix with an upper diagonal). If we denote the terms of the tangent matrix by a , 1 , then for 1 s i, j s N + hu exp( <f> j ) exp( -4> ; ) for 1 � i � N and 1 � j � i -2

The linear sy stem

The linear system (A29) is solved using an ascendant Gauss method. The system (A29) is easily transformed in a lower triangular system. The system obtained is solved using a single descent. The second member of Eq. (A29) is denoted b and the solution is denoted x. The algorithm is written as follows.

First step (ascendant part):

Concluding remarks

The number of operations at each Newton iteration is (7 /2)N 2 + (9 /2)N. A classical solution of the Eq.

(A29) has a number of operations equal to (2/3)N 3 • The number of operations for a standard finite-dif ference scheme applied to the initial equations (Al) (A4) is (2/3X4N -3) 3 . For example, for N = 31, 1 370 000 operations are required in the classical case and 3503 for the present algorithm. Ten Newton iterations are usually required for this problem. Convergence is assumed if the functions of the problem (4>, CA, CL and H ) are bounded. This convergence is not quadratic, as for classical problems, but only linear. 

Nomenclature