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ABSTRACT

Parental genomic imprinting at the Igf2/H19 locus is
controlled by a methylation-sensitive CTCF insula-
tor that prevents the access of downstream enhan-
cers to the Igf2 gene on the maternal chromosome.
However, on the paternal chromosome, it remains
unclear whether long-range interactions with the
enhancers are restricted to the Igf2 promoters or
whether they encompass the entire gene body.
Here, using the quantitative chromosome conform-
ation capture assay, we show that, in the mouse
liver, the endodermal enhancers have low contact
frequencies with the Igf2 promoters but display, on
the paternal chromosome, strong interactions with
the intragenic differentially methylated regions
1 and 2. Interestingly, we found that enhancers
also interact with a so-far poorly characterized inter-
genic region of the locus that produces a novel im-
printed long non-coding transcript that we named
the paternally expressed Igf2/H19 intergenic tran-
script (PIHit) RNA. PIHit is expressed exclusively
from the paternal chromosome, contains a novel
discrete differentially methylated region in a highly
conserved sequence and, surprisingly, does not
require an intact ICR/H19 gene region for its imprint-
ing. Altogether, our data reveal a novel imprinted
domain in the Igf2/H19 locus and lead us to propose
a model for chromatin folding of this locus on the
paternal chromosome.

INTRODUCTION

The imprinted IGF2/H19 locus plays a causative role in
several embryonic growth disorders and various cancers.

The insulin-like growth factor 2 (Igf2) gene is expressed
exclusively from the paternal chromosome during embry-
onic development. The H19 gene is maternally expressed
and produces an untranslated RNA which was recently
shown to act in mice as a trans-regulator (1) of the im-
printed gene network controlling embryonic growth (2).
Imprinting of both genes is depending on an imprinting-
control region (ICR), which acquires DNA methylation
during male germ-cell development and is therefore differ-
entially methylated in the embryos. Binding of the CCCT
C binding factor (CTCF) to the unmethylated maternal
ICR creates an insulator (3) that prevents downstream
enhancers from accessing the Igf2 gene, thus maintaining
silencing of the Igf2 maternal allele. On the paternal
chromosome, CTCF cannot bind to the methylated ICR
and Igf2 can thus interact with the enhancers (4,5).
Furthermore, two differentially methylated regions
(DMRs), which are preferentially methylated on the pater-
nal chromosome (6) play important roles in expression
and imprinting of the Igf2 gene in the embryo. The
DMR1 acts as an Igf2 silencer involved in imprinting on
the maternal allele and post-natal repression on the pater-
nal allele (7), while the intragenic DMR2 augments Igf2
transcription on the paternal allele (8).
3C experiments [reviewed in Ref. (9)] combined with an

elegant transgenic model (10) showed that at the mouse
Igf2/H19 locus the parental chromosomes adopt distinct
high-order chromatin conformations and that CTCF play
a central role in the formation of chromatin loops. On the
maternal chromosome, the ICR/CTCF insulator interacts
with both the Igf2 DMR1 and a matrix attachment region
(MAR3) (10,11). Subsequent studies provided evidence
that the enhancers and proximal Igf2 promoters can be
detected in close spatial proximity with the maternal ICR
(12) and that, in epithelial human cells, these interactions
are dependent on the cohesin protein (13), which was
known to co-localize with CTCF (14–17). Overall, these
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results are strengthening a consensus model for chromatin
folding at the Igf2/H19 locus on the maternal chromo-
some (11).
The picture is less clear for chromatin folding on the pa-

ternal chromosome. In human, chromatin folding appears
to rely on interactions between CTCF/cohesin sites that
bring the enhancers close to the IGF2 gene (18). However,
it remains unclear whether the contacts are preferentially
made with the promoters (19) or whether they encompass
the entire gene body (11,20). To elucidate this point, we
performed 3C-qPCR assays (20) on mouse liver samples
to examine interaction frequencies between the endoder-
mal enhancers and the entire Igf2/H19 locus. Our results
identified paternal-specific contacts with the Igf2 DMR1
and DMR2, which are preferentially methylated on the
paternal chromosome (6,21), and no significant inter-
actions with the Igf2 promoters. Moreover, the identi-
fication of an unexpected interaction with a poorly
characterized intergenic region of the locus led us to
discover a novel imprinted domain producing an untrans-
lated RNA that we called the paternally expressed Igf2/
H19 intergenic transcript (PIHit). Overall, our data
suggest a novel model for chromatin folding at the Igf2/
H19 locus on the paternal chromosome.

MATERIALS AND METHODS

Ethics statement

All experimental designs and procedures are in agreement
with the guidelines of the animal ethics committee of the
French ‘Ministère de l’Agriculture’.

Mouse strains

Mice carrying genomic deletions were maintained as
homozygous strains. For embryo collection, matings were
performed to produce plugs and the day of plug was con-
sidered as e0.5. The SDP711 strain used in this work is a
congenic mouse strain where the distal part of chromo-
some 7 and the proximal part of chromosome 11 are of
Mus spretus origin.

3C-qPCR/SybGreen

The 3C-qPCR assays were performed as previously des-
cribed (20) with a few important modifications. First,
the presence of ATP during the enzymatic digestion
(Steps 10–13) increases significantly digestion efficiencies.
Second, incubating at 37�C, instead of 65�C, at Step 16
(SDS inactivation of the restriction enzyme) prevents
decrosslinking before the ligation step. These modifica-
tions increased four times the efficiency of 3C assays
thus allowing real-time PCR quantifications of 3C
products by the SybGreen technology in replacement of
TaqMan probes used in previous works (20,22). Detailed
modifications are as follow: Step 2: 5� 106 nuclei were
cross-linked at 1% formaldehyde. Step 8: add 5 ml of
20% (w/v) SDS (final: 0.2%). Step 10: add 50 ml of 12%
(v/v) Triton X-100 diluted in 1� ligase buffer from
Fermentas (40mM Tris–HCl pH 7.8; 10mM MgCl2; 10
mM DTT; 5 mM ATP). Step 13: add 450U of restriction

enzyme (here BamHI was used). Step 16: incubate 30min
at 37�C; shake at 900 rpm. Step 34: additional digestions
were performed using EcoRI. Step 39: adjust 3C assays
with H2O to 25 ng/ml. 3C products were quantified on a
LightCycler 480 II apparatus (Roche) (10min at 95�C
followed by 45 cycles 10 s at 95�C/8 s and 69�C/14 s at
72�C) using the Hot-Start Taq Platinium Polymerase from
Invitrogen (10966-34) and a standard 10� qPCR mix (23)
where the usual 300 mM dNTP have been replaced by
1500 mM of CleanAmp dNTP (TEBU 040N-9501-10).
Standard curves for qPCR have been generated from the
RP23 BAC (Invitrogen) as previously described (20). The
sequence of primers used for qPCR quantification of 3C
products are given in Supplementary Table S1.

For each biological sample, a Basal Interaction Level
(BIL) was calculated and 3C-qPCR data were normalized
to this BIL as previously described (22). Briefly, we first
calculate the mean interaction frequency (M) and the
mean standard deviation (SD) of all the experimental
points. Experimental points are selected if their interaction
frequency (fx) is both superior to (Mean � SD) and
inferior to (Mean+SD). The mean fx of the selected ex-
perimental points is corresponding to the ‘BIL’ to which
all fx values of the experiment are normalized. For a
detailed procedure please refer to our previous publication
(22).

RNA preparation and northern blots

Preparations of total RNAs were as previously described
(24) and polyadenylated RNAs were purified by using the
PolyA Tract mRNA isolation system III� (Promega).
Nuclear RNAs were prepared similarly from purified
nuclei (24). The Igf2 and intergenic probes used in
northern blots are PCR products obtained by amplifica-
tion of genomic DNA. PCR primer sequences are avail-
able in Supplementary Table S3. The Igf2 probe is located
in the exon 6 which is common to all Igf2 mRNA
transcripts.

RT–qPCR: random priming/ssRT–PCR/allele-specific
PCR

cDNA were produced by reverse transcription of total
RNA preparations by the Superscript III� RT enzyme
(Invitrogen, ref. 18 080). RT products were quantified in
capillary tubes on a LightCycler apparatus (Roche) (3min
at 95�C followed by 45 cycles 0.5 s at 95�C/5 s at 70�C/15 s
at 72�C) using the Hot-Start Taq Platinium� Polymerase
from Invitrogen (ref. 10966-34) and a standard 10� qPCR
mix (23). Primer sequences are given in Supplementary
Tables S2, S4 and S8.

Rapid amplification of 50 complementary DNA ends

Rapid amplification of 50 complementary DNA ends
(50-RACE) was performed according to manufacturer’s
instructions (GeneRacer� Kit from Invitrogen ref.
L1502). 50-RACE PCR Primer sequences are given in
Supplementary Table S7.
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Genomic HRS assays

Genomic high-salt recovered sequence (HRS) assays were
performed as previously described (25). High-
concentration restriction enzymes were purchased from
Fermentas. The sequences of qPCR primers used for
quantifications of genomic DNA in the loop and HRS
fractions are given in Supplementary Tables S5 and S6.

Bisulphite treatments

Genomic DNA was prepared from livers of 7-days-old
hybrid mice issued from matings between Mus musculus
domesticus females with SDP711 males and from the
reverse cross. Conversion with sodium bisulphite was per-
formed with the Epitect� kit (Qiagen) following the manu-
facturer’s instructions. PCR fragments were cloned using
a PCR cloning Kit from Qiagen. Clones with strictly iden-
tical patterns of conversion were removed from the results
(since they are likely to represent identical molecules). We
used the MethPrimer software to design primers on
bisulphite treated DNA. Primer sequences are given in
Supplementary Table S9.

Allele-specific methylation analysis

Methylation levels of the HRS2 region were determined
on genomic DNA samples from M. musculus domesticus
X SDP711 hybrid mice. Each sample was digested by
the BamHI and BglII restriction enzymes (20U each) to
eliminate potential PCR bias due to the reduced accessi-
bility of primers on undigested genomic DNA (26). Half
of each samples was then additionally digested by the
BceAI methylation-sensitive enzyme (20U/reaction)
and qPCR quantifications, using allele specific primers,
were performed on BceAI-digested and undigested frac-
tions. Primer sequences are available in Supplementary
Table S10.

URLs

UCSC genome annotation: http://www.genome.ucsc.edu;
MethPrimer software: http://www.urogene.org/methprimer/
index1.html; MAR-Wiz 1.5 software: http://www.futuresoft
.org.

RESULTS

The endodermal enhancers interact with the Igf2 DMRs
and an intergenic region

To determine the interaction frequencies of the endoder-
mal enhancers throughout the Igf2/H19 locus, we used an
improved version (see ‘Materials and Methods’ section) of
the sensitive 3C-qPCR method (20) and applied our algo-
rithm that helps to define the level of background inter-
actions and normalize 3C assays from diverse biological
samples (22). 3C-qPCR assays were performed on the
7-days-old mouse liver, which is the period that displays
the highest Igf2 and H19 gene expression levels (27,28),
and interaction frequencies were determined between
BamHI site 0 (Anchor), located 3.9 kb downstream from
the endodermal enhancers, and the others BamHI sites of
the locus (Sites 1–21) (Figure 1). As observed previously

(22), high-interaction frequencies of sites separated by
<35 kb from the ‘anchor’ reflect close physical proximity
(‘side effect’ in Figure 1) and are not considered specific.
In the 7-days-old mouse liver, the endodermal enhancers
were found to specifically interact with four genomic sites
(Sites 19, 16, 12 and 10 in Figure 1) that were identified
as ‘local peaks’ above the noise band (horizontal grey
bars in Figure 1). Sites 19 and 16 correspond to the
DMR1 and DMR2, respectively, while Sites 12 and 10
are located in a poorly characterized intergenic region.
Interaction frequencies observed with the rest of the
locus were close to the background of unspecific random
collisions (noise band) and, noticeably, contacts observed
with the Igf2 promoter P1 and P2/P3 (Sites 18 and 17,
respectively) were very low. Interestingly, interactions with
Sites 19, 16 and 10 are lost in the 30-days-old mouse liver
(Figure 1, black diamonds), when the Igf2 and H19 genes
become fully repressed (27,28), suggesting a functional re-
lationship between these contacts and gene expression at
this locus. We thus decided to focus our experiments on
these three interactions.

The enhancers/Igf2 DMRs interactions are specific of the
paternal chromosome

To determine on which parental allele the enhancers/
DMRs interactions occur, we analysed samples from
7-days-old mouse livers issued from strains carrying
DMR deletions. Compared to wild-type control mice
(Figure 2, white circles), the enhancers/DMR1 interaction
(Site 19) is lost upon paternal inheritance of the
�DMR1-U2 deletion (7) (Figure 2B, grey triangles). We
conclude that, in the 7-days-old mouse liver, the H19
endodermal enhancers interact with the Igf2 DMR1 on
the paternal chromosome. Interestingly, the interaction
with the DMR2 (Site 16) is also lost upon paternal inher-
itance of the DMR1 deletion, indicating that this inter-
action depends on an intact DMR1 sequence.
Conversely, maternal inheritance of the �DMR1-U2
deletion has no significant effect on the enhancers/
DMRs interactions (Figure 2C), indicating that the enhan-
cers/DMR1 interaction occurs exclusively on the paternal
allele. We then used �DMR2 mouse mutants (8) and
showed that, upon paternal transmission of this deletion,
the enhancer/DMR2 interaction is abolished (Figure 2D).
We conclude that the enhancer/DMR2 interaction also
occurs on the paternal chromosome. Interestingly, the
interaction with DMR1 remains intact, suggesting that
DMR2 is dispensable for the enhancer/DMR1 interaction.
Finally, in both deletions, the interaction with the
intergenic Site 10 is moderately affected and loss of
enhancer/DMR interactions results in a drastic reduction
of Igf2 mRNA levels (Supplementary Figure S1A).

The enhancers/Igf2 DMRs interactions depend on an
intact ICR/H19 gene region

We then analysed interaction frequencies in the context of
the H19�13 deletion, which removes the ICR and the
entire H19 gene region (29). This deletion leads to biallelic
Igf2 expression and loss of H19 expression when mater-
nally (29). Upon maternal inheritance, we observed that
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the interaction with DMR1 (Site 19) is abolished and that
the enhancers are now interacting with the entire Igf2 gene
body (Sites 18–15) (Figure 2E, black squares). This
suggests that, in this mutant, Igf2 expression on the mater-
nal allele, that results from loss of imprinting [(29) and
Figure 6B], leads to a pattern of interactions that is clearly
different from that observed on the wild-type paternal
allele (i.e. the interactions are not restricted to Igf2
DMRs). Interestingly, the loss of the paternal-specific en-
hancers/DMR1 interaction indicates that, in this context,
the maternal H19�13 deletion induces a trans-effect on
Igf2. Upon paternal inheritance of the H19�13 deletion
(Figure 2E, grey triangles), the interactions with the
DMR1, the DMR2 and the intergenic regions (Sites 19,
16, 12 and 10) are abolished. Interestingly, however,
the endodermal enhancers are now exclusively interact-
ing with the P1 promoter of the Igf2 gene (Site 18)
which is known as a liver-specific promoter (27,28,30),
and Igf2 expression (Supplementary Figure S1A) and im-
printing (Figure 6B) are not significantly affected. We
conclude that, on the paternal allele, the enhancers/Igf2
DMRs interactions depend on an intact ICR/H19 gene
region.

The Igf2/H19 intergenic region interacts with the
enhancers, but not the Igf2 DMRs

To better characterize the novel interaction between the
enhancers and the Igf2/H19 intergenic region, we per-
formed 3C-qPCR experiments to analyse the interaction

pattern between the intergenic region (Site 10, anchor) and
the entire Igf2/H19 locus (Figure 3A). We confirmed that,
in the 7 days-old mouse liver, this region interacts with the
endodermal enhancers (Site 0) (Figure 3B), but not, for
example, with the cs9 (Site �6), a sequence that display
mesodermic enhancer activity (31,32). The intergenic
region displays significant contacts with the Igf2 gene
body and promoters but, interestingly, no interaction were
found with the Igf2 DMRs (Sites 19 and 16). This result
indicates that the endodermal enhancers interacts with the
intergenic region separately from their interactions with
the Igf2 DMRs.

Characterization of a novel imprinted non-coding RNA:
the PIHit

Since theH19 endodermal enhancers interact with an Igf2/
H19 intergenic region (BamHI site 10 is located �20.6 kb
downstream to the Igf2 gene) and that this interaction
disappears when the Igf2 and H19 genes become repressed
(Figure 1B), we hypothesized that this intergenic region
might be transcribed in the 7-days-old mouse liver.
Although no peculiar transcriptional activity was known
in this intergenic region, we noticed that it is hosting
several mouse ‘LongSAGE tags’ (see for example,
chr7:142 430 105–142 430 125 on mouse Feb.2006/mm8
assembly). To assess transcription, we performed a
northern blot experiment on total RNA extracted from
livers at several post-natal stages. Hybridization with a
probe located within the intergenic region (Figure 4A)

A

B

Figure 1. Long-range interactions with endodermal enhancers at the Igf2/H19 locus in the mouse liver. (A) Schematic representation of the mouse
Igf2/H19 locus. Exons of the Igf2 and H19 genes (black boxes) are displayed together with the downstream endodermal enhancers (black ovals), the
centrally conserved domain (CCD; DNase I hypersensitive sites, white box) (41) and the ICR. A matrix attachment region (MAR3; white box) and
the differentially methylated regions 1 and 2 (DMR1 and DMR2; grey lollipops) are also depicted. The Igf2 promoters (P0, P1, P2 and P3) are
indicated by arrows, BamHI restriction sites by vertical lines and sites investigated in 3C assays by white arrows. The primer used as the anchor
(close to BamHI site 0 and to the endodermal enhancers) is represented by a black arrow. (B) The graph represents the measured relative interaction
frequencies between the endodermal enhancers (anchor/BamHI site 0) and each of the BamHI sites investigated as a function of the genomic
distances (in bp). Data were collected from samples issued from 7-days-old (white circles) or 30-days-old (black diamonds) mouse livers. Parts of the
graph that are included into the noise band or those that reflect the side effect are shadowed in grey. Error bars represent SEM of three independent
3C assays.
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A

B

C

D

E

Figure 2. Interactions between endodermal enhancers and Igf2 DMRs are paternal-chromosome specific. (A) Schematic representation of the
mouse Igf2/H19 locus showing the locations of the �DMR1-U2, �DMR2 and H19�13 deletions. The genomic elements depicted are as indicated
in Figure 1A. (B–D) The graph represents the measured relative interaction frequencies between the endodermal enhancers (anchor/BamHI site 0)
and each of the BamHI sites investigated as a function of the genomic distances (in bp). Data were collected from 7-days-old mouse liver
samples issued from wild-type animals (white circles in panels B–D) or from mutant strains carrying either a paternal inheritance of the
�DMR1-U2, �DMR2 or H19�13 deletions (grey triangles in panels B, D and E, respectively) or a maternal inheritance of the �DMR1-U2 or
H19�13 deletions (black squares in panel C and E, respectively). The noise band is shadowed in grey. Error bars represent SEM of three inde-
pendent 3C assays.
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reveals that transcriptional activity can be detected
between post-natal Days 2 and 9 (Figure 4B, left panel).
The region produces transcripts of heterogeneous sizes
(ranging from 5 or 6 kb to 0.5 kb) that are detected as a
smear in northern blot experiments. We subsequently
hybridized the same northern blot membrane with an
Igf2-specific probe located in Igf2 exon 6 (Figure 4A).
As expected, this probe revealed the intact 3.8 kb Igf2
mRNAs (P1 and P3 transcripts) (Figure 4B, right panel),
thus demonstrating the integrity of the RNA preparations
used in this experiment. A northern blot on a preparation
of polyadenylated RNAs showed that the intergenic tran-
scripts are present in the unpolyadenylated fraction while,
as expected, the Igf2 mRNAs are retained into the
polyadenylated fraction (Supplementary Figure S2).
To further investigate the expression pattern of this

novel intergenic transcription, we then analysed the ex-
pression levels by RT–qPCR in the 7-days-old post-natal
mouse liver at several intergenic positions (Figure 4C). No
significant expression could be detected further upstream
(towards the Igf2 gene) at position �0.78 kb. Interestingly,
we noticed that transcript levels are quite similar through-
out 6 kb but decrease dramatically further downstream to
reach very low amounts at positions �15 kb (Figure 4C).
These results agree with northern blot experiments show-
ing that most transcripts produced from this intergenic
region are smaller than 5–6 kb (Figure 4B).

As suggested by northern blotting (Figure 4B), tran-
script levels, that are moderate in the neonate, increase
suddenly 8 days after birth (Figure 4D) to reach levels
about three times higher than Gapdh mRNA levels. This
expression then decreases rapidly and full repression
occurs during the third post-natal week (Figure 4D).
This pattern of expression is similar at three distinct
intergenic locations where it was assayed (+0.26, +11.1,
+14.4 kb) (Figure 4D).

We then performed RT–qPCR on total RNA prepared
from several mouse tissues. Expression was first checked
at site 11 (with PCR primers located 0.06 kb upstream and
0.16 kb downstream of this site). RNA levels were rela-
tively high in the post-natal d7 liver (�36 times less than
Igf2 mRNA levels), much weaker in the newborn kidney,
tongue and brain (�400 time less expressed than Gapdh
and Igf2 mRNA levels) and very weak (about 2500 time
less than Gapdh and Igf2 mRNA levels) in the heart
(Figure 5A).

Using a forward PCR primer located at position
+0.26 kb (relative to Site 11) and a reverse primer
+3.6 kb downstream (Figure 4A), we were able to PCR
amplify a cDNA as a single amplicon of the expected size
(3.34 kb), showing that no significant RNA processing
occurs for transcripts produced from that region (data
not shown). We then assessed the transcriptional orienta-
tion of these RNAs at three distinct sites along the

A

B

Figure 3. The intergenic Igf2/H19 region interacts with the Igf2 gene body but not the DMRs. (A) Schematic representation of the mouse Igf2/H19
locus. The anchor (BamHI site 10) is indicated as a black arrow. The position of a mesodermic enhancer (cs9; grey oval) is also shown. The other
genomic elements depicted are as indicated in Figure 1A. (B) The graph represents the measured relative interaction frequencies between the
intergenic region (anchor/BamHI site 10) and each of the BamHI sites investigated as a function of the genomic distances (in bp). Data were
collected from samples issued from 7-days-old wild-type mouse livers (white circles). Parts of the graph that are included into the noise band or those
that reflect the side effect are shadowed in grey. Error bars represent SEM of two independent 3C assays.
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intergenic region (�0.06, +0.3, +1.2 kb) by using strand-
specific reverse transcription and qPCR amplifications
(ssRT–qPCR). This showed that transcription occurs in
the same (‘sense’) orientation as the Igf2 and H19 genes
(Table 1). Finally, we showed that the proportion of these
transcripts in nuclear RNA preparations is relatively low
when compared to a typical nuclear RNA (U3 snoRNA),
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Figure 4. The Igf2/H19 intergenic region that interacts with the endodermal enhancers is transcribed. (A) Schematic representation of the Igf2/H19
locus showing the location of the northern blot probes and RT–PCR primers used to characterize the intergenic transcripts. The transcribed
intergenic region is depicted in grey and several genomic elements are also indicated. Except opposite statement, all positions given in the Result
section or in the figure are intended relative to BamHI site 11, located at chr7: 149.817.140 on mouse July 2007/mm9 assembly. (B) Northern blots
showing the expression patterns of the intergenic region (left panel) or the Igf2 mRNAs (right panel). Total RNAs were prepared from newborn
(NB) livers or from post-natal (d2, d5, d7 and d9) mouse livers and analysed by Ethidium bromide staining of the agarose/formaldehyde gel (lower
panel on the right) before being transferred to a nylon membrane and hybridized by an intergenic probe (left panel). As a quality control of RNA
preparations, the same membrane was subsequently re-hybridized with an Igf2 probe (upper panel on the right). The position of the Igf2 P1 and P3
mRNA transcripts (the P2 transcript has very low expression levels in liver) and of the 28S and 18S rRNA (3.8 and 1.8 kb, respectively) are indicated.
(C) The relative expression levels of intergenic transcripts (black bars) were determined by RT–qPCR at increasing genomic positions as indicated on
the figure. Control reactions with no reverse transcription (�RT) have also being quantified (grey bars). Data was quantified relative to Gapdh
mRNA levels and normalized to the higher RNA level quantified in the series. Liver sample is from d7 mice; the other samples were prepared from
newborn mice. (D) Intergenic transcripts were quantified by RT–qPCR at three distinct genomic positions (+0.26,+11.1 and+14.4 kb) in mouse liver
samples at the following developmental stages: embryos 17.5 and 18.5 dpc (e17.5 and e18.5), newborn (NB), post-natal Day 2, 5, 6, 8, 11, 13, 17, 18,
34 (d2–d34). In panels B and C, error bars represent s.e.m. of quantifications performed on two independent RT reactions. Data were normalized as
described above. RT–qPCR primer sequences are given in the Supplementary Table S2.

Table 1. Transcriptional orientation

Position (kb)a �0.06 +0.3 +1.2

Sense-specific RT primer (%) 98.8 91.7 100
Antisense-specific RT primer (%) 1.1 8.2 0

aRelative to BamHI site 11.
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but it is much higher than a classical messenger RNA (Igf2
mRNA) (Supplementary Figure S3).
Although the intergenic transcripts appear as a smear

on northern blots, the fact that their expression pattern is
identical throughout �15 kb (Figure 4D) raised the possi-
bility that they could originate from a single transcrip-
tional start site (TSS). To identify this TSS, we were
helped by genomic HRS assays (25) showing that the
most 50 transcribed region (Figure 4C) corresponds
precisely to a ‘HRS1’ for which retention into the nu-
clear matrix fraction exclusively occurs on the paternal
allele and correlates with transcription (Supplementary
Figure S4). We thus designed 50-RACE primers located
into the 686 bp StyI restriction fragment corresponding to
this HRS1 (see Supplementary Figure S4B) and success-
fully amplified a single band from the capped fraction of
d7 mouse liver RNAs (Supplementary Figure S5A).
Sequencing of this PCR product then allowed us to map
the cap site 535 bp upstream of Site 11 (Supplementary
Figure S5B). We conclude that the intergenic transcripts
are capped and initiated from a single TSS (TSS at
position: chr7: 149 816 606 on mouse July 2007/mm9
assembly).
Since the HRS1, containing the TSS, was retained in

HRS assays only on the paternal allele (Supplementary
Figure S4C), we postulated that this novel transcript may
be imprinted. We thus prepared total RNA from livers of
7-days-old hybrid mice (issued from M. m. domesticus
female X SDP711 male or the reverse cross), and per-
formed allele-specific RT–qPCR, at three distinct sites
along the intergenic region (�0.07 kb/+5.2 kb/+8.2 kb).
These experiments showed that transcription occurs exclu-
sively on the paternal chromosome (Figure 6A). Although
expression levels are very low in most other tissues
(Figure 5A), imprinted expression was also evidenced
in the kidney, the heart, the tongue and the brain
(Figure 5B). Finally, analysis of the transcribed region
(UCSC server) shows that it displays a much higher
sequence conservation index than surrounding sequences
(Figure 7A). However, it contains only very short open
reading frames that are not conserved in mammals (data
not shown). We conclude that the intergenic transcrip-
tional activity identified in this work produces a novel
non-coding transcript which is paternally expressed/
maternally imprinted, and we thus named it PIHit:
Paternally-expressed Igf2/H19 intergenic transcript.

PIHit imprinting does not require an intact ICR/H19
gene region

Since imprinting at the Igf2/H19 locus depends on the
ICR, we wanted to check whether the paternal
chromosome-specific expression of PIHit is also cont-
rolled by this element. Upon paternal inheritance of
the H19�13 deletion, that removes both the ICR and
the H19 gene, both Igf2 [(29) and Figure 6B)] and PIHit
(Figure 6C) remain imprinted and preferentially expressed
from the paternal chromosome. However, we note that
PIHit expression is dramatically reduced (Supplementary
Figure S1B), suggesting that PIHit expression requires a
paternal-specific feature (linked to the ICR/H19 gene

region) that favour its expression on this allele. This
agrees with our finding that the interaction between the
endodermal enhancers and the PIHit promoter region
(site 10) depends on an intact ICR/H19 gene region
(Figure 2E). Furthermore, high paternal-specific expres-
sion of PIHit RNA on the paternal allele also requires an
intact DMR1, but not DMR2, sequence (Supplementary
Figure S1). Most surprisingly, while maternal inheritance
of the H19�13 deletion leads, as expected (29), to the
complete loss of Igf2 imprinting (Figure 6B), it does not
significantly affect PIHit imprinting (Figure 6C). This
unexpected finding shows that the ICR/H19 region is
not required for proper imprinting of the PIHit locus.

Mapping of a discrete DMR at the PIHit locus

Genomic HRS assays had identified two HRS (HRS1 and
HRS2) at the PIHit locus (Supplementary Figure S4). As
seen previously, the HRS1 corresponds to the PIHit
promoter region. Interestingly, HRS2 contains a G/
C-rich sequence which is highly conserved among 30 mam-
malian species (Figure 7A). PIHit promoter displays a
lower G/C content and the only other G/C-rich region
identified at the PIHit locus (CpG1) is located at the

Figure 5. Analysis of intergenic transcription in several mouse tissues.
(A) The relative expression levels of the PIHit (dark grey bars) or Igf2
(light grey bars) RNAs were measured by RT–qPCR in samples issued
from newborn (kidney, heart, tongue and brain) or post-natal d7 (liver)
hybrid mice (issued from a cross between SD7 females and M. musculus
domesticus males). Data are normalized relative to Gapdh mRNA
levels. (B) Allelic expression levels of the PIHit RNA were determined
by allele-specific RT-qPCR in the above mentioned samples. Error bars
represent SEM of quantifications performed on two independent RT
reactions.
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most 30 part of the locus. Since DMRs are known in most
imprinted genes, we hypothesized that the HRS2 and/or
the CpG1 may correspond to such regions of allele-specific
DNA methylation. We thus performed bisulphite
sequencing experiments and showed that, remarkably,
the most conserved sequence within the HRS2 displays a
discrete but significant difference in the levels of DNA
methylation between the two parental alleles
(P=0.0233; n=54; Mann–Whitney U-test) (Figure 7B).
Interestingly, in contrast to the methylation patterns
observed in the liver for the Igf2 DMRs (6,28), this
PIHit DMR is more methylated on the maternal allele
than on the paternal allele. Surrounding sequences
did not reveal any significant allelic differences in DNA
methylation levels. Finally, similar experiments performed
at the CpG1 demonstrated that this region is quite heavily
methylated on both alleles (data not shown). We con-
clude that the short 234 bp conserved sequence (chr7:
149 812 622–149 812 856 on mouse July 2007/mm9
assembly) located within the HRS2 corresponds to
a discrete DMR (PIHit DMR). Since this PIHit DMR
was quite narrow and discrete, we postulated that it may
simply result from PIHit expression. To assess this hy-
pothesis, we digested the PIHit DMR by the BceAI

methylation-sensitive enzyme and thus measured the
allelic methylation levels of the PIHit DMR in the
mouse liver at different neonatal and post-natal stages.
Again, a discrete but significant preferential maternal
methylation was evidenced in all assayed samples
(Figure 7C), including in the embryonic and neonatal
livers at a time preceding the burst of PIHit expression
(Figure 4). We conclude that the PIHit DMR is not just a
mere consequence of PIHit expression.

DISCUSSION

In this work, using the 3C-qPCR assay (20), we
investigated long-range chromatin interactions at the
mouse Igf2/H19 locus. These investigations lead us to
discover a novel maternally imprinted region that
produces, on the paternal chromosome, a liver-specific
capped, but unpolyadenylated transcript, that we named
the PIHit (paternally expressed Igf2/H19 intergenic tran-
script). This transcript is a long heterogeneously sized
RNA that can thus be considered as a novel imprinted
macro non-coding RNA (33).
Since PIHit RNA is exclusively expressed from the

paternal chromosome, we can reasonably assume that
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Figure 6. The PIHit RNA is a novel imprinted non-coding RNA. (A) The relative allelic expression levels were quantified by allele-specific
RT-qPCR on total RNA from liver of hybrid mice issued from a cross between M. musculus domesticus (C57BL6/CBA F1) females and SDP711
males (upper right panel) or the reverse cross (SDP711 female X M. m. domesticus males) (upper left panel). SDP711 is a congenic mouse strain
where the distal part of chromosome 7 and the proximal part of chromosome 11 are of Mus spretus origin. Data were normalized relative to Gapdh
mRNA levels. Error bars represent SEM of quantifications performed on two independent RT reactions. The experiment was repeated at three
distinct genomic sites (�0.07,+5.2 and+8.2 kb). All the data were combined by calculating the mean expression levels of each allele in both crosses
to be finally presented into a single graph (lower panel). The relative allelic expression levels of the Igf2 mRNA (B) or PIHit (C) were determined by
allele-specific RT–qPCR on hybrid mice with paternal or maternal inheritance of the H19�13 deletion. Error bars represent SEM of quantifications
performed on two independent RT reactions. Sequences of primers used in allele-specific RT–qPCR experiments are given in the Supplementary
Table S8.
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digestions.
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the interaction between the enhancers and the PIHit locus
occurs on this chromosome. HRS data strengthen this
view since both the HRS1 and HRS2 are retained on
paternal allele (Supplementary Figure S4). This situation
is reminiscent of the observations made for the DMR2
sequence where the paternal-specific interaction with the
endodermal enhancers (Figure 2D) correlates with reten-
tion into the nuclear matrix (25).

In d7 liver, the Igf2 gene is mainly expressed from
promoter P3 while expression from promoter P2 and
from the liver-specific promoter P1 is much lower
(27,28). Our results clearly show that the interactions
of the endodermal enhancers with the Igf2 gene occur
preferentially with the Igf2 DMRs rather than with
the promoters (Figure 1B) and that these interactions
take place exclusively on the paternal chromosome
(Figure 2B and D).

Our results also indicate that, in the liver, the activity
of the DMR2 that augments Igf2 transcription (8) may
involve the recruitment of the endodermal enhancers.
Furthermore, since the endodermal enhancers do not
significantly interact with the Igf2 promoters, one can
think that, on that chromosome, the endodermal enhan-
cers may not act at the transcriptional initiation step but
rather at a later stage-like, for example, transcrip-
tional elongation or termination. Our results also demon-
strate that the interaction of the endodermal enhancers
with the DMR2 requires the presence of both the
DMR1 and the ICR/H19 gene regions in cis while the
interaction with the DMR1 depends on an intact
ICR/H19 gene region but not on the DMR2 sequence
(Figure 2). These observations are in perfect agreement
with the hierarchy that was previously proposed for
DMRs at the Igf2 locus (34). Interestingly, we found
that the endodermal enhancers interact with the PIHit
locus separately from their interactions with the Igf2
DMRs (Figure 3B). This suggests that the two types
of interactions may be hampering each other. Globally,
these results lead us to propose a novel model for chro-
matin folding at the Igf2/H19 locus on the paternal
chromosome whereby the recruitment of the PIHit locus
into a chromatin hub involving the enhancers and Igf2
DMRs acts as a decoy for such interactions, thus
contributing to fine tuning of Igf2 expression (Figure 8).
A recent work at the human IGF2/H19 locus shows that
chromatin folding on the paternal chromosome is
mediated through a network of CTCF/Cohesin contacts
(18). Interestingly, chromatin folding as presented in our
model is fully compatible with these findings. Indeed, in
the human, CTCF binds to three regions on the paternal
IGF2/H19 chromosome: the first (CTCF AD) is located
upstream the Igf2 gene, the second is the centrally
conserved DNase I hypersensitive domain (CCD) and
the last (CTCF DS) maps downstream to the H19 enhan-
cers (18). Interestingly, all three regions are implicitly
found in close vicinity in our model (Figure 8).
However, it remains to be shown whether these regions
also bind CTCF in the mouse.

This model suggests that PIHit transcription may be
required to counteract a mechanism that favours high-
Igf2 expression levels in the post-natal liver (8).

However, an unforeseen obstacle prevented us from
performing RNA interference experiments to investigate
PIHit functions. Indeed, high-PIHit expression levels were
found only in the post-natal mouse liver (Figures 4 and 5)
and, despite intensive efforts, we were unable to find any
cultured cell lines expressing significant PIHit RNA levels.
Finally, none of the targeted deletions available at the
Igf2/H19 locus (35) involve the PIHit region and there-
fore, in the present ‘state of the art’, PIHit function could
only be experimentally addressed by performing a novel
targeted deletion at this locus.
Globally, our results agree with previous data indicating

that, on the paternal allele, the enhancers interact with the
Igf2 gene region (18), upstream of the ICR (11). However,
published results differ in suggesting that they interact
either with the Igf2 promoters (13,19) or with the entire
gene body (11). Our work shows that, in post-natal Day 7
mouse liver, the enhancers interact with the Igf2 DMRs
but not significantly with the Igf2 promoters. The differ-
ence with published results showing specific interactions
with the Igf2 promoters may simply arise from the nature
of the samples analysed. Indeed, previous studies focused
on the foetal (12) or neonatal (11,19,36) liver. In these
tissues, Igf2 expression levels are at least 2.5–3 times
lower than in the 7-days-old mouse liver (27,28) where
the endodermal enhancers are known to have a strong
effect to augment Igf2 expression (37). Furthermore,
PIHit expression is also very low in the neonatal liver
(Figure 4). Finally, only the most recent studies performed
at the human IGF2/H19 locus (13,18) have used quantita-
tive 3C assays, which is of precious help to fully discrim-
inate between functional interactions and random
collision events (38). However, again, these latter experi-
ments where performed in cells that expresses low levels of
IGF2 mRNA.
Noticeably, although the maternal Igf2 allele is

re-expressed upon maternal transmission of the H19�13
deletion (29) (Figure 6B), our experiments show that this
re-expression occurs in a context of high-order chromatin
folding (Figure 2E), which is somewhat different from that
of the wild-type paternal allele (Figure 1B). This can be
explained by the size of the deletion, that removes 13 kb of
genomic sequence, as well as by the fact that this deletion
results in very low levels of the H19 RNA (29), which is
known to act as a trans-riboregulator that represses Igf2
expression (1). Actually, trans-effects of H19 deletions on
Igf2 have been known for a long time. For example, H19
maternal deletion is known to decrease significantly
methylation levels of the Igf2 DMR2 on the paternal
allele (39). These trans-effects may also explain another
intriguing observation. Indeed, upon maternal transmis-
sion of the H19�13 deletion the interaction of the enhan-
cers with the DMR1 is abolished (site 19 in Figure 2E).
Since this interaction takes place on the paternal allele and
this allele is intact in these mice, this means that the
maternal deletion has a trans-effect on that interaction.
Finally, upon maternal transmission of the H19�13
deletion, the enhancers interact with the entire Igf2 gene
body, including the Igf2 promoters (Figure 2E).
Therefore, it is possible that, in that specific case, the en-
hancers track along the Igf2 gene until they find a suitable
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promoter to interact with and thus in this context, our
data are compatible with an enhancer tracking model
(19,40).
One surprising finding is that, while an intact ICR/H19

region is required on the paternal allele to maintain
high PIHit expression levels (Supplementary Figure S1),
it is dispensable for PIHit repression on the maternal
allele (Figure 6C). We can, therefore, formulate two hypo-
theses to explain PIHit imprinting: either repression
is the default state of the PIHit locus, and mono-
allelic expression of PIHit then results from the
combined paternal-specific activities of the ICR/H19 and
Igf2 DMR1 regions that both favour PIHit expression
(Supplementary Figure S1), or a yet unknown Imprinting
Control Region is required on the maternal chromosome
to mediate PIHit repression. Since this locus has been ex-
tensively investigated and that many deletions have been
generated in the mouse (35), it seems unlikely that a
primary imprinting centre would have escaped the
wealth of recent investigations. However, one remaining
possibility may be that the discrete PIHit DMR that we
have identified in this work is involved in the establish-
ment and/or the maintenance of PIHit imprinting on
the maternal allele. Interestingly, preferential methyla-
tion on the maternal chromosome precedes PIHit expres-
sion and therefore does not appear to simply result from
monoallelic expression of this locus (Figure 7C).
Inactivation of this sequence in the mouse will therefore
also be required to clarify this point.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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de Génétique Moléculaire for technical assistance.

FUNDING

Association pour la Recherche contre le Cancer (ARC);
Centre National de la Recherche Scientifique
(PIR Interface 106245); Agence Nationale de la
Recherche (ANR-07-BLAN-0052-02 to T.F.); CEFIC-
Long-Range Research Initiative (LRI-EMSG49-CNRS-
08 to M.W.); Ligue Nationale Contre le Cancer
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