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Abstract 

In this report, gadolinium-substituted lanthanum strontium manganite (LSM) system, La0.5Sr0.5-

xGdxMnO3 (0.1⩽ x ⩽ 0.4), was synthesized using the citrate precursor processing. The 

influence of Gd3+ ions content on the structure, optical, electrochemical and magnetic 

properties of LSM was studied. Evidently, in all compositions, a single monoclinic perovskite 

phase was obtained after calcination at 1000 °C for 2 h. All powders exhibited crystallite sizes 

in the range of 25.6-35.1 nm. The formed LSM nanopowders has great optical reflectance of 

20–40 % from 200 to 800 nm for all substituted samples by Gd3+ ions. Furthermore, the LSM 

possesses good optical absorbance of 0.65 from 200 to 800 nm. The optical band gap energy 

was decreased from 2.45 to 1.63 eV by increasing the Gd3+ ions molar ratios from 0.1 to 0.4.. 

Meanwhile, the electrochemical impedance spectroscopy displayed the good results. The 

ohmic resistance (Rs) and the polarization resistance (Rp) of the electrode were increased by 

increasing the Gd3+ ions concentration from 0.1 to 0.4. Otherwise, both the ohmic resistance 

mailto:ali_omar155@yahoo.com


2 
 

(Rs) and polarization resistance in the doped samples were higher than the pure LSM sample. 

Finally, the saturation magnetization was increased by increasing Gd3+ ions molar ratios. The 

saturation magnetization was found to be increased from 1.61 A.m2/kg for pure LSM to to 

28.61 A.m2/kg for 0.4 Gd3+ ion substituted LSM sample.  

 

Keywords: Lanthanum strontium manganite, Nanopowders, Citrate precursor method, Crystal 

structure, Optical properties, Magnetic properties 

 

Introduction 

Introduction 

Solid oxide fuel cells (SOFCs) are one of the promising fuel cells that offer very high 

efficiency with fuel flexibility and low contamination to environment [1], [2], [3], [4]  [5]. 

However, conventional SOFCs typically operates at very high temperatures (800–1000 °C), 

which bring various degradation problems [6]. Subsequently, anode, cathode and electrolyte  

materials must be stable at such operation temperature. In this regards, because of its thermal 

stability and chemical compatibility, Sr-doped LaMnO3 (lanthanum strontium manganite- 

LSM) attracts substantial interest as a promising cathode material for SOFCs. In nanosized 

crystals, this material presents high catalytic activity for oxygen reduction as well as thermal 

expansion coefficient similar to that of the solid electrolyte (yttria stabilized zirconia-YSZ) and 

high electrical conductivity [7-12]. Otherwise, LSM has limited application at reduced 

temperatures due to its low oxygen ion conductivity and high activation energy for oxygen 

dissociation [13]. Therefore, in order to improve the electrode performance at the temperature 

region of intermediate temperature solid oxide fuel cell (IT-SOFCs), one commonly used 

strategy is to add an ionically conducting second phase into the electronically conducting LSM 

http://www.sciencedirect.com/science/article/pii/S0925838815311129#bib1
http://www.sciencedirect.com/science/article/pii/S0925838815311129#bib2
http://www.sciencedirect.com/science/article/pii/S0925838815311129#bib3
http://www.sciencedirect.com/science/article/pii/S0925838815311129#bib4
http://www.sciencedirect.com/science/article/pii/S0925838815311129#bib5
http://www.sciencedirect.com/science/article/pii/S0925838815311129#bib6
http://www.sciencedirect.com/science/article/pii/S0925838815311129#bib22
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material to form composite cathode materials [14]  [15]. Meanwhile, doping with lower-

valence cations at A and/or B sites leads to emergence of defects (either vacancies or changes 

in the oxidation state of transition metals) that modify the oxygen adsorption–desorption 

properties and thus enhancing the electrode performance[16][17]. In particular,  a variety of 

methods are available to prepare the nanosized LSMO perovskite materials such as co-

precipitation [18-20], sol–gel [21], hydrothermal[22], ball milling[23], spray pyrolysis [24], 

pulse laser deposition [25], molecular beam epitaxy [26], magnetron sputtering [27], metal–

organic decomposition [28], electrochemical deposition [29] and aerosol pyrolysis [30]. 

Among these methods, the solution combustion synthesis has steadily gained popularity 

because it can generate reproducibly high purity powders of controlled sizes and shapes in very 

short time using low cost chemicals and simple equipment. [31-32]. Remarkably, it is well 

known that several previous work concentration of Gd3+ doped ceria (GDC) as an interesting 

electrolyte materials due to high ionic conductivity than YSZ electrolyte. However, from the 

best of our knowledge, there is no previous reports concerning the change of the optical, 

electrical and magnetic properties of Gd3+ ion doped LSM as well as the effect of gadolinium 

ions concentration [33-35]. With this premise, the manipulation of Gd3+ ion content on the 

magnetic, optical and electrical properties of LSM nanopowders was studied in details. 

Meanwhile, the impact of Gd3+ ion on the crystal structure and microstructure was also 

investigated. Finally, such given properties were compared with pure La0.5Sr0.5MnO3 phase.  
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2. Materials and Methods 

2.1. Materials 

All the chemicals utilized in the present work involved lanthanum nitrate hexahydrate                

La(NO3)3.6H2O (Fluka Analytical 61520), anhydrous strontium nitrate Sr(NO3)2 (Sigma-

Aldrich 13914), manganese acetate tetrahydrate C4H6MnO4 (AppliChem A2606,0500), 

gadolinium nitrate hexahydrate Gd(NO3)3.6H2O (Alfa Aesar) and pure citric acid C6H8O7 (El-

Nasar pharmaceutical chemical Co 3281119001)were of analytical grade. Moreover, deionized 

water was used in the whole work. 

2.2. Procedure  

Gadolinium substituted lanthanum strontium manganite (LSM) nanopowders have been 

synthesized through citrate precursor route. In this regards, 0.5-xLa(NO3)3.6H2O  was mixed 

well with suitable ratios of strontium nitrate and manganese acetate tetrahydrate in the aqueous 

solution. Then, xGd(NO3)3.6H2O was added to the solution at molar ratio of La:Sr:Mn:Gd was 

0.5-x:0.5:1:x with various x values from 0.0 to 0.4. After that, certain amount of citric acid 

related to the metal salts was inserted to aqueous solutions to chelate with the metals ions. The 

citric acid was not only employed to form stable complexes also but also it was anticipated as 

an organic rich fuel.  The solutions were slowly evaporated on a hot plate magnetic stirrer at 

80°C to form viscous gel and then dried at 100°C for 24 h to contain the citrate precursors. 

Eventually, the dry precursors were heated at a rate of 10 °C/min in static air with different 

maximum holding temperatures ranging from 800 to 1200 °C where they were maintained for 

2 h. 
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Table 1. Metal salts concentration used for preparation of La1-xSrxMnO3 nanopowders 

Chemicals used  

Pure 

LSM 

sample 

Gd3+ ion content 

0.1 0.2 0.3 0.4 

La (NO3)3.6H2O , mg 4.43 3.54 2.65 1.77 0.88 

Sr (NO3)2 , mg 2.11 2.11 2.11 2.11 2.11 

Gd(NO3)3.6H2O - 0.90 1.80 2.70 3.61 

C4H6MnO4.4H2O, mg 4.91 4.91 4.91 4.91 4.91 

Citric acid , mg 16.81 16.81 16.81 16.81 16.81 

 

2.3. Physical Characterization 

X-ray powder diffraction (XRD) was executed on a model Bruker AXS diffractometer (D8-

ADVANCE Germany) with Cu Kα (λ = 1.54056 Å) radiation, operating at 40 kV and 40 mA. 

The diffraction data were recorded for 2θ values between 10 and 80o.  The morphologies of the 

formed powders were implemented by a Field emission scanning electron microscopy FE-SEM 

(JEOL-JSM-5410 Japan). The absorbance spectra were accomplished using UV-Vis-NIR-

scanning spectrophotometer (JASCO V-570, Japan). Electrochemical impedance spectrums 

(EIS) were recorded as a function of frequency with 6 points with an AC perturbation signal of 

50 mA using a PARSTAT 4000 Potentiostat/Galvanostat/EIS Analyzer. The magnetic 

properties of the formed materials were fulfilled using vibrating sample magnetometer (7400-1 

VSM, lackshore, USA) in a maximum applied field of 20 kOe. 
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3. Results and discussion  

3.1. Crystal structure 

Fig.1 indicates the XRD profiles of Gd3+ ion substituted lanthanum strontium manganite 

synthesized by citrate precursor pathway annealed at 1000oC for 2h. Plainly, diffraction peaks 

joined with pure monoclinic perovskite phase were coincided. For instance, peaks 

corresponded to JCPDS card (00-04900595) were indexed. Meanwhile, the space group of the 

produced powders was defined as P21/a for the diffraction peaks of the LSM with fully 

crystallized perovskite structure for all prepared samples. The average crystallite size of the 

Gd3+ substituted  LSM particles was determined from the most intense peak of LSM based on 

Scherrer's formula. 
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Fig.1: XRD patterns of produced pure and Gd3+ substituted LSM nanopowders by citrate 

precursors method at different Gd3+ ions molar ratios (0.1, 0.2, 0.3 and 0.4) annealed at 1000oC 

for 2 h. 

The lattice parameters (a, b, and c) of LSM nanopowders can be obtained from the following 

equation: 

 

1
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=
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The unit cell volume V of the monoclinic system can be calculated by the following 

equation  

𝑉 = 𝑎𝑏𝑐 sin 𝛽 

Where a, b, and c are the unit cell axes dimensions and β,  is the inclination angle of the axe in 

the unit cell and (k,h,l) are called miller indices. 

Table 1 records the change in crystallite size, lattice parameters and the unit cell volume of 

Gd3+ ion substituted LSM. Evidently, the crystallite size was found to first increase with Gd3+ 

molar ratio of 0.1 then it was decreased with further increased of Gd3+ ion content up to 0.4.  

The crystallite size was in the range between 25.6 to 35.1 nm. The variation of lattice 

parameters (a,b and c) was found to decrease with the extent of substitution of Gd3+ ion 

concentration. Subsequently, the unit cell volume was decreased. The results  can be attributed 

to the small radius of Gd3+ ion (1.078 Å ) compared to the radius of La3+ ion (1.36 Å) which 

follows that substitution of La3+ ion by Gd3+ ion can occur. 
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Table 1: Crystallite size, lattice constant and unit cell volume of Gd3+ ion substituted LSM 

synthesized using citrate precursor method annealed at 1000oC for 2h 

 

 

 

 

 

 

 

 

 

 

3.2. Microstructure  

Fig. 2 (a, b, c and d)illustrates a representative field emission scanning electron micrographs 

(FE-SEM) of Gd3+ ions substituted LSM nanoparticles. The size variation of the particle 

attributed to the absence of any surfactant in the synthesis procedure. The formation of 

agglomerates was due to the annealing temperature. The loose and the porous structure of 

annealed samples can be attributed to significant gas evolution during combustion reaction.The 

transformation in the shape from monoclinic to spherical agglomerates was observed in the 

formed powders by increasing the Gd3+ ions content from 0.1 to 0.3. However at 0.4 Gd3+ ions 

molar ratios, the formed particles are connected to gather to form cluster with monoclinic 

shape. 

Gd+3 ion 

content 

Crystallite 

size, nm 

Lattice parameters, Å Unit cell 

volume, Å3 

a b c 

LSM  28.8 5.520 7.820 5.640 243.46 

LSMG1 35.1 5.510 7.810 5.631 242.31 

LSMG2 32.6 5.491 7.798 5.621 240.68 

LSMG3 31.5 5.489 7.787 5.611 239.83 

LSMG4 25.6 5.487 7.776 5.589 238.46 
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Fig.2: FE-SEM photograph of produced pure and doped Gd3+ substituted LSM nanopowders 

by citrate precursors method at different Gd3+ ions molar ratios: a) 0.1, b) 0.2,  c) 0.3 and d) 

0.4, annealed at 1000oC for 2 h. 
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3.3. Optical properties  

Fig. 3 displays the reflectance spectra of LSM measured in the wavelength range of 200–800 

nm. It can be seen that the reflectance of the low Gd3+ ion concentration is slightly higher than 

that of unsubstituted LSM nanopowders. The maximum reflectance was ~40 % for the 

powders synthesized at 0.4 Gd3+ion content. The wavelength was around 280 nm for 

substituted sample and 260 for un substituted sample respectively. Fig.4 indicates the 

absorbance spectra of pure LSM and Gd3+ ions doped lanthanum strontium manganite. The 

increasing of gadolinium ions molar ratios enhances the optical absorbance of produced 

nanopowders. In addition, a small increasing of the edge of the absorbance spectra at the 

wavelengths from 200-800 nm is observed. The band gap energy of the formed LSM 

substituted with gadolinium ions are presented in Fig. 5. It shows that the band gap energy was 

decreased with increasing the gadolinium ions substitution. It was decreased from 2.45 eV at 

LSM pure sample to 2.39 eV at 0.1 Gd3+ then to 2.19 eV at 0.2 Gd3+.The band gap energy was 

decreased to be 1.75 eV at 0.3 Gd3+and 1.63 eV at 0.4 Gd3+ ions content. This can indicate the 

presence of intermediate energy levels within the band gap between valence band and 

conduction band. The intermediate energy levels or localized state related to the ordered – 

disordered structure. The ordered structure of LSM powders can be explained as (MnO6)-

(MnO6-x) clusters, which their cation and vacancy at the A- or B- site arranged in order that 

gives rise to perfect lattice crystalline. The (MnO6)-(MnO6-x) clusters are only relevant when 

any other defects are not presented, e.g. A- or B-site metal vacancies, while a disordered 

structure suggests the representative metal randomly distributed in pervoskite structure[37-38]. 

The energy-dependent transmittance spectra of LSM nanopowders prepared by citrate 

precursor method at calcination temperature of 1000 oC for 2 h with different metal ion 
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substitutions are obtained experimentally and presented in Fig. 6.The addition of Gd3+ ions into 

La3+ions depended on the ionic size and electronegativity difference between the two metal 

ions. Since the A site ions in ABO3 structure are fully ionized, the electronegativity difference 

is of minor importance although local structural distortions may be sensitive to local ionic radii 

and their variations. Finally, possible effects due to integral charge states (Mn3+, Mn4+) will be 

averaged in Eg calculations in the highly conducting regime where our treatment will be most 

realistic. The actuations between the transmittance spectra of LSM substituted gadolinium at 

different concentrations varying from (0.1to 0.4). Hence, cut of around 1.6 eV was observed 

which arises due to the transitions from the oxygen states at the uppermost valence band to 

Gd3+ states at the lowermost conduction band. The rising trend of the experimental data for 

both LSM at the higher-energy side may show a tendency to give another absorption peak 

corresponding to the electronic transition from the semi-core states in the valence band to 

conduction band [39]. 
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Fig. 3: Reflectance spectra of LSM nanopowders synthesized by citrate method at calcination 

temperature of 1000 oC with different Gd3+ ions concentrations (0, 0.1, 0.2, 0.3 and 0.4) 
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Figure 4.Absorbance spectrum of LSM nanopowders synthesized using citrate method at 

calcination temperature of 1000 oC with different Gd3+ ions contents (0, 0.1, 0.2, 0.3, and 0.4). 
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Figure 5. The band gap energy of LSM nanopowders at different Gd+3 ion contents (0, 0.1, 

0.2, 0.3 and 0.4) 
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Fig. 6: Transmittance spectra as a function of photon energy for LSM nanopowders prepared 

via citrate method annealed at 1000 oC for 2h with different Gd3+ ions molar ratios (0, 0.1, 0.2, 

0.3 and 0.4). 
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3.4. Electrochemical impedance spectroscopy 

 Fig. 7 presents the impedance spectra of the lanthanum strontium manganite cathode 

substituted by gadolinium ions and prepared via citrate precursor method at calcinations 

temperature of 1000 °C for 2 h. As can be seen, they are composed of large depressed arcs 

located in between the high frequency and the low frequency zones, respectively. The Nyquist 

plots have been fitted using an equivalent circuit constituted of an inductance L, a resistanceR1 

and two constant phase elements (CPE1 and CPE2) in parallel with resistor (R2 andR3), as 

shown inFig.8. In this equivalent circuit, R1 corresponds to the electrolyte resistance, electrode 

ohmic resistance and lead resistance.R2 represents the polarization resistance associated with 

the high frequency charge transfer process andR3 represents that associated with low frequency 

oxygen adsorption and dissociation processes [40-41]. It can be seen that both the ohmic 

resistance (Rs) and polarization resistance (Rp) of the electrode were increased by increasing 

Gd3+ ions concentration. Otherwise both the ohmic resistance (Rs) and polarization resistance 

in the doped samples were higher than the pure LSM sample. The smaller arc at both high 

frequency and low frequency can be attributed to faster charge transfer process, higher specific 

surface area of the cathode, faster oxygen dissociation and surface diffusion processes. 

 

 

 

 

 

http://www.sciencedirect.com/science/article/pii/S0925838815311129#fig7
http://www.sciencedirect.com/science/article/pii/S0925838815311129#bib40
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Figure 7. The Nequest diagram of LSM nanopowders at different Gd+3 ion content (0.1, 0.2, 

0.3 and 0.4) 

 

 

 

 

 

Figure 8. The equivalent circuit schematic diagram of La0.5−xSr0.5Gdx MnO3powders 
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3.5. Magnetic properties   

Fig. 9 depicts the magnetic properties of Gd3+ ion substituted LSM synthesized using citrate 

precursor strategy annealed at 1000oC for 2h. Furthermore, the change in the magnetic 

parameters is summarized in Table 2. Evidently,   it is demonstrated that the value of 

magnetization was found to increase with the applied magnetic field and it did not attain 

saturation due to the smallest average crystallite size of the produced powders. These 

nanosized particles are much smaller than the magnetic domain. Accordingly, the saturation 

does not achieve the degree of magnetic saturation and the corresponding magnetization values 

were strongly dependent on the composition of the produced materials.  The increase in 

magnetization for Gd3+ substitution might be due to replacement of  La with no magnetic 

moment μeff= 0 μB by effective magnetic moment μeff=8 μB, resulting in an increase in the 

magnetic moment of the magnetic ions. Furthermore, the A–O bond size was enhanced where 

the smaller Gd3+ ions replace the larger La3+ ions. By increasing the Gd3+ ions content, the unit 

cell volume is slightly decreased which is expected result imputed to to the small difference 

between the two ionic radii. Furthermore, the increase of magnetizartion with the increase of 

Gd3+content is attributed to the higher density of the unpaired electron (4f7) compared with 

(4f0) of La3+ ion in the produced samples which deals with previous published elsewhere [42] 

The change of coercivity  with the increase of the Gd3+amount in doped lanthanum strontium 

manganite is illustrated in Table 3. The coercivity was found to increase as the amount of 

gadolinium substitution increased. This result was obtained previously in other kind of 

materials [43]and it can be explained as follows: Gd3+  and Mn2+ ions have stronger coupling 

and weaker crystal field, so they have stronger magneto crystalline anisotropy [44]. The 

intrinsic magnetic nature of Gd3+ ion plays an important role in the overall magnetic behavior 

http://www.sciencedirect.com/science/article/pii/S0304885315301268#bib39
http://www.sciencedirect.com/science/article/pii/S0304885315301268#bib40
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of the system. Due to the ionic radii mismatch of Gd3+ and Sr2+, it is interesting to study the 

effect of gadolinium ions doping on the magnetism in La0.5-xSr0.5GdxMnO3 system. The 

symmetry of crystal will be decreased after the sample was substituted by Gd3+ ions. Hence 

there is a distortion in lattice field which generates an internal stress (Table1). Furthermore, the 

crystallite size decreases as the amount of Gd3+ increases(Table 1), hence the grain boundary 

increases. So, the area of disordered arrangement for ions on grain boundaries may fix and 

hinder the domain walls motion, thus the coercivity of the samples increases with 

Gd3+substitution ions. Moreover,  when Gd3+ion  is added to any system, the magnetic behavior 

(as coercive field) of the system can increase. The results were in agreement with the previous 

published result by Shlapa et al. [45]. However, the saturation magnetization was particle size 

dependent. It was found that the saturation magnetization was increased with increasing the 

particle size as the further increasing of Gd3+ ion content. For instance, the surface magnetic 

anisotropy originating from a magnetically disordered surface layer known as a dead or 

passivating layer existed in the nanoparticles is usually the evidence of the phenomenon. With 

decreasing particle sizes, the thickness of the passivating layer and the number of disordered 

spins increases, which are adverse to the ferromagnetic order, thus leading to the reduction of 

magnetization and the increase of coercivity (Hc)and the magnetic retentivity (Mr) [37]. In 

comparison, Joyet al. measured the magnetic hysteresis loops for Gd1−xSrxMnO3(x=0.3, 0.5, 

0.6) thin films up to 70 kOe at 10  and 300 K. They found that the coercivity of thin films is 

lower than that of bulk. This is due to the lower crystallinity and smaller grain size of thin films 

[46]. 

http://www.sciencedirect.com/science/article/pii/S0304885315301268#t0005
http://www.sciencedirect.com/science/article/pii/S0304885315301268#t0005
http://www.sciencedirect.com/science/article/pii/S0925838817302566
http://www.sciencedirect.com/science/article/pii/S0304885315305679
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Figure 9: M-H hysteresis curves of (La0.5−xSr0.5GdxMnO3) synthesized by organic acid 

precursor annealed at 1000 oC for 2 h at different Gd+3 ion molar ratios (0, 0.1,0.2, 0.3 and 0.4)  
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Table 2: Magnetic properties of Gd3+ ion substituted LSM powders synthesized using citrate 

precursor method annealed at 1000oC for 2h 

 

Sample ID Magnetic properties 

Ms, A.m2/kg Mr, A.m2/kg Hc, (A.m)-1 

LSM pure 

 

1.607 0.068 54.43 

0.1 Gd3+ 4.940 0.376 

 

81.90 

 

0.2Gd3+ 21.106 

 

2.000 

 

97.50 

 

0.3Gd3+ 25.194 

 

1.381 

 

60.48 

 

0.4 Gd3+ 28.612 

 

2.378 

 

90.52 

 

  

3.6. Conclusion  

Gadolinium doped lanthanum strontium manganite (GLSM) nanopowders La0.5-xSr0.5GdxMnO3  

(0.0≤x≤0.4) were  systematically prepared using citrate-precursor method. Indeed, the samples 

were annealed at temperature 1000oC for time 2h to contain pure monoclinic  GLSM phase. 

Evidently, the average crystallite size of the formed powders was in the range between 25 to 35 

nm. The microstructure of the formed materials was substantially premised on the Gd3+ ion 

content. Clearly, the morphology was transformed from monoclinic like structure to spherical 

agglomerates  by increasing the addition of Gd3+ ions from 0.1 to 0.3. Otherwise, the formed 

particles were exhibited clusters with continuously increased the Gd3+ ratio to 0.4. The band 

gap energy of the produced GLSM powders was decreased by increasing the Gd3+ ion content. 

Evidently, it was decreased from 2.45 to 1.63 eV with increasing the Gd3+ ion concentration 

from 0.0 to 0.4.  Furthermore, the polarization resistance in the Gd3+ doped samples was higher 

than the pure LSM sample. The smaller arc at both high frequency and low frequency can be 

attributed to faster charge transfer process. Meanwhile, the saturation magnetization was found 
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to increase with increasing the Gd3+ ion. Indeed, the saturation magnetization (Ms) was 

increased from 1.61 A.m2/kg for pure LSM to  28.6 A.m2/kg with Gd3+ ion molar ratio of 0.4. 

Overall, the obtained nanopowders could be interested in several applications such as 

electrodes for potentiometric oxygen sensor and resistive switching devices.  Moreover, Such 

properties would promise  them for the effort candidate for biomedical applications 
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