I. Willner and E. Katz, Bioelectronics: From Theory to Applications, p.492, 2005.

E. I. Katz, -. Bioelectronics;-wiley, &. Gmbh, . Co, and . Kgaa, , p.450, 2014.

W. Gao, S. Emaminejad, H. Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis, Nature, vol.529, pp.509-514, 2016.

B. Nagel, H. Dellweg, and L. Gierasch, Glossary for chemists of terms used in biotechnology (IUPAC recommendations 1992), Pure Appl. Chem, vol.64, pp.143-168, 1992.

, Compendium of Chemical Terminology

A. D. Mcnaught and A. Wilkinson, , 1997.

L. Wang, W. Ma, L. Xu, W. Chen, Y. Zhu et al., Nanoparticle-based environmental sensors, Mater. Sci. Eng. R Rep, vol.70, pp.265-274, 2010.

C. Zhu, G. Yang, H. Li, D. Du, and Y. Lin, Electrochemical sensors and biosensors based on nanomaterials and nanostructures, Anal. Chem, vol.87, pp.230-249, 2015.

M. Das, G. Sumana, R. Nagarajan, and B. D. Malhotra, Application of nanostructured ZnO films for electrochemical DNA biosensor, Thin Solid Films, vol.519, pp.1196-1201, 2010.

X. Kang, J. Wang, H. Wu, J. Liu, I. A. Aksay et al., A graphene-based electrochemical sensor for sensitive detection of paracetamol, Talanta, vol.81, pp.754-759, 2010.

Y. Fan, J. Liu, H. Lu, and Q. Zhang, Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO 2 -graphene modified glassy carbon electrode, Colloids Surf. B, vol.85, pp.289-292, 2011.

Y. Wang, X. Zhang, Y. Chen, H. Xu, Y. Tan et al., Detection of dopamine based on tyrosinase-Fe 3 O 4 nanoparticles-chitosan nanocomposite biosensor, Am. J. Biomed. Sci, vol.2, pp.209-216, 2010.

A. Puangjan, S. Chaiyasith, S. Wichitpanya, S. Daengduang, and S. Puttota, Electrochemical sensor based on PANI/MnO 2 -Sb 2 O 3 nanocomposite for selective simultaneous voltammetric determination of ascorbic acid and acetylsalicylic acid, J. Electroanal. Chem, vol.782, pp.192-201, 2016.

K. Van-nguyen and S. D. Minteer, DNA-functionalized Pt nanoparticles as catalysts for chemically powered micromotors: Toward signal-on motion-based DNA biosensor, Chem. Commun, vol.51, pp.4782-4784, 2015.

D. P. Hickey, R. D. Milton, M. Rasmussen, S. Abdellaoui, K. Nguyen et al., Fundamentals and applications of bioelectrocatalysis, Electrochemistry, vol.13, pp.97-132, 2016.

L. C. Clark, R. Wolf, D. Granger, and Z. Taylor, Continuous recording of blood oxygen tensions by polarography, J. Appl. Physiol, vol.6, pp.189-193, 1953.

L. C. Clark and C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci, vol.102, pp.29-45, 1962.

D. Leech, P. Kavanagh, and W. Schuhmann, Enzymatic fuel cells: Recent progress, Electrochim. Acta, vol.84, pp.223-234, 2012.

D. Ivnitski, B. Branch, P. Atanassov, and C. Apblett, Glucose oxidase anode for biofuel cell based on direct electron transfer, Electrochem. Commun, vol.8, pp.1204-1210, 2006.

Y. Degani and A. Heller, Direct electrical communication between chemically modified enzymes and metal electrodes. I. Electron transfer from glucose oxidase to metal electrodes via electron relays, bound covalently to the enzyme, J. Phys. Chem, vol.91, pp.1285-1289, 1987.

A. Heller, Electrical wiring of redox enzymes, Acc. Chem. Res, vol.23, pp.128-134, 1990.

R. Wilson and A. P. Turner, Glucose oxidase: An ideal enzyme, Biosens. Bioelectron, vol.7, pp.165-185, 1992.

G. Wohlfahrt, S. Witt, J. Hendle, D. Schomburg, H. M. Kalisz et al., 1.8 and 1.9 Å resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidases as a basis for modelling substrate complexes, Acta Crystallogr. D Biol. Crystallogr, vol.55, pp.969-977, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02279035

S. B. Bankar, M. V. Bule, R. S. Singhal, and L. Ananthanarayan, Glucose oxidase-An overview, Biotechnol. Adv, vol.27, pp.489-501, 2009.

J. Wang, J. Liu, L. Chen, and F. Lu, Highly selective membrane-free, mediator-free glucose biosensor, Anal. Chem, vol.66, pp.3600-3603, 1994.

J. Wang, E. G. Romero, and A. J. Reviejo, Improved alcohol biosensor based on ruthenium-dispersed carbon paste enzyme electrodes, J. Electroanal. Chem, vol.353, pp.113-120, 1993.

Y. Weizmann, F. Patolsky, E. Katz, and I. Willner, Amplified telomerase analysis by using rotating magnetic particles: The rapid and sensitive detection of cancer cells, ChemBioChem, vol.5, pp.943-948, 2004.

R. Baron, O. Lioubashevski, E. Katz, T. Niazov, and I. Willner, Two coupled enzymes perform in parallel the 'AND' and 'inhibAND' logic gate operations, Org. Biomol. Chem, vol.4, pp.989-991, 2006.

K. Elouarzaki, M. Bourourou, M. Holzinger, A. Le-goff, R. S. Marks et al., Freestanding HRP-GOx redox buckypaper as an oxygen-reducing biocathode for biofuel cell applications, Energy Environ. Sci, vol.8, pp.2069-2074, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01651043

P. Kavanagh and D. Leech, Mediated electron transfer in glucose oxidising enzyme electrodes for application to biofuel cells: Recent progress and perspectives, Phys. Chem. Chem. Phys, vol.15, pp.4859-4869, 2013.

E. Katz, I. Willner, and A. B. Kotlyar, A non-compartmentalized glucose/O 2 biofuel cell by bioengineered electrode surfaces, J. Electroanal. Chem, vol.479, pp.64-68, 1999.

M. Schlesinger, Applications of Electrochemistry in Medicine, vol.56, p.452, 2013.

K. E. Toghill and R. G. Compton, Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation, Int. J. Electrochem. Sci, vol.5, pp.1246-1301, 2010.

M. T. Meredith, D. Kao, D. Hickey, D. W. Schmidtke, and D. T. Glatzhofer, High current density ferrocene-modified linear poly(ethylenimine) bioanodes and their use in biofuel cells, J. Electrochem. Soc, vol.158, pp.166-174, 2011.

M. T. Meredith, M. Minson, D. Hickey, K. Artyushkova, D. T. Glatzhofer et al., Anthracene-modified multi-walled carbon nanotubes as direct electron transfer scaffolds for enzymatic oxygen reduction, ACS Catal, vol.1, pp.1683-1690, 2011.

B. Reuillard, A. Le-goff, C. Agnes, M. Holzinger, A. Zebda et al., High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix, Phys. Chem. Chem. Phys, vol.15, pp.4892-4896, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01652813

P. Jenkins, S. Tuurala, A. Vaari, M. Valkiainen, M. Smolander et al., A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes, Bioelectrochemistry, vol.87, pp.172-177, 2012.

F. Mao, N. Mano, and A. Heller, Long tethers binding redox centers to polymer backbones enhance electron transport in enzyme "wiring" hydrogels, J. Am. Chem. Soc, vol.125, pp.4951-4957, 2003.

N. Mano, F. Mao, and A. Heller, Characteristics of a miniature compartment-less glucose-O 2 biofuel cell and its operation in a living plant, J. Am. Chem. Soc, vol.125, pp.6588-6594, 2003.

R. D. Milton, D. P. Hickey, S. Abdellaoui, K. Lim, F. Wu et al., Rational design of quinones for high power density biofuel cells, Chem. Sci, vol.6, pp.4867-4875, 2015.

R. D. Milton, K. Lim, D. P. Hickey, and S. D. Minteer, Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum, Bioelectrochemistry, vol.106, pp.56-63, 2015.

S. M. Zakeeruddin, D. M. Fraser, M. K. Nazeeruddin, and M. Grätzel, Towards mediator design: Characterization of tris-(4,4 -substituted-2,2 -bipyridine) complexes of iron(II), ruthenium(II) and osmium(II) as mediators for glucose oxidase of aspergillus niger and other redox proteins, J. Electroanal. Chem, vol.337, pp.253-283, 1992.

J. W. Gallaway and S. A. Calabrese-barton, Kinetics of redox polymer-mediated enzyme electrodes, J. Am. Chem. Soc, vol.130, pp.8527-8536, 2008.

K. Takagi, K. Kano, and T. Ikeda, Mediated bioelectrocatalysis based on NAD-related enzymes with reversible characteristics, J. Electroanal. Chem, vol.445, pp.211-219, 1998.

Y. Yan, R. Tel-vered, O. Yehezkeli, Z. Cheglakov, and I. Willner, Biocatalytic growth of Au nanoparticles immobilized on glucose oxidase enhances the ferrocene-mediated bioelectrocatalytic oxidation of glucose, Adv. Mater, vol.20, pp.2365-2370, 2008.

I. Willner, V. Heleg-shabtai, R. Blonder, E. Katz, G. Tao et al., Electrical wiring of glucose oxidase by reconstitution of FAD-modified monolayers assembled onto Au-electrodes, J. Am. Chem. Soc, vol.118, pp.10321-10322, 1996.

A. Riklin, E. Katz, I. Willner, A. Stocker, and A. F. Buckmann, Improving enzyme-electrode contacts by redox modification of cofactors, Nature, vol.376, pp.672-675, 1995.

R. A. Marcus and N. Sutin, Electron transfers in chemistry and biology, Biochim. Biophys. Acta (BBA) Rev. Bioenerg, vol.811, pp.265-322, 1985.

E. Lojou, Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces, Electrochim. Acta, vol.56, pp.10385-10397, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00677206

Y. B. Vassilyev, O. A. Khazova, and N. N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part I. Adsorption and oxidation on platinum, J. Electroanal. Chem. Interfacial Electrochem, vol.196, pp.105-125, 1985.

Y. B. Vassilyev, O. A. Khazova, and N. N. Nikolaeva, Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part II. Effect of the nature of the electrode and the electrooxidation mechanism, J. Electroanal. Chem. Interfacial Electrochem, vol.196, pp.127-144, 1985.

C. Zhao, C. Shao, M. Li, and K. Jiao, Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode, Talanta, vol.71, pp.1769-1773, 2007.

S. Mehmet, G. Quan, S. Thomas, and D. Goldsmith, Important causes of hypoglycaemia in patients with diabetes on peritoneal dialysis, Diabet. Med, vol.18, pp.679-682, 2001.

T. J. Ohara, R. Rajagopalan, and A. Heller, Wired" enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances, Anal. Chem, vol.66, pp.2451-2457, 1994.

H. Lei, B. Wu, C. Cha, and H. Kita, Electro-oxidation of glucose on platinum in alkaline solution and selective oxidation in the presence of additives, J. Electroanal. Chem, vol.382, pp.103-110, 1995.

A. Guerrieri, R. Ciriello, and D. Centonze, Permselective and enzyme-entrapping behaviours of an electropolymerized, non-conducting, poly(o-aminophenol) thin film-modified electrode: A critical study, Biosens. Bioelectron, vol.24, pp.1550-1556, 2009.

J. C. Ndamanisha and L. Guo, Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode, Bioelectrochemistry, vol.77, pp.60-63, 2009.

I. Yeo and D. C. Johnson, Electrochemical response of small organic molecules at nickel-copper alloy electrodes, J. Electroanal. Chem, vol.495, pp.110-119, 2001.

Y. Holade, D. P. Hickey, and S. D. Minteer, Halide-regulated growth of electrocatalytic metal nanoparticles directly onto a carbon paper electrode, J. Mater. Chem. A, vol.4, pp.17154-17162, 2016.

D. Alloyeau, C. Mottet, and C. Ricolleau, Nanoalloys: Synthesis, Structure and Properties, p.420, 2012.

A. Wieckowski, E. R. Savinova, and C. G. Vayenas, Catalysis and Electrocatalysis at Nanoparticle Surfaces

M. Dekker and . Inc, , p.970, 2003.

M. Lahmani, C. Bréchignac, and P. Houdy, Les Nanosciences: 2. Nanomatériaux et Nanochimie, p.732, 2012.

R. P. Doherty, J. Krafft, C. Methivier, S. Casale, H. Remita et al., On the promoting effect of Au on CO oxidation kinetics of Au-Pt bimetallic nanoparticles supported on SiO 2 : An electronic effect?, J. Catal, vol.287, pp.102-113, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00687283

M. Ø. Pedersen, S. Helveg, A. Ruban, I. Stensgaard, E. Laegsgaard et al., How a gold substrate can increase the reactivity of a Pt overlayer, Surf. Sci, vol.426, pp.395-409, 1999.

Y. Holade, K. Servat, J. Rousseau, C. Canaff, S. Poulin et al., Electrochemical and physicochemical characterizations of gold-based nanomaterials: Correlation between surface composition and electrocatalytic activity, J. Electrochem. Soc, vol.162, pp.929-937, 2015.

K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti et al., Reporting physisorption data for gas/solid systems, Pure Appl. Chem, p.2201, 1982.

K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem, vol.57, pp.603-619, 1985.

S. B. Aoun, G. S. Bang, T. Koga, Y. Nonaka, T. Sotomura et al., Electrocatalytic oxidation of sugars on silver-UPD single crystal gold electrodes in alkaline solutions, Electrochem. Commun, vol.5, pp.317-320, 2003.

S. B. Aoun, Z. Dursun, T. Koga, G. S. Bang, T. Sotomura et al., Effect of metal ad-layers on Au(111) electrodes on electrocatalytic oxidation of glucose in an alkaline solution, J. Electroanal. Chem, vol.567, pp.175-183, 2004.

Y. Holade, K. Servat, T. W. Napporn, C. Morais, J. Berjeaud et al., Highly selective oxidation of carbohydrates in an efficient electrochemical energy converter: Cogenerating organic electrosynthesis, ChemSusChem, vol.9, pp.252-263, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01687175

S. Garcia, D. Salinas, C. Mayer, E. Schmidt, G. Staikov et al., Electrochim. Acta, vol.43, issue.111, pp.3007-3019, 1998.

S. Hebié, T. W. Napporn, C. Morais, and K. B. Kokoh, Size-dependent electrocatalytic activity of free gold nanoparticles for the glucose oxidation reaction, ChemPhysChem, vol.17, pp.1454-1462, 2016.

J. Wang, J. Gong, Y. Xiong, J. Yang, Y. Gao et al., Shape-dependent electrocatalytic activity of monodispersed gold nanocrystals toward glucose oxidation, Chem. Commun, vol.47, pp.6894-6896, 2011.

S. Hebié, K. B. Kokoh, K. Servat, and T. Napporn, Shape-dependent electrocatalytic activity of free gold nanoparticles toward glucose oxidation, vol.46, pp.311-318, 2013.

S. Hebié, L. Cornu, T. W. Napporn, J. Rousseau, and B. K. Kokoh, Insight on the surface structure effect of free gold nanorods on glucose electrooxidation, J. Phys. Chem. C, vol.117, pp.9872-9880, 2013.

S. Hebié, Y. Holade, K. Maximova, M. Sentis, P. Delaporte et al., Advanced electrocatalysts on the basis of bare Au nanomaterials for biofuel cell applications, ACS Catal, vol.5, pp.6489-6496, 2015.

J. Wang, D. F. Thomas, and A. Chen, Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks, Anal. Chem, vol.80, pp.997-1004, 2008.

Y. Ding, Y. Liu, J. Parisi, L. Zhang, and Y. Lei, A novel Ni-Au hybrid nanobelts based sensor for sensitive and selective glucose detection, Biosens. Bioelectron, vol.28, pp.393-398, 2011.

X. Xiao, M. Wang, H. Li, Y. Pan, and P. Si, Non-enzymatic glucose sensors based on controllable nanoporous gold/copper oxide nanohybrids, Talanta, vol.125, pp.366-371, 2014.

C. Dong, H. Zhong, T. Kou, J. Frenzel, G. Eggeler et al., Three-dimensional cu foam-supported single crystalline mesoporous Cu 2 O nanothorn arrays for ultra-highly sensitive and efficient nonenzymatic detection of glucose, ACS Appl. Mater. Interfaces, vol.7, pp.20215-20223, 2015.

Y. Li, Y. Wei, G. Shi, Y. Xian, and L. Jin, Facile synthesis of leaf-like CuO nanoparticles and their application on glucose biosensor, Electroanalysis, vol.23, pp.497-502, 2011.

J. Dong, L. Ren, Y. Zhang, X. Cui, P. Hu et al., Direct electrodeposition of cable-like Cu@Cu nanowires array for non-enzymatic sensing, Talanta, vol.132, pp.719-726, 2015.

C. Kong, L. Tang, X. Zhang, S. Sun, S. Yang et al., Templating synthesis of hollow CuO polyhedron and its application for nonenzymatic glucose detection, J. Mater. Chem. A, vol.2, pp.7306-7312, 2014.

M. Song, S. Lee, J. Kim, and D. Lim, Non-enzymatic glucose sensor based on cu electrode modified with CuO nanoflowers, J. Electrochem. Soc, vol.160, pp.43-46, 2013.

Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao et al., An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode, Analyst, vol.133, pp.126-132, 2008.

J. Wang, G. Chen, M. Wang, and M. P. Chatrathi, Carbon-nanotube/copper composite electrodes for capillary electrophoresis microchip detection of carbohydrates, Analyst, vol.129, pp.512-515, 2004.

Q. Xu, Y. Zhao, J. Z. Xu, and J. Zhu, Preparation of functionalized copper nanoparticles and fabrication of a glucose sensor, Sens. Actuators B, vol.114, pp.379-386, 2006.

L. D. Burke, G. M. Bruton, and J. A. Collins, The redox properties of active sites and the importance of the latter in electrocatalysis at copper in base, Electrochim. Acta, vol.44, pp.1467-1479, 1998.

Z. Wu, Z. Zhang, and L. Liu, Electrochemical studies of a Cu(II)-Cu(III) couple: Cyclic voltammetry and chronoamperometry in a strong alkaline medium and in the presence of periodate anions, Electrochim. Acta, vol.42, pp.2719-2723, 1997.

B. Ogorevc, G. Tav?ar, V. Hudnik, and S. Pejovnik, Electrochemical behaviour of a Cu(II)-Cu(III) couple: Cyclic voltammetry and kinetic parameters at a platinum electrode in a strong alkaline medium and in the presence of tellurate anions, J. Electroanal. Chem, vol.351, pp.81-90, 1993.

X. Kang, Z. Mai, X. Zou, P. Cai, and J. Mo, A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode, Anal. Biochem, vol.363, pp.143-150, 2007.

H. Wu, W. Cao, Y. Li, G. Liu, Y. Wen et al., In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials, Electrochim. Acta, vol.55, pp.3734-3740, 2010.

Z. Li, Y. Xin, Z. Zhang, H. Wu, and P. Wang, Rational design of binder-free noble metal/metal oxide arrays with nanocauliflower structure for wide linear range nonenzymatic glucose detection, Sci. Rep, vol.5, 2015.

Y. Su, B. Luo, and J. Z. Zhang, Controllable cobalt oxide/Au hierarchically nanostructured electrode for nonenzymatic glucose sensing, Anal. Chem, vol.88, pp.1617-1624, 2016.

Y. Sun, B. T. Mayers, and Y. Xia, Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors, Nano Lett, vol.2, pp.481-485, 2002.

X. Lu, L. Au, J. Mclellan, Z. Li, M. Marquez et al., Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO 3 ) 3 or NH 4 OH, Nano Lett, vol.7, pp.1764-1769, 2007.

Y. Xia, X. Xia, and H. Peng, Shape-controlled synthesis of colloidal metal nanocrystals: Thermodynamic versus kinetic products, J. Am. Chem. Soc, vol.137, pp.7947-7966, 2015.

H. Liang, L. Wan, C. Bai, and L. Jiang, Gold hollow nanospheres: Tunable surface plasmon resonance controlled by interior-cavity sizes, J. Phys. Chem. B, vol.109, pp.7795-7800, 2005.

Y. Fan, Z. Yang, X. Cao, P. Liu, S. Chen et al., Hierarchical macro-mesoporous Ni(OH) 2 for nonenzymatic electrochemical sensing of glucose, J. Electrochem. Soc, vol.161, pp.201-206, 2014.

B. Zhan, C. Liu, H. Chen, H. Shi, L. Wang et al., Free-standing electrochemical electrode based on Ni(OH) 2 /3D graphene foam for nonenzymatic glucose detection, Nanoscale, vol.6, pp.7424-7429, 2014.

G. Li, H. Huo, and C. Xu, Ni 0.31 Co 0.69 S 2 nanoparticles uniformly anchored on a porous reduced graphene oxide framework for a high-performance non-enzymatic glucose sensor, J. Mater. Chem. A, vol.3, pp.4922-4930, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00389411

B. Zhao, T. Wang, L. Jiang, K. Zhang, M. M. Yuen et al., NiO mesoporous nanowalls grown on RGO coated nickel foam as high performance electrodes for supercapacitors and biosensors, Electrochim. Acta, vol.192, pp.205-215, 2016.

A. Rengaraj, Y. Haldorai, C. H. Kwak, S. Ahn, K. Jeon et al., Electrodeposition of flower-like nickel oxide on CVD-grown graphene to develop an electrochemical non-enzymatic biosensor, J. Mater. Chem. B, vol.3, pp.6301-6309, 2015.

T. Marimuthu, S. Mohamad, and Y. Alias, Needle-like polypyrrole-NiO composite for non-enzymatic detection of glucose, Synth. Met, vol.207, pp.35-41, 2015.

X. Zhao, F. Muench, S. Schaefer, J. Brötz, M. Duerrschnabel et al., Electroless decoration of macroscale foam with nickel nano-spikes: A scalable route toward efficient catalyst electrodes, Electrochem. Commun, vol.65, pp.39-43, 2016.

Y. Holade, C. Morais, S. Arrii-clacens, K. Servat, T. W. Napporn et al., New preparation of PdNi/C and PdAg/C nanocatalysts for glycerol electrooxidation in alkaline medium, Electrocatalysis, vol.4, pp.167-178, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00932267

V. L. Oliveira, C. Morais, K. Servat, T. W. Napporn, G. Tremiliosi-filho et al., Glycerol oxidation on nickel based nanocatalysts in alkaline medium-Identification of the reaction products, J. Electroanal. Chem, vol.703, pp.56-62, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00939248

J. Ye, Y. Wen, W. De-zhang, L. Ming-gan, G. Q. Xu et al., Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes, Electrochem. Commun, vol.6, pp.66-70, 2004.

S. G. Wang, Q. Zhang, R. Wang, and S. F. Yoon, A novel multi-walled carbon nanotube-based biosensor for glucose detection, Biochem. Biophys. Res. Commun, vol.311, pp.572-576, 2003.

S. Premlatha, P. Sivasakthi, and G. N. Ramesh-bapu, Electrodeposition of a 3D hierarchical porous flower-like cobalt-MWCNT nanocomposite electrode for non-enzymatic glucose sensing, RSC Adv, vol.5, pp.74374-74380, 2015.

S. Ci, S. Mao, T. Huang, Z. Wen, D. A. Steeber et al., Enzymeless glucose detection based on CoO/graphene microsphere hybrids, Electroanalysis, vol.26, pp.1326-1334, 2014.

Y. Wang, S. Zhang, W. Bai, and J. Zheng, Layer-by-layer assembly of copper nanoparticles and manganese dioxide-multiwalled carbon nanotubes film: A new nonenzymatic electrochemical sensor for glucose, Talanta, vol.149, pp.211-216, 2016.

K. Ramachandran, T. Raj-kumar, K. J. Babu, and G. Gnana-kumar, Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications, Sci. Rep, vol.6, 2016.

H. Min, W. Wu, H. Wu, S. Wang, C. Feng et al., Synthesis of Pt x Sn/MWCNTS and their application in non-enzymatic glucose and hydrogen peroxide sensors, Electroanalysis, 2016.

C. Guo, H. Li, X. Zhang, H. Huo, and C. Xu, 3D porous CNT/MnO 2 composite electrode for high-performance enzymeless glucose detection and supercapacitor application, Sens. Actuators B, vol.206, pp.407-414, 2015.

S. Masoomi-godarzi, A. A. Khodadadi, M. Vesali-naseh, and Y. Mortazavi, Highly stable and selective non-enzymatic glucose biosensor using carbon nanotubes decorated by Fe 3 O 4 nanoparticles, J. Electrochem. Soc, vol.161, pp.19-25, 2014.

L. Rong, C. Yang, Q. Qian, and X. Xia, Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes, Talanta, vol.72, pp.819-824, 2007.

C. Nana, W. Hongjuan, L. Xiaomeng, and Z. Liande, Amperometric glucose biosensor based on integration of glucose oxidase with palladium nanoparticles/reduced graphene oxide nanocomposite, Am. J. Anal. Chem, vol.3, pp.312-319, 2012.

C. Xu, Y. Liu, F. Su, A. Liu, and H. Qiu, Nanoporous ptag and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing, Biosens. Bioelectron, vol.27, pp.160-166, 2011.

M. F. Hossain and J. Y. Park, Amperometric glucose biosensor based on Pt-Pd nanoparticles supported by reduced graphene oxide and integrated with glucose oxidase, Electroanalysis, vol.26, pp.940-951, 2014.

W. Putzbach and N. Ronkainen, Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review, Sensors, vol.13, pp.4811-4840, 2013.

F. Gao, L. Viry, M. Maugey, P. Poulin, and N. Mano, Engineering hybrid nanotube wires for high-power biofuel cells, Nat. Commun, vol.1, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00472854

F. Giroud, R. D. Milton, B. Tan, and S. D. Minteer, Simplifying enzymatic biofuel cells: Immobilized naphthoquinone as a biocathodic orientational moiety and bioanodic electron mediator, ACS Catal, vol.5, pp.1240-1244, 2015.

N. Villarrubia, C. W. Artyushkova, K. Garcia, S. O. Atanassov, and P. , NAD + /NADH tethering on mwnts-bucky papers for glucose dehydrogenase-based anodes, J. Electrochem. Soc, vol.161, pp.3020-3028, 2014.

K. Macvittie, J. Halamek, L. Halamkova, M. Southcott, W. D. Jemison et al., From "cyborg" lobsters to a pacemaker powered by implantable biofuel cells, Energy Environ. Sci, vol.6, pp.81-86, 2013.

L. Halámková, J. Halámek, V. Bocharova, A. Szczupak, L. Alfonta et al., Implanted biofuel cell operating in a living snail, J. Am. Chem. Soc, vol.134, pp.5040-5043, 2012.

A. Ciaccafava, A. De-poulpiquet, V. Techer, M. T. Giudici-orticoni, S. Tingry et al., An innovative powerful and mediatorless H 2 /O 2 biofuel cell based on an outstanding bioanode, Electrochem. Commun, vol.23, pp.25-28, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01690641

A. D. Poulpiquet, H. Marques-knopf, V. Wernert, M. T. Giudici-orticoni, R. Gadiou et al., Carbon nanofiber mesoporous films: Efficient platforms for bio-hydrogen oxidation in biofuel cells, Phys. Chem. Chem. Phys, vol.16, pp.1366-1378, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01493456

P. Wu, Z. Cai, J. Chen, H. Zhang, and C. Cai, Electrochemical measurement of the flux of hydrogen peroxide releasing from RAW 264.7 macrophage cells based on enzyme-attapulgite clay nanohybrids, Biosens. Bioelectron, vol.26, pp.4012-4017, 2011.

S. K. Maji, S. Sreejith, A. K. Mandal, X. Ma, and Y. Zhao, Immobilizing gold nanoparticles in mesoporous silica covered reduced graphene oxide: A hybrid material for cancer cell detection through hydrogen peroxide sensing, ACS Appl. Mater. Interfaces, vol.6, pp.13648-13656, 2014.

E. W. Miller, A. E. Albers, A. Pralle, E. Y. Isacoff, and C. J. Chang, Boronate-based fluorescent probes for imaging cellular hydrogen peroxide, J. Am. Chem. Soc, vol.127, pp.16652-16659, 2005.

W. Maruyama, P. Dostert, K. Matsubara, and M. Naoi, N-methyl(r)salsolinol produces hydroxyl radicals: Involvement to neurotoxicity. Free Radic, Biol. Med, vol.19, pp.67-75, 1995.

M. C. Chang, A. Pralle, E. Y. Isacoff, and C. J. Chang, A selective, cell-permeable optical probe for hydrogen peroxide in living cells, J. Am. Chem. Soc, vol.126, pp.15392-15393, 2004.

H. Ohshima, M. Tatemichi, and T. Sawa, Chemical basis of inflammation-induced carcinogenesis, Arch. Biochem. Biophys, vol.417, pp.3-11, 2003.

A. Devadoss, H. Han, T. Song, Y. Kim, and U. Paik, Gold nanoparticle-composite nanofibers for enzymatic electrochemical sensing of hydrogen peroxide, Analyst, vol.138, pp.5025-5030, 2013.

L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang et al., Intrinsic peroxidase-like activity of ferromagnetic nanoparticles, Nat. Nano, vol.2, pp.577-583, 2007.

W. He, X. Wu, J. Liu, X. Hu, K. Zhang et al., Pd, Pt) with tunable morphology and peroxidase-like activity, Design of AgM bimetallic alloy nanostructures, vol.22, pp.2988-2994, 2010.

W. Li, L. Kuai, Q. Qin, and B. Geng, Ag-Au bimetallic nanostructures: Co-reduction synthesis and their component-dependent performance for enzyme-free H 2 O 2 sensing, J. Mater. Chem. A, issue.1, pp.7111-7117, 2013.

Y. Lee, A. Loew, and S. Sun, Surface-and structure-dependent catalytic activity of Au nanoparticles for oxygen reduction reaction, Chem. Mater, vol.22, pp.755-761, 2010.

H. Li, Y. Li, and S. Wang, Water-soluble Au nanocages for enzyme-free H 2 O 2 sensor and 4-nitrophenol reduction, CrystEngComm, vol.17, pp.2368-2375, 2015.

Y. Sun and Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, vol.298, pp.2176-2179, 2002.

Y. Sun and Y. Xia, Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium, J. Am. Chem. Soc, vol.126, pp.3892-3901, 2004.

M. S. Yavuz, Y. Cheng, J. Chen, C. M. Cobley, Q. Zhang et al., Gold nanocages covered by smart polymers for controlled release with near-infrared light, Nat. Mater, vol.8, pp.935-939, 2009.

J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley et al., Gold nanocages: A novel class of multifunctional nanomaterials for theranostic applications, Adv. Funct. Mater, vol.20, pp.3684-3694, 2010.

L. Zhang, L. T. Roling, X. Wang, M. Vara, M. Chi et al., Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets, Science, vol.349, pp.412-416, 2015.

S. E. Skrabalak, L. Au, X. Li, and Y. Xia, Facile synthesis of Ag nanocubes and Au nanocages, Nat. Protoc, vol.2, pp.2182-2190, 2007.

C. M. Cobley, D. J. Campbell, and Y. Xia, Tailoring the optical and catalytic properties of gold-silver nanoboxes and nanocages by introducing palladium, Adv. Mater, vol.20, pp.748-752, 2008.

L. Yang, Y. Lai, C. Tsai, Y. Kong, C. Lee et al., One-pot synthesis of monodispersed silver nanodecahedra with optimal sers activities using seedless photo-assisted citrate reduction method, J. Phys. Chem. C, vol.116, pp.24292-24300, 2012.

K. Hu, D. Lan, X. Li, and S. Zhang, Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes, Anal. Chem, vol.80, pp.9124-9130, 2008.

P. Daggumati, Z. Matharu, and E. Seker, Effect of nanoporous gold thin film morphology on electrochemical DNA sensing, Anal. Chem, vol.87, pp.8149-8156, 2015.

L. Jin, Z. Zhang, Z. Zhuang, Z. Meng, C. Li et al., PdPt bimetallic alloy nanowires-based electrochemical sensor for sensitive detection of ascorbic acid, RSC Adv, vol.6, pp.42008-42013, 2016.

T. G. Satheesh-babu, D. Varadarajan, G. Murugan, T. Ramachandran, and B. G. Nair, Gold nanoparticle-polypyrrole composite modified TiO 2 nanotube array electrode for the amperometric sensing of ascorbic acid, J. Appl. Electrochem, vol.42, pp.427-434, 2012.

T. E. Nancy and V. A. Kumary, Synergistic electrocatalytic effect of graphene/nickel hydroxide composite for the simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid, Electrochim. Acta, vol.133, pp.233-240, 2014.

B. J. Sanghavi and A. K. Srivastava, Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode, Electrochim. Acta, vol.55, pp.8638-8648, 2010.

A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, p.850, 2001.

A. Chen and S. Chatterjee, Nanomaterials based electrochemical sensors for biomedical applications, Chem. Soc. Rev, vol.42, pp.5425-5438, 2013.

J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.414, pp.359-367, 2001.

M. S. Whittingham, Electrical energy storage and intercalation chemistry, Science, vol.192, pp.1126-1127, 1976.

M. Winter and R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev, vol.104, pp.4245-4270, 2004.

B. C. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature, vol.414, pp.345-352, 2001.

W. R. Grove, On voltaic series and the combination of gases by platinum, Philos. Mag. 1839, vol.14, pp.127-130

W. R. Grove, On a small voltaic battery of great energy; some observations on voltaic combinations and forms of arrangement; and on the inactivity of a copper positive electrode in nitro-sulphuric acid, Philos. Mag, vol.1839, pp.287-293

W. R. Grove, On a gaseous voltaic battery, Philos. Mag, vol.1842, pp.417-420

A. T. Yahiro, S. M. Lee, and D. O. Kimble, Bioelectrochemistry: I. Enzyme utilizing bio-fuel cell studies, Biochim. Biophys. Acta, vol.88, pp.375-383, 1964.

T. G. Young, L. Hadjipetrou, and M. D. Lilly, The theoretical aspects of biochemical fuel cells, Biotechnol. Bioeng, vol.8, pp.581-593, 1966.

F. Zhao, R. C. Slade, and J. R. Varcoe, Techniques for the study and development of microbial fuel cells: An electrochemical perspective, Chem. Soc. Rev, vol.38, pp.1926-1939, 2009.

J. B. Davis and H. F. Yarbrough, Preliminary experiments on a microbial fuel cell, Science, vol.137, pp.615-616, 1962.

S. R. Higgins, C. Lau, P. Atanassov, S. D. Minteer, and M. J. Cooney, Standardized characterization of a flow through microbial fuel cell, Electroanalysis, vol.23, pp.2174-2181, 2011.

H. Liu, R. Ramnarayanan, and B. E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell, Environ. Sci. Technol, vol.38, pp.2281-2285, 2004.

B. E. Logan, B. Hamelers, R. Rozendal, U. Schröder, J. Keller et al., Microbial fuel cells: Methodology and technology, Environ. Sci. Technol, vol.40, pp.5181-5192, 2006.

A. Heller and B. Feldman, Electrochemical glucose sensors and their application in diabetes management, In Applications of Electrochemistry in Medicine

M. Schlesinger and . Ed, , vol.56, pp.121-187, 2013.

A. Heller, Integrated medical feedback systems for drug delivery, AIChE J, vol.51, pp.1054-1066, 2005.

C. F. Holmes, Electrochemical power sources and the treatment of human illness, Electrochem. Soc. Interface, vol.12, pp.26-29, 2003.

A. Heller, Potentially implantable miniature batteries, Anal. Bioanal. Chem, vol.385, pp.469-473, 2006.

S. Kerzenmacher, J. Ducrée, R. Zengerle, and F. Von-stetten, An abiotically catalyzed glucose fuel cell for powering medical implants: Reconstructed manufacturing protocol and analysis of performance, J. Power Sources, vol.182, pp.66-75, 2008.

C. H. Kwon, S. Lee, Y. Choi, J. A. Lee, S. H. Kim et al., High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns, Nat. Commun, vol.5, 2014.

E. Katz, B. Filanovsky, and I. Willner, A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes, New J. Chem, vol.23, pp.481-487, 1999.

E. Katz and I. Willner, A biofuel cell with electrochemically switchable and tunable power output, J. Am. Chem. Soc, vol.125, pp.6803-6813, 2003.

A. Zebda, C. Gondran, A. Le-goff, M. Holzinger, P. Cinquin et al., Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes, Nat. Commun, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00685244

S. Xu and S. D. Minteer, Enzymatic biofuel cell for oxidation of glucose to CO 2, ACS Catal, vol.2, pp.91-94, 2012.

Y. Holade, A. Both-engel, S. Tingry, A. Cherifi, D. Cornu et al., Insights on hybrid glucose biofuel cell based on bilirubin oxidase cathode and gold-based nanomaterials anode, vol.1, 1976.

Y. Holade, K. Macvittie, T. Conlon, N. Guz, K. Servat et al., Pacemaker activated by an abiotic biofuel cell operated in human serum solution, Electroanalysis, vol.26, pp.2445-2457, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01319202

P. Cinquin, C. Gondran, F. Giroud, S. Mazabrard, A. Pellissier et al., A glucose biofuel cell implanted in rats, PLoS ONE, vol.5, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00688232

M. Rasmussen, R. E. Ritzmann, I. Lee, A. J. Pollack, and D. Scherson, An implantable biofuel cell for a live insect, J. Am. Chem. Soc, vol.134, pp.1458-1460, 2012.

A. Szczupak, J. Halamek, L. Halamkova, V. Bocharova, L. Alfonta et al., Living battery-Biofuel cells operating in vivo in clams, Energy Environ. Sci, vol.5, pp.8891-8895, 2012.

V. Andoralov, M. Falk, D. B. Suyatin, M. Granmo, J. Sotres et al., Biofuel cell based on microscale nanostructured electrodes with inductive coupling to rat brain neurons

J. A. Castorena-gonzalez, C. Foote, K. Macvittie, J. Halámek, L. Halámková et al., Biofuel cell operating in vivo in rat, Electroanalysis, vol.25, pp.1579-1584, 2013.

E. Katz and K. Macvittie, Implanted biofuel cells operating in vivo-Methods, applications and perspectives-Feature article, Energy Environ. Sci, vol.6, pp.2791-2803, 2013.

A. Zebda, S. Cosnier, J. P. Alcaraz, M. Holzinger, A. Le-goff et al., Single glucose biofuel cells implanted in rats power electronic devices, Sci. Rep, 1516.
URL : https://hal.archives-ouvertes.fr/hal-00809303

A. Habrioux, K. Servat, S. Tingry, and K. B. Kokoh, Enhancement of the performances of a single concentric glucose/O 2 biofuel cell by combination of bilirubin oxidase/Nafion cathode and Au-Pt anode, Electrochem. Commun, vol.11, pp.111-113, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00362073

A. Habrioux, E. Sibert, K. Servat, W. Vogel, K. B. Kokoh et al., Activity of platinum-gold alloys for glucose electrooxidation in biofuel cells, J. Phys. Chem. B, vol.111, pp.10329-10333, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00315462

A. Both-engel, M. Bechelany, O. Fontaine, A. Cherifi, D. Cornu et al., One-pot route to gold nanoparticles embedded in electrospun carbon fibers as an efficient catalyst material for hybrid alkaline glucose biofuel cells, vol.3, pp.629-637, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01678015

Y. Holade, K. Macvittie, T. Conlon, N. Guz, K. Servat et al., Wireless information transmission system powered by an abiotic biofuel cell implanted in an orange, Electroanalysis, vol.27, pp.276-280, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01339020

S. Kerzenmacher, J. Ducrée, R. Zengerle, and F. Von-stetten, Energy harvesting by implantable abiotically catalyzed glucose fuel cells, J. Power Sources, vol.182, pp.1-17, 2008.

A. Kloke, B. Biller, U. Kräling, S. Kerzenmacher, R. Zengerle et al., A single layer glucose fuel cell intended as power supplying coating for medical implants, Fuel Cells, vol.11, pp.316-326, 2011.

L. Yang, Y. Zhang, M. Chu, W. Deng, Y. Tan et al., Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O 2 fuel cell, Biosens. Bioelectron, vol.52, pp.105-110, 2014.

Y. Zhao, L. Fan, B. Hong, Y. Zhang, M. Zhang et al., Three-dimensional porous palladium foam-like nanostructures as electrocatalysts for glucose biofuel cells, Energy Technol, vol.4, pp.249-255, 2016.

H. Werner and B. W. Robinson, A glucose cell, Proceedings of the Digest of the 7th International Conference on Medical and Biological Engineering, p.520, 1967.

A. Kloke, C. Köhler, R. Zengerle, and S. Kerzenmacher, Porous platinum electrodes fabricated by cyclic electrodeposition of PtCu alloy: Application to implantable glucose fuel cells, J. Phys. Chem. C, vol.116, 2012.

G. Slaughter and J. Sunday, A membraneless single compartment abiotic glucose fuel cell, J. Power Sources, vol.261, pp.332-336, 2014.

V. Oncescu and D. Erickson, A microfabricated low cost enzyme-free glucose fuel cell for powering low-power implantable devices, J. Power Sources, vol.196, pp.9169-9175, 2011.

J. Zhang, Y. Zhu, C. Chen, X. Yang, and C. Li, Carbon nanotubes coated with platinum nanoparticles as anode of biofuel cell, Particuology, vol.10, pp.450-455, 2012.

D. Wen, W. Liu, A. Herrmann, and A. Eychmüller, A membraneless glucose/O 2 biofuel cell based on Pd aerogels, Chem. Eur. J, vol.20, pp.4380-4385, 2014.

Ó. Santiago, E. Navarro, M. A. Raso, and T. J. Leo, Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts, Appl. Energy, vol.179, pp.497-522, 2016.

S. Kerzenmacher, S. Zehnle, T. Volk, D. Jansen, F. Von-stetten et al., An efficient low-power DC-DC converter enables operation of a cardiac pacemaker by an integrated glucose fuel cell, Proceedings of the PowerMEMS, pp.189-192, 2008.

Y. Holade, T. W. Napporn, and B. K. Kokoh, Advanced surfactant-free nanomaterials for electrochemical energy conversion systems: From electrocatalysis to bionanotechnology, Advanced Electrode Materials

A. Tiwari, F. Kuralay, and L. Uzun, , pp.103-146, 2016.

A. Both-engel, Y. Holade, S. Tingry, A. Cherifi, D. Cornu et al., Electrospun carbon fibers: Promising electrode material for abiotic and enzymatic catalysis, J. Phys. Chem. C, vol.119, pp.16724-16733, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01729275

Y. Holade, N. Sahin, K. Servat, T. Napporn, and K. Kokoh, Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel cells, vol.5, pp.310-348, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01339056

Y. Holade, K. Servat, T. W. Napporn, and K. B. Kokoh, Electrocatalytic properties of nanomaterials synthesized from "bromide anion exchange" method-Investigations of glucose and glycerol oxidation, Electrochim. Acta, vol.162, pp.205-214, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01339039

Y. Holade, Powering implantable micro-devices: Towards a new joker?, L'Act. Chim, vol.412, pp.23-31, 2016.

M. Southcott, K. Macvittie, J. Halamek, L. Halamkova, W. D. Jemison et al., A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system-Battery not included, Phys. Chem. Chem. Phys, vol.15, pp.6278-6283, 2013.

G. Pistoia, Batteries for Portable Devices

E. Science and B. V. , , 2005.

S. Szczesny, S. Jetzki, and S. Leonhardt, Review of Current Actuator Suitability for Use in Medical Implants, Proceedings of the 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '06), pp.5956-5959, 2006.

S. Hebié, Y. Holade, K. Servat, B. K. Kokoh, and T. W. Napporn, Electrochemical reactivity at free and supported gold nanocatalysts surface. In Catalytic Application of Nano-Gold Catalysts, pp.101-130, 2016.

W. Gellett, M. Kesmez, J. Schumacher, N. Akers, and S. D. Minteer, Biofuel cells for portable power, Electroanalysis, vol.22, pp.727-731, 2010.

E. Katz, Implantable biofuel cells operating in vivo-Potential power sources for bioelectronic devices, Bioelectron. Med, vol.2, pp.1-12, 2015.

K. Macvittie, T. Conlon, and E. Katz, A wireless transmission system powered by an enzyme biofuel cell implanted in an orange, Bioelectrochemistry, vol.106, pp.28-33, 2015.

U. Schröder, From in vitro to in vivo-Biofuel cells are maturing, Angew. Chem. Int. Ed, vol.51, pp.7370-7372, 2012.

J. Schwefel, R. E. Ritzmann, I. N. Lee, A. Pollack, W. Weeman et al., Wireless communication by an autonomous self-powered cyborg insect, J. Electrochem. Soc, vol.161, pp.3113-3116, 2015.

M. Falk, M. Alcalde, P. N. Bartlett, A. L. De-lacey, L. Gorton et al., Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission, PLoS ONE, vol.9, 2014.

M. Falk, S. Shleev, C. W. Narváez-villarrubia, S. Babanova, P. Atanassov et al., Biological fuel cells for biomedical applications, In Enzymatic Fuel Cells: From Fundamentals to Applications, pp.422-450, 2014.

W. Jia, G. Valdés-ramírez, A. J. Bandodkar, J. R. Windmiller, and J. Wang, Epidermal biofuel cells: Energy harvesting from human perspiration, Angew. Chem. Int. Ed, vol.52, pp.7233-7236, 2013.

W. Jia, A. J. Bandodkar, G. Valdés-ramírez, J. R. Windmiller, Z. Yang et al., Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration, Anal. Chem, vol.85, pp.6553-6560, 2013.

D. Diamond, S. Coyle, S. Scarmagnani, and J. Hayes, Wireless sensor networks and chemo-/biosensing, Chem. Rev, vol.108, pp.652-679, 2008.

J. R. Windmiller and J. Wang, Wearable electrochemical sensors and biosensors: A review, Electroanalysis, vol.25, pp.29-46, 2013.

H. R. Luckarift, P. Atanassov, and G. R. Johnson, Enzymatic Fuel Cells: From Fundamentals to Applications, p.496, 2014.